
1 3J. Indian Inst. Sci. | VOL 102:3 | 961–1000 July 2022 | journal.iisc.ernet.in

The Duflo–Serganova Functor, Vingt Ans Après
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1 Introduction
The DS functor was introduced by Michel Duflo 
and the third author approximately 20 years 
ago, but the original manuscript13 was never 
published. Since then much progress has been 
made in the study of the DS functor. This paper 
includes the results of the original manuscript, as 
well as a survey of more recent results obtained 
by different authors.

The DS functor has a large and growing list 
of applications throughout the literature. It was 
used in55 to prove the Kac–Wakimoto conjecture 
(see Sect. 7); in42 to describe the supercharacter 
ring for p(n) (see Sect. 8); in41 to study important 
sl(∞)-modules (see Sect. 9); in17 to give a formula 
for the superdimension of p(n)-modules; in38 to 
give a new proof of the superdimension formula 
for GL(m|n)-modules; in37 to obtain reductive 
envelopes of certain supergroups; in3 to com-
pute complexity of certain modules over gl(m|n) ; 
in9 to classify the indecomposable summands of 
tensor powers of the standard representation of 
OSP(m|2n); and in20 to construct universal ten-
sor categories. The DS functor has been applied 
to study Deligne categories in numerous papers 
(see, e.g.,9,16,20).

The associated variety of a module over a 
Lie superalgebra g = g0 ⊕ g1 is a subvariety of 
the cone X ⊂ g1 of self-commuting odd ele-
ments. The cone X was studied in32–34, where 
geometric properties of X were used to obtain 
important results about the cohomology of Lie 
superalgebras.

Now if x ∈ X  and M is a g-module, then 
x2(M) = 0 and hence we can take the coho-
mology Mx = Ker xM/ Im xM . The assign-
ment M  → Mx defines the Duflo–Serganova 
functor DSx : mod(g) → mod(gx) , where 
gx = Ker adx/Im adx is a Lie algebra. It is easy 
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to see that this functor is symmetric monoi-
dal. This obvious but remarkable fact does not 
have an analogue in the theory of Harish-Chan-
dra modules or in the theory of restricted Lie 
algebras.

For the basic classical Lie superalgebras, 
DSx(L) has been computed for every simple 
finite-dimensional module L. These computa-
tions show that DSx(L) is semisimple and “pure” 
in the following sense: for every simple gx-mod-
ule L′ one has [DSx(L) : L′] · [DSx(L) : �L′] = 0 . 
It would be interesting to find a conceptual proof 
of these facts, see Sect. 12 for details.

The associated variety XM for a g-module M 
is the closure in X of the subset consisting of all 
elements x ∈ X for which Mx is nonzero. The 
associated variety for a module over a Lie super-
algebra can be seen as an analogue of the associ-
ated varieties for Harish-Chandra modules, if we 
think about a Lie superalgebra g = g0 ⊕ g1 as a 
symmetric pair. Associated varieties for Harish-
Chandra modules have many interesting applica-
tions in the classical representation theory (see, 
for example,46,50,61). While the associated vari-
ety in the theory of Harish-Chandra modules is 
trivial if a module is finite-dimensional, finite-
dimensional modules over Lie superalgebras have 
interesting associated varieties. Some applications 
of these associated varieties are given in Sects. 7 
and 11.

On the other hand, the associated variety for 
a module over a Lie superalgebra is also an ana-
logue of the rank variety for restricted Lie alge-
bras in positive characteristic, see21. For example, 
in many cases, these associated varieties for Lie 
superalgebras detect projectivity in the category 
of finite-dimensional g-modules. This is proven 
in Sect. 10 of the present paper; the original proof 
in the preprint13 had a mistake.
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In the category of finite-dimensional g-mod-
ules, associated varieties are closely related to 
blocks and central characters, see Theorems 6.3 
and 6.4. In the original preprint13, Theorem 6.4 
was proven for gl(m|n) , now it is known for all 
basic classical superalgebras48,55. It also seems that 
associated varieties can be used to study category 
O for Kac–Moody superalgebras. Some results in 
this direction are obtained in11,29.

Finally, let us mention that in contrast with 
restricted Lie algebras,21, the cohomological sup-
port varieties defined and studied in2,3 are quite 
different from the varieties studied in this paper. 
This may indicate existence of a third definition 
which interpolates these two constructions.

The Duflo–Serganova functor has also 
appeared under different guises in theoretical 
physics. Odd operators Q in a supersymmetric 
field theory that satisfy Q2 = 0 are examples of 
BRST operators, and allow one to employ the so-
called BRST formalism, which includes taking 
cohomology in Q. Such a situation arises in sev-
eral places in the literature. In62, it was used as a 
key part in topological and holomorphic twists of 
supersymmetric field theories. Twisting a super-
symmetric field theory gives rise to simpler field 
theories that can either be topological (giving a 
TQFT), holomorphic, or something in between, 
depending on properties of the chosen Q. A 
mathematically rigorous approach to the twist-
ing of supersymmetric field theories is explained 
in10. In7, the authors apply DS functors (referred 
to as cohomological reductions in their paper) to 
the algebra of smooth functions as well as cer-
tain vector bundles on the target spaces of sigma 
models, which are homogeneous superspaces. 
Like in the mathematical setting, this reduction 
produces simpler theories which then in turn can 
give information about the original theory.

1.1  Notation
Throughout this paper (and in particular in Sects. 
4–9 and 12), we will primarily focus on the fol-
lowing important list of Lie superalgebras, which 
by slight abuse of terminology we will refer to as 
classical Lie superalgebras:

Note that each superalgebra appearing in this list 
has a “cousin” that is a classical Lie superalgebra 
in the sense of43. Additionally, by basic classical Lie 
superalgebra, we will mean a superalgebra from 
the above list, excluding p(n) and q(n) . We will 
sometimes refer to the superalgebras D(2|1; a), 

(1)
sl(m|n), m �= n, gl(m|n), osp(m|2n),

D(2|1; a), F(4), G(3), p(n), q(n).

G(3) and F(4) as “exceptional” and to other 
superalgebras from our list as “non-exceptional”.

1.1.1  List of Notations
We present below a table of the commonly used 
notations in the article:

•   mod(g) the category of g-modules.
•   F in(g) the category of finite-dimensional g

-modules.
•   F(g) the category of finite-dimensional g

-modules semisimple over g0.
•   p a parity function on weights.
•   modrχ (g) the category of g-modules with gen-

eralized central character χ of order r.
•   modχ (g) category of g-modules admitting 

generalized central character χ.
•   Resgk the restriction functor from g-modules 

to k-modules.
•   Indgk0 the induction functor.
•   X the self-commuting cone of g.
•   Xk the set of rank k elements in X.
•   OX the structure sheaf on X.
•   ∂ the differential on OX ⊗M in Sect. 11.
•   XM the associated variety of M.
•   DSx the Duflo–Serganova functor determined 

by x ∈ X.
•   DSr the Duflo–Serganova functor determined 

by a rank r element.
•   ηx : Z(g) → Z(gx) the induced map on 

center.
•   σx the involution of gx for classical Lie super-

algebras (Sect. 3.1).
•   K(C) the Grothendieck group of a full abe-

lian subcategory C of mod(g).
•   Mgr the image of a module M in K(C).
•   K−(C) the reduced Grothendieck group 

(quotient by Mgr = −(�M)gr).
•   [M] the image of a module M in K−(C).
•   K+(C) the character group (quotient by 

Mgr = (�M)gr).
•   schM the supercharacter of M.
•   dsx the map induced by the functor DSx on 

reduced Grothendieck groups.
•   dsr the map dsx for a rank r element x.
•   G0 the simply connected, connected Lie group 

corresponding to g0.
•   � the roots of g with respect to a Cartan sub-

algebra of g0.
•   W the Weyl group.
•   ρ the Weyl vector.
•   L(�) = Lg(�) is the irreducible g-module 

of highest weight � with respect to a chosen 
Borel subalgebra.
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•   atypχ , atyp� the degree of atypicality of χ , � 
resp.

•   [M : L] the multiplicity of a simple module L 
in a finite-length module M.

•   [M : L]non the non-graded multiplicity of a 
simple module L in M, meaning the number 
of times both L and �L appear.

•   R the super Weyl denominator.
•   k(�) a virtual Kac module.

2  Definitions and Basic Properties
Our ground field is C , and by Y  we denote the 
Zariski closure of a subset Y of an affine space. By 
� we denote the change of parity functor in the 
category of vector superspaces.

Throughout this paper, we assume that the Lie 
superalgebra g = g0 ⊕ g1 is finite dimensional. 
Let G0 denote a simply-connected connected 
algebraic group with Lie algebra g0 . We will write 
F in(g) for the category of finite-dimensional g
-modules, and F(g) for the full subcategory of 
F in(g) consisting of modules which are semisim-
ple over g0 . The category F(g) will be the main 
object of study after Sect. 2.

2.1  The Associated Variety XM
Let

It is clear that X is a G0-invariant Zariski closed 
cone in g1.

Let M be a g-module. For every x ∈ X , the 
corresponding element xM ∈ EndC(M) satisfies 
x2M = 0 . Set

and define

We call XM the associated variety of M.

Lemma 2.1 If M is a finite-dimensional (g,G0)

-module, then XM is Zariski closed G0-invariant 
subvariety.

Proof For a finite-dimensional M,

Hence, XM is Zariski closed. Now M is a G0

-module. For each g ∈ G0 and x ∈ M one has

which implies the lemma. �

X = {x ∈ g1 | [x, x] = 0}.

Mx := Ker xM/xM

XM := {x ∈ X | Mx �= 0}.

X \ XM = {x ∈ X | rank xM = dimM0 = dimM1}.

MAdg (x) = gMx,

2.2  The Lie Superalgebra gx
For x ∈ X  , we define

where gx := Ker adx and [x, g] := Im adx.
The next lemma follows from the definitions.

Lemma 2.2 Let g be a finite-dimensional Lie 
superalgebra and x ∈ X . 

1. Then [x, g] is an ideal in gx , and hence gx has 
the natural structure of a Lie superalgebra.

2. If M is a g-module, then Mx is a gx-module.
Now we observe that for each x ∈ X  , the cor-

respondence M  → Mx is functorial. Let mod(g) 
(respectively, mod(gx) ) denote the category of 
all g-modules (respectively, gx-modules).

Definition 2.3 The Duflo–Serganova func-
tor DSx : mod(g) → mod(gx) is defined by 
DSx(M) := Mx.

The functor DSx has many nice properties. 
The following lemma shows that DSx is a sym-
metric monoidal tensor functor.

Lemma 2.4 Let g be a finite-dimensional 
Lie superalgebra, let x ∈ X , and let M, N be gx
-modules. 

1. We have a canonical isomorphism 
(M ⊗ N )x ≃ Mx ⊗ Nx of gx-modules.

2. For any g-module M we have a canonical iso-
morphism (M∗)x → (Mx)

∗ of gx-modules.

Hence, DSx : mod(g) → mod(gx) is a symmetric 
monoidal tensor functor.
Proof For (1), we have the natural morphism 
of gx-modules Mx ⊗ Nx → (M ⊗ N )x . We have 
to check that this is an isomorphism. This fol-
lows from the fact that over the (0|1)-dimen-
sional superalgebra Cx , we have M = Mx ⊕ F  , 
N = Nx ⊕ F ′ for some free Cx-modules F and F ′ , 
and we have

where F ⊗ N ⊕M ⊗ F ′ is a free Cx-module.
For (2), we have a natural map 

(M∗)x → (Mx)
∗ given by ϕ  → ϕ|Kerx , using 

the fact that ϕ(im x) = 0 . In the other direc-
tion: given ϕ : Mx → C , write ϕ̃ for the lift of ϕ 
to Ker x and choose a splitting M = Ker x ⊕ V  . 
Then φ = ϕ̃ ⊕ 0 is annihilated by x, and this 
defines a morphism (Mx)

∗ → (M∗)x inverse to 
our previous map.  �

gx := gx/[x, g],

(M ⊗ N ) = Mx ⊗ Nx ⊕ (F ⊗ N ⊕M ⊗ F ′),
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The next lemma shows that the functor 
DSx preserves the superdimension of a finite-
dimensional module M, where the super-
dimension of M = M0 ⊕M1 is given by 
sdimM := dimM0 − dimM1.

Lemma 2.5 For any finite-dimensional g-module 
M and x ∈ X , sdimM = sdimMx.

Proof Let �(N ) stand for the superspace iso-
morphic to N with switched parity. Since 
M/Ker xM is isomorphic to �(xM) , we have

 �

In fact, Lemma 2.5 has a natural generaliza-
tion, as we will see in the next section.

2.3  Reduced Grothendieck Groups 
and dsx

Let C be a full abelian subcategory of mod(g) such 
that

We define the Grothendieck group K(C) in the 
usual way as the quotient of the free Z-mod-
ule with basis Mgr , for each object M in C , with 
relations Mgr = M′

gr +M′′
gr for every short exact 

sequence 0 → M′ → M → M′′ → 0 in C.
The reduced Grothendieck group K−(C) of 

the category C is the quotient K(C) by the rela-
tion Mgr = −(�M)gr for all objects M ∈ C . We 
define the character group K+(C) to be the quo-
tient of K(C) by Mgr = (�M)gr . Write (−)Q for 
the extension of scalars from Z to Q . Then by 
the Chinese Remainder Theorem we have

If C is closed under ⊗ , then its tensor structure 
provides K(C) with a ring structure such that 
K−(C) and K+(C) are quotient rings, and (2) 
becomes an isomorphism of rings.

Remark 2.6 Since we work over the inte-
gers, observe that if M is any module in C with 
M ∼= �M , its image in K−(C) will be 2-torsion 
(although it need not be 0).

Lemma 2.7 (V. Hinich) If

sdimM = sdim(Ker xM)− sdim(xM)

= sdim(Ker xM/xM) = sdimMx.

(∗) �M is an object of C wheneverM is.

(2)K(C)Q ∼= K−(C)Q ×K+(C)Q.

is an exact sequence of g-modules, then there 
exists an exact sequence

for some gx-module E.

Proof Set E be the kernel of the induced map 
ψ : Nx → Mx and E′ be the quotient Lx/ϕ(Mx) . 
Then we have the exact sequence

The odd map ψ−1xϕ−1 : Lx → Nx induces an 
isomorphism E′ → �E .  �

Lemmas 2.4 and 2.7 imply the following.

Corollary 2.8 The functor DSx is a middle exact 
tensor functor and satisfies DSx(�M) = �DSx(M).

Corollary 2.9 Let C , (resp. Cx ) be full abelian 
subcategories of mod(g) (resp. mod(gx) ) satisfy-
ing (*). Suppose that DSx(M) lies in Cx whenever 
C lies in C . Then the functor DSx : C → Cx induces 
a homomorphism on the corresponding reduced 
Grothendieck groups

We now focus in particular on the case when 
C = F in(g) . Then Lemma 2.7 in particular 
implies that the following diagram commutes:

where the horizontal arrow is induced by the 
restriction functor Resggx , and the up arrow is 
induced by Resgxgx , where gx → gx is the canonical 
surjection.

Remark 2.10 The map 
dsx : K−(F in(g)) → K−(F in(gx)) is a ring 
homomorphism compatible with duality. This 
follows from the fact that F in(g) and F in(gx) are 
tensor categories, since DSx is a tensor functor 
that preserves the duality.

Remark 2.11 The existence of a homomorphism 
between reduced Grothendieck rings was first 
observed when g = gl(m|n) in38. In40, this homo-
morphism was introduced in the language of 
supercharacters for the category of finite-dimen-
sional modules of finite-dimensional Kac–Moody 
superalgebras, and its kernel and image were 
described.

0 → E → Nx → Mx → Lx → �E → 0

0 → E → Nx → Mx → Lx → E′ → 0.

dsx : K−(C) → K−(Cx).

(3)
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2.4  dsx as Restriction
For a module M, we write [M] for its image in the 
reduced Grothendieck ring.

Lemma 2.12 Suppose that we have a splitting 
gx ⊆ gx so that gx = gx ⋉ [x, g] . Then for a finite-
dimensional g-module M we have

Proof This follows immediately by applying the 
restriction K−(F in(gx)) → K−(F in(gx)) to 
the equality [DSxM] = [Res

g
gxM] coming from 

Lemma 2.7.  �

Lemma 2.13 Let x, y ∈ X such that [x, y] = 0 , 
and suppose that we have splittings

Furthermore suppose that under these splittings, 
x ∈ gy and

Then we have

Proof This follows immediately from 
Lemma 2.12 and the corresponding statement for 
restriction.  �

Lemma 2.14 Suppose that x, y ∈ X and that 
there exists g ∈ G0 such that gx = y . Then we have 
a commutative diagram

where the downward arrow is an isomorphism and 
is induced by the action of g. In particular:

Proof We have a commutative diagram

dsx[M] = [ResggxM].

gy = gy ⋉ [y, g], gx+y = gx+y ⋉ [x + y, g],

(gy)
x = gx+y ⋉ [x, gy].

dsx+y = dsx ◦ dsy : K−(g) → K−(gx+y)

Ker
(

dsx|K−(F in(g))

)

= Ker
(

dsy|K−(F in(g))

)

where the downward arrow is induced by the 
action of g, and is an equivalence. Passing to the 
reduced Grothendieck ring completes the argu-
ment.  �

2.5  Supermultiplicity
Let g be a finite-dimensional Lie superalgebra, 
and let a be any subalgebra of g . We will view

as a subalgebra of gx.
In addition to preserving superdimension, the 

DS functor also preserves the supermultiplicity 
of gx-modules, when this notion is well-defined. 
We continue to work just with finite-dimensional 
modules. The multiplicity of a simple module L 
in a finite-length module M, denoted [M : L], is 
the number of factors in the Jordan–Hölder series 
of M which are isomorphic to N. If M is a finite-
dimensional module and L is a finite-dimensional 
simple module, then we can define the supermul-
tiplicity of L in M to be:

The following lemma is immediate.

Lemma 2.15 Let L be simple, finite-dimen-
sional g-module. Then smult(−; L) defines a 
homomorphism

The following proposition is from25.

Proposition 2.16 Let M be in F in(g) , and let 
L be a simple finite-dimensional gx-module. Then 
one has

where DSx(M) is viewed as a gx-module.

Proof This follows immediately from (3).  �

Remark 2.17 In many cases gx can be viewed as 
a subalgebra of g in a way that gx = gx ⋉ [x, g] , 
and in these cases, the above formula also holds 
for each simple gx-module L. In particular, the 
claim holds if g is a classical Lie superalgebra (see 
Proposition 4.5).

ax := ax/([g, x] ∩ a)

(4)

smult(M; L) :=

{

[M : L] − [M : �L] if L �∼= �L
[M : L]mod 2 if L ∼= �L.

K−(F in(g)) →

{

Z if L �∼= �L
Z2 if L ∼= �L

smult(Res
g
gxM; L) = smult(DSx(M); L),
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Proposition 2.18 We have the following commu-
tative diagram

where the horizontal arrows are induced by the 
corresponding restriction functors and resaxax is 
induced by the functor Resaxax for the canonical 
surjection ax → ax.

Proof The restriction functors give the commu-
tative diagram

which allows us to rewrite the original diagram 
in the form

where all arrows except dsx are induced by the 
restriction functors. By (3), the above diagram 
is commutative.  �

Example 2.19 Suppose g is a classical Lie super-
algebra in the sense of43, and let a := h be a 
Cartan subalgebra of g0 . Restriction induces a 
map K−(F in(g)) → K−(F in(h)) which we 
write as [N ] �→ schN  , where schN  denotes the 
supercharacter of N (see (12)). If hx is a Cartan 
subalgebra of (gx)0 , then the composed map 
dsx : K−(F in(g)) → K−(F in(hx)) is given 
by [N ] �→ schDSx(N ) . If we fix an embedding 
hx → h , then Proposition 2.18 gives the Hoyt–
Reif formula40

2.6  Properties of Associated Varieties
Here we list a few basic properties of associated 
varieties for a finite-dimensional Lie superalge-
bra g . Let U(g) denote the universal enveloping 
algebra of g.

We have the following.

(5)schDSx(N ) = (schN )|hx .

Lemma 2.20 Let g be a finite-dimensional Lie 
superalgebra. 

1. If M = U(g)⊗U(g0) M
′ for some g0-module 

M′ , then XM = {0};
2. If M = C is trivial, then XM = X;
3. For any g-modules M and N, one has 

XM⊕N = XM ∪ XN;
4. For any g-modules M and N, one has 

XM⊗N = XM ∩ XN;
5. For any g-module M, XM∗ = XM;

Proof (2) and (3) follow directly from the defi-
nition, while (4) and (5) follow from Lemma 2.4.

To prove (1), let x ∈ X  and x  = 0 . Let 
{

vj
}

j∈J
 

be a basis of M′ and x1, . . . , xm be a basis of g1 
such that x = x1 . Then by the PBW Theorem for 
Lie superalgebras, the elements xi1xi2 . . . xik ⊗ vj 
for all 1 ≤ i1 < i2 < · · · < ik ≤ m , j ∈ J  form a 
basis of M. The action of

x = x1 in this basis is easy to write, and it is 
clear that Ker x = xM is spanned by the vectors 
x1xi2 . . . xik ⊗ vj .  �

The following lemma is the premise of 
Sect. 10, where the relationship between projec-
tivity of module and its associated variety will be 
studied more in depth.

Lemma 2.21 Suppose that g0 is reductive (i.e., g 
is quasireductive). If M is projective in F(g) then 
we have XM = {0}.

Proof This follows from (1) of Lemma 2.20 
using that M will be a direct summand of 
Indgg0Res

g
g0M .  �

Remark 2.22 There is a natural action of 
G0 ×Gm on the associated variety X of g , where 
the one-dimensional torus Gm acts by scaling.

For � ∈ Gm , it is easy to check we have an 
equality of functors DS�x = DSx . For g ∈ G0 , the 
functors DSgx and DSx are isomorphic, in a suit-
able sense, when we restrict to finite-dimensional 
modules.

3  The Universal Enveloping Algebra 
and Central Characters

In this section, g denotes a finite-dimensional 
Lie superalgebra. Let Z(g) (respectively, Z(gx) ) 
denote the center of the universal enveloping 
algebra U(g) (respectively, U(gx)).

For each central character χ : Z(g) → C , 
we denote by modrχ (g) the full subcategory of 
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mod(g) consisting of the modules that are anni-
hilated by (z − χ(z))r for every z ∈ Z(g) . We set

and we say that a g-module M admits central 
character χ if M lies in modχ (g) . By Dixmier’s 
generalization of Schur’s Lemma (see14), each 
simple module lies in mod1χ (g) for a suitable cen-
tral character χ.

Symmetrization gives an isomorphism 
U(g) ≃ S(g) as adg-modules. Then since 
M  → Mx is a tensor functor we have

Observe that adx(U(g)) is an ideal in U(g)adx 
and consider the canonical homomorphism of 
algebras π : U(g)adx → U(gx) . Then we have a 
homomorphism

and since Z(gx) = U(gx)
adgx we have a well-

defined homomorphism

The dual map of central characters

is very important due to the following statement.

Proposition 3.1 Take M ∈ modrχ (g) . 

1. If ηx is surjective, then DSx(M) lies in 
modr

(η∗x )
−1χ

(gx).

2. For each simple subquotient L′ of DSx(M) 
there exists χ ′ ∈ (η∗x)

−1(χ) such that 
L′ ∈ mod1χ ′(gx) . In particular, DSx(M) = 0 if 
χ  ∈ Im(η∗x).

Proof View M as a Z(g)-module. Note that 
DSx(M) can be viewed as a subquotient of this 
module. Take z ∈ Kerχ and set zx := ηx(z) . 
Since M ∈ modrχ (g) one has zrM = 0 , so 
zrxDSx(M) = 0 . This gives (i). For (ii) take 
χ ′ : Z(gx) → C such that Kerχ ′L′ = 0 . Then 
(zx − χ ′(zx))L

′ = 0 , so χ ′(zx) = 0 . Hence 
ηx(Kerχ) ⊂ Kerχ ′ which implies ηx(χ ′) = χ as 
required.  �

Corollary 3.2 If M admits a central character 
χ and Mx has a subquotient admitting a central 
character ζ , then χ = η∗(ζ ).

modχ (g) =

∞
⋃

r=1

modrχ (g),

U(g)x ≃ U(gx).

ηx : Z(g) → Z(gx).

(6)η∗x : Hom(Z(gx),C) → Hom(Z(g),C)

Using Proposition 2.16, we obtain the follow-
ing interesting corollary.

Corollary 3.3 Assume that gx can be embedded 
into g (i.e., gx = gx ⋉ [x, g] ). If M ∈ modχ (g) and 
L′ ∈ modχ ′(gx) is a simple gx-module such that 
[Res

g
gxM : L′] < ∞ and [ResggxM : �(L′)] < ∞ , 

then

3.1  The Involutions σx for Classical Lie 
Superalgebras

The maps ηx for classical Lie superalgebras were 
described in25 using the results of44,56,57. There is 
a nice uniform description of the image, which 
requires us to introduce an involution σx on gx . 
We note that for p(n) the center is always trivial, 
however we will introduce an involution σx for 
later use.

•   For g = gl(m|n), osp(2m+ 1|2n), q(n), p(n) 
or G(3), we declare the involution σx on gx to 
be trivial, i.e., σx = Id.

•   For g = D(2|1; a) and x  = 0 , one has 
gx = Cz , and we set σx = −Id.

•   For g = F(4) and x  = 0 , one has gx ∼= sl3 , 
and σx is induced by the involution of the 
Dynkin diagram of sl3.

•   For g = osp(2m|2n) one has 
gx = osp(2(m− s)|2(n− s)) ; we set σx = Id 
if m− s = 0 , and if m− s > 0 , σx is induced 
by the involution of one of the Dynkin dia-
grams of gx.

Remark 3.4 Let us give another description 
of the involution σx . Consider an embedding 
x ∈ sl(1|1) ⊂ g as in the proof of Theorem 5.11. 
Let K denote the normalizer of sl(1|1) inside the 
adjoint supergroup of g . Then K has a normal 
subgroup with the Lie superalgebra gx . The image 
of the natural homomorphism K → Autgx is 
disconnected if g = osp(2m|2n) , m− s > 0 , 
D(2, 1; a) or F4 . In these cases, the image is a sem-
idirect product of the adjoint group of gx and Z2 . 
The involution σx is a generator of Z2.

Proposition 3.5 For g a classical Lie superalge-
bra, x ∈ X , and involution σx on gx as above, we 
have

[ResggxM : L′] = [ResggxM : �(L′)] if χ ′ �∈ (η∗x)
−1(χ).

ηx(Z(g)) = Z(gx)
σx .
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Remark 3.6 Although we do not give a proof 
of Proposition 3.5, it can be used to give another 
proof of Theorem 6.12, using Proposition 3.7 
below.

In the following lemma g is general, but with 
the obvious view toward the cases of interest 
above.

Proposition 3.7 Assume that Imηx = Z(gx)
σx , 

where σx is an involutive automorphism of gx . For 
any χ ∈ Imη∗x we have 

1. the set (η∗x)−1(χ) is of the form {χ ′, σx(χ
′)};

2. if σx(χ
′) �= χ ′ , then DSx(mod

1

χ (g))

⊆ mod
1

χ ′(gx)⊕mod
1

σx(χ ′)(gx);
3. if σx(χ ′) = χ ′ , then DSx(mod

1
χ (g)) ⊆ mod

2

χ ′ (gx).
Proof We set

and denote by ψ the canonical map Z(gx) → A . 
The algebra A inherits the action of σx and 
Aσx = Z(gx)

σx/ηx(m) ∼= C , so A = C⊕ A− , 
where A− := {a ∈ A| σx(a) = −a}.

The central characters in (η∗x)
−1(χ) cor-

respond to the maximal ideals of A: for each 
χ ′′ ∈ (η∗x)

−1(χ) the ideal Kerχ ′′ is a maximal 
ideal of Z(gx) ; this ideal contains I and ψ(Ker χ ′′) 
is a maximal ideal in A. For each N ∈ mod1χ (g) 
one has mN = 0 , so I(DSx(N )) = 0 . Hence, 
DSx(N ) has a structure of an A-module.

If A− = Ca with a2 = 1 , then A has two max-
imal ideals C(1± a) (one has 1− a = σ(1+ a) ). 
Taking m′ := ψ−1(C(1+ a)) we get 
(η∗x)

−1(χ) = {χ ′, σx(χ
′)} , where Ker χ ′ = m′ . 

One has DSx(N ) = N ′
+ ⊕ N ′

− , where 
N ′
± = {v ∈ DSx(N )| (a± 1)v = 0} . Therefore, 

m′N ′
+ = 0 and σ(m′)N ′

− = 0 , so DSx(N ) lies in 
mod1χ ′(gx)+mod1σx(χ ′)(gx).

Consider the case when A− �= Ca 
with a2 = 1 . For any a1, a2 ∈ A− one has 
a1a2 ∈ Aσx = C . If a1a2 = 1 for some 
a1, a2 ∈ A− , then for each a ∈ A− one has 
a2a ∈ C , so a = a1a2a ∈ Ca1 that is A− �= Ca1 , 
a contradiction. Therefore, a1a2 = 0 for all 
a1, a2 ∈ A− , so (A−)

2 = 0 and A− is the unique 
maximal ideal in A. Then (η∗x)

−1(χ) = χ ′ where 
Ker χ ′ = ψ−1(A−) . Since (A−)

2DSx(N ) = 0 we 
have DSx(mod1χ (g)) ⊂ mod2χ ′(gx) . �

4  Description of gx for Classical Lie 
Superalgebras g

In this section, we describe gx and realize gx as a 
subalgebra of g for classical Lie superalgebras.

m := Ker χ , I := Z(gx)ηx(m), A := Z(gx)/I

4.1  Iso‑sets and Defect
Now we assume that g0 is a reductive Lie alge-
bra and g1 is a semisimple g0-module. Such Lie 
superalgebras are called quasireductive.

For a quasireductive Lie superalgebra g , 
we may choose a Cartan subalgebra t ⊆ g0 
and obtain roots � ⊆ t∗ \ {0} by consider-
ing its adjoint action on g . We have subsets 
�i ⊆ � for i = 0, 1 consisting of roots which are 
either even or odd. In particular, we have a root 
decomposition

where h denotes the centralizer of t in g . We write 
each a ∈ gi (for i = 0, 1 ) in the form

We say that A ⊂ �1 is an iso-set if the elements 
of A are linearly independent and if for each 
α,β ∈ �1 ∩ (A ∪ (−A)) one has α + β �∈ �0 . 
We call the maximal cardinality of an iso-set the 
defect of g . We let S denote the set of iso-sets 
in �1 . The Weyl group W of g0 acts on S in the 
obvious way. Put Sk =

{

A ∈ S | |A| = k
}

 , with 
S0 = {∅}.

4.2  Basic Classical Lie Superalgebras
Suppose g is a basic classical Lie superalge-
bra (see  1.1). If g  = gl(m|n) , then g is a sim-
ple Kac–Moody superalgebra (see39,43). The 
Lie superalgebra gl(m|n) has as an ideal 
sl(m|n) , and when m  = n , sl(m|n) is simple 
and gl(m|n) ∼= sl(m|n)⊕ C . The Lie superal-
gebra gl(n|n) has a unique simple subquotient 
psl(n|n) := sl(n|n)/span{Id}.

We fix a Cartan subalgebra h ⊂ g . Then h coin-
cides with a Cartan subalgebra t of g0 , and each 
root space gα is one dimensional. In this case, the 
parity of α ∈ � is by definition the parity of the 
root space gα.

A finite-dimensional Kac–Moody superal-
gebra has a nondegenerate symmetric invariant 
bilinear form (·, ·) . This form is not necessar-
ily positive definite, and some roots can be iso-
tropic. For a non-isotropic root β , we denote by 
β∨ the element of t such that α

(

β∨
)

=
2(α,β)
(β ,β)  . For 

an isotropic root β , set β∨ ∈ t to be the element 
of t corresponding to β under the isomorphism 
t → t∗ induced by the form.

g = h⊕
⊕

α∈�

gα ,

a =
∑

α∈supp(a)

aα , where aα ∈ gα \ {0},

supp(a) ⊂ �i ∪ {0}.
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Remark 4.1 The notion of defect was originally 
introduced in45 for Kac–Moody superalgebras. 
Finite-dimensional Kac–Moody superalgebras 
are quasireductive, and in this case, the notion 
of iso-set corresponds to the well-known notion 
of isotropic set: a set of mutually orthogonal lin-
early independent isotropic roots in �1 . One can 
see that the defect of g in these cases is equal to 
the dimension of maximal isotropic subspace in 
spanR�.

For finite-dimensional Kac–Moody Lie super-
algebras, the defect has the following geomet-
ric interpretation: it is given by the dimension 
of the geometric quotient of g1 by G0 . In fact, in 
these cases, S(g1)G0 is a polynomial algebra, and 
the number of generators is given by the defect. 
For g = q(n), p(n) , S(g1)G0 is again a polynomial 
algebra, except the number of generators for q(n) 
is n while the number of generators of p(n) is ⌊n2 ⌋.

In2, a cohomological definition of support 
varieties was given using the relative Ext func-
tor. There, they define the defect of a g to be the 
dimension of Ext•

F(g)(C,C)
∼= S(g1)

G0.

4.3  The Lie Superalgebras p(n) and q(n)
4.3.1  p(n)
The periplectic Lie superalgebra p(n) and the 
queer Lie superalgebra q(n) are quasireductive Lie 
superalgebras and can be realized as subalgebras 
of gl(n|n).

With respect to a suitable basis, the periplectic 
Lie superalgebra g = p(n) consists of block matri-
ces of the form

where B is symmetric, C is skew-symmetric, 
and t := h0 is the diagonal Cartan subalge-
bra of g0 ∼= gl(n) . Then g has a Z-grading 
g = g1 ⊕ g0 ⊕ g−1 such that g0 = g0 , 
g1 = g1 ⊕ g−1 , and corresponding sets of 
roots �0 = �(g0) = {εi − εj | 1 ≤ i �= j ≤ n} , 
�(g−1) = {−(εi + εj) | 1 ≤ i < j ≤ n} , and 
�(g1) = {εi + εj | 1 ≤ i ≤ j ≤ n} . Imposing the 
additional condition that trA = 0 defines the Lie 
superalgebra sp(n) , which is simple when n ≥ 3 ; 
however, sp(n) does not admit a nondegenerate 
(even or odd) invariant bilinear form.

(

A B

C − At

)

,

4.3.2  q(n)
With respect to an appropriate basis of Cn|n , the 
queer Lie superalgebra g = q(n) consists of block 
matrices of the form

such that t := h0 is the diagonal Cartan sub-
algebra of g0 ∼= gl(n) . The set of roots for 
q(n) is � = {±(εi − εj) | 1 ≤ i < j ≤ n} , and 
each root α ∈ � is both even and odd since 
dim(gα)0 = dim(gα)1 = 1 . Imposing the addi-
tional condition trB = 0 defines the Lie super-
algebra sq(n) , and since Id ∈ sq(n) we can also 
define the Lie superalgebra psq(n) := sq(n)/�Id� , 
which is simple for n ≥ 3.

4.4  Table of Defects
The defect of a classical Lie superalgebra is given 
in the following table.

4.5  Description and Realization of gx in g
Suppose g is classical Lie superalgebra. Let 
A = {β1, . . . ,βk} ∈ S be non-empty, and take 
x = xβ1 + · · · + xβk , where each xβi ∈ gβi is 
nonzero. If g = p(n) , let s denote the number of 
roots β ∈ A of the form 2εj . Note that by Sect. 5.1, 
all elements of X are G0-conjugate to an element 
of this form.

The following table describes gx.

(7)
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Note that in the last three rows the defect of g is 
1, so k = 1.

The functor DSx reduces the defect of g by a 
non-negative integer which is called the rank of x, 
that is, rkx := defg− defgx.

Definition 4.2 Let g be one of the Lie superalge-
bras listed in the above table, and let x ∈ X . Then 
the rank of x is as follows:

•   if x = 0 , then rkx = 0;
•   if x  = 0 and g is an exceptional Lie superal-

gebra, then rkx = k = 1;
•   if g is not exceptional and g  = p(n) , then 

rkx = k;
•   if g = p(n) , then rkx = 2k − s.
Remark 4.3 Note that if g  = p(n) then rkx = k , 
the size of S.

Remark 4.4 For gl(m|n) , sl(m|n) and p(n) , we 
observe that rkx is given by the rank of x as a lin-
ear operator acting on the standard representa-
tion. For osp(m|2n) and q(n) , we have that rkx is 
half the rank of x as linear operator in the stand-
ard representation.

Let g be a classical Lie superalgebra with 
g  = p(n) , and let x ∈ X  . We now explain how to 
realize gx as a subalgebra of g , in such a way that 
gx = gx ⋉ [x, g] . For p(n) we will also have such 
an embedding, but the construction is more ad 
hoc, so we state it separately.

Thus, we assume g  = p(n) , and as above, we 
let A = {β1, . . . ,βk} ∈ S and x = xβ1 + · · · + xβk 
for some nonzero xβi ∈ (gβi)1 . Let 
y = yβ1 + · · · + yβk for some nonzero 
yβi ∈ (g−βi)1 , and set hβi =

[

xβi , yβi
]

 , h = [x, y] . 
Clearly, h = hβ1 + · · · + hβk , and h, x, y gener-
ate an sl(1|1)-subalgebra in g . We choose the yβi 
such that h is generic, meaning that it satisfies

We may decompose g with respect to the 
adjoint action of h giving g = ⊕µg

µ, where 
gµ =

{

g ∈ g | [h, g] = µ(h)g
}

. In particular, 
g0 = Ker adh , and this is in fact a decomposition 
of sl(1|1)-modules.

For each βi ∈ A , set hβi =
[

(gβi)1, (g−βi)1
]

 . Set

Define

We have the following.

Proposition 4.5 Suppose g  = p(n) is a classical 
Lie superalgebra, and let A ∈ S with correspond-
ing x ∈ X . Then gx is isomorphic to the root sub-
algebra generated by {gα}α∈�x and a splitting of 
hx ∼= h⊥A/hA of hA , and this splitting hx will define 
a Cartan subalgebra of gx . If we identify gx with its 
image in g we have gx = gx ⋉ [x, g].

Proof First, note that there is an isomorphism

We observe that

The above equalities follow from the repre-
sentation theory of sl(1|1) . Now it is clear 
that one can choose hx in such a way that 
gx =

(

hx ⊕⊕α∈�xgα
)

 is a subalgebra of g . �
Separately, we have

Proposition 4.6 Let g = p(n) and choose x ∈ X 
of rank r arising from a subset A ∈ S . Then A lies 
in the span of ǫi1 , . . . , ǫir for a unique set of indi-
ces I = {i1, . . . , ir} ⊆ [n] := {1, . . . , n} . Write 
p(n− r) for the root subalgebra correspond-
ing to the weights ǫi for i ∈ [n] \ I . Then we 
have a natural isomorphism gx ∼= p(n− r) , and 
gx = p(n− r)⋉ [x, g].

Proof Straightforward check.  �

Remark 4.7 Propositions 4.5 and 4.6 have the 
following useful application: if t acts diagonally 

ker adh = ker adhβ1
∩ · · · ∩ ker hβk .

(8)A⊥ = Kerβ∨
1 ∩ · · · ∩ Kerβ∨

k ⊂ h∗.

hA := hβ1 ⊕ · · · ⊕ hβk ,

h
⊥
A := Kerβ1 ∩ · · · ∩ Kerβk ,

�x := A
⊥ ∩ (�\(A ∪ −A)).

gx ∼= (g0 ∩ gx)/(g0 ∩ [x, g]).

g0 ∩ gx = h⊥A ⊕
⊕

α∈A⊥∩(�\−A)

gα , g
0 ∩ [x, g]

= hA ⊕ gβ1 ⊕ · · · ⊕ gβk .
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on N and �(N ) = {ν ∈ t∗| Nν �= 0} , then for x as 
in the propositions one has

Remark 4.8 By Theorem 5.1 and Proposi-
tion 5.2, if g is classical then all G0-orbits on 
X contain an element x arising from an iso set 
A ∈ S . Thus Propositions 4.5 and 4.6 imply that 
our table in Sect. 4.5 is accurate.

5  Geometry of X for Classical Lie 
Superalgebras

In this section, we study the G0-orbits on X, and 
for g  = p(n) , we prove an important bijection 
between the G0-orbits on X and the W-orbits 
on S . We also describe the orbits in the p(n) 
case. Next, we study the stabilizer and normal-
izer of x in G0 . Finally, we give a dimension for-
mula for the G0-orbits on X for basic classical Lie 
superalgebras.

5.1  G0‑Orbits on X

Theorem 5.1 Suppose g is a basic classical Lie 
superalgebra or g = q(n) . Then there are finitely 
many G0-orbits on X, and these orbits are in one-
to-one correspondence with W-orbits in S via the 
map

defined by

where x = xβ1 + · · · + xβk for some nonzero 
xβi ∈ gβi.

Proof To see that �(A) does not depend on a 
choice of xβi note that since β1, . . . ,βk are linearly 
independent, for any other choice

there is h ∈ h such that ci = eβi(h) and, therefore,

If B = w(A) for some w ∈ W  , then clearly �( B ) 
and �(A) belong to the same orbit. Therefore, � 
induces the map � : S/W → X/G0 . We check 
case by case that � is injective and surjective.

If g is sl(m|n) or gl(n|n) , g has a natu-
ral Z grading g = g1 ⊕ g0 ⊕ g−1 such that 

(9)�(DSx(N )) ⊂ (�(DSx(N )))|tx .

(10)� : S → X/G0

A = {β1, . . . ,βk} �→ G0x,

x′ = �x′βi = �cixβi

x′ = exp (adh)(x).

g0 = g0 , g1 = g1 ⊕ g−1 . The orbits of W on S 
are enumerated by the pairs of numbers (p, q) , 
where p = |A ∩�

(

g1
)

| , q = |A ∩�(g−1)| . 
The orbits of G0 on X are enumerated by the 
same pairs of numbers (p, q) in the following 
way. If x = x+ + x− , where x± ∈ g(±1) , then 
p = rank

(

x+
)

 , q = rank
(

x−
)

 . We can see by the 
construction of � , that � maps (p, q)-orbit on S 
to the (p, q)-orbit on X.

Let g = osp(m|2n) . If m = 2l + 1 or m = 2l 
with l > n , then the W-orbits on S are in one-to-
one correspondence with 

{

0, 1, 2, . . . , min (l, n)
}

 . 
Namely, A and B are on the same orbit if they 
have the same number of elements. As it was 
shown in33, X can be identified with the set of all 
linear maps x : Cm → C2n , such that Imx is an 
isotropic subspace in C2n and Imx∗ is an isotropic 
subspace in Cm . Furthermore, x, y ∈ X belong to 
the same G0-orbit iff rank(x) = rank

(

y
)

 . One can 
see that rank �(A) = |A|.

Now let g = osp(2l|2n) , where l ≤ n . If 
A, B ∈ S and |A| = | B | < l , then A and B 
are on the same W-orbit. In the same way if 
rank(x) = rank

(

y
)

< l , then x and y are on the 
same G0-orbit. However, the set of all x ∈ g1 of 
maximal rank splits into two orbits, since the 
Grassmannian of maximal isotropic subspaces in 
C2l has two connected components. In the same 
way, Sl splits into two W-orbits. Hence, in this 
case again � is a bijection.

If g is one of exceptional Lie superalgebras 
D(2|1; a) , G(3) or F(4), then the direct calcula-
tion shows that X has two G0-orbits: {0} and the 
orbit of a highest vector in g1 . The set S also con-
sists of two W-orbits: ∅ and the set of all isotropic 
roots in �.

Finally, let g = q(n) . Then g is isomor-
phic to the subalgebra of gl(n|n) consisting 
of block matrices of the form TA,B in (7) and 
X = {T0,B | B2 = 0} . So G0 is isomorphic to 
GL(n) and acts by conjugation on B. Thus the 
G0-orbits correspond to Jordan forms. If for 
r = 0, 1, . . . , [n2 ] , we set Sr := {βn−1−2i}

r−1
i=0 

and fix an element xr ∈ Sr with supp(xr) = Sr 
( x0 := 0 ), then the elements x0, x1, . . . , x[ n2 ] form 
a set of representatives for G0-orbits in X.  �
Theorem 5.1 does not hold for p(n) ; however, we 
have the following proposition, whose proof is an 
exercise in linear algebra which we omit.

Proposition 5.2 For g = p(n) , the G0-orbits on X 
are indexed by a pair or nonnegative integers (r, s) 
such that r + 2s ≤ n . An explicit representative of 
the orbit labeled by (r, s) is given by
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Remark 5.3 Note that for a finite-dimensional 
Kac–Moody superalgebra g the representation 
of G0 in g1 is symplectic and multiplicity free 
(see47). The cone X is the preimage of 0 under the 
moment map g1 → g∗0.

5.2  The Stabilizer and Normalizer of x 
in G0

Lemma 5.4 Let g be a basic classical Lie super-
algebra. Let x ∈ X . The stabilizer Gx

0 of x in G0 is 
connected. Furthermore, Gx

0 is a semidirect product 
of a reductive group K and the normal unipotents 
subgroup U with Lie algebras (gx)0 and [x, g1], 
respectively.

Proof The second assertion follows from Propo-
sition 4.5. To check the connectedness we use the 
explicit construction of orbits given in the proof 
of Theorem 5.1.

Let g = gl(m|n) . Then G0 = GL(m)× GL(n) , 
consider the parabolic subgroups P1 ⊂ GL(m) 
which stabilizes the flag Imx+ ⊂ Kerx− 
and P2 ⊂ GL(n) which stabilizes the flag 
Imx− ⊂ Kerx+ . The Levi subgroup of K1 of P1 
is isomorphic to GL(p)× GL(q)× GL(m− k) 
and the Levi subgroup of K2 of P2 is iso-
morphic to GL(p)× GL(q)× GL(n− k) . Let 
K ≃ K1 × K2 is the subgroup isomorphic to 
GL(p)× GL(q)× GL(m− k)× GL(n− k)  , 
where GL(p) and GL(q) are embedded diago-
nally. Then Gx

0 = K ⋊U  , where U is the unipo-
tent normal subgroup of P1 × P2.

Let g = osp(m|2n) . Then 
G0 = SO(m)× SP(2n) , consider the para-
bolic subgroups P1 ⊂ SO(m) which stabilizes 
Imx∗ and P2 ⊂ SP(n) which stabilizes Imx . The 
Levi subgroup of K1 of P1 is isomorphic to 
GL(k)× SO(m− 2k) and the Levi subgroup of 
K2 of P2 is isomorphic to GL(k)× SP(2n− 2k) . 
Let K ≃ K1 × K2 is the subgroup isomor-
phic to GL(k)× SO(m− 2k)× SP(2n− 2k) 
where GL(k) is embedded diagonally. Then 
Gx
0 = K ⋊U  , where U is the unipotent normal 

subgroup of P1 × P2.
In all exceptional cases x is a highest weight 

vector in g1 and Gx
0 is a subgroup of codimen-

sion 1 in the parabolic subgroup P ⊂ G0 , the 

x = x2ǫ1 + · · · + x2ǫr + x−ǫr+1−ǫr+2

+ · · · + x−ǫr+2s−1−ǫr+2s
,

latter is the stabilizer of Cx in the projectiviza-
tion of g1 . �
Remark 5.5 It follows from above proof that 
there exists a parabolic subgroup P ⊂ G0 such 
that Gx

0 is a subgroup of P and the maximal nor-
mal unipotent subgroup of Gx

0 is equal to that of 
P.

Remark 5.6 For the q(n) it remains true that Gx
0 

is connected; this follows from a result of Springer 
and Steinberg (see Chpt. IV, Sec. 1.7 of59).

We write Nx
0  for the normalizer of x in G0.

Corollary 5.7 For g basic classical and for 
g = q(n) , Nx

0  is connected.

Proof We have an exact sequence

where Gm is the one-dimensional torus and 
α(g) = (g · x)/x , where g · x is the action of g on 
x. By a case-by-case check, the map α is always 
surjective and split. We may now use Lemma 5.4. 
 �

Remark 5.8 For � ∈ C× , we have an equality of 
functors DSx = DS�x . It follows that Nx

0  acts nat-
urally on the functor DSx . We have shown that

For g basic classical or q(n) , we have shown Gx
0 is 

connected, and thus its symmetries are encom-
passed in (gx)0 . It follows that the only additional 
symmetries we obtain in this fashion are from the 
extra action of Gm.

Remark 5.9 We note that for the g = p(n) , 
Lemma 5.4 and Corollary 5.7 are not true for all 
choices of x. Issues arise due to the orthogonal 
group being disconnected and the lack of a split-
ting for α in general.

5.3  Dimension of the G0‑Orbits on X
Throughout the rest of Sect. 5, we assume that g 
is a basic classical Lie superalgebra. We recall the 
notation � : S → X/G0 introduced in (10).

Using the explicit description of G0-orbits on 
X and the description of root systems, which can 
be found in43, one can check the following state-
ments case by case. We omit this computation 
here.

Nx
0 = Gx

0 ⋊Gm.



973

The Duflo–Serganova Functor, Vingt Ans Après

1 3J. Indian Inst. Sci. | VOL 102:3 | 961–1000 July 2022 | journal.iisc.ernet.in

Lemma 5.10 Let A, B ∈ S .

1. If α ∈ � is a linear combination of roots 
from A , then α ∈ A ∪ −A;

2. If |A| ≤ | B | , then there exists w ∈ W  such 
that w(A) ⊂ B ∪ − B;

3. �(A) lies in the closure of �( B ) iff w(A) ⊂ B 
for some w ∈ W .

Recall the definition of A⊥ from (8). In the 
basic classical case, A⊥ is the set of all weights 
orthogonal to A with respect to the standard 
form on h∗.

Theorem 5.11 Let A ∈ S . Then 
dim�(A) = |�1\A

⊥|
2 + |A|.

Proof Let A = {β1, . . . ,βk} , x = xβ1 + · · · + xβk 
for some choice of xβi ∈ gβi , y = yβ1 + · · · + yβk 
for some yβi ∈ g−βi . Let h = [x, y] , hβi =

[

xβi , yβi
]

 . 
Clearly, h = hβ1 + · · · + hβk and h, x, y generate 
an sl(1|1)-subalgebra in g . As a module over this 
subalgebra g has a decomposition

where

Note that

and from the description of irreducible sl(1|1)
-modules for µ  = 0

On the other hand, for µ  = 0 , sdimgµ = 0 and, 
therefore,

Observe that for a generic choice of xβi ∈ gβi , 
gα ⊂ g0 iff (α,βi) = 0 for all i ≤ k . Indeed, for 
generic choice of xβi the condition α(h) = 0 
implies α

(

hβi
)

= 0 for all i, and therefore, 
(α,βi) = 0 for all i. Hence,

and

To calculate dim
[

g0, x
]

 note that

g = ⊕µg
µ,

gµ =
{

g ∈ g | [h, g] = µ(h)g
}

.

dim[g, x] =
∑

µ

dim[gµ, x],

dim[gµ, x] =
dimgµ

2
.

dimgµ = 2dimg
µ
1 .

⊕µ�=0g
µ
1 = ⊕α∈�1\A⊥gα

∑

µ =0

dim[gµ, x] =
∑

µ =0

dimg
µ
1 = |�1\A

⊥|.

We claim that

hence, dim
[

g0, x
]

= 2k . Indeed, if 
(α,βi) = 0,α �= ±βi then α ± βi /∈ � . Therefore, 
[x, gα] = 0 for any α ∈ � ∩ A⊥,α �= −βi . Fur-
thermore, 

[

x, g−βi

]

= Chβi and [x, h] = ⊕k
i=1gβi . 

Thus, we obtain

Now the statement will follow from the lemma.

Lemma 5.12 sdim[g, x] = 0.

Proof Define an odd skew-symmetric form ω on 
g by

Obviously the kernel of ω coincides with the 
centralizer gx . Thus, ω induces a non-degenerate 
odd skew-symmetric form on the quotient g/gx . 
Hence, sdimg/gx = 0 . But [g, x] ∼= �

(

g/gx
)

 , 
which implies the lemma. �

Now Lemma 5.12 implies 
dim[g0, x] =

1
2dim[g, x] . Since 

dimG0x = dim[g0, x] , Theorem 5.11 follows 
from (11).  �

Theorem 5.11 has the following corollaries.

Corollary 5.13 If |A| = |B| , then 
dim�(A) = dim�(B).

Proof Follows from Theorem 5.1 and 
Lemma 5.10 (2). �

Corollary 5.14 Let d be the defect of g . Then the 
irreducible components of X are in bijection with 
W-orbits on Sd :=

{

A ∈ S | |A| = d
}

 . If all odd 
roots of g are isotropic, then the dimension of each 
component is equal to dimg1

2 =
|�1|
2 .

Proof As follows from Theorem 5.1 and 
Lemma 5.10 (3), each irreducible component 
is the closure of �(A) for a maximal A ∈ S . By 
Lemma 5.10 (2)|A| = d . Hence the first state-
ment. Theorem 5.11 immediately implies the 
statement about dimension. �

Corollary 5.15 If all odd roots of g are iso-
tropic, then the codimension of �(A) in X equals 
|�1∩A

⊥|
2 − |A|.

g0 = h⊕⊕α∈�∩A⊥gα .

[

g0, x
]

= ⊕k
i=1Chβi ⊕⊕k

i=1gβi ;

(11)dim[g, x] = |�1\A
⊥| + 2k .

ω
(

y, z
)

:=
(

x, [y, z]
)

.
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Proof The codimension of �(A) in X equals 
dimX − dim�(A) . Using Theorem 5.11 and Cor-
ollary 5.14 we obtain

 �

Recall that gx = gx/[x, g] and Mx is a gx-mod-
ule, see Lemma 2.2.

Lemma 5.16 Let m⊥ denote the orthogonal com-
plement to m with respect to the invariant form on 
g . Then [x, g]⊥ = gx.

Proof Let u ∈ gx , v ∈ [x, g] . Then v = [x, z] and

Now the statement follows from the identity

 �

6  Central Characters and Atypicality 
for Classical g  = p(n)

Throughout this section, g denotes a basic clas-
sical Lie superalgebra or g = q(n) . We define the 
notion of atypicality for a central character, and 
see how it is affected by the DS functor. Fur-
thermore, we describe the associated variety of 
an irreducible module in terms of its degree of 
atypicality.

6.1  The Weyl Group and Weyl Vector
Let us fix a Borel subalgebra b ⊂ g by choosing 
a decomposition � = �+ ∪�− . Note that in 
general this choice is not unique but our consid-
eration will not depend on it. Later we will use 
different Borel subalgebras in some proofs. Set

Define the shifted action of W on h∗ by

Note that for g = q(n) , ρ = 0 , so there is no shift 
in the W-action.

For g basic classical, recall that in Sect. 4.2 we 
defined for each α ∈ �1 a coroot α∨ ∈ t = h0 . In 
this section, for g = q(n) we will denote by α∨ a 

codim�(A) =
|�1| − |�1\A

⊥|

2
− |A|

=
|�1 ∩ A

⊥|

2
− |A|.

[u, [x, z]] = (−1)p(u)[x, [u, z]] ∈ [x, g].

(u, [x, z]) = ([u, x], z).

ρ =
1

2

∑

α∈�+
0

α −
1

2

∑

α∈�+
1

α.

w · � := w(�+ ρ)− ρ.

non-zero element of [(gα)1, (g−α)1] . Notice that 
in the basic classical cases we have wα∨ = (wα)∨ 
for every w ∈ W  (under the non-shifted action); 
for g = q(n) we impose this condition on the set 
of α∨ . We say that an iso-set A ⊂ �1 is orthog-
onal to µ if µ(α∨) = 0 for each α ∈ A , and we 
write A ⊂ µ⊥ and µ ∈ A⊥ . Note that this is com-
patible with our definition of A⊥ in (8).

6.2  Central Characters
Recall that Z(g) denotes the center of the uni-
versal enveloping algebra U(g) . For � ∈ t∗ and 
chosen, fixed Borel subalgebra b , we denote by 
M(�) the Verma module of highest � and by L(�) 
the unique irreducible quotient of M(�) . We say 
that � ∈ t∗ is dominant if L(�) is finite-dimen-
sional. One can see that any z ∈ Z(g) acts as a 
scalar χ�(z) on M(�) and L(�) . Therefore � ∈ t∗ 
defines a central character χ� : Z(g) → C . We 
emphasize that χ� depends also on the choice of 
Borel subalgebra. For a central character χ , let

For every � ∈ t∗ , set

Lemma 6.1 Let χ = χ� , A ∈ S� be maximal. 
Then

Proof This easily follows from the description of 
Z(g) formulated in44 and proven in23,57. �

We call � regular if there is a unique maximal 
A ∈ S� . For every χ , there exists a regular � ∈ t∗χ.

6.3  Degree of Atypicality
We define the degree of atypicality following45. 
For a central character χ set

Lemma 6.2 There exists a number k such that 
Sχ =

⋃

i≤k Si.

t∗χ =
{

µ ∈ t∗ | χµ = χ
}

.

S� :=
{

A ∈ S | A ⊂ (�+ ρ)⊥
}

.

t∗χ =
⋃

w∈W

w · (�+ spanA).

Sχ =
⋃

�∈t∗χ

S�.
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Proof It follows easily from Lemma 6.1 that Sχ 
is W-invariant. Furthermore, if A ∈ Sχ and A′ is 
obtained from A by multiplication of some roots 
in A by −1 , then A′ ∈ Sχ . Hence, the statement 
follows from Lemma 5.10 (1) and (2), which also 
holds for q(n). �

The number k is called the degree of atypical-
ity of χ . It is clear that the degree of atypicality 
of χ is not bigger than the defect of g . The 
degree of atypicality of a weight � is by defini-
tion the degree of atypicality of χ� . If k = 0 , 
then χ is called typical. We say a module is typi-
cal if it lies in 

⊕

χ typical

modχ (g).

Let Xk = �(Sk) , Xk denote the closure of Xk . 
Lemma 5.10 (3) implies that

Theorem 6.3 Let g be a basic classical Lie super-
algebra or q(n), and let M be a g-module which 
admits central character χ , with degree of atypical-
ity of χ equal to k. Then we have XM ⊂ Xk.

The proof of Theorem 6.3 will be given in 
Sect. 6.4.

Theorem 6.4 Let g be a basic classical Lie super-
algebra. For any integral dominant � ∈ t∗ with 
degree of atypicality k, XL(�) = Xk.

This theorem is proven in55 for the Lie super-
algebras osp(m|2n) and gl(m|n) . For exceptional 
Lie superalgebras it is a consequence of results 
in48.

Remark 6.5 Theorem 6.4 is easy for typical � 
since in this case L(�) is projective.

Remark 6.6 Theorem 6.4 fails for g = q(n) ; 
indeed if we consider the irreducible q(3)-mod-
ule L = psq(3) , we have XL = {0} . However, L has 
atypicality 1.

6.4  Proof of Theorem 6.3
We assume that g is as in Theorem 6.3. Recall 
that up to conjugacy, we may present x ∈ Xk as 
x = x1 + · · · + xk , where xi is a non-zero element 
of (gβi)1 for an odd root βi . Here A = {β1, . . . ,βk} 
will be an iso-set. We begin with a lemma.

Xk =

k
⋃

i=0

Xi.

Lemma 6.7 For suitable choices of Borel subalge-
bras b ⊆ g and bx ⊆ gx , for each �′ ∈ t∗x there exists 
� ∈ t∗ such that

•   �|tx = �
′;

•   atyp� = atyp�′ + k;
•   [DSx(Lg(�)) : Lgx (�

′)] = 1.

In particular, η∗(χ�′) = χ� and thus 
atypχ�′ = atypη∗(χ�′)− k.
Proof We can always choose a Borel subalgebra 
b ⊂ g such that β1, . . . ,βk are simple roots. Note 
that in this case (ρ,βi) = 0 for all i = 1, . . . , k . 
Further recall from Proposition 4.5 that we may 
realize gx in g such that hx will be a subalgebra of 
h , and tx := (hx)0 will lie in ker β1 ∩ · · · ∩ ker βk . 
Moreover, gx will admit a natural Borel subalge-
bra bx ⊆ b containing hx.

Let � ∈ t∗ be a weight such that �|tx = �
′ 

and �(β∨
i ) = 0 for all i. For q(n) , we strengthen 

our assumption on � : we further require that 
(�, ǫi1) = (�, ǫi2) = 0 , where βi = ǫi1 − ǫi2 , for all 
i.

Now to prove our statement with this 
choice of � , we observe that a nonzero highest 
weight vector v� ∈ Lg(�)� satisfies xv� = 0 and 
v� /∈ xLg(�) . The former statement is obvious 
because it is a highest weight vector. For the lat-
ter statement, we show that Lg(�)�−βi = 0 for all 
i, which clearly is sufficient. In the basic classi-
cal case this follows from the fact that (�,βi) = 0 
and βi is simple. In the q(n) case, the statement 
follows from the representation theory of the 
q(2)-subalgebra associated with each simple 
root βi , again using that the βi are simple.

Now to finish the proof of Lemma 6.7, we 
observe that η∗(χ�′) = χ� by Proposition 3.1, 
and that atyp�′ = atyp�− k .  �

Lemma 6.7 implies Theorem 6.3 and the 
following.

Theorem 6.8 Let M be a g-module that admits a 
central character with degree of atypicality k, and 
x ∈ Xk . Then Mx is a typical module. In particular, 
if M is semisimple over g0 and Mx is finite dimen-
sional, then Mx semi-simple over gx.

Proof We only need to prove the last assertion. 
For this, we use that (gx)0 is reductive, so it acts 
semisimply on Mx if and only if its centre does. 
But its centre lies in the even part of any Cartan 
subalgebra, whose action is induced by the action 
of the Cartan subalgebra of g on M. Thus, the 



976

M. Gorelik et al.

1 3 J. Indian Inst. Sci.| VOL 102:3 | 961–1000 July 2022 | journal.iisc.ernet.in

condition that g0 acts semisimply on M, along 
with the typicality of Mx , ensures the semisim-
plicity of Mx .  �

Recall, from the notation of Sect. 4.5, the 
isomorphism hx ≃ h⊥A/hA , and set tx := (hx)0 . 
Then this isomorphism induces a canonical 
isomorphism of dual spaces t∗x ≃ A⊥/spanA . 
Consider the natural projection pA : A⊥ → t∗x . 
It follows immediately from Lemma 6.1 that 
pA(�) = pA(ν) implies χ� = χν . Proposition 3.1 
and Lemma 6.7 imply the following

Corollary 6.9 If � ∈ A⊥ then χ� = η∗(χpA(�)).

6.5  The Preimage of η∗

Now we will compute the preimage (η∗)−1(χ) for 
any χ , showing in particular it is always finite of 
size one or two. Our description will use the invo-
lutions σx described in Sect. 3.1.

Define the following subgroup of the Weyl 
group W:

It is clear that A⊥ and hA are WA-stable. Hence, 
WA acts in the natural way on hx and h∗x . By Wgx 
we denote the Weyl group of gx viewed as a subal-
gebra of g . Obviously, Wgx ⊂ WA.

Lemma 6.10 Fix A ∈ Sk . Let χ = χ� be a central 
character of atypicality degree k where � ∈ A⊥ is 
some regular weight. Then

Proof Lemma 6.1 implies the following equality

The condition that η∗(χpA(�)) = η∗(χpA(ν)) 
for �, ν ∈ (h∗χ )reg is equivalent to 
pA(ν) ∈ Wgx · pA(�) . Hence, the statement.  �

Lemma 6.11 Consider the action homomor-
phism a : WA → Aut(tx) . Let k = rkx . If σx = id 
(i.e., g = gl(m|n), q(n), osp(2m+ 1|2n), G(3) , or 
osp(2m|2n) with k = m ) then a(WA) = a(Wgx ) . 
If σx  = Id (i.e., g = osp(2m|2n) with k < m , 
D(2|1; a) or F(4)), then [a(WA) : a(Wgx )] = 2 , 
and we have

WA = {w ∈ W | w(A) ⊂ A ∪ −A}.

|(η∗)−1(χ)| =
|WA · pA(�)|

|Wgx · pA(�)|
.

(h∗χ )reg ∩ A⊥ = WA · �+ spanA.

where by abuse of notation we also write σx for the 
involution induced on t by σx.

Proof If osp(2m+ 1|2n) or G(3), then 
gx = osp(2m+ 1− 2k|2n− 2k) or sl2 , respec-
tively. In both cases the automorphism group 
of the root system �(gx) coincides with the 
Weyl group Wgx . Since a(WA) ⊂ Aut�(gx) , 
the statement follows. Similarly in the case 
g = osp(2m|2n) and k = m , gx = sp(2(n−m)) 
and Aut�(gx) = Wgx.

For g = gl(m|n), gx = gl(m− k|n− k) , we 
get

and ker a = Sk.
For g = q(n) , gx = q(n− 2k) and we get

and ker a = Sk2.
If g = osp(2m|2n) , with k < m , D(2|1; a) 

or F(4), then gx = osp((2m− 2k)|(2n− 2k)) , 
o(2) or sl3 . Then by direct computation 
Aut�(gx)/Wgx

∼= �σx� , where for g = D(2|1; a) 
we set Aut�(gx) = {±Id} . Further, by direct 
computation

 �

Theorem 6.12 If g  = osp(2l|2n) , F(4) or 
D(2|1; a) , then η∗ is injective. If g = osp(2l|2n), 
F(4), or D(2|1; a) , then a preimage of η∗ has at 
most two elements.

Proof In the case when rk(x) = |A| = k equals 
the atypicality degree of χ , we have (η∗)−1(χ) has 
at most two elements by Lemmas 6.10 and 6.11. 
If k is less than the atypicality degree of χ , then 
consider the embedding A ⊂ B with |B| equal 
to the degree of atypicality. Let z = x + y with 
y =

∑

β∈B\A xβ . Then we have (gx)y = gz . The 
composed map

Since the statement holds for η∗z and for η∗z,x , it 
holds for η∗ .  �

a(WA) = a(Wgx ) ⊔ σxa(Wgx )

WA = Sk × Sm−k × Sn−k , Wgx = Sm−k × Sn−k

WA = Sk2 × Sn−2k , Wgx = Sn−2k

a(WA) = Aut�(gx).
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7  Superdimensions and Supercharacters 
for Basic Classical Lie Superalgebras

In this section, g denotes a basic classical Lie super-
algebra. We explore connections between the 
superdimension and supercharacter of a g-module 
M and of the corresponding associated variety XM.

7.1  Superdimensions
Recall that sdimM := dimM0 − dimM1 , and that 
by Lemma 2.5, sdimM = sdimMx . So we have the 
following.

Lemma 7.1 If XM  = X , then sdimM = 0 . In 
particular, if a finite-dimensional module M admits 
a central character whose degree of atypicality is less 
than the defect of g , then sdimM = 0.

Remark 7.2 In fact, Serganova proved a stronger 
statement, namely the Kac–Wakimoto conjecture: 
a simple finite-dimensional module over a basic 
classical Lie superalgebra has nonzero superdi-
mension if and only if it has maximal degree of 
atypicality (i.e., equal to the defect of g ). For a 
proof, see55. A version of the Kac–Wakimoto con-
jecture for periplectic Lie superalgebras p(n) was 
proven in18. Meanwhile, for q(n) it is known that 
sdimL = 0 for all nontrivial finite-dimensional 
simple modules L, see8.

7.2  Supercharacters
For a finite-dimensional g-module M with weight 
decomposition M = ⊕µ∈h∗Mµ , the supercharac-
ter of M is defined to be

The supercharacter schM is a W-invariant ana-
lytic function on h , so we will also write it as 
schM(h) , for h ∈ h . Then schM(h) = str(eh) , and 
the Taylor series for schM at h = 0 is

where pi(h) is a homogeneous polynomial of 
degree i on h . The order of schM at zero is by defi-
nition the minimal i such that pi  ≡ 0.

Theorem 7.3 Assume that all odd roots of g are 
isotropic. Let M be a finite-dimensional g-module, 
s be the codimension of XM in X. The order of schM 
at zero is not less than s. Moreover, the polynomial 

(12)
schM =

∑

µ∈h∗

(

sdimMµ
)

eµ.

schM(h) =

∞
∑

i=0

pi(h),

ps(h) in Taylor series for schM is determined 
uniquely up to proportionality.

Proof The proof is based on the following 
lemma, the proof of this lemma is similar to the 
proof of Lemma 2.5 (6). We leave it to the reader.

Lemma 7.4 Let x ∈ X , h ∈ h0 and [h, x] = 0 . 
Then Kerx and xM are h-invariant and strMeh =

strMxe
h.

Now we proceed to the proof of the Theo-
rem 7.3. If XM contains an irreducible compo-
nent of X, the statement is trivial since s = 0 . 
Otherwise there exists k smaller than the defect of 
g such that

Let A =
{

β1, . . . ,βk+1

}

∈ S , 
x = xβ1 + · · · + xβk+1

 for some nonzero 
xβi ∈ gβi . Then Mx = {0} . If h ∈ h satisfies 
β1(h) = · · · = βk+1(h) = 0 , then [h, x] = 0 . 
Hence, by Lemma 7.4 strMeh =strMxe

h = 0 . This 
we have proved the following property:

Let pi be the first nonzero polynomial in the 
Taylor series for schM at zero. Then pi also sat-
isfies (14). Let B = {α1, . . . ,αk} ∈ S and p̄i be 
the restriction of pi to h⊥B . If p̄i �= 0 , then degree 
of p̄i is i. Since pi

(

h⊥B ∪α

)

= 0 for any α  = ±αi , 
α ∈ B ⊥ , then α divides p̄i . That gives the esti-
mate on i. Indeed, i is not less than the number 
of all possible α , i.e., |�1∩ B ⊥|

2 − | B | . By Corol-
lary 5.15 the latter number is the codimension s 
of XM in X. Hence, i ≥ s.

To prove the second assertion we need to show 
that if two homogeneous W-invariant polynomi-
als p and q of degree s satisfy (14), then p = cq 
for some c ∈ C . After restriction to h⊥B

for some constants a and b. Therefore, there exists 
f = p− cq such that f

(

h⊥B
)

= 0 . Thus, f satis-
fies (14) for k instead of k + 1 . Then degf > s , 
which implies f = 0. �

8  Reduced Grothendieck Rings and dsx
We retain the notation of Sect. 2. In this 
section we discuss the homomorphism 
dsx : K−(g) → K−(gx) , for classical Lie super-
algebras g , where K−(g) and K−(gx) stand for 

(13)XM ⊂ ∪A∈S, |A|≤k�(A).

(14)

schM

(

h⊥A

)

= 0 for all A ∈ S , |A| = k + 1.

p̄ = a�α∈
(

�+
1 ∩ B ⊥

)

\± B α, q̄ = b�α∈
(

�+
1 ∩ B ⊥

)

\± B α
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the reduced Grothendieck rings of F(g) and 
F(gx) , respectively. The study of dsx was initiated 
by Hoyt and Reif in40 for the basic classical Lie 
superalgebras. We consider gx as a subalgebra of g 
using the splitting gx = gx ⋉ [x, g] as in Proposi-
tions 4.5 and 4.6.

8.1  Subcategories of F(g) and the DS 
Functor

Before discussing dsx , we describe certain subcat-
egories of F(g) and their relation to the DS func-
tor. Let g be one of basic classical superalgebras 
and �F(g) denote the abelian subgroup of t∗ con-
sisting of weights of M ∈ F(g) . For any subset 
� ⊂ �F(g) we denote by F�(g) the full subcat-
egory of F(g) consisting of modules with weights 
in �.

Let G be an algebraic supergroup with Lie 
superalgebra g . Then G is determined by the lat-
tice �G ⊂ �F(g) and the category F(G) of finite-
dimensional representations of G is equivalent to 
F�G (g).

If x ∈ g1 is a self-commuting element and Gx 
is the centralizer of x in G then the Lie algebra of 
Gx is the kernel of adx . We denote by Gx the quo-
tient of Gx such that KerGx = gx . It is clear that 
DSx induces the functor F(G) → F(Gx).

We denote by G the particular supergroup for 
every basic classical superalgebra: 

1. If g = gl(m|n) we set G := GL(m|n) , 
�G :=

∑m
i=1 Zεi +

∑n
j=1 Zδj.

2. If g = sl(m|n) we set G := SL(m|n) , 
�G := �GL(m|n) ∩ h∗.

3. If g = osp(2m|2n) or osp(2m+ 1|2n) 
we set G := SOSP(2m|2n) (respec-
tively, SOSP(2m+ 1|2n) ), 
�G :=

∑m
i=1 Zεi +

∑j
j=1 Zδj.

4. If g = p(n) we set G := P(n) , 
�G :=

∑n
i=1 Zεi.

5. If g = q(n) we set G := Q(n) , 
�G :=

∑n
i=1 Zεi.

6. If g is an exceptional Lie algebra of type 
G(3) and F(4) then G is the adjoint group 
with �G being the root lattice. One has 
�F(g) = �G for G(3) and �F(g)/�G = Z2 
for F(4), see48.

7. For g = D(2, 1, a) we consider the algebraic 
group G with �G := �F(g).

Next we set �g := �G in all cases when g = [g, g] . 
In the remaining cases, we set

8.1.1  Consider the case when g is non‑exceptional
Take x  = 0 as in Prop. 4.5. Let �′

g = �F(g) \�g . 
Then we have a decomposition

Every module M ∈ F�′
g(g) is projective and 

hence DSx(M) = 0 . Furthermore, DSx induces 
the functor F�G (g) → F�Gx (gx).

In the cases when [g, g] �= g we can be more 
precise. Namely, when gx  = 0 , DSx restricts to the 
functor:

where c ∈ C for gl(m|n) and p(n) , c = 0, 12 for 
q(m) . To see this for gl(m|n) and p(n) we just 
note that every M ∈ F�G+cstr can be obtained 
from M0 ∈ F(G) by tensoring with one dimen-
sional character in χc ∈ (g/[g, g])∗ and therefore 
it is suffices to compute DSx in the case c = 0 and 
then use DSx(M ⊗ χc) = DSx(M)⊗ χc . The case 
of q(n) is straightforward.

8.1.2  Exceptional Algebras
Take x  = 0 . All such x are conjugate by the 
adjoint action of G0.

For D(2, 1, a), Gx = C∗ . Therefore 
DSx : F(D(2, 1, a) → F(C∗) . By [Germoni] for 
g = D(2, 1, a) with a  ∈ Q all atypical modules in 
F(g) have zero central character. Using the filtra-
tion of projective modules obtained by Germoni, 
one can show (see26) that DSx(L) is a trivial C∗

-module for any simple atypical g-module L and 
therefore for any g-module. In other words, the 
image of DSx lies in the category of vector super-
spaces equipped with the trivial action of C∗.

Combining the description of dominant 
weights (see48) and (9) we obtain the following 
results for G(3) (with gx = sl2 ) and F(4) (with 
gx = sl3):

where F(G) denotes the category of finite-dimen-
sional representations of the algebraic group G. 
In fact, from25 and48, we obtain that

�gl(m|n) := �GL(m|n) + Cstr

where str := ε1 + · · · + εm + δ1 + · · · + δn,

�p(m) := �P(m) + Cstr,

where str := ε1 + · · · + εm,

�q(m) := �Q(m) + Z
str

2
,

where str := ε1 + · · · + εm.

F(g) = F�g (g)⊕ F�′
g(g).

F�G+cstr(g) → F�Gx+cstr(gx),

DSx(F(G(3))) ⊂ F(PSL(2))

DSx(F(F(4))) ⊂ F(PSL(3)),
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where G′′
x is a non-connected algebraic group fit-

ting into a non-split exact sequence

compare to Remark 3.4.

8.2  Properties of dsx
We now begin the discussion of dsx with general 
remarks which are valid for classical Lie superal-
gebras g satisfying h = t , i.e., classical g  = q(n) . 
(The case of general g is considered in31). As 
already noted, by Sect. 4.5, we have splittings 
gx = gx ⋉ [x, g] . Further we have t = tx ⊕ t′ , 
where tx ⊆ gx is a Cartan subalgebra.

In these cases, the ring K−(g) is spanned 
by the images of the simple finite-dimensional 
modules. Since these modules are highest weight 
modules, the map [N ] �→ [Res

g
hN ] gives an 

embedding of K−(g) → K−(h) and we iden-
tify K−(g) with this ring. The image is called the 
ring of supercharacters, since [ResghN ] = schN  . By 
Lemma 2.12

for each N ∈ F(g) and µ′ ∈ t∗x . Thus dsx written 
for the supercharacter rings takes the form

coincides with the restriction of the map 
f  → f |tx . Using the representation theory of 
sl(1|1) it is easy to see that if x can be embedded 
into an sl(1|1)-triple x, y,α∨ with α∨ ∈ t , then for

These formulas appeared in40; for q(n) a similar 
formula is given in31.

8.2.1  The case with g from the list (1.1)
By Lemma 2.12 one has dsx = dsy if gx = gy as 
embedded subalgebras. For x of rank r we denote 
the map dsx : K−(g) → K−(gx) by dsr . By 
Lemma 2.13 one has dsi = ds1 ◦ ds1 ◦ . . . ◦ ds1 
if DS1(DS1 . . . (g)) = DSi(g) . By Lemma 2.14 

DSx(F(F(4))) ⊂ F(G′′
x ),

(15)1 → PSL(3) → G′′
x → Z2 → 1,

sdimDSx(N )µ′ =
∑

µ∈t∗:µ|tx=µ′

sdimNµ

(16)dsx

(

∑

ν∈t∗

mνe
ν

)

=
∑

ν∈t∗

mνe
ν|tx .

(17)

dsx

(

∑

ν∈t∗

mνe
ν

)

=
∑

ν∈t∗:ν(α∨)=0

mνe
ν|tx .

we have ker dsx = ker dsy if x, y are conjugated 
by an inner automorphism. Note that rkx = rky 
implies the existence of x′ ∈ X such that gx′ = gy 
and x, x′ are conjugated by an inner automor-
phism. Hence, the ideal ker dsr ⊂ K−(g) does 
not depend on the choice of x of rank r.

8.3  The Ring K−(g)

For g  = p(n), q(n) , Sergeev and Veselov inter-
preted the supercharacter ring as a ring of 
functions admitting certain supersymmetry con-
ditions, see58. For example, the supercharacter 
ring for the category FZ(gl(m|n)) can be realized 
as

and in this case, if rkx = 1 , then dsx
(

f
)

= f |x1=y1 
(see40). The supercharacter ring for p(n) was 
described in42 using an inductive argument with 
the help of ds2 . Using a similar method Reif 
described the ring K+(qn) in

53. Note that for q(n) 
the supercharacter of a finite-dimensional non-
trivial simple q(n)-module is always zero8.

8.4  The Image of dsx
Let g be one of the superalgebras from the list (1). 
The categories F�G (g) ∼= F(G) were introduced 
in Sect. 8.1. Let σx ∈ Aut(gx) be the involution 
introduced in Sect. 3.1. Note that σx = Id except 
for the cases D(2, 1, a), F(4) and osp(2m|2n) with 
rkx < m . We also denote by σx the induced invo-
lution of the ring K−(gx).

Theorem 8.1 Take x  = 0 . For non-exceptional g 
from the list (1), one has

For g = D(2, 1, a) with a ∈ Q , G(3) and F(4) one 
has

where G′
x = C∗,PSL(2),PSL(3) for respec-

tively. For g = D(2, 1, a) with a  ∈ Q one has 
dsx

(

K−(F(G))
)

= Z.
Recall that F(g) is equivalent to F(G) for 

g = G(3) and D(2, 1, a). We have

dsx
(

K−(F(G))
)

= K−(F(Gx))
σx .

dsx
(

K−(F(G))
)

= K−(F(G′
x))

σx
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Note that for g = F(4) the categories 
F(G′

x)
σx and F(G′′

x ) are equivalent, see (15). 
For g  = q(n), p(n) the statement was estab-
lished in40 and for p(n) with x ∈ g−1 the asser-
tion was proven in42; the proofs are based on the 
evaluation (17) (in these case x can be embed-
ded in an sl(1|1)-triple); for q(n) the asser-
tion is proven in31. For p(n) with x of rank 1 we 
prove the assertion in Corollary 12.25; since 
dsr = ds1 ◦ . . . ◦ ds1 , this implies the assertion for 
general x.

Remark 8.2 For a precise description of 
dsx(K−(F(g))) when g = D(2, 1; a) with a ∈ Q , 
see Sect. 12.4.1.

Remark 8.3 For q(n)-case 
dsx(K−(F(g))) = K−(F(G))σx , but it can be 
easily seen that if M ∈ F(g) then DSxM need not 
have the structure of a G-module.

8.5  The Kernel of dsx
8.5.1  Notation
Take g  = p(n), q(n) . For a fixed choice of nega-
tive roots �− = �−

0 ⊔�−
1  , we denote the super 

Weyl denominator by R = R0
R1

 , where 
R0 =

∏

α∈�−
0
(1− eα) and R1 =

∏

α∈�−
1
(1− eα) . 

For � ∈ t∗ set

where l(w) denotes the length of w as a product 
of simple reflections with respect to a set of 
simple roots for g0 . Let P+(g0) be the set of 
dominant weights of g0 . For 
g = gl(m|n), osp(2|2n) with the distinguished 
choice of simple roots, k(�) is the supercharac-
ter of a Kac module K (�) = Ind

g

g0⊕g1
Lg0(�) 

when � ∈ P+(g0) , and we have

However in Type II, k(�) is a virtual 
supercharacter.

dsx(K−(g)) =

{

K−(gx)
σx for gl(m|n), osp(m|n), p(n), F(4)

K−(F(Gx))
σx for q(n).

k(�) := R−1 ·
∑

w∈W

(−1)l(w)+p(w(ρ)−ρ)ew(�+ρ)−ρ ,

k(�) = schLg0(�)
∏

α∈�−
1

(

1− eα
)

.

For p(n) we set K (�) = Ind
g

g0⊕g1
Lg0(�) ; then 

K (�) is a “thin” Kac module. For � ∈ P+(g0) the 
expression k(�) := schK (�) is given by the above 
formulas. Finally we need one more virtual 
supercharacter for p(n) given by

Here Cn denotes the standard representation 
of gl(n) . In coordinates ǫ1, . . . , ǫn , this is given 
explicitly by

Let ρiso :=
1
2

∑

α∈�+
iso
α.

Theorem 8.4 Let ker1 ⊂ ker2 ⊂ . . . be the ker-
nels for dsr : K−(g) → K−(gx) . 

1. For g  = p(n), q(n), gl(1|1) the set 
{k(�)| � ∈ P+(g0)+ ρiso} forms a basis of 
ker1.

2. For p(n) with n > 1 the set {k ′(�)|� ∈ P+(g0)} 
forms a basis of ker1.

3. For p(n) with n > 2 the supercharacters of the 
thin Kac modules form a basis of ker2.

Hoyt and Reif proved (1) in40, and (3) 
was proven in42. We will give a proof of (2) in 
Sect. 8.5.1 below.
•   Remark 8.5 The ring K−(p(1)) is the 

group ring of C and ds1 acts as ds1(ec) = 1.
•   The ring K−(gl(1|1)) lies in the group ring 

of C× C : this ring is spanned by the ele-
ments e(0,a) and e(b,a) − e(b,a−1) for a, b ∈ C 
with b  = 0 . The map ds1 is the restriction of 
the algebra map given by ds1(ec) = 1 for any 
c ∈ C× C.

•   The kernel of ds1 for g = q(n) is computed 
in31. The result is in terms of an explicit 
basis of K−(Q(n)).

Proof (Proof of (ii)) Retain the notation of 
Sect. 8.1. Clearly, K−(�+ cstr) = K−(�)⊗ χc , 
where χc is a one-dimensional pn-module corre-
sponding to cstr . Using Sect. 8.1, we can reduce 
the statement to F�G (g).

We utilize methods of40. Let h1, . . . , hn 
be the standard basis of t (which is dual to 
ε1, . . . , εn ∈ t∗ ). Take x ∈ g2εn and identify gx 
with the “natural copy” of p(n− 1) in p(n) ; 

k ′(�) := k(�)schS•�(Cn)∗

k ′(�) = schLg0(�)

n
∏

i=1

(1− e−ǫi)
∏

α∈�−1

(1− eα).
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in this case tx is spanned by h1, . . . , hn−1 . Take 
f ∈ K−(P(n)) such that ds1(f ) = 0.

Identify t∗x with the span of ε1, . . . , εn−1 and 
write

By (16) ds1(f ) = 0 is equivalent to 
∑

a∈Cmµ′+aεn = 0 for each µ′ ∈ t∗x.
Therefore, 

∑

a∈Cmµ′+aεn = 0 means that fµ′ 
is divisible by 1− e−εn . Hence, f is divisible by 
1− e−εn.

Recall that ker ds1 ⊂ ker ds2 , so ds2(f ) = 0 . 
Using the above argument for x ∈ gεn−1+εn . we 
obtain that f is divisible by 1− e−εn−1−εn.

The restriction Resgg0 gives an embedding 
of the supercharacter ring of p(n) to the super-
character ring of p(n)0 = gln . In particular, 
f is W-invariant and thus f is divisible by the 
element

Since R′ is W-invariant one has f = R′f ′ , where 
f ′ is a W-invariant element in Z[eν , ν ∈ t∗] . The 
ring Z[eν , ν ∈ t∗]W  is the character ring of gln , so 
f ′ can be written as f ′ =

∑

j mjschLgln(νi) . This 
gives f =

∑

j mjR
′schLgln(νi) =

∑

j mjk(νi) as 
required.

Finally, one can use a standard highest weight 
argument to show that the k(�) are linearly inde-
pendent.  �

Remark 8.6 Take n > 0 . One has �G/Z� ∼= Z2 . 
Writing �G = Z�+ (ε1 + Z�) we have

Thus, we have

If f ∈ K−(F(P(n)) = K−(F0(g)) has 
ds1(f ) = 0 , then the above argument will imply 
that f is divisible by (1− e2ǫn) and (1− eǫn−1+ǫn) . 
Applying W-invariance of f, we learn that it is the 
subspace of K−(F(P(n)) spanned by the super-
characters k+(�) , i.e., the supercharacters of thick 
Kac modules Indg

g⊕g−1Lg0(�).

However, thick Kac modules do not span the 
kernel of ds1 ; for instance when n = 2 , we have

f =
∑

mνe
ν =

∑

µ′∈t∗x

fµ′ ,

where fµ′ := e
µ′ ∑

a∈C

mµ′+aεne
aεn .

R′ :=

n
∏

i=1

(1− e−ǫi)
∏

α∈�−1

(1− eα).

F(P(n)) = F0(g)⊕ F1(g),

where F0(g) := FZ�(g), F1(g) := FZ�+ε1(g).

K−(F(P(n)) = K−(F0(g))⊕K−(F1(g)).

However, one can show (using evaluation argu-
ments) that [L(ǫ1)] − [Cstr] + [C−str] is not in the 
span of supercharacters of thick Kac modules.

9  The DS Functor and sl(∞)‑Modules
In this section, we discuss a connection between 
the DS functor and sl(∞)-modules arising from 
gl(m|n)-representation theory, which was discov-
ered and studied by Hoyt, Penkov and Serganova 
in41. We will recall some basic facts for sl(∞) , and 
refer the reader to the book “Classical Lie algebras 
at infinity” by Penkov and Hoyt for an in-depth 
treatment of the Lie algebra sl(∞) and other 
locally finite Lie algebras51.

In the pioneering paper4, Brundan showed 
that the complexification of the Grothendieck 
group for the categories F(GL(m|n)) and the 
integral BGG category OZ

m|n inherit a natu-
ral sl(∞)-module structure from the action 
of translation functors Ei, Fi . This action and 
general categorification methods were used 
by Brundan, Losev and Webster in6 to develop 
Kazhdan–Lusztig theory for gl(m|n).

Now since the DS functor commutes with 
translation functors, the induced homomor-
phism ds of reduced Grothendieck groups is, 
in fact, a homomorphism of sl(∞)-modules41. 
This homomorphism ds was used in41 to help 
obtain a description of the sl(∞)-module 
structure of the reduced Grothendieck groups 
for both of the categories FZ

m|n and OZ
m|n of 

integral gl(m|n)-modules.

9.1  The Lie Algebra sl(∞)

The Lie algebra gl(∞) can be defined by tak-
ing countable-dimensional vector spaces 
V,V∗ with bases {vi}i∈Z, {v∗j }j∈Z , and letting 
gl(∞) = V ⊗ V∗ with bracket (extended lin-
early) given by

where �·, ·� : V ⊗ V∗ → C is the nondegenerate 
pairing defined by �vi, v∗j � = δij.

We can identify gl(∞) with the space of infi-
nite matrices 

(

aij
)

i,j∈Z
 which have only finitely 

many nonzero entries, using the correspond-
ence vi ⊗ v∗j �→ Eij , where Eij is the matrix with 
1 in the i, j-position and zeros elsewhere. Under 
this identification, �·, ·� is the trace map on 
gl(∞) , and the kernel of �·, ·� is the Lie algebra 

ds1([L(ǫ1)] − [Cstr] + [C−str]) = 0.

[vi ⊗ v∗j , vk ⊗ v∗l ] = �vk , v
∗
j �vi ⊗ v∗l − �vi, v

∗
l �vk ⊗ v∗j ,
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sl(∞) . The center of gl(∞) is trivial, and the 
following exact sequence does not split:

The Lie algebra sl(∞) is generated by the ele-
ments ei := Ei,i+1 , fi := Ei+1,i for i ∈ Z.

We can realize sl(∞) as a direct limit of 
finite-dimensional Lie algebras lim

−→
sl(n) , that 

is, sl(∞) is isomorphic to a union 
⋃

n∈Z≥2
sl(n) , 

of nested Lie algebras

The Lie algebra obtained from this union is 
independent, up to isomorphism, of the choice 
of the inclusions sl(n) →֒ sl(n+ 1).

9.2  Modules Over sl(∞)

The modules V,V∗ are the defining representa-
tions of sl(∞) , and for p, q > 0 , the tensor mod-
ules V⊗p ⊗ V

⊗q
∗  , p, q ∈ Z≥0 are not semisimple. 

Schur-Weyl duality for sl(∞) implies that the 
module V⊗p ⊗ V

⊗q
∗  decomposes as

where Y� and Yµ are irreducible Sp - and Sq-mod-
ules, S� denotes the Schur functor corresponding 
to the Young diagram � , and |�| is the size of �.

The sl(∞)-modules S�(V)⊗ Sµ(V∗) 
are indecomposable, and their socle filtra-
tion was described by Penkov and Styrkas 
in52. We recall that the socle of a module M , 
denoted socM , is the largest semisimple sub-
module of M , and that the socle filtration of 
M is defined inductively by soc0M := socM 
and sociM := p−1

i (soc(M/(soci−1M))) , where 
pi : M → M/(soci−1M) is the natural projection. 
We denote the layers of the socle filtration by 
sociM := sociM/soci−1M . From Thm. 2.3 of52, 
we have that the layers of S�(V)⊗ Sµ(V∗) are

where N �

�
′,γ

 are the standard Littlewood-Richard-

son coefficients. In particular, the indecomposa-
ble module S�(V)⊗ Sµ(V∗) has a simple socle, 
denoted by V�,µ . For example, the layers of 
�mV ⊗�nV∗ are given by 
soci(�mV ⊗�nV∗) ∼= V(m−i)⊥,(n−i)⊥ , where ⊥ 
indicates the conjugate Young diagram.

An sl(∞)-module is called a tensor mod-
ule if it is isomorphic to a submodule of a finite 
direct sum of modules of the form V⊗pi ⊗ V

⊗qi
∗  

0 → sl(∞) → gl(∞) → C → 0.

sl(2) ⊂ sl(3) ⊂ · · · ⊂ sl(n) ⊂ sl(n+ 1) ⊂ · · · .

V⊗p ⊗ V
⊗q
∗ =

⊕

|�|=p,|µ|=q

(S�(V)⊗ Sµ(V∗))⊗ (Y� ⊗ Yµ),

sock(S�(V)⊗ Sµ(V∗)) ∼=
⊕

�
′ ,µ′ ,|γ |=k

N �

�
′,γ
N

µ

µ′,γV
�
′,µ′

for pi, qi ∈ Z≥0 . The category of tensor modules 
Tsl(∞) is by definition the full subcategory of 
sl(∞)-mod consisting of tensor modules12. The 
modules V⊗p ⊗ V

⊗q
∗  , p, q ∈ Z≥0 are injective in 

Tsl(∞) . Moreover, every indecomposable injec-
tive object of Tsl(∞) is isomorphic to an inde-
composable direct summand of V⊗p ⊗ V

⊗q
∗  for 

some p, q ∈ Z≥0 , which means, it is isomorphic 
to S�(V)⊗ Sµ(V∗) for some �,µ12.

9.3  Representation Theory of gl(m|n)

Let Om|n denote the category of Z2-graded 
modules over gl(m|n) which when restricted to 
gl(m|n)0 , belong to the BGG category Ogl(m|n)0 
(see49, Sec. 8.2.3). This category depends only on 
a choice of Borel subalgebra for gl(m|n)0 , and 
not for gl(m|n) . We denote by OZ

m|n the Serre 
subcategory of Om|n consisting of modules with 
integral weights. Any simple object in OZ

m|n is iso-
morphic to L(�) for some integral weight � (for 
a fixed Borel subalgebra of gl(m|n) ). The objects 
of the category OZ

m|n have finite length. We denote 
by FZ

m|n the Serre subcategory of OZ
m|n consist-

ing of finite-dimensional modules. (Note that 
FZ
m|n = F�G (gl(m|n)) as defined in Sect. 8.1.) 

Each simple object of FZ
m|n is isomorphic to L(�) 

for some dominant integral weight �.
We define the translation functors Ei, Fi on the 

category OZ
m|n as follows. Let Xj ,Yj be a pair of Z2

-homogeneous dual bases of gl(m|n) with respect 
to the gl(m|n)-invariant form str(XY ) . For a pair 
of gl(m|n)-modules V, W, we define the Casimir 
operator � ∈ Endgl(m|n)(V ⊗W ) on homogene-
ous vectors by setting

where p(·) denotes the parity function. Let U ,U∗ 
be the defining gl(m|n)-modules. Then for every 
M ∈ OZ

m|n , we let Ei(M) (respectively, Fi(M) ) 
be the generalized eigenspace of � in M ⊗U∗ 
(respectively, M ⊗U  ) with eigenvalue i. Then, as 
it follows from6, the functor · ⊗ U∗ (respectively, 
· ⊗ U ) decomposes into the direct sum of func-
tors ⊕i∈ZEi(·) (respectively, ⊕i∈ZFi(·) ). Moreo-
ver, the functors Ei and Fi are adjoint functors on 
OZ

m|n.

9.4  Grothendieck Groups and the sl(∞)

‑Modules Km|n , Jm|n

We let Km|n (respectively, Jm|n ) denote the com-
plexification of the reduced Grothendieck group 
of OZ

m|n (respectively, of FZ
m|n ), that is,

�(v ⊗ w) :=
∑

j

(−1)p(Xj)(p(v)+1)Xjv ⊗ Yjw,
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We will denote by ei, fi the linear operators that 
the translation functors Ei, Fi induce on Km|n 
and Jm|n . Brundan showed in4 that if we identify 
ei, fi with the Chevalley generators Ei,i+1 , Ei+1,i of 
sl(∞) , then we obtain an sl(∞)-module struc-
ture on Jm|n and Km|n.

Let Tm|n ⊂ Km|n denote the subspace gen-
erated by the classes [M(�)] of all Verma 
modules M(�) for � ∈ � . Let furthermore 
Wm|n ⊂ Jm|n denote the subspace gener-
ated by the classes [K (�)] of all Kac mod-
ules K (�) for � ∈ �+ . Then Wm|n and Tm|n

are sl(∞)-modules under the action defined 
above, and Wm|n

∼= �mV ⊗�nV∗ and 
Tm|n

∼= V⊗m ⊗ V⊗n
∗

4. The modules Tm,n and 
Wm|n are injective in the category Tsl(∞) , 
and Wm|n is an indecomposable summand 
of Tm|n . Now let Pm,n := K−(Pm|n)⊗Z C 
(respectively, Qm|n := K−(Qm|n)⊗Z C ), 
where Pm|n (respectively, Qm|n ) is the semi-
simple subcategory of OZ

m|n (respectively, 
of FZ

m|n ) consisting of projective modules. 
Then we have socKm,n = socTm,n = Pm,n and 
socJm,n = socWm,n = Qm,n

11,41. Consequently, 
Tm|n (respectively, Wm|n ) is the maximal sub-
module of Km|n (respectively, of Jm|n ) lying in 
the category Tsl(∞) and in particular, Km,n and 
Jm|n are not objects of Tsl(∞) . A new category 
Tsl(∞),2 of sl(∞)-modules was introduced in41 
(wherein it is denoted Tg,k ) for which Km,n and 
Jm|n are injective objects.

9.5  The DS Functor on OZ
m|n

Let X be the associated variety for gl(m|n) , and 
let x ∈ Xk = �(Sk) . By Prop. 33 of41, the restric-
tion of the functor DSx to Om|n is a well-defined 
functor to Om−k|n−k , and it follows that the 
further restriction to OZ

m|n gives a well-defined 
functor

Using the naturality of the Casimir (see29,41) and 
that DSx is a tensor functor, we obtain that it 
commutes with translation functors.

The following propositions are proven in41.

Proposition 9.1 The map 
dsx : Km|n → Km−k|n−k is a homomorphism 
of sl(∞)-modules, and so is its restriction 
dsx : Jm|n → Jm−k|n−k.

Km|n := K−(O
Z
m|n)⊗Z C, Jm|n := K−(F

Z
m|n)⊗Z C.

DSx : O
Z
m|n → OZ

m−k|n−k .

The map dsx : Jm|n → Jm−k|n−k depends only 
on k = |S| and not on x, so we will simply denote 
it by ds when k = 1 . (Note that this does not hold 
for Km|n.)

The next proposition follows from Theo-
rem 8.4 (1).

Proposition 9.2 The kernel of 
ds : Jm|n → Jm−1|n−1 is

The following result is from41, Prop. 43.

Proposition 9.3 Fix a nonzero x ∈ gδj−εi , and 
denote by dsi,j : Km|n → Km−1|n−1 the sl(∞)

-module homomorphism dsx . We have

9.6  The Socle Filtration
Here is a description of the sl(∞)-module Jm|n 
(see41, Cor. 29).

Theorem 9.4 The module Jm|n is an injective hull 
of the simple module Qm|n , and the socle filtration 
of Jm|n has layers

For a proof of the following theorem, see41, 
Thm. 24.

Theorem 9.5 The sl(∞)-module Km|n is an 
injective hull in the category Tsl(∞),2 of the semi-
simple module Pm|n . Furthermore, there is an 
isomorphism

where Y� and Yµ are irreducible modules over Sm 
and Sn , respectively, and I�,µ is an injective hull of 
the simple module V�,µ in Tsl(∞),2 . The layers of 
the socle filtration of Km|n are given by

where

Ker ds = Wm|n.

⋂

i,j

Ker dsi,j = Tm|n.

sociJm|n
∼=

(

V(m−i)⊥(n−i)⊥
)⊕(i+1)

.

Km|n
∼=

⊕

|�|=m,|µ|=n

I�,µ ⊗ (Y� ⊗ Yµ)

sockKm|n
∼=

⊕

|�|=m,|µ|=n

(sockI�,µ)⊕(dimY�dimYµ),

sockI�,µ ∼=
⊕

�
′ ,µ′

⊕

|γ 1|+|γ 2|=k

N �

γ 1,γ 2,�
′N

µ

γ 1,γ 2,µ
′V

�
′,µ′

.
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10  Projectivity Criteria for Quasireductive 
Lie Superalgebras

In this section, we assume that g is a quasireduc-
tive Lie superalgebra, that is, g0 is reductive and 
acts semisimply on g1 . We discuss to what extent 
the associated varieties for Lie superalgebras can 
be used to detect projectivity in the category of 
finite-dimensional g-modules.

10.1  Projectivity and the Associated 
Variety

Let F(g) be the category of finite-dimensional g
-modules which are semisimple over g0 . The lat-
ter condition is automatic if g0 is semisimple. The 
category F(g) has enough projective modules 
and injective modules. By duality, every injec-
tive object is projective and vice versa. Moreo-
ver, every indecomposable projective module is 
a direct summand of Indgg0L for some simple g0
-module L. We say that a subalgebra k ⊂ g is a 
quasireductive subalgebra if k0 is reductive and g 
is a semisimple k0-module.

The following fact is useful.

Proposition 10.1 Let k be a quasireductive sub-
algebra of g . If P is projective in F(g) then ReskP is 
projective in F(k).

Proof If P is projective then it is a direct sum-
mand of the induced module Indgg0N  for some 
semisimple g0-module N. Furthermore, we have 
an isomorphism of g0-modules:

and an isomorphism of k0-modules

By Frobenius reciprocity the homomorphism of 
k0-modules

induces an isomorphism

We obtain that ReskP is a direct summand of 
some module induced from a semisimple k0
-module. Therefore, P is projective in F(k) .  �

We can now give another proof of 
Lemma 2.21.

Theorem 10.2 Suppose g is quasireductive. If 
M ∈ F(g) is projective, then XM = {0}.

Indgg0N ≃ N ⊗ S•(g1)

g1 = k1 ⊕ (g1/k1).

N ⊗ S•(g1/k1) → Indgg0N

Indkk0(N ⊗ S•(g1/k1)) ≃ ReskInd
g
g0
N .

Proof Let x ∈ X be nonzero, and consider the 
subalgebra k = k�x� generated by x. Since k is 
quasireductive, ReskM is projective over k , which 
implies that Mx = 0 .  �

10.2  Criteria for Type I Lie Superalgebras
In this section, we prove that for certain quasire-
ductive Lie superalgebras the converse of Theo-
rem 10.2 holds. We start with the following.

Lemma 10.3 Let g be quasireductive and 
[g1, g1] = 0 . If XM = {0} then M is projective in 
F(g).

Proof Since U(g1) is isomorphic to the exterior 
algebra �(g1) we have that XM = {0} implies that 
M is free over U(g1) , see1. Then an embedding of 
g0-modules M/g1M →֒ M induces an isomor-
phism Indgg0(M/g1M) ≃ M . Therefore, M is pro-
jective.  �

Theorem 10.4 Assume that g0 is reductive and 
there exists an element h in the center of g0 such 
that adh acts diagonally on g1 with nonzero real 
eigenvalues. If XM = {0} then M is projective in 
F(g).

Proof Write down g = g+ ⊕ g0 ⊕ g− , where g+ 
(respectively, g− ) denote the span of adh-eigen-
vectors with positive (respectively, negative) 
eigenvalues. Since g± are purely odd subalgebras, 
they are commutative; hence, p+ := g0 ⊕ g+ and 
p− := g0 ⊕ g− are subalgebras satisfying the con-
dition of Lemma 10.3. In particular, if XM = {0} , 
then M is projective in F(p±) . For a g0-module L 
set K±(L) := Indgp±L . We claim that there exists a 
finite filtration

such that Mi/Mi−1 ≃ K−(Li) . Indeed, let L1 
be h-eigenspace with maximal eigenvalue. 
Then g+L1 = 0 and we have an embed-
ding K−(L1) ⊂ M . The quotient M/K−(L1) 
is again free over U(g+) and projective in 
F(p+) . Hence we can finish the proof by 
induction on dimension of M. Similarly M∗ 
has a finite filtration with quotients iso-
morphic to K+(Nj) . Therefore, M ⊗M∗ has 
a filtration with quotients isomorphic to 
K+(Li)⊗ K−(Nj) ≃ Indgg0(Li ⊗ Nj) . In other 
words M ⊗M∗ has a filtration by projective 
modules. Therefore M ⊗M∗ is projective in 
F(g) . Then M ⊗M∗ ⊗M is also projective. In 

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mk
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any symmetric monoidal rigid category M is a 
direct summand of M ⊗M∗ ⊗M . Therefore, 
M is projective.  �

Corollary 10.5 Theorem 10.4 holds for gl(m|n) , 
sl(m|n) , m  = n , osp(2|2n) and p(n).

Remark 10.6 Let g = sl(1|1) . Then it is easy to 
construct a g-module M such that XM = 0 and M 
is not projective. Recall that g1 has a basis {x, y} 
and g0 = Cz with [x, y] = z , [z, x] = [z, y] = 0 . 
Then X = Cx ∪ Cy . Let M = C1|1 , z acts trivially 
on M, and both x and y act via the same matrix 
(

0 1
0 0

)

 . Clearly M is not projective. Note that the 

sl(1|1)-module M is not the restriction of a 
gl(1|1)-module.

10.3  Rank Varieties
From reductivity, we have a well-defined notion 
of semisimple elements in g0 , so the following 
definition makes sense.

Definition 10.7 We set

We refer to elements of ghom1  as homological 
elements.

Remark 10.8 Clearly we have X ⊆ ghom1  . Further 
ghom1  is G0-stable, just like X. However ghom1  is no 
longer closed in g1 , and its geometric structure is 
much more complicated.

Let x ∈ ghom1  and write h = [x, x] . Then for M 
in F(g) , if we consider Mh , the fixed points of h 
on M, it is x-stable and further x defines a square-
zero endomorphism on it. Thus we may define

This defines a functor which we continue to call 
DSx , the Duflo–Serganova functor for the ele-
ment x. Note that the Duflo–Serganova functor as 
we defined it in Sect. 2 comes from the case when 
h = 0.

Remark 10.9 It is easy to check that Lemmas 2.2 
and 2.4 hold for this generalization of the DS 
functor.

The following space was considered in19.

ghom1 := {x ∈ g1 : [x, x] is semisimple}.

Mx := (Ker x|Mh)/(Im x|Mh).

Definition 10.10 Let M be in F(g) and define 
the rank variety of M to be

Again we have that Xrk
M ⊆ ghom1  is G0-stable; 

however as is hinted in Remark 10.8, the geomet-
ric structure of Xrk

M can be quite complicated.
We note that rank varieties share many of the 

same properties as associated varieties; in par-
ticular, all properties from Lemma 2.20 continue 
to hold. In particular, we can use an analogous 
proof as in Theorem 10.2 to show that:

Proposition 10.11 Let P be projective in F(g) . 
Then Xrk

P = {0}.

We make the following conjecture:
Conjecture 10.12 Let g be quasireductive and 

suppose that M is in F(g) with Xrk
M = {0}. Then M 

is projective.
A proof of this conjecture is currently forth-

coming, and is being worked on by the third and 
fourth authors with other collaborators.

Example 10.13 Consider the example given in 
Remark 10.6. For g = sl(1|1) we have ghom1 = g1 . 
Clearly for the module M considered there, 
Xrk
M = {c(x − y) : c ∈ C}.

11  Localization of the DS Functor
In this section, we associate to every finite-dimen-
sional g-module a vector bundle on X with a 
square-zero OX-module endomorphism, which 
interpolates the actions of the elements of X. We 
relate the cohomology of this operator to the 
associated variety of M, and apply it to a coho-
mology computation for gl(m|n).

11.1  Localization
Let g be a finite-dimensional Lie superalgebra, 
and let M be a g-module. Let OX denote the 
structure sheaf of X. Then OX ⊗M is the sheaf 
of sections of the trivial vector bundle with fiber 
isomorphic to M. Let ∂ : OX ⊗M → OX ⊗M be 
the map defined by

for any x ∈ X , ϕ ∈ OX ⊗M . Clearly ∂2 = 0 
and the cohomology M of ∂ is a quasi-coherent 
sheaf on X. If M is finite-dimensional, then M is 
coherent.

Xrk
M := {x ∈ ghom1 : Mx �= 0}.

∂ϕ(x) = xϕ(x)
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For any x ∈ X denote by Ox the local ring 
at x, by Ix the maximal ideal. Let M̃x be the 
cohomology of ∂ : Ox ⊗M → Ox ⊗M and 
Mx := M̃x/IxM̃x . The evaluation map 
jx : Ox ⊗M → M satisfies jx ◦ ∂ = x ◦ jx . Hence, 
we have the maps

The embedding M →֒ Ox ⊗M ensures the sur-
jectivity of the latter map. Thus, jx induces the 
map j̄x : M̃x → Mx , and Imj̄x ∼= Mx.

Remark 11.1 It is easy to see that Mx is a (gx)0
-module and j̄x is a homomorphism of (gx)0
-modules.

Lemma 11.2 Let M be a finite-dimensional g
-module. 

1. The support of M is contained in XM.
2. The map j̄x is surjective for a generic point 

x ∈ X . In particular, if XM = X , then 
suppM = X.

Proof First, we will show that for any x ∈ X\XM 
there exists a neighborhood U of x such that 
M(U) = 0 . Indeed, there exists hx ∈ EndC(M) 
such that x ◦ hx + hx ◦ x = idM . Therefore, in 
some neighborhood U of x there exists an O(U)

-morphism h : O(U)⊗M → O(U)⊗M 
such that ∂ ◦ h+ h ◦ ∂ is invertible and 
h(x) = hx . Hence the cohomology of 
∂ : O(U)⊗M → O(U)⊗M are trivial. In other 
words, M(U) = 0 . Thus, x does not belong to 
the support of M and we have obtained that 
suppM ⊂ XM.

To prove (2) let x ∈ X be a non-singular point 
such that dimMx is minimal. Let m ∈ KerxM . 
Then there exists some neighborhood U of x and 
ϕ ∈ O(U)⊗M such that ∂ϕ = 0 and ϕ(x) = m . 
By definition ϕ ∈ Mx and j̄x(ϕ) = m. �

Corollary 11.3 Let x ∈ X be a generic point, then 
in some neighborhood U of x, the sheaf MU coin-
cides with the sheaf of sections of a vector bundle 
with fiber Mx.

Let XM  = X . Then M is the extension by zero 
of the sheaf MXM and MXM locally is the sheaf of 
sections of a vector bundle with fiber j̄x(Mx) for 
a generic x ∈ XM . Note that j̄x(Mx) ⊂ Mx , but 
usually this is a strict embedding, as one can see 
from the following example.

Example 11.4 Let g = gl(1|1) and M be the 
standard g-module. Then

jx : Ker∂ → Kerx, jx : Im∂ → xM.

Therefore, XM = {0} , but a simple computation 
shows that M = 0 , and in particular, the support 
of M is empty.

For x ∈ X , let Gx
0 denote the stabilizer of x in 

G0 . The following statement illustrates a geomet-
ric meaning of (gx)1.

Proposition 11.5 Let x ∈ X . Then the G0-vector 
bundle G0 ×Gx

0
(gx)1 is canonically isomorphic to 

the normal bundle to G0x in X.

Proof First, we compute the tangent space TxX . 
The condition

is equivalent to y ∈ Ker adx . Therefore, 
TxX ∼= (Ker adx)1 . On the other hand, the tan-
gent space Tx(G0x) to the orbit is canonically iso-
morphic to [g0, x] = (Im adx)1 . Hence the normal 
space to G0x in X at the point x is isomorphic to 
(gx)1 . Using G0-action we obtain

 �

11.2  A Special G0‑Invariant Subset 
for Basic Classical Lie Superalgebras

For this subsection, let g be a basic classical Lie 
superalgebra.

Let x ∈ Xk and

Then

The following is a consequence of Theorem 5.1 
and Lemma 5.10.

Corollary 11.6 Let x ∈ X and denote by X ′ ⊂ X 
the union of all G0-orbits O such that x ∈ O . Then 
X ′ = G0(x + Yx),

Lemma 11.7 Let x ∈ X . There exists a subgroup 
Q ⊂ G0 satisfying the following properties

1. Gx+y
0 ∩ Q = {1} for any y ∈ Yx,

2. Q(Gx
0) is Zariski dense in G0.

Proof First, we check the statement for classi-
cal g . We denote by V the defining representation 
of g . Then for some subspace V ′ ⊂ V  we have a 

X =

{(

0 u
v 0

)

| uv = 0

}

.

= 0 mod ǫ2

NG0xX
∼= G0 ×Gx

0
(gx)1.

Yx :=
{

y ∈ (gx)1 | [y, y] = 0
}

.

(18)x + Yx ⊂ X
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decomposition V = xV ′ ⊕ Vx ⊕ V ′ , and we may 
assume that V ′ , xV ′ are isotropic subspaces and 
orthogonal to Vx in the orthosymplectic case. We 
set

Now let g be exceptional and x  = 0 . Then Gx
0 is a 

subgroup of codimension 1 in some parabolic P 
with maximal normal unipotent subgroup U. We 
set Q = C∗ ⋊U− where U− is the opposite (com-
plementary) to U and C∗ be a one-parameter 
subgroup in the maximal torus of G0 which acts 
freely on C∗x .  �

Lemma 11.8 Let N := Mx and N0 denote the 
fiber at 0 of the sheaf N  on Yx . Then there exists an 
injective morphism N0 →֒ Mx.

Proof The action map Q × (x + Yx) → X 
defines an isomorphism a : U → Q × Yx for 
some Zariski dense open U ⊂ G′ . Denote by p 
the composition of a with the projection. Then 
p∗ : N → M(U) is injective and hence induces 
an injection of fibers.  �

Lemma 11.9 Let x ∈ X and K is the algebraic 
subgroup of G0 with the Lie algebra (gx)0 . For every 
x′ ∈ X ′ we have G0x

′ ∩ (x + Yx) = K (x + y) for 
some y ∈ Yx . Thus we have a bijection between G0

-orbits in X ′ and K-orbits in Yx.

Proof Let x =
∑

α∈A xα and 
S ′ = {B ∈ S | A ⊂ B} . Then G0-orbits in X are 
in bijection with S ′/W  and K-orbits in Yx are in 
bijection with Sgx/Wgx , where Sgx and Wgx are 
analogues of S and W for gx . The map S ′ → Sgx 
defined by B → B\A induces the bijection 
S ′/W → Sgx/Wgx . Hence the statement.  �

11.3  Application to Cohomology 
of Finite‑Dimensional gl(m|n)‑Modules

For the rest of this section, g = gl(m|n) . Recall 
the grading g = g1 ⊕ g0 ⊕ g−1 and observe 
that the abelian subalgebra g1 is an irreduc-
ible component of X. We can identify g1 with 
HomC(C

n,Cm) . Then

g1k is a single G0-orbit.
Let M be a g-module. The restriction Mh of 

M to g1 is given by the cohomology

Q := {g ∈ G0 | g |W = idV ′ ,

g(Vx) ⊂ W ⊕ Vx, g |Vx
≡ idVx

mod V
′}.

g1k := Xk ∩ g1 = {ϕ ∈ HomC(C
n,Cm) | rkϕ = k},

where ∂ is the same as for the sheaf M . The 
complex of global section equipped with the 
standard grading

is nothing else but the Koszul complex comput-
ing the cohomology H•(g1,M) . These cohomol-
ogy groups are important since they are used 
in the Kazhdan–Lusztig theory for F(GL(m|n))

,4,54. The sheaf Mh can be considered as the 
localization of H•(g1,M) in the sense of Beilin-
son–Bernstein. It is clear that

Lemma 11.10 If M admits a typical central char-
acter, then suppMh = {0} and the fiber of Mh at 0 
equals H0(g1,M).

Proof Follows from the fact that M is a free 
U(g1)-module and Koszul duality between U(g1) 
and S(g1) .  �

Theorem 11.11 Let M be an irreducible finite-
dimensional g-module with atypicality degree k. 
Then suppMh = Xk ∩ g1.

Proof The inclusion suppMh ⊂ Xk ∩ g1 follows 
from Theorem 6.4 and (19). To prove the equal-
ity consider x ∈ g1k . The fiber Mh

x  = 0 by Lem-
mas 11.10 and 11.8.  �

Consider the Hilbert–Poincare series

The Hilbert–Serre Theorem and Theorem 11.11 
imply

Corollary 11.12 Let M be an irreducible finite-
dimensional g-module with atypicality degree k. 
Then

for some polynomial q(t).

Proof The degree in the denominator equals 
dimg1k = k(m+ n− k) .  �

∂ : Og1 ⊗M → Og1 ⊗M,

· · · → Sp(g1)∗ ⊗M → · · · → (g1)∗ ⊗M → M → 0

(19)suppMh ⊂ XM ∩ g1.

HM(t) :=

∞
∑

i=1

dimHi(g1,M)ti.

HM(t) =
q(t)

(1− t)k(m+n−k)
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12  The DS Functor on Simple Modules
In this section, we discuss what is known about 
the action of DSx on simple modules for classical 
Lie superalgebras. Serganova originally conjec-
tured that these functors are semisimple when g is 
basic classical, meaning that they takes semisim-
ple modules to semisimple modules. Following 
the work of27,38 this is now a theorem. For p(n) 
these functors are known not to be semisimple; 
however, by the work of17, the composition fac-
tors of DSx(L) for x of rank one when L is a sim-
ple module.

The case of q(n) was studied in30; in this case, 
it is interesting to study DSx on simple modules 
for all x ∈ grk1  (see Sect. 10.3), not only for those 
x with [x, x] = 0 . Note, however, that grk1  has infi-
nitely many G0-orbits. In30, DSx is computed on 
simple modules and shown to be semisimple for 
x of rank 1. In general it is expected that DSx will 
be always be semisimple. We will not discuss this 
case here any further.

12.1  General Results
We begin with a general statement. Recall that if 
N is a g-module and L is a simple g-module, we 
write [N : L]non for the ungraded Jordan-Hölder 
multiplicity of L in N, meaning for the number 
of times both L and �L appear as Jordan-Hölder 
factors of N.

The following result is a compilation of results 
from17,27,38,48.

Theorem 12.1 Let g be one of the Lie superalge-
bras gl(m|n), osp(m|2n), p(n) , or a simple excep-
tional Lie superalgebra. Let L be a simple g-module, 
x a rank one odd root vector (see Definition 4.2), 
and L′ a simple gx-module. 

1. If g  = p(n) , then DSx(L) is a semisimple gx
-module.

2. We have [DSx(L) : L
′]non ≤ 2 ; if 

g = gl(m|n), p(n) then DSx(L) is multiplicity 
free.

3. (Purity) If g is basic classical ( g  = p(n) ) then 
we have

4. For g = gl(m|n), osp(m|2n) , and p(n) , the 
composition factors of DSx(L) are determined 
by removing maximal arcs from the arc dia-
gram associated with L (see the subsections 
below for explanations on the arc diagrams 
for each case).

[DSx(L) : L
′][DSx(L) : �L′] = 0.

Remark 12.2 In (2) of Theorem 12.1 the mul-
tiplicity bound states that [DSxL : L′]non ≤ 1 
when g is of type I, i.e., when it has a Z-grading 
(i.e., gl(m|n), osp(2|2n) , or p(n)).

The proof of these bounds (and the rest of 
the results above) are still case-dependent; gen-
eral proofs are unknown but would be of great 
interest.
Remark 12.3 There is an elegant explanation 
of the purity property, i.e., part (3) of Theo-
rem 12.1, which is explained by Gorelik in26. For 
g basic classical there exists a semisimple subcat-
egory C(g) of the category of finite-dimensional 
modules such that for any simple module L of g , 
exactly one of L or �L lies in C(g) . These semi-
simple subcategories can be chosen so that if 
L lies in C(g) then DSxL lies in C(gx) , which of 
course implies part (3) of Theorem 12.1.

Further, it is possible to choose these semi-
simple subcategories so that when g is reductive 
(i.e., g = g0 or g = osp(1|2n) ), C(g) contains 
all simple modules of positive superdimension. 
Using this and the fact that the DS functor pre-
serves superdimension, one can obtain combina-
torial formulas given by a sum of non-negative 
numbers for the superdimension of any simple 
module. This was done in38 for gl(m|n) . For p(n) 
the superdimension was computed in17.

Before explaining part (4) of Theorem 12.1 
and beginning the discussion of arc diagrams, we 
state a result from which we compute the value 
of any DS functor for g = gl(m|n), osp(m|2n) on 
any simple module.

Let xr ∈ X be a rank r element of the asso-
ciated variety of g . Write DS1 for the functor 
obtained by applying DSx for a rank one vector x.

Theorem 12.4 (See27,38) Let 
g = gl(m|n) or osp(m|2n) . For a sim-
ple g-module L we have an isomorphism of 
DSxr (g)

∼= DS1(DS1(· · ·DS1(g) · · · ))-modules:

We will now discuss arc diagrams and part (4) 
of Theorem 12.1, after which we will explain the 
case of the exceptional superalgebras.

Remark 12.5 As we will see, the calculus of arc 
diagrams below will explain how to compute 
DS1 on simple modules with integral weights. By 
Sect. 8.1, this is enough to compute DS1 on all of 
F(g).

DSxr (L)
∼= DS1(DS1(· · ·DS1(L) · · · )).
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12.2  An Overview of Arc Diagrams
We now begin the explanation of part (4) of Theo-
rem 12.1, which will consume the rest of this sec-
tion. For the classical series gl(m|n), osp(m|2n) , 
and p(n) , there is a remarkable thread which links 
the computations of the composition factors of 
DSxL for a simple module L, namely arc diagrams. 
(For gl(m|n) and p(n) these diagrams have also 
been called cap/cup diagrams, in38 for gl(m|n) 
and in17 for p(n) ; we have changed the name for 
the sake of consistency.) These arc diagrams are 
defined individually for each superalgebra and pro-
vide a combinatorial tool to study this question.

We summarize the situation as follows. For 
each of the four Lie superalgebras listed above, we 
explain a procedure which associates to each sim-
ple module L an arc diagram, which consists of 
symbols lying on (half)-integer points on the real 
line, along with arcs which connect them. These 
arcs sometimes are nested within one another, giv-
ing rise to the notion of maximal arcs, those which 
do not lie beneath another arc. Then, as is stated 
in Theorem 12.1, the composition factors of DSxL 
are given by the simple modules whose associated 
arc diagram is obtained by removing one maximal 
arc from the arc diagram of L. As will be seen, the 
procedure for defining arc diagrams is different for 
each superalgebra.

The idea of using arc diagrams to study the rep-
resentations of Lie superalgebras goes back to the 
work of Brundan and Stroppel, where they real-
ized the category RepGL(m|n) as a certain dia-
gram algebra of Khovanov type (see5). Their arc 
diagrams are, notation aside, in essence the same as 
what will define for gl(m|n) below.

For the orthosymplectic supergroup, Gru-
son and Serganova used arc diagrams for ‘tai-
less’ dominant weights in36. More recently, Ehrig 
and Stroppel have done similar work on realiz-
ing RepOSp(m|2n) as a certain diagram algebra, 
(see15). Their diagram algebra is related to type D 
Khovanov algebras; however, their arc diagrams 
differ from those used in27 to study the action of 
DSx on simple modules. A dictionary to go between 
them is described in Appendix A of27.

Remark 12.6 There is an interesting link 
between arc diagrams and the computations of 
character formulas for gl(m|n) and osp(m|2n) 
(see28) as well as for q(n) (see60). A similar con-
nection is expected for p(n) as well.

We now begin our case by case explanations 
of arc diagrams. We will write �m|n for the free Z
-module with basis ǫ1, . . . , ǫm, δ1, . . . , δn which 
will be used for g = gl(m|n) , osp(2m|2n) , and 

osp(2m+ 1|2n) . For these superalgebras we define 
a parity homomorphism p : �g → Z2 = {0, 1} by 
p(ǫi) = 0 and p(δj) = 1 for all i, j, and extending 
linearly. For g = p(n) we will use that lattice �n , 
which is the free Z-module with basis ǫ1, . . . , ǫn.

12.3  gl(m|n) Case
The g = gl(m|n) case is due to38, and we refer the 
reader there for full details and more in-depth 
results.

We take the Borel subalgebra corresponding 
to the simple roots

Let

We identify � ∈ �m|n with the (m|n)-tuple of 
integers

where

We write �+(gl(m|n)) for the set of dominant 
weights in �m|n with respect to this Borel. Then 
� is dominant if and only if a1 > · · · > am and 
b1 > · · · > bn.

12.3.1  Weight and Arc Diagrams
Write I<(�) = {a1, . . . , am} and 
I>(�) = {b1, . . . , bn} . Then define the weight dia-
gram associated with � to be the following label-
ling: f� : Z → {×, ◦,<,>}:

The correspondence �  → f� defines a bijection 
between �+(gl(m|n)) and the labellings of Z by 
the appropriate number of the symbols ×, ◦,<,>.

Remark 12.7 It is not hard to check that the 
atypicality of a dominant weight � is equal to the 
number of symbols × in its weight diagram.

Given a weight diagram f� we associate an arc 
diagram via the following inductive construction. 
Connect an arc between i < j if: 

1. f (i) = × , f (j) = ◦ ; and

ǫ1 − ǫ2, . . . , ǫm − δ1, . . . , δn−1 − δn.

ρ = − ǫ2 − 2ǫ3 − · · · − (m− 1)ǫm + (m− 1)δ1

+ (m− 2)δ2 + · · · + (m− n)δn.

(a1, . . . , am|b1, . . . , bn),

�+ ρ = a1ǫ1 + · · · + amǫm − b1δ1 − · · · − bnδn.

f�(k) =











× k ∈ I<(�) ∩ I>(�);
◦ k /∈ I<(�) ∪ I>(�);
< k ∈ I<(�) \ (I>(�) ∩ I<(�));
> k ∈ I>(�) \ (I<(�) ∩ I>(�));
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2. for all k satisfying i < k < j and f�(k) = ◦ , k 
already lies on a previously drawn arc.

In other words, if f (i) = × , f (j) = ◦ , and for all 
i < k < j we have f (k) /∈ {×, ◦} , then we connect 
i and j by an arc. Then we continue drawing arcs 
inductively according to the above procedure.

Example 12.8 For g = gl(n|n) , the trivial weight 
� = 0 has the following weight diagram:

The arc diagram is given by

Clearly DSxC = C , and from the diagram we also 
see that when removing the only maximal arc we 
obtain the arc diagram of the trivial module for 
gl(n− 1|n− 1).

Example 12.9 For gl(6|7) consider the weight

Its weight diagram looks as follows:

Its arc diagram is given by

12.3.2  dex and Simple Modules
For � ∈ �+(gl(m|n)) , to properly specify the par-
ity of L(�) we need to briefly explain the equiva-
lences of blocks for gl(m|n) . Namely, every block 
of atypicality k for gl(m|n) is equivalent to the 
principal block of gl(k|k).

This equivalence defines a correspondence on 
simple modules, and thus on dominant weights, 
which we denote by �  → � , and it works as 
follows.

In the weight diagram of � , move all core 
symbols (i.e. >,< ) to the right of the symbols × 

� = 3ǫ1 + 3ǫ2 + 2ǫ3 + ǫ4 + ǫ5 − 2δ2

− 2δ3 − 2δ4 − 3δ5 − 3δ6 − 6δ7.

by simply swapping adjacent symbols one at a 
time. This pictorial procedure corresponds to 
applying translation functors between different 
blocks of the same atypicality. After moving all 
core symbols to the right, we simply remove them 
from the diagram, leaving us with a diagram only 
with the symbols × , and thus it will correspond 
to a dominant weight � in the principal block of 
gl(k|k).

For example, for the simple module of Exam-
ple 12.9, the atypicality is 5 and the weight dia-
gram of � is given by

Remark 12.10 The equivalence of categories 
here described commutes with the applica-
tion of DS , and thus it in fact suffices to under-
stand how DS acts on the principal block of 
gl(k|k) , although we will explain the general 
case for gl(m|n) . However, for osp(m|2n) we will 
use this principal and thus only explain in full 
how DS acts on the principal blocks of certain 
superalgebras.

Definition 12.11 For � ∈ �+(gl(m|n)) , we 
define

Then we set L(�) to be the simple module of 
highest weight � such that the parity of the high-
est weight vector is dex�.

Example 12.12 Consider an integer multiple of 
the Berezinian weight of gl(n|n) , that is, for k ∈ Z

,

Its weight diagram is a translation of the 
weight diagram of the trivial module. We have 
dex(�) = kn mod 2.

Example 12.13 For � as in Example 12.9, we 
have dex� = 1.

Theorem 12.14 [38 For � ∈ �+(gl(m|n)) , we 
have

where �i are the weights which correspond to 
the arc diagrams obtained by removing a sin-
gle maximal arc from the arc diagram of � , and 
ni = dex�− dex�i.

dex� := p(�).

� = k(ǫ1 + · · · + ǫn − δ1 − · · · − δn).

DSxL(�) =
⊕

i

�niL(�i),
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Remark 12.15 For gl(m|n) there are two conju-
gacy classes of rank one odd root vectors, but as 
is explained in38 the action of the corresponding 
Duflo–Serganova functors on simple modules is 
the same up to isomorphism.

Example 12.16 For gl(6|7) consider the weight 
introduced in Example 12.9. We recall its arc dia-
gram is given by

To apply DSx to L(�) we remove the maximal 
arcs from the diagram to obtain two new arc 
diagrams:

which corresponds to the weight �1 = 3ǫ1 + 3ǫ2
+2ǫ3 + ǫ4 + ǫ5 − 2δ1 − 2δ2 − 2δ3 − 3δ4 − 3δ5 − 4δ6 , 
which has dex�1 = 0.

which corresponds to the weight �2 = 3ǫ1
+3ǫ2 + 2ǫ3 − ǫ5 + δ1 − 2δ2 − 2δ3 − 3δ4 − 3δ5 − 6δ6 , 
which has dex�2 = 0 Thus, we have

12.4  osp(m|2n) Case
For a full explanation of the osp case with many 
examples, see27. Below we closely follow the treat-
ment given in26.

We have the following equivalences of catego-
ries that are obtained via a functor which respects 
the action of DS.

•   A block of atypicality k for osp(2m+ 1|2n) 
is equivalent to the principal block for 
osp(2k + 1|2k).

DSxL(�) = L(�1)⊕ L(�2).

•   For osp(2m|2n) with m, n > 0 , a block of 
atypicality k is equivalent to the principal 
block of either osp(2k|2k) or osp(2k + 2|2k).

In this way, we obtain that every block for 
osp(m|2n) is equivalent to the principal block of 
osp(2k + t|2k) for some k and some t = 0, 1, or 2, 
and so it suffices to understand how DSx acts on 
modules in these blocks. We will deal with these 
three cases individually, and refer to them accord-
ing to the value of t.

Remark 12.17 There are a number of parallels 
between the principal blocks of osp(2k + 1|2k) 
and osp(2k + 2|2k) . In particular, in27, they find 
an explicit bijection τ between simple modules 
such that it respects the action of the DS func-
tor, meaning we have an equality of multiplicity 
numbers [DSx(τ (L)) : τ (L)] = [DSxL : L].

It is important open question whether there 
is an equivalence of categories between these 
principal blocks, and in particular if there is one 
which commutes with the DS functor.

12.4.1  The weight lattice of  osp(2k + t|2k) is 
given  by �k+ℓ|k , where  we set ℓ = 0 
for t = 0, 1 and ℓ = 1 for t = 2

We fix triangular decompositions corresponding 
to the “mixed” bases:

We have ρ = 0 for t = 0, 2 and ρ =
1

2

k
∑

i=1

(δi − εi) 

for t = 1.

12.4.2  Highest Weights in the Principal Block
For � ∈ �k+ℓ|k we set

. Write �0(osp(2k + t|2k)) for the dominant 
weights of osp(2k + t|2k) which lie in the prin-
cipal block. By35, � ∈ �0(osp(2k + t|2k)) if and 
only if a1, . . . , ak are non-negative integers with 
ai+1 > ai or ai = ai+1 = 0 , and

� :=







ε1 − δ1, δ1 − ε2, . . . , εk − δk , δk for osp(2k + 1|2k)
δ1 − ε1, ε1 − δ2, . . . , εk−1 − δk , δk ± εk for osp(2k|2k)
ε1 − δ1, δ1 − ε2, . . . , εk − δk , δk ± εk+1 for osp(2k + 2|2k).

ai := −(�|δi)
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for ξ ∈ {±1} . For t = 1 we have 1 ≤ s ≤ k + 1 and 
as = as+1 = . . . = ak = 0 if s ≤ k (for s = k + 1 
we have �+ ρ =

∑k
i=1(ai +

1
2 )(εi + δi)).

12.4.3  Weight Diagrams
Take � ∈ �0(osp(2k + t|2k)) and define ai for 
i = 1, . . . , k as above. We assign to � a weight 
diagram f� , which is a number line with one or 
several symbols drawn at each position with non-
negative integral coordinate:

•   we put the sign × at each position with the 
coordinate ai;

•   for t = 2 we add > at the zero position;
•   we add the “empty symbol” ◦ to all empty 

positions.

For t  = 2 a weight � ∈ �0(osp(2k + t|2k)) is not 
uniquely determined by the weight diagram con-
structed by the above procedure. Therefore, for 
t = 0 with ak  = 0 and for t = 1 with s ≤ k , we 
write the sign of ξ before the diagram ( + if ξ = 1 
and − if ξ = −1).

Notice that each position with a nonzero 
coordinate contains either × or ◦ . For t = 0, 1 the 
zero position is occupied either by ◦ or by several 
symbols × ; we write this as ×i for i ≥ 0 . Similarly, 
for t = 2 the zero position is occupied by ×i

> with 
i ≥ 0.

Remark 12.18 The weight diagrams we have 
defined are essentially the same as those defined 
in35, except that when t = 1 we shift by −1/2.

12.4.4  Examples
The weight diagram of 0 is

where the three small • s together are an ellipsis, 
indicating the diagram continues with ◦ s. We 
omit these in future diagrams. For t = 0,

for t = 1 , and

�+ ρ =











�k−1
i=1 ai(εi + δi)+ ak(δk + ξεk) for t = 0

�k
i=1 ai(εi + δi) for t = 2

�s−1
i=1(ai +

1
2 )(εi + δi)+

1
2 (δs + ξεs)+

�k
i=s+1

1
2 (δi − εi) for t = 1

for t = 2.
The diagram

corresponds to osp(2k + 1|2k)-weight � = ε1.
The diagram

corresponds to the osp(4|4)-weight 
� = �+ ρ = (ε2 + δ2)+ 2(ε1 + δ1).

The empty diagram correspond to 
osp(0|0) = osp(1|0) = 0 ; the diagram > corre-
sponds to the weight 0 for osp(2|0) = C.

12.4.5
The definition of weight diagrams defines 

a one to one correspondence between domi-
nant weights for osp(2k + t|2k) and (some-
time signed) weight diagrams with n × symbols 
and one symbol > if t = 2 , satisfying certain 
conditions.

For t = 0 (respectively, t = 1 ) a diagram f� in 
has a sign if and only if f�(0) = ◦ (respectively, 
f�(0)  = ◦).

12.4.5  Arc Diagrams
We associate an arc diagram to each weight dia-
gram constructed according to the following 
steps: 

1. For 0 < i < j with f�(i) = × and f�(j) = ◦ , 
connect an arc from i to j if for all k with 
i < k < j and f�(k) , k already lies on an arc.

2. If there is at least one × at 0, order them 
from top to bottom. If t = 0, 1 then draw a 
single arc from the bottom × to the nearest 
position with ◦ . If t = 2 , draw two arcs ema-
nating from the bottom × to the two nearest 
positions with ◦ not already lying on an arc. 
Then for any t, for each × at 0 above the bot-
tom one (and working from bottom to top), 
draw two arcs from the × to the two nearest 
positions ◦ not already on an arc.

In what follows we refer to the arcs 
(either one or two) which lie on a 
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single × as just an arc. For example, consider 
the arc diagram associated with the weight 
� = 9ǫ1 + 8ǫ2 + 4ǫ3 + ǫ4 + 8δ1 + 7δ2 + 3δ3 for  
osp(11|10) ; in this case �+ ρ = (8+ 1/2)(ǫ1 + δ1)

+(7+ 1/2)(ǫ2 + δ2)+ (3+ 1/2)(ǫ3 + δ3)+ 1/2

(ǫ4 + δ4)+ 1/2(δ5 − ǫ5):

There are two maximal arcs in the above diagram: 
one which consists of the two arcs emanating 
from the top × at 0. If we remove this top arc we 
obtain the diagram corresponding to the weight 
�1 = 9ǫ1 + 8ǫ2 + 4ǫ3 + ǫ4 + 8δ1 + 7δ2 + 3δ3 for 
osp(9|8):

The other maximal arc is the one emanat-
ing from the × lying at 7. If we remove it, we 
obtain the diagram corresponding to the weigh 
�2 = 9ǫ1 + 4ǫ2 + ǫ3 + 8δ1 + 3δ2 of osp(9|8):

12.4.6  dex and Simple Modules
Given a dominant weight � , we define

where tail(�) denotes the number of symbols × 
at 0 when ℓ = 1 (we omit the definition for other 
cases since we do not need it). The we define

We will write L(�) for the simple module of 
highest weight � , where the parity of the highest 
weight vector is given by dex(�).

Theorem 12.19 ([27, Thm. 8.2) 

(i) Let � ∈ �0(osp(2k + t|2k))) and 
ν ∈ �0(osp(2k + t − 2|2k − 2) . Then 
[DSxL(�) : L(ν)]non �= 0 if and only if the arc 
diagram of ν can be obtained from the arc 
diagram of � by removing a maximal arc. If 
t  = 1 , then the sign of ν and � (if relevant) 

��� =

k
∑

i=1

ai − ℓ(k − tail(�))

dex� := ���mod 2.

need not agree, while if t = 1 then if ν has 
sign it must agree with the sign of �.

(ii) Let e denote the number of free positions 
(i.e.,  those with ◦ and not attached to any 
arc) to the left of the maximal arc removed to 
obtain ν . For t = 1, 2 we have: 

For t = 0 we have

Remark 12.20 For every m, n with m > 0 , the 
Lie superalgebra osp(2m|2n) admits an involu-
tion σ which comes from a reflection of its Kac–
Dynkin diagram. This involution is the same as 
the involution σx defined in Sect. 3.1.

In27 it is proven via a general argument 
that for a simple osp(2m|2n)-module L, we 
have DSx(Lσ ) ∼= DSxL , and (DSxL)σx ∼= DSxL , 
where σx is the corresponding involution for 
osp(2m− 2|2n− 2).

It would be interesting to know if these 
isomorphisms hold for all finite-dimensional 
osp(2m|2n)-modules.

We now give an example of the above theo-
rem for each case t = 0, 1, 2:

Example 12.21 For t = 1 , consider the weight 
� = 9ǫ1 + 8ǫ2 + 4ǫ3 + ǫ4 + 8δ1 + 7δ2 + 2δ3 . We 
have dex� = 0 , and we looked at the weight dia-
gram already in Sect. 12.4.6. By Theorem 12.19 
we have

Note for �1 we have e = 0 and �2 , e = 1 ; hence, 
the parities are as shown.

Example 12.22 For t = 0 consider the weight 
� = 6(δ1 + ǫ1)+ 2(δ2 + ǫ2)+ (δ3 − ǫ3) for 
osp(6|6) , which has dex� = 1 and arc diagram:

There are two maximal arcs. Removing the arc 
starting at position one gives the arc diagram 
associated with �

±
1 = 6(δ1 + ǫ1)+ 2(δ2 ± ǫ2) 

with e = 1:

[DSx(L(�)) : L(ν)] =







(1|0) e = 0;
(2|0) e > 0 and even;
(0|2) e odd.

[DSx(L(�)) : L(ν)] =

{

(1|0) e even;
(0|1) e odd.

DSxL(�) = L(�1)⊕�L(�2)
⊕2.
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Removing the maximal arc starting at posi-
tion 6 gives the arc diagrams associated with 
�
±
2 = 2(δ1 + ǫ1)+ (δ2 ± ǫ2) with e = 2:

Thus we have that

Example 12.23 In the t = 2 case consider the 
weight � = 8(ǫ1 + δ1)+ 5(ǫ2 + δ2)+ 8(ǫ3 + δ3) 
for osp(6|4) with dex� = 0 and arc diagram:

There are three maximal arcs. If we remove 
the one emanating from 0, we obtain the 
arc diagram associated with the weight 
�1 = 8(ǫ1 + δ1)+ 5(ǫ2 + δ2)+ 2(ǫ3 + δ3) with 
e = 0:

If we remove the maximal arc emanating from 
5 we obtain the arc diagram associated with the 
weight �2 = 8(ǫ1 + δ1)+ 2(ǫ2 + δ2) with e = 0:

Finally, if we remove the arc emanating from 8 
we obtain the arc diagram associated with the 
weight �2 = 5(ǫ1 + δ1)+ 2(ǫ2 + δ2) with e = 1:

It follows that we have

12.5  p(n) Case
We refer to17 for a full explanation of the p(n) 
case with examples.

We write �n for the Z-module spanned by 
ǫ1, . . . , ǫn . We fix the following simple roots for 
p(n):

DSxL(�) = �L(�+1 )⊕�L(�−1 )⊕ L(�+2 )⊕ L(�−2 ).

DSxL(�) = L(�1)⊕ L(�2)⊕�L(�3)
⊕2.

±ǫn − ǫn−1, ǫn−1 − ǫn−2, . . . , ǫ2 − ǫ1.

Write �+(p(n)) for the set of dominant integral 
weights with respect to the corresponding Borel 
subalgebra. Let

For � ∈ �p(n) we write

Then the dominance condition is precisely that 
a1 < · · · < an.

Given � ∈ �+(p(n)) we write L(�) for the irre-
ducible representation corresponding to � such 
that the highest weight vector is even.

12.5.1  Weight and Arc Diagrams
To � ∈ �+(p(n)) we define the associated weight 
diagram f� : Z → {◦, •} by f�(ai) = • and 
f�(n) = ◦ if n  = ai for all i.

Now we define an arc diagram associated with 
� according to the same approach as for gl(m|n) , 
except we work from left to right now, i.e., from 
negative to positive integers. More explicitly, 
we draw an arc connecting i and j if f�(i) = ◦ , 
f�(j) = • and all k with i < k < j already lie on an 
arc.

Theorem 12.24 ([17) Let � ∈ �+(p(n)) and 
µ ∈ �+(p(n− 1)) . Then �zL(µ) appears as a 
factor of DSxL(�) for some z if and only if the arc 
diagram of µ can be obtained from the arc diagram 
of � by removing a maximal arc. In this case, z is 
equal to the number of arcs to the right of the one 
removed. Further, DSxL(�) is multiplicity-free.

We can now give the proof of Theorem 8.1 for 
p(n).

Corollary 12.25 The map ds
1 : K−(p(n))

→ K−(p(n− 1))) is surjective.

Proof In particular DSxL is multiplicity-free for 
a simple g-module L, and the factors are obtained 
by removing maximal arcs. So let L′ be a simple 
gx-module, with arc diagram f ′ . Let f1 be the arc 
diagram obtained by adding a symbol • to the 
first free space to the right of all symbols • of f ′ . 
Then this new symbol will give a maximal arc in 
f1 . If we write L1 for the irreducible representa-
tion corresponding to f1 , then in K−(p(n− 1)) 
we will have a multiplicity-free sum

ρ = ǫ2 + 2ǫ3 + · · · + (n− 1)ǫn.

�+ ρ = a1ǫ + · · · + anǫn.

dsx[L1] = ±[L′] +
∑

L′′

±[L′′].
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By switching the parity of L1 , we can assume the 
sign in front of [L′] is positive. Now we can induct 
on the length of the furthest most right string of 
symbols • in the arc diagram, for which all L′′ s 
will have a longer length than L, giving surjectiv-
ity.  �

Example 12.26 (The following exam-
ple is taken from17) Let n = 9 , and 
consider the dominant weight 
� = ǫ3 + 3ǫ4 + 3ǫ5 + 6ǫ6 + 8ǫ7 + 8ǫ8 + 8ǫ9 . We 
draw the associated arc diagram below:

We see that there are 4 maximal arcs in the 
diagram, thus DSxL(�) has 4 simple fac-
tors �L(�1) , L(�2) , L(�3) , and L(�4) . They 
are listed with their arc diagrams below, 
along with the corresponding value of z: 
�1 = 2ǫ2 + 4ǫ3 + 4ǫ4 + 7ǫ5 + 9ǫ6 + 9ǫ7 + 9ǫ8  , 
z = 7:

�2 = 4ǫ3 + 4ǫ4 + 7ǫ5 + 9ǫ6 + 9ǫ7 + 9ǫ8 , z = 6:

�3 = ǫ3 + 3ǫ4 + 7ǫ5 + 9ǫ6 + 9ǫ7 + 9ǫ8 , z = 4:

�4 = ǫ3 + 3ǫ4 + 3ǫ5 + 6ǫ6 + 8ǫ7 + 8ǫ8 , z = 0:

12.6  Exceptional Cases
We now explain the case of the exceptional Lie 
superalgebras G(3), F(4),  or D(2|1; a). These all 
have defect one, and their atypical blocks have 
one of the following extension graphs:

Specifically, A∞
∞ will be the extension graph for 

certain blocks of F(4) and for blocks of D(2|1; a) 
when a ∈ Q . On the other hand D∞ will be the 
extension graph for all blocks of G(3), along with 
certain blocks of F(4) and D(2|1; a).

Remark 12.27 Note that it is clear that the above 
extension graphs are bipartite. Extension graphs 
are in fact always bipartite for basic classical Lie 
superalgebras, as was hinted in Remark 12.3 and 
is shown in26.

The following lemma is determined from the 
full relations on the extension graphs for each 
block, which are described in22,48.

Lemma 12.28 Let P(Li) be the projective inde-
composable cover of a simple, non-projective mod-
ule Li over an exceptional Lie superalgebra. Then 
the radical and socle filtrations of P(Li) coincide, 
with socle and cosocle isomorphic to L, and middle 
layer isomorphic to

where Adj(j) denotes the vertices adjacent to i in the 
extension graph containing Li.

Using the above lemma, we get the following.

Proposition 12.29 Let B be an atypical block for 
an exceptional Lie superalgebra g , and let x ∈ g1 
be non-zero such that [x, x] = 0 . Suppose that for 
some simple module L in B , Lx is pure. Then Lx is 
pure for all simples L in B . Further we have the fol-
lowing isomorphisms of gx-modules:

By Ext(B) we denote the extension graph of B.

Proof For any simple module Li in B we have a 
short exact sequence

where P(Li) denotes the projective cover of Li 
and M is its radical. By Lemma 2.7 and that 
P(Li)x = 0 , we find that Mx

∼= �Lix . On the other 
hand, by Lemma 12.28, we have the short exact 
sequence

⊕

j∈Adj(i)

Lj

Ext(B) = A∞
∞ : Lix

∼= �iL0x

Ext(B) = D∞ : L0x
∼= L1x, Lix

∼= �i−1(L0x)
⊕2 for i ≥ 2.

0 → M → P(Li) → Li → 0,



996

M. Gorelik et al.

1 3 J. Indian Inst. Sci.| VOL 102:3 | 961–1000 July 2022 | journal.iisc.ernet.in

Suppose that Lix is pure, so that Hom(Lix,Mx) = 0 . 
Then we obtain by Lemma 2.7 the short exact 
sequence (using that Mx

∼= �Lix):

Using connectedness of the extension graph, 
purity of L

j
x for any j easily follows, along with the 

formulas in the case of each type of block.  �

To complete the description of the DS func-
tor for exceptional Lie superalgebras, we need 
to compute the value of the DS functor on one 
module in every atypical block, and in par-
ticular check that it is pure so that Proposi-
tion 12.29 will apply.

Thus let g be one of the Lie superalgebras 
D(2|1; a), G(3), F(4). Let h be a Cartan subal-
gebra of g0 . We denote by W the Weyl group of 
g0 and by (−|−) the symmetric non-degenerate 
form on h∗ which is induced by a non-degener-
ate invariant form on g.

Let � be a base of g which contains an 
isotropic root β . Fix a non-zero x ∈ gβ . 
Set �x := (β⊥ ∩�) \ {β ,−β} . By Proposi-
tion 4.5, gx can be identified with a subalge-
bra of g generated by the root spaces gα with 
α ∈ �x and a Cartan subalgebra hx ⊂ h . If 
�x is not empty, then �x is the root system of 
the Lie superalgebra gx and one can choose 
�x in �x such that �+(�x) = �+ ∩�x . For 
g = D(2|1; a),G(3), F(4) one has gx = C, sl2, sl3 , 
respectively.

Lemma 12.30 Let L := L(�) be a finite-dimen-
sional module and (�|β) = 0 . Set L′ := Lgx (�|hx ) . 
One has

Proof It is easy to see that [DSx(L) : L′] = 1 . 
Set �′ := �|hx . By Sect. 6.5, DSx(L) is a typi-
cal module and each simple subquotient of 
DSx(L) is of the form Lgx (ν) with ν ∈ {�′, σ(�′)} , 
where σ = Id for g = G(3) , σ = −Id for 
D(2|1; a), and σ is the Dynkin diagram auto-
morphism of gx = sl3 in F(4)-case. This gives 
the first formula. For D(2|1; a), F(4) one has 

0 → Li → M →
⊕

j∈Adj(i)

Lj → 0

0 → �Lix →
⊕

j∈Adj(i)

L
j
x → �Lix → 0.

DSx(L) ∼=







L′ for G(3)
L′ for D(2|1; a), F(4) if L′ ∼= (L′)∗

L′ ⊕ (L′)∗ for D(2|1; a), F(4) if L′ �∼= (L′)∗.

Lgx (ν)
∗ ∼= Lgx (σ (ν)) ; giving the second formula. 

Finally in D(2|1; a), F(4) the Weyl group contains 
−Id , so L ∼= L∗ and thus DSx(L) ∼= DSx(L

∗) by 
Lemma 2.4, implying the third formula.  �

We fix a triangular decomposition of g0 and 
denote by �+

0  the corresponding set of posi-
tive roots. We consider all bases � for � which 
satisfy �+

0 ⊂ �+(�) . We say that an isotropic 
root β is of the first type if β lies in a base � with 
�+

0 ⊂ �+(�).
Take any base � as above and denote by ρ the 

corresponding Weyl vector. It is easy to see that 
a simple atypical module L = L(ν) satisfies the 
assumptions of Lemma 12.30 for some �′ and 
β ∈ �′ if and only if ν + ρ is orthogonal to an 
isotropic root of the first type.

Let B be an atypical block of g . We call the 
block containing the trivial module L(0) a princi-
pal block. Clearly, DSx(L(0)) is the trivial gx-mod-
ule, so Proposition 12.29 gives DSx(L) for each 
simple module L in B0).

Combining Proposition 12.29 and 
Lemma 12.30, we see that to compute DSx(L) 
for each simple L in B , it is enough to find 
L(ν) ∈ Irr(B) such that ν + ρ is orthogonal to an 
isotropic root of the first type. Below we will list 
such ν for each non-principal atypical block for 
D(2|1; a), F(4) and G(3).

12.6.1  Case D(2|1; a)
For g := D(2|1; a) one has gx = C . The atypical 
blocks were described in22, Thm. 3.1.1.

The extension graph of the princi-
pal block B0 is D∞ , so for a simple Li in 
B0 we have DSx(L

i) = C for i = 0, 1 and 
DSx(L

i) = �i−1(C)⊕2 for i > 1 (where C stands 
for the trivial even gx-module).

If a is irrational, the principal block is the only 

atypical block in F(g) . Consider the case when a 
is rational. Recall that h∗ has an orthogonal basis 
{ε1, ε2, ε3} with

One has

(ε1, ε1) = −
1+ a

2
, (ε2, ε2) =

1

2
, (ε3, ε3) =

a

2
.
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so we can assume that 0 < a < 1 and write a =
p
q , 

where p, q are relatively prime positive integers.
The atypical blocks are Bk for k ∈ N (the 

principal block is B0 ). Consider the block Bk 
with k > 0 . The extension graph of Bk is A∞

∞ . 
By22, Thm. 3.1.1, the block Bk contains a simple 
module L with the highest weight �k;0 satisfying 
(�k;0 + ρ|β) = 0 for

Taking x ∈ gβ we can identify gx with Ch for 
h := ε∗1 − ε∗2 (where ε∗1 , ε

∗
2 , ε

∗
3 is the dual basis in 

h ). By Lemma 12.30 we get

where Lgx (u) stands for the even one-dimen-
sional gx-module with h acting by k(p+ q) . By 
Proposition 12.29, DSx(L

i) ∼= �i(DSx(L)) for 
each Li ∈ Irr(Bk) (for k > 0).

12.6.2  Case G(3)
For g := G(3) the atypical blocks were described 
in Thm. 4.1.1 of22. The atypical blocks in F(g) are 
Bk for k ∈ N ; the extension graphs are D∞ . The 
block Bk contains a simple module with the high-
est weight �k;0 satisfying (�k;0 + ρ|β) = 0 for

Taking � := {δ − ε1, ε2 − δ, δ} and x ∈ gβ we can 
identify gx with sl2-triple corresponding to the 
root α = ε1 + 2ε2 . One has �k;0 = kα . Combin-
ing Lemma 12.30 and Proposition 12.29 we get

12.6.3  Case F(4)
For g := F(4) we have gx ∼= sl3 . The integral 
weight lattice is spanned by ε1 , ε2 , 

1
2 (ε1 + ε2 + ε3) 

and 1
2δ ; the parity is given by p( εi2 ) = 0 and 

p( δ2 ) = 1.
The atypical blocks are described in Thm. 

2.1 of48. These blocks are parametrized by the 
pairs (m1,m2) , where m1,m2 ∈ N , m1 ≥ m2 , and 
m1 −m2 is divisible by 3. We denote the corre-
sponding block by B(m1;m2).

The extension graph of B(i;i) is D∞ ; the block 
B(0;0) is principal. For i > 0 the block B(i;i) con-
tains a simple module L(�) with

D(2|1; 1) = osp(4|2),

D(2|1; a) ∼= D(2|1;−1− a) ∼= D(2|1; a−1)

β := ε1 + ε2 − ε3.

DSx(L) = Lgx (k)⊕ Lgx (−k),

β := −ε1 + δ.

DSx(L
0) ∼= DSx(L

1) ∼= Lsl2(2k),

DSx(L
i) = �i−1(Lsl2(2k))

⊕2
for i > 1.

One has (�+ ρ|β1) = 0 . Take x ∈ gβ1 and con-
sider the base

Then gx can be identified with sl3 corresponding 
to the set of simple roots {ε2 + ε3; ε1 − ε3} and 
Lemma 12.30 gives

where ω1,ω2 are the fundamental weights of sl3 . 
By Proposition 12.29 we get for the simple mod-
ule Lj in B(i;i):

Consider a block B(i1;i2) for i1  = i2 . The exten-
sion graph of this block is A∞

∞ and this block 
contains a simple module L := L(�′) with

In particular, (�′ + ρ|β2) = 0 for 
β2 :=

1
2 (−ε1 + ε2 + ε3 + δ) . Taking x ∈ gβ1 and

we identify gx with sl3 corresponding to the set 
of simple roots {ε2 − ε3; ε1 + ε3} . Combining 
Lemma 12.30 and Proposition 12.29 we get

for each Li in the block B(i1;i2).
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�+ ρ = (i + 1)(ε1 + ε2)− β1,

where β1 :=
1

2
(−ε1 + ε2 − ε3 + δ).

�1 := {β1;
1

2
(ε1 + ε2 − ε3 − δ); ε3; ε1 − ε2}.

DSx(L(�)) = Lsl3(iω1 + iω2),

DSx(L
0) ∼= DSx(L

1) ∼= Lsl3(iω1 + iω2),

DSx(L
j) ∼= �j−1(Lsl3(iω1 + iω2))

⊕2
for j > 1.

�
′ + ρ = i1ε1 + i2ε2 + (i1 − i2)ε3.

�2 := {β2; ε2 − ε3;−β1;
1

2
(ε1 − ε2 − ε3 + δ)}

DSx(L) = Lsl3(i1ω1 + i2ω2)⊕ Lsl3(i2ω1 + i1ω2),

DSx(L
i) ∼= �i(DSx(L))



998

M. Gorelik et al.

1 3 J. Indian Inst. Sci.| VOL 102:3 | 961–1000 July 2022 | journal.iisc.ernet.in

Acknowledgements
We would like to thank Kevin Coulembier, 
Inna Entova-Aizenbud, Thorsten Heidersdorf, 
Vladimir Hinich, Victor Kac, Victor Ostrik, 
Ivan Penkov, Julia Pevtsova, Shifra Reif, and Ilya 
Zakharevich for helpful comments and sugges-
tions. Needless to say, this paper would not have 
been possible without the original contribution 
of Michel Duflo. In addition, we thank the refer-
ees for very thorough reviews of an earlier version 
of this article.

Declarations

 Funding
M.G. was supported by ISF Grant 1957/21. C.H. 
was supported by ISF Grant 1221/17. V.S. was 
supported by NSF Grant 2001191. A.S. was sup-
ported by ISF Grant 711/18 and NSF-BSF Grant 
2019694.

 Conflict of interest
The authors have no conflicts of interest.

Received: 28 April 2022   Accepted: 29 July 2022
Published online: 17 May 2022

References
 1. Avramov L, Buchweitz RO (2000) Support varieties and 

cohomology over complete intersections. Invent Math 

142(2):285–318

 2. Boe B, Kujawa J, Nakano D (2010) Cohomology and 

support varieties for Lie superalgebras. Trans Am Math 

Soc 362(12):6551–6590

 3. Boe B, Kujawa J, Nakano D (2012) Complexity 

for modules over the classical Lie superalgebra $\

mathfrak{gl} (m|n)$. Compos Math 148(5):1561–1592

 4. Brundan J (2003) Kazhdan-Lusztig polynomials 

and character formulae for the Lie superalgebra $\

mathfrak{gl} (m|n)$. J Am Math Soc 1(6):185–231

 5. Brundan J, Stroppel C (2012) Highest weight categories 

arising from Khovanov’s diagram algebra IV: the gen-

eral linear supergroup. J Eur Math Soc 4(2):373–419

 6. Brundan J, Losev I, Webster B (2017) Tensor product 

categorifications and the super Kazhdan–Lusztig con-

jecture. Int Math Res Notices 2:6329–641

 7. Candu C, Creutzig T, Mitev V, Schomerus V (2010) 

Cohomological reduction of sigma models. J High 

Energy Phys 2010(5):1–39

 8. Cheng SJ (2017) Supercharacters of queer Lie superal-

gebras. J Math Phys 58:061701

 9. Comes J, Heidersdorf T (2017) Thick Ideals in Deligne’s 

category $ {Rep}(O_{\delta })$. J Algebra 480:237–265

 10. Costello K (2013) Notes on supersymmetric and holo-

morphic field theories in dimensions 2 and 4. Pure 

Appl Math Q 9(1):73–165

 11. Coulembier K, Serganova V (2017) Homological 

invariants in category $\cal{O} $ for the general linear 

superalgebra. Trans Am Math Soc 369:7961–7997

 12. Dan-Cohen E, Penkov I, Serganova V (2016) A Koszul 

category of representations of finitary Lie algebras. Adv 

Math 289:250–278

 13. Duflo M, Serganova V (2005) On associated variety for 

Lie superalgebras. arXiv:math/0507198

 14. Dixmier J (1963) Représentations irréductibles des 

algèbres de Lie nilpotentes (in French). An Acad Brasil 

Ci 35(4):91–519

 15. Ehrig M, Stroppel C (2017) On the category of finite-

dimensional representations of $OSP(r|2n)$, Part I, 

Representation theory—current trends and perspec-

tives. EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, pp 

109–170

 16. Entova-Aizenbud I, Serganova V (2018) Deligne cat-

egories and the periplectic Lie superalgebra, to appear 

in Moscow Math J. arXiv:1807.09478

 17. Entova-Aizenbud I, Serganova V (2019) Duflo–Ser-

ganova functor and superdimension formula for the 

periplectic Lie superalgebra. arXiv:1910.02294

 18. Entova-Aizenbud I, Serganova V (2019) Kac–Wakimoto 

conjecture for the periplectic Lie superalgebra. J Algebra 

Appl. arXiv:1905.04712

 19. Entova-Aizenbud I, Serganova V (2022) Jacobson–

Morozov Lemma for algebraic supergroups. Adv Math 

398:108240

 20. Entova-Aizenbud I, Hinich V, Serganova V (2020) 

Deligne categories and the limit of categories Rep 

$GL(m|n)$. IMRN 15:4602–4666

 21. Friedlander E, Parshall B (1986) Support varieties for 

restricted Lie algebras. Invent Math 86:553–562

 22. Germoni J (2000) Indecomposable representations of $\

mathfrak{osp} (3|2), D(2,1;\alpha )$ and $G(3)$. Boletin 

de la Academia Nacional de Ciencias 65:147–163

 23. Gorelik M (2004) The Kac construction of the centre of 

$\cal{U} (\gg )$ for Lie superalgebras. J Nonlinear Math 

Phys 11(3):325–349

 24. Gorelik M (2012) Weyl denominator identity for finite-

dimensional Lie superalgebras. In: Highlights in Lie alge-

braic methods, Progress in Math, vol 295. Birkhäuser/

Springer, New York, pp 167–188

 25. Gorelik M (2020) Depths and cores in the light of DS-

functors. arXiv:2010.05721

 26. Gorelik M (2020) Bipartite extension graphs and the 

Duflo–Serganova functor. arXiv:2010.12817

 27. Gorelik M, Heidersdorf T (2020) Semisimplicity of the 

$DS$ functor for the orthosymplectic Lie superalgebra. 

arXiv: 2010.14975

 28. Gorelik M, Heidersdorf T (2021) Gruson–Serganova 

character formulas and the Duflo–Serganova cohomol-

ogy functor. arXiv:2104.12634



999

The Duflo–Serganova Functor, Vingt Ans Après

1 3J. Indian Inst. Sci. | VOL 102:3 | 961–1000 July 2022 | journal.iisc.ernet.in

 29. Gorelik M, Serganova V (2018) Integrable modules over 

affine superalgebras $\hat{\mathfrak{sl} }(1|n)$. Com-

mun Math Phys 364:635–654

 30. Gorelik M, Sherman A (2022) On the Duflo–Serganova 

functor for the queer Lie superalgebra. arXiv:2204.05048

 31. Gorelik M, Serganova V, Sherman A (2022) On the 

reduced Grothendieck ring of a Lie superalgebra. 

arXiv:2206.07709

 32. Gruson C (2000) Sur la cohomologie des super algè-

bres de Lie étranges (in French). Transform Groups 

5(1):73–84

 33. Gruson C (2000) Sur l’idéal du cône autocommutant des 

super algèbres de Lie basiques classiques et étranges (in 

French). Ann Inst Fourier (Grenoble) 50(3):807–831

 34. Gruson C (2003) Cohomologie des modules de dimen-

sion finie sur la super algèbre de Lie $\mathfrak{osp} 

(3,2)$ (in French). J Algebra 259(2):581–598

 35. Gruson C, Serganova V (2010) Cohomology of gener-

alized supergrassmannians and character formulae for 

basic classical Lie superalgebras. Proc Lond Math Soc 

101(3):852–892

 36. Gruson C, Serganova V (2013) Bernstein-Gelfand-Gel-

fand reciprocity and indecomposable projective mod-

ules for classical algebraic supergroups. Mosc Math J 

13(2):281–313

 37. Heidersdorf T (2019) On supergroups and their semi-

simplified representation categories. Algebr Represent 

Theory 22(4)

 38. Heidersdorf T, Weissauer R (2021) Cohomological ten-

sor functor on representations of the general linear 

supergroup. Mem Am Math Soc 270(1320). (see also 

arXiv:1406.0321)

 39. Hoyt C (2010) Regular Kac-Moody superalgebras 

and integrable highest weight modules. J Algebra 

324(12):3308–3354

 40. Hoyt C, Reif S (2018) The Duflo-Serganova functor and 

Grothendieck rings of Lie superalgebras. Algebra Numb 

Theory 12(9):2167–2184

 41. Hoyt C, Penkov I, Serganova V (2019) Integrable $\

mathfrak{sl} (\infty )$-modules and Category ${\

cal{O} }$ for $\mathfrak{gl} (m|n)$. J Lond Math Soc 

99(2):403–427

 42. Im MS, Reif S, Serganova V (2019) Grothendieck rings of 

periplectic Lie superalgebras, to appear in Math Res Lett. 

arXiv:1906.01948

 43. Kac VG (1977) Lie superalgebras. Adv Math 26:8–96

 44. Kac VG (1984) Laplace operators of infinite-dimensional 

Lie algebras and theta functions. Proc Natl Acad Sci USA 

81(2):645–647

 45. Kac VG, Wakimoto M (1994) Integrable highest weight 

modules over affine superalgebras and number theory. 

Progress Math 123:415–456

 46. Kato S, Ochiai H (2001) The degrees of orbits of the mul-

tiplicity-free actions. Astérisque 273:139–158

 47. Knop F (2007) Invariant functions on symplectic repre-

sentations. J Algebra 313:223–251

 48. Martirosyan L (2014) The representation theory of the 

exceptional Lie superalgebras $F(4)$ and $G(3)$. J Alge-

bra 419:167–222

 49. Musson IM (2012) Lie superalgebras and enveloping 

algebras, Graduate Studies in Mathematics 131. Amer. 

Math. Soc, Providence

 50. Nishiyama K, Ochiai H, Taniguchi K (2001) Bernstein 

degree and associated cycles of Harish-Chandra mod-

ules–Hermitian symmetric case. Astérisque 273:13–80

 51. Penkov I, Hoyt C (2022) Classical Lie algebras at infinity, 

Springer Monographs in Math. Springer, Berlin

 52. Penkov I, Styrkas K (2011) Tensor representations of 

classical locally finite Lie algebras. In: Developments 

and trends in infinite-dimensional lie theory, progress in 

Math. vol 288. Birkhäuser, pp 127–150

 53. Reif S (2021) Grothendieck rings of queer Lie superalge-

bras. arXiv:2107.02219

 54. Serganova V (1996) Kazhdan–Lusztig polynomials and 

character formula for the Lie superalgebra $\mathfrak{gl} 

(m|n)$. Select Math (N.S.) 2(4):607–651

 55. Serganova V (2011) On the superdimension of an irre-

ducible representation of a basic classical Lie superal-

gebra. In: Supersymmetry in mathematics and physics, 

lecture notes in math., vol 2027.Springer, Heidelberg, pp 

253–273

 56. Sergeev A (1983) The centre of the enveloping algebra for 

Lie superalgebra $Q(n,\mathbb{C} )$. Lett Math Phys 

7(3):177–179

 57. Sergeev AN (1999) The invariant polynomials on simple 

Lie superalgebras. Repr Theory 3:250–280

 58. Sergeev AN, Veselov AP (2011) Grothendieck rings of 

basic classical Lie superalgebras. Ann Math 173:663–703

 59. Springer TA, Steinberg R (1970) Conjugacy classes. In: 

Seminar on algebraic groups and related finite groups, 

lecture notes in math., vol 131. Springer, Berlin

 60. Su Y, Zhang RB (2015) Character and dimension for-

mulae for queer Lie superalgebra. Commun Math Phys 

333:1465–1481

 61. Vogan D Jr (1991) Associated varieties and unipotent 

representations. In: Barker WH, Sally PJ (eds) Harmonic 

analysis on reductive groups, progress in math. vol 101. 

Birkhäuser, Boston

 62. Witten E (1988) Topological quantum field theory. Com-

mun Math Phys 117(3):353–386



1000

M. Gorelik et al.

1 3 J. Indian Inst. Sci.| VOL 102:3 | 961–1000 July 2022 | journal.iisc.ernet.in

Maria Gorelik obtained her Masters 
degree in mathematics from Moscow State 
University in 1994. She did her PhD at the 
Weizmann Institute of Science under the 
supervision of Anthony Joseph. She is a Pro-
fessor at the Weizmann Institute of Science.

Crystal Hoyt is a researcher at Bar-Ilan 
University. She received her Ph.D. from the 
University of California, Berkeley in 2007. 
She did postdoctoral work at the Weizmann 
Institute and the Technion, Israel, and was a 
JSPS Postdoctoral Fellow at Nara Women’s 

University, Japan. She held a Senior Lecturer position at 
Braude Academic College of Engineering. She is coauthor of 
the book “Classical Lie Algebras at Infinity”. 

Vera Serganova obtained her Masters 
degree in mathematics from Moscow State 
University in 1983 and PhD from St Peters-
burg University in 1988. She moved to the 

United States in 1990. After 3 months as a visiting fellow at 
Harvard, she worked as a Gibbs Instructor at Yale University. 
In 1992 she got a tenure track position at UC Berkeley where 
she works until present. Her main interests are in represen-
tation theory of Lie superalgebras and supergroups and infi-
nite dimensional algebras. She is a member of the American 
Academy of Arts and Sciences. 

Alexander Sherman obtained his PhD in 
2020 from UC Berkeley under the supervi-
sion of Vera Serganova, with a thesis focus-
ing on spherical and symmetric supervarie-
ties. He went on to do a postdoc at Ben 
Gurion University of the Negev, and is now 

continuing to research mathematics as a postdoc at the Uni-
versity of Sydney.


	The Duflo–Serganova Functor, Vingt Ans Après
	Abstract | 
	1 Introduction
	1.1 Notation
	1.1.1 List of Notations


	2 Definitions and Basic Properties
	2.1 The Associated Variety 
	2.2 The Lie Superalgebra 
	2.3 Reduced Grothendieck Groups and 
	2.4  as Restriction
	2.5 Supermultiplicity
	2.6 Properties of Associated Varieties

	3 The Universal Enveloping Algebra and Central Characters
	3.1 The Involutions  for Classical Lie Superalgebras

	4 Description of  for Classical Lie Superalgebras 
	4.1 Iso-sets and Defect
	4.2 Basic Classical Lie Superalgebras
	4.3 The Lie Superalgebras  and 
	4.3.1 
	4.3.2 

	4.4 Table of Defects
	4.5 Description and Realization of  in 

	5 Geometry of X for Classical Lie Superalgebras
	5.1 -Orbits on X
	5.2 The Stabilizer and Normalizer of x in 
	5.3 Dimension of the -Orbits on X

	6 Central Characters and Atypicality for Classical 
	6.1 The Weyl Group and Weyl Vector
	6.2 Central Characters
	6.3 Degree of Atypicality
	6.4 Proof of Theorem 6.3
	6.5 The Preimage of 

	7 Superdimensions and Supercharacters for Basic Classical Lie Superalgebras
	7.1 Superdimensions
	7.2 Supercharacters

	8 Reduced Grothendieck Rings and 
	8.1 Subcategories of  and the DS Functor
	8.1.1 Consider the case when  is non-exceptional
	8.1.2 Exceptional Algebras

	8.2 Properties of 
	8.2.1 The case with  from the list (1.1)

	8.3 The Ring 
	8.4 The Image of 
	8.5 The Kernel of 
	8.5.1 Notation


	9 The  Functor and -Modules
	9.1 The Lie Algebra 
	9.2 Modules Over 
	9.3 Representation Theory of 
	9.4 Grothendieck Groups and the -Modules  , 
	9.5 The  Functor on 
	9.6 The Socle Filtration

	10 Projectivity Criteria for Quasireductive Lie Superalgebras
	10.1 Projectivity and the Associated Variety
	10.2 Criteria for Type I Lie Superalgebras
	10.3 Rank Varieties

	11 Localization of the  Functor
	11.1 Localization
	11.2 A Special -Invariant Subset for Basic Classical Lie Superalgebras
	11.3 Application to Cohomology of Finite-Dimensional -Modules

	12 The  Functor on Simple Modules
	12.1 General Results
	12.2 An Overview of Arc Diagrams
	12.3  Case
	12.3.1 Weight and Arc Diagrams
	12.3.2  and Simple Modules

	12.4  Case
	12.4.1 The weight lattice of  is given by  , where we set  for  and  for 
	12.4.2 Highest Weights in the Principal Block
	12.4.3 Weight Diagrams
	12.4.4 Examples
	12.4.5 Arc Diagrams
	12.4.6  and Simple Modules

	12.5  Case
	12.5.1 Weight and Arc Diagrams

	12.6 Exceptional Cases
	12.6.1 Case D(2|1; a)
	12.6.2 Case G(3)
	12.6.3 Case F(4)


	Acknowledgements
	References




