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The Development of Bayesian Statistics

1 �Bayesian�Statistics�as a�Research�Area
Bayes’ theorem is a mathematical identity of 
conditional probability, and applied Bayesian 
inference dates back to Laplace in the late 1700s, 
so what could possibly be new about it? Why 
does Bayesian statistics remain a research topic, 
250 years later? We do not attempt any sort of 
historical treatment here; instead, we offer a 
rationalized reconstruction, laying out some of 
the challenges that have been recognized and 
addressed over the years in applying conditional 
probability to problems of statistical inference.

The point of this brief article is to present 
Bayesian statistics not as a static approach or 
philosophy but rather as an ever-expanding 
framework.

In this article, we will lay out several 
developments in Bayesian statistics, addressing 
challenges in mathematics and computation, 
model building, inference, and workflow: 
assessing, comparing, and extending models.

2 �Going�Beyond�Conjugate�Models�
with Uniform�Priors

Let’s take as a starting point the beta-binomial 
and normal-normal conjugate models with 
uniform priors, as used by Bayes, Gauss, and 
Laplace; see  Stigler8. There are several ways to 
generalize these ideas going forward, notably we 
can consider informative priors; other conjugate 
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Abstract | The incorporation of Bayesian inference into practical sta-
tistics has seen many changes over the past century, including hierar-
chical and nonparametric models, general computing tools that have 
allowed the routine use of nonconjugate distributions, and the incorpo-
ration of model checking and validation in an iterative process of data 
analysis. We discuss these and other technical advances along with par-
allel developments in philosophy, moving beyond traditional subjectivist 
and objectivist frameworks to ideas based on prediction and falsifica-
tion. Bayesian statistics is a flexible and powerful approach to applied 
statistics and an imperfect but valuable way of understanding statistics 
more generally.
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models such as gamma-Poisson; or nonlinear or 
nonconjugate models, in which case posterior 
expectations need to be expressed as integrals that 
cannot be expressed in closed form.

Going to informative priors with conjugate 
priors is an interesting example of generalization, 
in that it can be thought of as an entirely new idea 
(a new kind of prior) or it can be folded into the 
existing uniform-prior framework by considering 
the informative prior as the combination of an 
initially flat prior with earlier data. Even when 
maintaining the restriction to conjugacy, this 
setting is restrictive—in the binomial model, for 
example, it does not allow priors more variable 
than uniform or priors that correspond to 
non-integer numbers of observations. We shall 
encounter this sort of restriction again when 
considering hierarchical models.

3 �Going�beyond standard�families�
of distributions

Around the year 1900 an important strain of 
statistics was the categorization of parametric 
models of distributions, for example the Pearson 
 family6. It seems that there was this idea that 
something important could be learned from 
data by seeing what distribution the data came 
from. For example, if we think of the exponential 
distribution as representing waiting times for 
independent events, then departures from 
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the exponential could supply insight into the 
underlying process, with a gamma distribution 
with shape 2 representing a 2-hit process. Similar 
reasoning can accompany departures of a count 
distribution from Poisson. If a variable follows 
a normally distribution, this corresponds to an 
underlying model in which it is the sum of many 
small independent factors, and so on.

Sufficient exposure to real data makes it clear 
that no fixed collection of parametric families will 
capture the different sorts of distributions we see 
with real data. A flexible and useful generaliza-
tion takes us from fixed distributions to regres-
sion models. The family p(y|θ , x) is so much more 
flexible than p(y|θ) because the open-endedness 
of the predictor x allows for the marginal distribu-
tion, p(y|theta), to have an arbitrary mixture form. 
One can also use mixture distributions, which can 
be thought of as conditional models where some 
aspects of x are unobserved. Beyond these techni-
cal advances, it is a conceptual leap to go beyond 
the idea of “the distribution of the data” to the use 
of probability distributions to represent uncer-
tainty in predictions.

4 �Generalizing�from Sample�to Population
Bayesian inference is usually set up assuming 
data have been drawn independently from the 
population of interest. Realistically, though, a 
sample can be nonrepresentative. Adjustment 
can be made by taking the usual formula and 
conditioning on adjustment variables x to yield 
p(θ |y, x) ∝ p(θ |x)p(y|θ , x) , which can be thought 
of as a conditional version of Bayesian  inference5. 
Full Bayesian inference would take the form, 
p(θ |y, x) ∝ p(θ)p(x, y|θ) , which would require a 
probability model for x. Such an extension could 
be valuable, not just to close the theoretical loop 
but for two other reasons: first, the data x could 
be informative about the model for y; second, it 
opens the door to models with include predictors 
that are measures with error or not at all.

Consider, for example, the example of an 
education experiment where x include treatment 
assignment and pre-test score, the treatment is 
assigned in an imbalanced way (for example, with 
students who performed worse on the pre-test 
being more likely to get the new treatment and 
students who performed better on the pre-test 
being more likely to get the control), and y is the 
post-test score. Inference given x allows estimation 
of the treatment effect for a population of inter-
est; going further and modeling x could supply 
additional information to the extent that there are 
similarities between the two tests. This can be seen 

even more clearly in a time series setting where 
there are multiple measurements on each person. 
There’s no logical reason to consider a post-test as 
modeled and a pre-test as unmodeled.

5 �Empirical�Bayes�and Hierarchical�
Models

Informative priors have gone through a series 
of conceptual frameworks. The cleanest idea 
is of nested sampling, where the data model 
p(y|θ) represents draws from an urn, and 
the prior distribution p(θ) represents a set of 
“urns” corresponding to different parameter 
values θ . When no two-stage physical sampling 
mechanism is available, p(θ) can be taken to 
represent prior uncertainty in the parameter 
or, equivalently, a guess of the distribution of θ 
across the set of problems for which the model 
will be used. These can be taken as the “personal” 
or “behavioral” interpretations. Under either 
case, the specification of specific probability 
distribution given available information requires 
some elicitation, and this raises the possibility 
that the prior could be mistaken, which could 
happen for many reasons: the analyst’s personal 
knowledge could be mistaken (for example, by 
relying on published results that are subject to 
selection bias or some other unacknowledged 
errors), or the elicitation could have been done 
poorly, or the method could be applied to a 
different set of problems than was implied when 
setting up the prior reference set.

A logical next step is “empirical Bayes,” 
where the prior distribution is estimated from 
the same set of data as is used to fit the model. 
This won’t work with a single dataset but it will 
work with hierarchical structures with data from 
multiple “urns”. The approach of estimating a 
prior from data could be seen as an extension, 
going outside the canonical Bayesian framework 
in which the prior is specified unconditionally 
on the  data2, but it can be framed as Bayesian by 
considering the parameters of the prior as being 
“hyperparameters” that are estimated jointly with 
the parameters of the data  model4.

Beyond the possible conceptual advantages of 
remaining within a unified mathematical frame-
work, the step of setting up prior estimation as 
hierarchical Bayes has the practical advantage of 
propagating uncertainty in the hyperparameters 
and opening the door to more elaborate mod-
els where the parameters can vary in other ways, 
for example over time as well as across groups, as 
well as connecting to ideas from data collection 
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such as repeated measures, cluster sampling, and 
block designs.

6 �Exploratory�Data�Analysis
It’s good practice to look at your data, both to 
see clear visual patterns and to learn about the 
 unexpected9. Any discussion of the unexpected 
leads to thoughts about “the expected,” and this 
relates to statistical graphics and exploratory data 
analysis in two ways. First, a graph of data can be 
viewed as a comparison to a model, which might 
be explicit (as in a residual plot or quantile-
quantile plot) or implicit (as when we notice 
some unanticipated pattern in data). Second, the 
existence of a model can motivate graphs that are 
tailored to particular concerns about data fit.

None of this is particularly Bayesian, and, 
indeed, the statistical literature on data visuali-
zation and exploratory data analysis has mostly 
been disconnected from developments in statisti-
cal modeling. What happens when we fit a model 
to data, look at a graph of data and fitted model, 
recognize a problem, and use this new understand-
ing to reformulate the model? This hardly seems 
Bayesian; indeed it’s counter to formal Bayesian 
inference in that the model is changed in light of 
the data. But statistical graphics can be folded into 
the Bayesian formalism by viewing it as posterior 
predictive checking, comparing replicated data yrep 
to observed data y using the posterior predictive 
distribution p(yrep, θ |y)1, 7.

7 �Multiple�Models�and Statistical�
Workflow

Statistics is typically formulated in terms of 
estimating parameters, making predictions, or fitting 
models to data. When multiple models are fit, the goal 
will be set as choosing the best-fit model or averaging 
over models, which can be done using probabilistic 
Bayesian model averaging or using a predictive-based 
averaging procedure such as stacking or boosting.

But real-world statistical workflow often 
involves comparisons between fitted models. For 
example, we might obtain a simple estimate of 
a causal effect by comparing averages in treated 
and control groups, then modify this by adjust-
ing for pre-treatment predictors, then go further 
by modeling selection on unobservables, then 
further elaborate by including treatment interac-
tions. Along with these fits should come expla-
nations of how and why the estimates differ (for 
example, “The relation between post-test and 
pre-test was nonlinear, and the initial regression 
adjustment overcorrected for differences between 
treatment and control group”).

Again, this sort of reasoning can at first seem 
to be outside the Bayesian formalism, in which 
multiple models exist in a joint space with prior 
and posterior probabilities—but it can fit into an 
extended Bayesian framework involving inference 
over a network space in which each model is a  
node, and edges connect related models which  
can then be  compared3.

8 �Summary
Bayesian data analysis starts with a core of infer-
ence for a parameter vector with fixed prior 
and as such is conceptually straightforward—
although not trivial, given challenges of math-
ematical analysis and computation. Over the 
past few centuries, this core has been expanded 
in various ways, including the use of informative 
priors, regression and mixture models, extrapo-
lation to new data, estimating prior distributions 
from data, exploratory data analysis, and the 
workflow of model building, checking, improve-
ment, and comparison. Each of these steps can at 
first seem to be outside the Bayesian formalism, 
but the core has been expanded to allow infor-
mation synthesis and propagation of uncertainty 
at each step. In that way, Bayesian inference is 
not just a procedure for learning from data and 
models; it is also an expandable framework for 
the process of modeling, learning, and discovery. 
The references given in this article demonstrate 
just a few of these expansions; other important 
directions not discussed here include causal 
inference, nonparametric modeling, computa-
tion and approximation, and communication of 
uncertainty.

Publisher’s�Note
Springer Nature remains neutral with regard 
to jurisdictional claims in published maps and 
institutional affiliations.

Received: 14 January 2022   Accepted: 18 April 2022
Published online: 21 May 2022

References
 1. Box GEP (1980) Sampling and Bayes inference in 

scientific modelling and robustness. J R Stat Soc A 

143:383–430

 2. Efron B, Morris C (1972) Limiting the risk of Bayes and 

empirical Bayes estimators—Part II: The empirical Bayes 

case. J Am Stat Assoc 67:130–139

 3. Gelman A, Vehtari A, Simpson D, Margossian CC, Car-

penter B, Yao Y, Bürkner PC, Kennedy L, Gabry J, Modrák 



1134

A. Gelman

1 3 J. Indian Inst. Sci.| VOL 102:4 | 1131–1134 October 2022 | journal.iisc.ernet.in

M (2021) Bayesian workflow. https:// arxiv. org/ abs/ 2011. 

01808

 4. Lindley DV, Smith AFM (1972) Bayes estimates for the 

linear model. J R Stat Soc B 34:1–41

 5. Little RJA (1993) Post-stratification: a modeler’s perspec-

tive. J Am Stat Assoc 88:1001–1012

 6. Pearson K (1916) Mathematical contributions to the the-

ory of evolution, XIX: Second supplement to a memoir 

on skew variation. Philos Trans R Soc A 216:429–457

 7. Rubin DB (1984) Bayesianly justifiable and relevant fre-

quency calculations for the applied statistician. Ann Stat 

12:1151–1172

 8. Stigler SM (1986) The History of Statistics. Harvard Uni-

versity Press, Cambridge

 9. Tukey JW (1977) Exploratory data analysis. Addison-

Wesley, Reading

Andrew Gelman is the author of Bayesian Data Analysis 
and many other books and research articles on statistics and 
its applications.

https://arxiv.org/abs/2011.01808
https://arxiv.org/abs/2011.01808

	The Development of Bayesian Statistics
	Abstract | 
	1 Bayesian Statistics as a Research Area
	2 Going Beyond Conjugate Models with Uniform Priors
	3 Going beyond standard families of distributions
	4 Generalizing from Sample to Population
	5 Empirical Bayes and Hierarchical Models
	6 Exploratory Data Analysis
	7 Multiple Models and Statistical Workflow
	8 Summary
	References




