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Abstract

Air pollution, owing to gaseous pollutants, especially NOx, VOCs (toluene), acidic gas (H,S), and elemental mercury (Hg"),
and the resulting climate issues have become major concerns. Carbon-based catalysts play a key role in removing toxic gases
through selective catalytic reduction (SCR), oxidation, and adsorption processes. Catalyst selection has a crucial effect on
the final toxic gas removal performance of catalyst. Herein, strategies for modifying carbon-based catalysts through physical
or chemical treatment/activation, metal oxide doping, and heteroatom doping are systematically reviewed. In addition, the
effects of the carbonization temperature, pore structure, heteroatom dopants, and oxidizing agents on the surface area, pore
structure, and catalytic effects of carbon-based catalysts are analyzed and discussed. Finally, the further direction and need
for developing carbon-based catalysts for environmental remediation is prospected.

Highlights

Carbon-based catalysts for environmental remediation are discussed.
Modification strategies for carbon-based catalysts are provided in detail.
Various air pollutant-removal performances of the modified catalyst are briefed.
Challenges and future prospects of carbon catalysts are presented.
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Abbreviations SAC Sargassum-Based carbon
AC Activated catalyst SCR Selective catalytic reduction
C/SAC-2  Chemically activated catalyst SMC-900 S-doped mesoporous carbon
Co/SAC-2 Co-activated catalyst SSA Specific surface area

NOAC N- and O-doped AC WS Wheat straw

NHPC N-doped hierarchical porous carbon NG Nitrogen doped graphene
NPC N-doped porous carbon ORR Oxygen reductive reaction

NSDG-10 N- and S-doped nanoporous carbon

PBCy, P-doped biochar

PAN Polyacrylonitrile Introduction

P/SAC Physically activated catalyst

Although industrialization has improved the quality of life

of everyone, it has also created a huge problem of air pol-
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including selective catalytic reduction (SCR), oxidation,
adsorption, and photochemical treatments (Ahmadi et al.
2021; Li et al. 2023a, c; Zhou et al. 2019). The catalysts
used in such remediation methods typically have an active
site with a support/carrier to facilitate the mineralization of
toxic gases. Metal oxide-based catalysts are excellent com-
mercial candidates for removing toxic gases through SCR,
oxidation, and adsorption (Anthonysamy et al. 2018; Kim
et al. 2018; Murindababisha et al. 2021). However, their nar-
row operating window, toxicity, high cost, and thermal insta-
bility limit their applicability. Hence, such catalysts need to
be further improved.

Porous carbon catalysts have shown great potential for
environmental remediation due to their distinctive proper-
ties such as a high specific surface area, a distinct structure,
tunable porosity, and excellent chemical stability (Chiang
et al. 2001; Gao et al. 2019; Tian et al. 2001). These carbon
catalysts are commonly used in various applications, includ-
ing for removing pollutants from air and water, for degrad-
ing organic compounds, photocatalytic degradation activ-
ity, and for electrocatalysis (especially carbon-based single
atom catalyst) (Bai et al. 2023a, b; Guo et al. 2020; Gupta
and Saleh 2013; Jin et al. 2022b; Li et al. 2015b; Pan et al.
2022; Shi et al. 2021; Shi et al. 2022b, c; Shi et al. 2023;
Tang et al. 2022, 2023a, b, c; Wang et al. 2023b; Zhang
et al. 2017). Porous carbon materials can also be sintered as
active support materials. Several methods that use porous
carbon materials have been modified to improve the catalytic
performance of such materials (Anthonysamy et al. 2018).
A porous carbon-based catalyst with good adsorption prop-
erties and a good support/carrier is a crucial component of
catalytic systems for removing toxic gases (Cho et al. 2023).
However, the insufficient activity of carbon materials, inad-
equate waste recycling, and poor high-temperature stability
need to be effectively addressed before porous carbon-based
catalysts could be used for removing pollutants.

This review summarizes the progress made so far in
developing porous carbon material-based catalysts for
achieving clean environmental remediation. Although sev-
eral review papers have dealt with carbon-based materials
for applications of various catalytic reactions, it still lacks
the systematic study that delves into the utilization of car-
bon-based catalysts for the clean air environments. The cur-
rent review mainly focuses on the methods developed for
removing major toxic gases such as NO,, VOCs (such as
toluene), acidic gases (such as H,S), and elemental mercury
(Hg®). It also discusses the modification strategies for the
development of porous carbon with physical or chemical
treatments, metal oxide doping, and heteroatom doping, as
well as the effects of various physicochemical parameters
on reducing the release of the above mentioned toxic gases
(Fig. 1). Finally, future perspectives and possible directions
are presented.

@ Springer

Strategies for Fabricating Modified
Carbon-Based Catalysts for Removing Air
Pollutants

Carbon as a support material plays a vital role in heteroge-
neous catalysis because of its superior physical and chemi-
cal properties compared to those of other supports (Fidalgo
and Menéndez 2011). Support materials with a high surface
area, suitable chemical composition, and porous structure
can accommodate catalytic species/active phases to improve
the activity or selectivity of the corresponding catalyst,
which can also influence the dispersion and accessibility of
catalytic species on the surface of carbon support materials.
Catalysts can be further modified by physicochemical treat-
ments, using metal oxides, and through heteroatom (N, O,
and S/P, B) doping to improve their activity.

Modification of Carbon Support Materials
Physical or Chemical Treatment/Activation

The aim of activation, which involves physical or chemi-
cal treatment, is to improve the porosity, pore volume, and
surface area of carbon materials. Activation through physi-
cal treatments mainly involves thermal treatment (pyrolysis
or carbonization) at high temperatures through steam or
gas purging (using gases such as CO,, steam, and N,). The
oxidation of the carbon source material at high tempera-
tures (i.e., the conversion of surface carbon and hydrogen
into CO, and H,O, respectively) changes the surface area
and porosity in a controlled way (Li et al. 2015b; Panwar
and Pawar 2022). CO, activation forms micropores, while
steam activation increases their size. Chemical treatments
commonly employ chemical agents [such as KOH, NaOH,
H,PO,, H,SO,, and (NH,),SO,] in one- or two-step pro-
cesses. These treatments improve the surface area and pore
structure of the catalyst and increase its surface oxygen func-
tional moieties (Ku et al. 1994). In a one-step process, the
carbonization and activation of the precursor material can
be achieved simultaneously by using a chemical agent (Li
et al. 2015b). In contrast, the two-step process involves car-
bonization, followed by activation using chemical agents or
pretreatment of the precursor material with a chemical agent
before carbonization (Guo et al. 2007).

Metal Oxide Doping

Carbon materials can be modified by doping with metal
oxides (mostly transition metal oxides) that improves the
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Fig. 1 Schematic illustration
of the removal of toxic gases by
modified catalyst with different
strategies

of NOx, VOCs

H,S, Hg°

physical and/or chemical properties of carbon, which
further enhances their air-pollutant-removal efficiency
through SCR, catalytic oxidation, or adsorption (Table 2).

Heteroatom Doping

Heteroatom doping refers to the incorporation of noncarbon
elements (such as N, S/P, B, and O) into the carbon lattice.
Heteroatom doping introduces new chemical functionalities,
such as Lewis acid sites, which can interact with toxic gases
and facilitate their adsorption and/or reaction. In addition,
the heteroatoms can alter the electronic properties of the
carbon lattice and make it more polar and enhance its affin-
ity for polar gas molecules, which further helps control the
catalytic reaction or remove toxic gases such as NO,, H,S,
Hg", and toluene (Table 3). Heteroatom doping into porous
carbon not only serves as a highly efficient catalyst, but can
also be utilized as an ideal support for immobilizing metal
nanoparticles (Ma et al. 2016).

Heteroatom doped (S/N) carbon-based single-atom
catalyst leads to enhance the high stability, catalytic reac-
tion, and/or electrocatalysis activity (Bai et al. 2023b; Tang
et al. 2023b, c¢); wherein, it observed that benefiting from
the synergic action of metal active sites, N-doped gra-
phene nanosheets (FeCo-NG) exhibited higher catalytic

performance, i.e. ORR. Anchoring metal on S/N co-doped
graphene (Mn-S/N-C) improved the electrocatalytic perfor-
mance of the catalyst system (Bai et al. 2023b). The d-orbital
adjustment of the M-center (Mn) in M-N-S-C catalyst mate-
rial by S/N co-doping benefits to improve the electrocata-
lytic activity, which is most superior to previously reported
Mn-based electrocatalysts and commercial iridium dioxides.
The S-doping and presence of asymmetric structure contrib-
utes to the ortho-Mn;-N,-S,G site which is more active than
Mn_N,G, Mn-N;SG, para Mn-N,-S,G, and Mn-NS,G sites.
The ORR rate-limiting steps on the ortho-Mn,;-N,-S,C, have
been predicted as the transformation of OH* to H,O (Bai
et al. 2023b).

Applications of Carbon-Based Catalyst
for Clean Environmental Remediation

NO, Removal

In general, steam/gas purging increases the pore volume
(Wang et al. 2016) and develops internal pores by remov-
ing trapped volatile gases or particles during carbonization.
An increase in the steam-activation temperature enhances
the pore volume and specific surface area (SSA) of the
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catalyst. The SSAs of PCNF10-800, PCNF10-850, and
PCNF10-900—polyacrylonitrile (PAN)-based modified car-
bon materials—are 778, 876, and 1206 m*/g, respectively,
while their total pore volumes are 0.272, 0.315, and 0.562
cm’/g, respectively. Increased surface area and pore volume
improve the NO-removal efficiency (Wang et al. 2016). Use
of different carbonization and steam-activation temperatures
has an obvious impact on the NO conversion. The PCNF
catalyst carbonized and steam-activated at 800 °C exhibited
60% NO conversion performance, whereas the catalyst only
activated at 800 °C afforded 27.6% NO conversion at room
temperature (Table 1). Ku et al. (1994) analyzed the catalytic
activity of the coconut-shell-derived activated carbon (AC)
prepared via chemical activation using O,-NH;, H,SO,,
and (NH,),SO,/H,SO,. The carbon catalyst treated with
(NH,),SO,/H,SO, exhibited the highest surface area and
catalytic activity (Table 1). Li et al. (2015b) examined the
effects of physical activation, chemical activation, and co-
activation of the Sargassum-based activated carbon (SAC)
for low-temperature SCR of NO,. The Co/SAC-2 (co-acti-
vated) catalyst afforded the highest NO conversion achieved
so far (82.05%) at 125 °C, whereas C/SAC-2 (chemically
activated) could afford 75% NO conversion) and P/SAC
(physically activated) could afford only 45% NO conver-
sion. Hence, it is clear that chemical co-activation improves
the NO,-removal performance.

The porous nature of carbon allows for a better diffusion
of gaseous pollutants through the catalyst, which promotes
contact between the reactants and the catalyst. Furthermore,
carbon modified by metal oxide doping can be utilized for
NO, removal, mostly by low-temperature NH;-SCR. In
addition, these superior properties can enhance the toler-
ance to catalyst poisoning. Zhu et al. reported that doping
with 5 wt% of V,05 enhanced the NO,-removal efficiency
of the AC catalyst from 20 to~80% at 220 °C with a bet-
ter SO, poisoning tolerance, which could be owing to the
increased catalyst surface acidity because SO, oxidizes to
SO4_2. In addition, the pre-oxidation of the catalyst plays
a crucial role in improving the NO,-conversion perfor-
mance (to up to 98%) (Zhu et al. 1999). Wang et al. (2014)
described that doping activated semicoke (ASC) with 3 wt%
of V,05 improved the SCR catalytic performance (from 25%
to>90%) at 250 °C. Li et al. (2022b) demonstrated that the
Ce-modified V,05/AC afforded a higher NO, conversion
(i.e., 90%) than that achieved with the unmodified V,0s/
AC (< 80% NO, conversion) at 200 °C (Table 2). They also
discussed the effect of the regeneration temperature (470 °C)
and regeneration cycling on the improved SCR performance
(i.e.,>95%) of the Ce-V,05/AC catalyst. This result suggests
that cyclic regeneration is conducive to desulfurization and
SCR. Huang et al. (2007) reported that doping CNTs with
2.35 wt% of V,05 enhanced the NO, conversion from < 10
to>80% at 190 °C. However, V,05/CNTs prepared using
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CNTs with an outer diameter of 60—100 nm afforded better
NO, conversion (92%), perhaps owing to the dispersion of
vanadium over the CNT surface and presence of oxygenated
groups on the CNT surface with different diameters (during
HNO; treatment). Liu et al. (2021) reported a highly efficient
MnO,-doped biochar catalyst obtained by air oxidation for
the SCR of NO,, where pre-oxidation (400 °C) and post-
oxidation (250 °C) were performed before and after dop-
ing MnO, into the biochar. After pre-oxidation, the SSA
and total pore volume of the sample increased from 557
to 734 m?/g and from 0.353 to 0.440 cm’/g, respectively,
whereas post-oxidation increased the contents of Mn** and
chemisorbed oxygen, which enhanced the surface acidity
and redox capabilities of the catalyst. The catalyst exhibited
the highest NO, conversion, i.e., 97% at 150 °C, compared
with that achieved without air oxidation (61.8%). Jiang et al.
(2019) investigated the low-temperature NO,-removal per-
formance and high poisoning stability of a MnCe-doped
AC and a V,05 co-doped MnCe/AC catalyst. The dop-
ing of the AC with MnCe enhanced the NO, conversion
from 25 to>90% at 200 °C. Doping with 0.4 Ce/(Mn + Ce)
further increased the NO, conversion to>97%. The co-
doping of V,0s slightly improved the NO, conversion
to>98%, although it also broadened the reaction window
(100-300 °C). In addition, it prevents the active sites from
being blocked or poisoned. Figure 2 shows the mechanism of
improved SO, tolerance over the Mn-Ce(0.4)-V/AC catalyst.

Jia et al. (2022) reported MnO,-doped biochar and
the effect of the modification method for biochar on the
NO,-conversion performance at low temperatures. NaOH-
modified biochar doped with 25% MnO, resulted in the high-
est NO, conversion (95%) and a high tolerance to SO, and
H,0 at 225 °C, compared to those achieved with acid- and
CTAB-modified biochar. Highly dispersed MnO, is easily
formed on the NaOH-modified biochar surface, which is cru-
cial for improving the SCR performance. Li et al. (2023a)
demonstrated that doping coal-based AC with 10 wt% of
Fe,O; improved the SCR performance from 15 to 30%; how-
ever, 10 wt% of Fe,05/0OAC1.5-60-3 (OAC: oxidized AC
with APS oxygen functionalization) dramatically enhanced
NO conversion to>99% at 180 °C. In addition, the reaction
temperature window broadened (from 120 to 250 °C) with
superior NO, conversion (> 90%) and high tolerance to SO,
and H,O. This result suggests that the physical structure was
not the key factor in the APS oxygen functionalization strat-
egy, which affects the catalyst performance. Xue et al. (2008)
reported 100% NO, conversion of the CuO-impregnated
wet oxidized AC (treatment with H,0,) catalyst at 272 °C,
wherein the surface oxygen moieties and NO adsorption on
the AC played a crucial role in the production of carbon
active sites. Notably, it is not the rate-limiting step for the
catalytic reduction of NO over CuO by AC. Zhu et al. (2011)
reported that surface-modified AC fibers doped with 9 wt%
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of CeO, exhibited high NO, conversion (93.96%) at 180 °C;
the surface modification of the ACF by HNO; afforded a

§ better catalytic activity (i.e.>90%) over a broad temperature

8 S window (150-240 °C) compared to that achieved with the
§ E oxygen plasma treatment (< 85% NO, conversion).

E 5’ Heteroatom doping (especially that of N) into carbon can

be used to modify its physical and chemical properties to

- enhance the NO,-removal performance (Table 3). Li et al.

8 (2014) reported the effects of impregnation duration (5 h)

§ and calcination temperature (900 °C) on the N-content and

. § NH;-SCR activity of the modified AC. ACM-5-900 exhib-

g § ited 51.67% of NO conversion at 80 °C, while that shown

§ S a by undoped AC was 21.92%. However, they demonstrated

E § & that the form of N-containing functional groups { ACM-

_ 5-900 had highest proportion of N-6 (pyridinic-N) groups,

= i.e., 57.3%} influenced NO conversion rather than the total

% N-content. In addition to the impregnation duration, the

5 N-doped precursor also played a crucial role in improving

E the NO, conversion of the modified AC, as shown schemati-

E g cally in Fig. 3. The N-doped ACM-5 catalyst with a KHCO,

promoter exhibited a higher NO -conversion efficiency

(52%) than that the reported N-doped carbon catalysts (30%).

In contrast, undoped AC showed only 10% NO,-conversion

g 9 efficiency (Li et al. 2020d). N-6 was reported as an activated

§ if site for the catalytic direct decomposition of NO at 500 °C

5 £ in N-doped porous carbon; in the absence of N-doping, the

g = carbon catalyst showed only < 10% NO conversion (Wang

é é et al. 2018b). Yao et al. (2020) reported the N-doped semi-

coke-based catalyst, i.e., ASC-10U10Mn, with a high NO,

- . ]
5 g 2538 conversion of 94.5% at 275 °C, while the ASC showed 10%
=] = X . .
5 5 ;f = § i NO, conversion. They also demonstrated that N-groups with
S g . .
z 55 Cg §0 _ unpaired electrons (N-6, N-5 pyrrolic, and N-Q- quaternary)
< = 0 . . . . . .
§ bt S0 Rl play a crucial role in enhancing the adsorption and oxidation
= Q Eg el = of NO and NH; adsorption owing to abundant Lewis acid
% =% . . . c .
5 m S g EES8 sites. N-doping also improves the electron distribution of
3 » = A= .
é g CZES EE the catalyst and the electron mobility between the Mn and

oxygen moieties. Figure 4 shows the promotion mechanism
of N-doping over the MnO,/semicoke catalyst for low-tem-
perature SCR.

Lin et al. (2018) reported the effects of N-dopant pre-
cursors/additives on the SCR of NO, over the modified
AC, where the N-doped AC with the pyridine additive/
precursor exhibited a higher NO, conversion (66%) than
that achieved with other catalysts. Zhu et al. (2019) inves-
tigated the influencing mechanism of N-doping on NO,
adsorption and reduction over the AC using computational
studies. AC600 with a higher N-content exhibited the high-
est NO,-adsorption capacity (135.6 mg/g) and the lowest
NO-release percentage. Li et al. (2020c) reported N-doped
porous biochar with 82% NO, conversion at 260 °C, where
N-6 played a major role in boosting up the denitrification
activity. However, raw biomass reacts more readily with
N-containing additives, which facilitates carbon formation

1,3,5-Benzene tri-carboxylic Solvothermal method

Support material condition
acid

Table 2 (continued)

Catalyst
CuCo, s/C

@ Springer
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@ Manganese oxides () Cerium oxides (@ Vanadium oxides @ Ammonium sulfate

@ MnSO, U Ce,(SO,); @ Voso,

Inhlblted by SO2 S

{ 0, ) € NH;» F
.CNnoD

NO conversion (%)

Mn-Ce(0.4)/AC

( SO, } Inhjy,.

doping

@ Acid sites @ Chemisorbed oxygen

Less |nh|b|ted by

Ited 4,/’ -‘ SOZ € o )
2

induced

~z~“v eJ(NHg,)(NO)

NO conversion (%)

Mn-Ce(0.4)-V/AC

Fig.2 Mechanism of better SO, tolerance over Mn-Ce(0.4)-V/AC and effect of V-oxide doping over SCR of NO (Jiang et al. 2019)

with an ultrahigh N-content, resulting in the formation of
modified carbon with an N-content of 17.71 at. % (N-6: 9.09
at.%). This modified carbon catalyst demonstrated > 90% of
NO conversion at 200 °C, which is higher than that achieved
with non-N-doped carbon (<20%). Li et al. (2023b) inves-
tigated the synergistic effect of dual heteroatom dopants (N
and O) on the carbon-catalyzed NH; SCR of NO,. The N-
and O-doped AC (NOAC) was prepared through one-step
NH;-H,O activation of the AC, followed by HNO; oxidation.
The NOAC exhibited enhanced NO, conversion at 200 °C
(~90%) compared to that shown by the O-doped (~62%) or
N-doped AC (~73%); non-doped AC exhibited only 30% of
NO, conversion. In addition to N and O dopants, B and P
dopants in carbon catalysts also demonstrated effective NH;
SCR of NO, (Li et al. 2020e; Yang et al. 2021), wherein the
Lewis acid properties of the dopants can enhance the adsorp-
tion and activation of the reactants (NH; and O,).

H,S Removal

Physically and chemically activated carbon can also be
utilized for H,S removal, mainly by physi-/chemisorption.
Physisorption is a relatively weak, nonspecific adsorption
that involves intermolecular forces between the adsorbate
(H,S) and the adsorbent (with carbon as the solid surface).
Physisorption of H,S occurs when weak van der Waals
forces form between the sulfur atoms of H,S and the surface
atoms or molecules of the adsorbent material. Physisorption
is reversible and typically occurs at low temperatures and

high pressures. It does not involve any significant chemical
changes to the adsorbate or adsorbent. In contrast, chem-
isorption is a stronger, specific adsorption that involves the
formation of chemical bonds between the adsorbate and the
adsorbent. Chemisorption of H,S occurs when its sulfur
atom forms chemical bonds with the atoms or molecules
on the adsorbent surface. Chemisorption typically involves
breaking and forming of chemical bonds, leading to a more
stable adsorption state. Chemisorption is generally irrevers-
ible and can occur at lower pressures and higher tempera-
tures than physisorption. Cattle manure-based AC catalysts
are generally prepared through steam and CO, activation
at 850 °C to remove H,S. The AC4 catalyst prepared by
pyrolysis at 650 °C and activated with CO, exhibited the
highest SSA (408.36 m?/g) and H,S adsorption capacity
(868.45 mg/g) compared to those of AC (AC3) activated
with steam. These results indicated that pH and surface area,
rather than porosity, are crucial factors for the H,S adsorp-
tion (Tuerhong and Kuerban 2022). Su et al. also reported
an enhanced surface area with an increase in the pyroly-
sis temperature, wherein the coconut husk carbonized at
500 °C showed small SSA (0.18 m*/g), which dramatically
increased after activation at 650 °C (331.9 mz/g), 750 °C
(604.1 m?/g), and 850 °C (811.4 m%/g). However, the sur-
face area does not follow the same trend as that followed
by the H,S-adsorption capacity; the adsorption capacities
of the catalyst activated at 650, 750, and 850 °C are 29.7,
38.7, and 26.7 mg/g, respectively (Table 1). Therefore,
the H,S-adsorption capacity is not entirely dependent on

@ Springer
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the SSA; instead, it is related to the pore size distribution
(Su et al. 2021). Similarly, Bazan et al. suggested that the
SSA and micropore volume are crucial for enhancing the
H,S-adsorption capacity of pistachio nutshell-based cata-
lysts prepared via H,O/CO, activation. When the total and
micropore volumes of the pistachio nutshell-based catalyst
were 0.19 and 0.14 cm?/g, respectively, the H,S adsorption
was 7.1 mg/g, which further increased to 11.3 mg/g with
an increase in the total and micropore volume (0.64/0.54
cm’/g) of the catalyst. The SSA is another important factor
that affects adsorption under wet conditions (Bazan-Wozniak
et al. 2017). Nicolae et al. (2022) reported that the pore vol-
ume, rather than the SSA, affects the H,S-adsorption perfor-
mance. KOH activation of the GS_KOH_1 catalyst prepared
using guava seeds by hydrothermal carbonization has more
micropores, which increase the gas uptake (48.18 mmol/g;
in contrast, the GS_KOH_1 catalyst without KOH activation

demonstrated an uptake of only 1.52 mmol g~!), compared
to the carbon catalyst activated with H;PO, and K,CO; that
exhibited micropore volumes of 0.46 and 0.58 cm?/g with
H,S-adsorption capacities of 7.1 and 11.3 mg/g, respectively
(Bazan-Wozniak et al. 2017). Guo et al. also reported that
the chemical activation and micropore volume of oil palm
fiber-based AC enhanced the H,S-removal performance
(68/76 mg/g; KOH/H,SO, activation) compared to that
achieved by physical activation (48 mg/g, CO, activation)
(Table 1). H,SO,-activated carbon has a larger micropore
volume (0.28 cm3/g) than that of KOH-activated carbon
0.25 cm3/g) (Guo et al. 2007). Hence, it is clear that H,S
removal is affected by the combined effects of the SSA, pore
volume (total/micro), humidity, and functional moieties.
Doping porous carbon catalysts with metal oxides can
modify the physical and chemical properties of such cata-
lysts, which would in turn improve the adsorption capacity
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of these catalysts for H,S. AC was doped with various
metal oxides (such as ZnO, MgO, CuO, ZnFe,0,, MnO,,
V,05, CoO,, and CeO,) to improve the adsorption and
catalytic oxidation of H,S (Table 2). Yang et al. (2020b)
reported that MgO,, ,ZnO,, g-doped AC exhibited the high-
est H,S-adsorption capacity (113.4 mg/g among catalysts
with different molar ratios of Mg/(Mg+Zn) at 30 °C). The
H,S-removal performance was linked to MgO; its basicity
continuously increased the formation of HS™ for reactive
adsorption on active ZnO and for its catalytic oxidation to
elemental sulfur. Doping of AC with Zn and Cu oxides (i.e.,
Cug 5Zn, sO/AC) afforded 50 mg/g of H,S-adsorption capac-
ity at 30 °C, which is higher than that achieved with ZnO/
AC (33 mg/g). Doping with low amounts of Cu reduced the
diffusional limitations in the lattice of the active of the com-
posite phase and through the reacted overlayer—a known
issue for ZnO-based sorbents at low temperatures (Bal-
samo et al. 2016; de Falco et al. 2018). Yang et al. (2020a)
reported the use of 10 wt% ZnFe,0,-doped AC as a reus-
able adsorbent for H,S removal. It is regenerated at 500 °C
and exhibits a higher adsorption capacity (122.5 mg/g) at
room temperature than that achieved with AC (5.6 mg/g)
and ZnFe,0, (1.6 mg/g) alone. This result reveals the syn-
ergistic effect between ZnFe,O, and AC on the removal of
H,S. AC was doped with various metal oxides (such as Mn,
Cu, Fe, Ce, Co, and V) to observe the effects of metal oxide
doping on their H,S-adsorption capacities. The Mn oxide-
doped AC catalyst exhibited the highest H,S-adsorption
capacity (142 mg/g) among all the catalysts. This high
capacity remained unaffected even after four consecutive
adsorption—regeneration cycles. The SSA of all the metal
oxide-doped AC catalysts increased only slightly from 876
to 905 m?/g, which is an unusual behavior (Fang et al. 2013).
The copper-oxide-doped biochar exhibited an outstanding
H,S-adsorption capacity (1191.1 mg/g) at 125 °C, wherein
along with the metal oxide concentration, the microwave
steam activation and calcination temperature also played a
crucial role in enhancing the H,S-adsorption efficiency (Cui
et al. 2022). Zhang et al. (2016) reported an MCM-MgO-15
catalyst with the highest H,S-adsorption capacity (2.46 g/g)
along with a high total pore volume (1.74 cm®/g) (Table 2).
They prepared AC from resorcinol with carbonation at
800 °C, followed by the caustic impregnation of MgO. The
caustic impregnation and its loading determine the perfor-
mance of the catalyst; however, MgO performed better than
conventional salts did, such as Na,CO;, NaOH, K,CO;, and
KOH. Hence, the surface area was not a major factor affect-
ing the H,S-removal performance; instead, large pores and
high mesoporosity are essential for improved H,S removal.

Heteroatom doping is considered an efficient strategy for
promoting the catalytic process of carbon, such as desulfuri-
zation (Table 3). In particular, N-doped carbon can act as
a basic site, enhancing the electron-donating ability of the

@ Springer

carbon lattice, and further increasing its redox activity and
corrosion resistance. Liang et al. (2020) discussed N-doped
carbon with KOH activation via a calcination-induced
self-assembly route, which exhibited a high SSA of 1538
m?%/g and a H,S-adsorption capacity of 10.5 mmol/g (0 °C,
1 kPas). N-6 is responsible for the improved H,S-removal
performance of N-doped carbon. Kan et al. (2019) also
fabricated the N-doped ordered mesoporous carbon
(N-OMCST-700) with KOH activation; however, the hydro-
thermally carbonized catalyst exhibited superior perfor-
mance for the selective adsorption of H,S with an adsorption
capacity of up to 13.4 mmol/g (0 °C, 1 bar). KOH activa-
tion of the catalyst increased the SSA (1575 m?/g) and pore
volume (0.52 cm?®/g). Such catalysts also exhibited a high
N-content (4.46 wt%). DFT (Density Functional Theory)
studies demonstrated strong interactions between the N-6
and N-5 sites. In addition, the basic surface nitrogen sites
also participated in the dissociation of H,S to HS™ and H¥,
thus initiating the selective oxidation of H,S to elemental
sulfur. Wu et al. (2022) described N-doped AC with a high
N-content (17.2%) and a high meso-pore volume, which
exhibited a high breakthrough sulfur capacity (1872 mg/g)
for the catalytic oxidation of H,S under KOH activation.
K,COj; activation enhanced the SSA (from 187 to 2459
m?/g) and total pore volume (from 0.255 to 1.453 cm?/g)
of the N-doped hierarchical carbon compared with those of
N-doped and only K,COs-activated porous carbon. It also
exhibited excellent H,S removal with a sulfur capacity of
426.2 mg/g at room temperature compared to that shown by
undoped porous carbon (i.e. 12.5 m/g); N-5 and N-6 acted
as active sites for H,S adsorption (Chen et al. 2021). Chen
et al. (2020) also highlighted the N-doped porous carbon
(NPC) with a high SSA (1419 mZ/g) and total pore volume
(0.80 cm?/g); the H,S-adsorption capacity (205.06 mg/g) is
an obvious effect of K,COj; activation over N-doped carbon
prepared by hydrothermal carbonization. The hydrothermal
temperature and duration helped increase the proportions of
N-5 and N-6 in the porous carbon, which played a crucial
role in H,S removal. The proposed mechanism for desul-
furization using the NPC is detailed in Fig. 5. Chen et al.
(2022) developed the N-doped interconnected mesoporous
carbon with H,0,-assisted hydrothermal carbonization.
H,0, played a crucial role in H,S removal by forming a
cross-linked mesoporous structure (the mesoporous volume
increased from 0.01 to 0.31 cm*/g) and increasing the num-
bers of abundant N-5 and N-6 sites. H,0O,-activated N-doped
carbon exhibited excellent H,S-removal performance, with a
H,S-adsorption capacity of 181 mg/g, which was five times
higher than that for obtained without H,O, activation. Ma
et al. (2021) reported N-doped carbon with an enhanced
H,S-adsorption capacity of 54.8 mg/g, higher SSA (1189
m?/g), and larger total pore volume (0.433 cm?®/g) than
those achieved using porous carbon without N-doping and
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Fig.5 Schematic illustration showing H,S oxidation in the N-doped porous carbon (NPC) from waste PU (Chen et al. 2020)

activation. Among the N-containing groups, N-6 played a
crucial role in H,S removal. Lei et al. (2023) reported a 3D
cluster like the N-doped mesoporous carbon catalyst with a
high SSA (330.5 m%/g), hierarchical nanopores, and a large
N-content (8.6%; where % N-6, N-5>N-Q, i.e.,> 60). Such
catalysts exhibited 100% H,S conversion at 150 °C, with
94% sulfur selectivity. In addition, Ahmadi et al. (2021)
highlighted that N-doping along with S-co-doping in car-
bon resulted in a high SSA (2579 m?/g), large total pore
volume (1.5 cm?/g), and very high H,S-adsorption capac-
ity (17.19 mmol/g at 100 kPas). DFT studies confirmed the
prominent role of N-5 in enhancing the adsorption energy
of the molecules over the adsorbents. The S atom, as a codo-
pant around the N-5 atom, controls the adsorption of H,S
molecules with a lower adsorption energy, indicating that
physisorption is more favorable than chemisorption. S co-
doping (defects) plays a complementary role in controlling
the adsorption mechanism of gas molecules. In addition, a
higher S/N ratio results in better regeneration cycles. Thus,
they established the source of novel electronic structures
and, thereby, that of N-S-defected localities, both theoreti-
cally and experimentally.

Hg® Removal

Hg® removal can be achieved through both physi-/chem-
isorption, which needs high surface area and porosity to
produce more active sites. To improve the Hg%-adsorption
capacity, Liu et al. (2019) prepared seaweed-based novel
ACs and demonstrated high Hg’-adsorption capacity
(2382.6 pg/g for SAC-800 and 2909.6 pg/g for EAC-800

catalyst) (Table 1). They demonstrated that an increase in the
carbonization temperature enhances the SSA (from 399.57
to 524.57 m%g in the SAC and from 339.04 to 565.82 m%g
in the EAC), with improved Hg’-removal efficiency (from
40.4 to 88.9% in the SAC and from 34.25 to 90.7% in the
EAC). The Hg-removal process involves both physisorp-
tion and chemisorption with suitable SSAs, pore struc-
tures, and functional moieties on the modified AC. Yang
et al. (2018) also reported that the seaweed-based modified
AC afforded an enhanced Hg-removal efficiency (91%).
They revealed that the enhanced SSA (from 1.95 to 26.20
m?/g) and Hg-removal performance (from 12 to 29.07%)
were in line with those achieved at the increased carboni-
zation temperature. Further chemical activation (using
NH,Br) decreased the surface area of the catalyst; how-
ever, it enhanced the Hg"-removal efficiency, which is an
obvious effect of the functional moieties (C—Br and C=0)
serving as chemisorption sites. Li et al. developed a clean
and modified method (a combination of microwave steam
activation and H,O, impregnation) to develop a porous car-
bon catalyst. The results suggest that microwave activation
and H,0, modification enhance the SSA (from to 154.92
to 433.03 m%/g in RSW10 and 108.80 to 273.91 m%/g in
WSW10) and improve the pore structure (increase the pore
volume from 0.217 to 0.2877 cm®/g in WSW10 and from
0.186 to 0.1860 cm>®/g in RSW10) of the porous carbon
(Li et al. 2021), which further facilitate the Hgo-removal
performance of the modified catalyst (i.e. 1293.19 pg/g for
WSW10 and 1485.61 ug/g for RSW10) (see Table 1). Dou
et al. described that H,O, modification with UV improved
the SSA of the modified AC (1408.61 cm3/g), which further
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enhanced its Hgo-removal efficiency (from 61.71 to 90.04%).
The maximum Hg’-adsorption capacity was 3636.43 ug/g.
H,0, modification has a slight destructive effect on the
pore structure; however, the significant increase in func-
tional moieties (e.g.,—OH, C-0, and C=0) along with the
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Fig.6 Schematic diagram of a modification of AC using UV/H,0,
advanced oxidation process (AOP) and b Hg® adsorption mechanism
on the modified AC (Dou et al. 2023)

chemisorbed oxygen (O*) enhances the mercury-removal
performance of the catalyst. A schematic of the modifica-
tion mechanism of AC using the UV/H,0, advanced oxida-
tion process (AOP) and the Hg%-adsorption mechanism on
the modified AC is shown in Fig. 6 (Dou et al. 2023). Liu
et al. (2023b) reported a high Hg%-adsorption capacity of
2052.51 pg/g for corn-stalk-based porous carbon developed
by UV/H,0, clean modification. Hence, it can be suggested
that the SSA, pore volume, and functional moieties improve
the Hg-removal performance of porous carbon catalysts.
They also demonstrated that 3% of H,0, is the critical con-
centration to achieve a high Hg’-removal performance.
Wang et al. (2023a) reported a porous carbon cata-
lyst prepared by secondary carbonation and activation
with K,COj;, which showed SSA values as high as 2925
m?/g and Hg%adsorption capacities as high as 571 mg/g.
In addition, the Hg%-removal performance remained sta-
ble for five consecutive adsorption—desorption cycles.
A micromesoporous structure with fewer macropores
greatly improves the Hg%-adsorption capacity. The pos-
sible reaction pathways for Hg’ adsorption onto the
layered porous carbon (LPC) are shown in Fig. 7. Song
et al. (2020) demonstrated the effects of carbonization
temperature and KOH activation on the Hg%removal
performance of anthracite-coal-based AC. They reported
that the SSA increased (from 2.60 to 527.43 m?/g) with
increasing carbonization temperature and KOH activa-
tion, resulting in a catalyst with a better pore structure
that afforded better Hg’-removal performance. Li et al.
(2015a) reported different solid-waste-based porous car-
bons developed using microwave and steam activation,
which exhibited improved SSA, pore volume (especially
micro), and Hgo-removal efficiency (30-70%). Further
impregnation with NH,CI decreased the pore structure
and surface area, although an enhanced Hg-adsorption
capacity of 11,400 g/g was observed (Table 1). Wang et al.
(2018a) reported HCl-modified porous carbon obtained

. chemisorption oxygen

®

Fig.7 Possible reaction pathways of Hg® adsorption on layered porous carbon (LPC) (Wang et al. 2023a)
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from various biochar sources with improved Hg? adsorp-
tion. The Hg’-adsorption efficiency increased from 8.2 to
100% along with a better SSA (from 29.9 to 110.1 m?/g);
the macropores played a crucial role in this phenomenon.

Doping of porous carbon with metal oxides modifies its
physicochemical properties, which can then be utilized to
enhance the Hg removal through adsorption and catalytic
oxidation (Table 2). Gao et al. (2023) reported the effects of
doping with metal and bimetal oxides on the Hg’-removal
efficiency of AC in a broad operating window (80-360 °C).
Bimetal-oxide-doped AC (i.e., 6% Co, sCr, s/AC) showed
the optimal Hg-removal performance (88.3%) at 240 °C;
in contrast, the use of undoped AC afforded only 40% H,S
removal. This result shows the excellent tolerance of the
doped catalyst to SO, and H,O, which contributed to the
redox cycle and synergistic effect between CrO, and CoO,.
Consequently, a large amount of sufficiently active Co>*
species and surface-active oxygen were produced. In addi-
tion, the formation of a CoCrO, spinel was observed, which
entailed the presence of abundant lattice defects, increment
in the SSA and the number of active sites with a strong redox
capacity, and a higher dispersion of active phases. Addi-
tion of CoO, to CeO,-doped biomass AC (15% Co, 4,Mn,, ¢/
BAC) resulted in excellent Hg"-removal efficiency (96.8%)
at 230 °C through adsorption and catalytic oxidation,
owing to the better texture, lower crystallinity, and strong
redox ability of this AC. Moreover, the synergistic effect
between CoO, and CeO, generated more Ce** and Co’",
inducing a large number of anionic defects and producing
more active oxygen with oxygen vacancies (Gao et al. 2018).
Co0,-modified MnO,-doped biomass AC afforded 98.5%
H,S-removal efficiency at 240 °C, which was higher than
that achieved with undoped biomass AC (60%).

Addition of 15% CoO, to Mn-doped biomass AC contrib-
uted to the synergistic effect, which increased the SSA and
Mn** content, enhanced the redox ability and the strength,
and restrained the MnO, crystallization, which might be
responsible for the enhanced catalytic performance and
SO, resistance of this catalyst (Gao et al. 2019). Yang et al.
(2019) reported the effect of microwave steam treatment and
iron-copper oxide doping on the wheat straw (WS)-derived
carbon to improve the Hg-removal efficiency. The micro-
wave steam treatment improved the Hg®-removal efficiency
of WS-derived carbon from 20 to 70% and further enhanced
it to 90.58% (2276.45 ug/g of Hg-adsorption capacity) in
CuFe0.3/WSWU10(500) at 130 °C owing to Cu-Fe oxide
doping. The Cu-Fe active phases, chemisorbed oxygen,
and lattice oxygen play crucial roles in the removal of Hg’.
Chemisorption is the key rate-controlling step. Zhang et al.
(2021) discussed the promotional effect of FeO, and the
doping effect of MnO, on a biochar-based composite pre-
pared by ball milling for Hg” removal. The MnFe/char-BM4
catalyst exhibited > 95% Hg’-removal efficiency at 100 °C

through the physical adsorption and catalytic oxidation
mechanism.

Heteroatom doping (with N, S, and P) is an effective
method for modifying carbon sorbents and improving their
chemical reactivity for Hg® removal (Table 3). Zhou et al.
(2022a) discussed the P-doped biochar (PBCy,,) without
any additional modification, which exhibited a high SSA
(1038.34 m?%g) and large Hg" adsorption (15,047.64 pug/g);
in contrast, undoped BC (BC900) showed an SSA of 394.86
m?/g and a Hg%-adsorption capacity of 36.58 pg/g. In addi-
tion, more organic functional groups were generated on the
PBC surface, such as C-O=P and C=0. With these groups,
the O-C=0 group can serve as an electron acceptor, accel-
erating the electron-migration process for Hg® oxidization.
Zhou et al. (2022b) reported S-doped mesoporous carbon
(SMC-900), which exhibited a high SSA (993 m%g) and
excellent Hg-removal performance (>97% at 50—150 °C)
and discussed the effects of the precursor ratio and carboni-
zation on the mercury-removal performance. The sulfur
was in the form of thiophene (C-S-C) and oxidized sulfur
(C-SO,-C), and the S-content was 10.29%. However, Vakili
et al. (2021) highlighted that the N- and S-doped nanopo-
rous carbon (NSDG-10) exhibited the highest Hg’-removal
performance (94.5%), whereas that for unmodified or non-
doped carbon was 71%. These results indicate that high SSA
and pore volume did not contribute significantly to high mer-
cury adsorption because the N- and S-doped carbon showed
better Hg® removal despite having a lower SSA and a smaller
pore volume.

VOC (Toluene) Removal

Physically and chemically activated carbon can also be used
for removing toluene. Mohammed et al. (2015) reported a
toluene-adsorption capacity of 238.10 mg/g for coconut-
shell-based AC with KOH activation. Further, the ammo-
nia-treated AC (PHAC-AM) catalyst exhibited a decreased
surface area (from 478 to 361.8 m?/g) and a reduced total
pore volume (from 0.61 to 0.16 cm3/g). However, the tolu-
ene-adsorption capacity enhanced by 10%, i.e., 357.14 mg/g.
Ammonia treatment increases the number of basic surface
functional groups, which further improves the affinity of
AC for VOCs. Li et al. (2020a) reported a sodium lignin
sulfonate-based carbon catalyst with very high toluene
adsorption (>2300 mg/g); the porous carbon was activated
by metal salts. Among them, ZnCl,-activated porous carbon
exhibited the highest SSA (1524 m?/g) and mesopore vol-
ume (1092 mz/g), which facilitated VOC adsorption. In addi-
tion, many functional groups play crucial roles in enhanc-
ing the toluene adsorption. Highly porous carbon with a
toluene-adsorption capacity of 1587 mg/g and an extremely
high surface area (4293 m?/g) was developed using waste
soybean residues with pre-carbonization, KOH activation,
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and pyrolysis. The activation temperature and KOH dos-
age affected the SSA and total pore volume (mesopores and
micropores). Porous carbon exposes the aromatic sites (e.g.,
phenol) for n—x interaction with toluene. Presence of metal-
lic K in porous carbon causes extensive intercalation at the
surface of graphitic microcrystals, which exposes the micro-
scale space. The exposed aromatic T system may interact
with toluene molecules through strong n—r stacking (Li et al.
2022a). Overall, the SSA, pore volume, and functional moie-
ties play key roles in enhancing the toluene-removal rate.
Metal-doped porous carbon can also be utilized to remove
toluene by modifying its physicochemical properties (Lei
et al. 2020; Li et al. 2020b). The CuO-doped AC exhib-
ited a toluene-adsorption capacity of 701.8 mg/g at 20 °C.
CuO doping mainly increases the pore size, which facili-
tates the migration and diffusion of toluene and improves its
adsorption (Lei et al. 2020). Li et al. (2020b) reported the
CuCo, 5/C catalyst with better performance, i.e., 90% tolu-
ene removal at 243 °C, owing to a large SSA, more chem-
isorbed active oxygen species, and a high ratio of Co?*/Co®*.
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Toluene removal can also be achieved by using heter-
oatom-doped modified porous carbon. In particular, the
NPC enhanced the surface charge distribution and activity
of carbon, which further enhanced the adsorption perfor-
mance for toluene removal (Table 3). Jin et al. (2022a)
developed N-doped porous carbon (NPC-1) with an ultra-
high SSA (3235 m?/g) and total pore volume (2 cm¥/g),
exhibiting a higher adsorption capacity (691.1 mg/g) com-
pared to those reported previously (Fig. 8), which origi-
nated from the use of an alkali metal activator (KOH) and
an N-dopant (urea). NPC-1 showed a three-dimensional
pore structure. Micropore filling is the main mechanism of
toluene adsorption. DFT analysis revealed that N-6, as an
active site, promoted the adsorption capacity through an
interaction mechanism. Cheng et al. (2023) also reported
the effect of N-doping and activators on improving the
pore structure, increasing the SSA (1000 m?/g), and
enhancing the toluene-adsorption capacity (223 mg/g),
which maintained 80% adsorption capacity under humid
conditions. Besides, a DFT study revealed the dependency
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Fig.8 Toluene-adsorption property of NPCs (N-doped porous carbon): a Breakthrough curves for toluene, b adsorption isotherms, ¢ compari-
son of adsorption capacity of similar carbon materials, and d cyclic performance of NPCs (Jin et al. 2022a)
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of N-containing functional groups over the n—x disper-
sion and hydrophobic and electrostatic interactions,
which promote toluene adsorption. Figure 9 shows the
selective adsorption mechanism of toluene on the amino-
functionalized modified carbon under humid conditions.
Xu et al. (2021) reported the N-doped carbon with good
performance for the adsorption of toluene (720 mg/g)
and high SSA (2060 m?/g). A DFT study revealed that a
large number of amino functional groups (3.6%) exhibited
highly strong affinity for toluene than that for N-6, N-5,
and so on. Biomass-derived N-doped hierarchical porous
carbon (NHPC) exhibited a large SSA (2266 m*/g), a high
pore volume (1.14 cm?®/g), and a particularly high toluene
adsorption (5.94 mmol/g), while corncob-derived N-doped
carbon with a higher total cellulose content and lower ash
content resulted in a better pore activation effect (Huang
et al. 2023). Du et al. (2020) reported an N-O co-doped
hierarchical carbon material with a high SSA (1650 m?/g)
and toluene-adsorption capacity (627 mg/g), where the
hierarchical porosity and high SSA were the key factors
for physical adsorption. N-containing functional moieties
significantly enhanced the chemical adsorption, while N-5
exhibited the highest affinity for toluene molecules. Shi
et al. (2022a) reported N-O co-doped porous carbon with
a high SSA (2784.53 m?%/g), a hierarchical pore structure,
high N (16.16%) and O (15.75%) contents, and excellent
toluene adsorption (813.6 mg/g). DFT studies revealed
that the interaction among the toluene molecules can
be improved by N-O functional groups and multilayer
adsorption can be achieved, wherein the optimal adsorp-
tion pore size of the N-O co-doped porous carbon was
3-7 times the dynamic diameter of toluene. These optimal
adsorption pores provide pathways and adsorption sites
that allow the highest adsorption capacity of toluene.

Fig.9 Selective adsorption
mechanism of toluene on
amino-functionalized modified
biochar under humid conditions
(Cheng et al. 2023)
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Conclusions

Different strategies have been developed to improve the air-
pollutant-removal performance of carbon-based catalysts,
such as physical or chemical treatment/activation, metal
oxide doping, and heteroatom doping. In physical treat-
ment, CO, and steam played a major role in controlling the
surface properties (such as SSA, pore size distribution, and
pore volume), which further enhanced the removal of toxic
gases/pollutants (NO,, H,S, Hgo, and toluene). Chemical
treatment/activation (with acid or alkaline salts) provides
more functional moieties with an improved pore structure
and SSA, which enhance the adsorption of porous carbon
(particularly, the adsorption capacity of H,S, Hg’, and tolu-
ene). In addition, carbonization and calcination temperatures
affect the pore structure of carbon-based catalysts, which is
important for reactive gas adsorption during catalysis.
Metal oxide doping enhances the surface acidity and
redox ability of the catalyst, which in turn enhances the
SCR of NO, and poisoning tolerance. Moreover, pre- and/or
post-oxidation of the catalyst helps in improving the surface
and structural properties of carbon. Co-doping with metal
oxides increases the catalytic performance by broadening
the reaction window and resisting poisoning. In addition,
metal oxide doping with acid/base modification (i.e., oxy-
gen functionalization/surface modification) provides high
SO,/H,0 tolerance to catalyst poisoning and enhances the
catalytic performance. The basicity and synergistic effect
of the carbon catalyst also help improve the H,S-adsorption
capacity, wherein the calcination temperature and activation
play a crucial role. For Hg® adsorption, metal oxide doping
provides more active oxygen and vacancies, better redox
strength, and a synergistic effect, which are beneficial for
pollutant adsorption and oxidation. The enlarged pore size
with increased SSA and active chemisorbed oxygen due to
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metal oxide doping enhance the toluene-adsorption capacity
of the carbon catalyst.

Heteroatom doped (N/S) carbon-based single-atom car-
bon leads to enhance the high stability, catalytic reaction,
and/or electrocatalysis activity. Regulating the electronic
structure of N-doped carbon metal catalyst at atomic level
effectively enhances the catalytic activity. Heteroatom dop-
ing (with N, O, S/P, and B) plays a critical role in enhancing
the catalytic properties of porous carbon. In particular, the
N-content with unpaired electrons is crucial for enhancing
the adsorption and oxidation of NO and NH; because of
the abundant Lewis acid sites that promote the SCR of NO.
In addition, the N-containing functional groups (especially
N-6) play a significant role in promoting the SCR perfor-
mance of the carbon catalyst. The synergistic effect of dual
heteroatom dopants (N and O) enhances the carbon-cata-
lyzed NH; SCR of NO,. The basic surface nitrogen sites
(N-6 and N-5) also participate in the dissociation of H,S to
HS™ and H*, thus initiating the selective oxidation of H,S to
elemental sulfur. N and S co-doping along with H,O, hydro-
thermal treatment improve the SSA and pore volume, which
have a significant effect on the H,S-adsorption capacity of
the carbon catalyst with a high N-5 content. P- and S-doped
carbon materials enhance the SSA and pore volume, lead-
ing to high Hg® adsorption. However, this is not the case for
N- and S-co-doped carbon. In addition, the activator signifi-
cantly enhances toluene adsorption with a modified carbon
catalyst.

After exploring the development of carbon catalysts
with various modifications, the following conclusions can
be drawn:

1. Development of new precursor materials can be explored
for producing carbon catalysts with enhanced gas-
pollutant (multipollutant)-removal efficiency, thereby
strengthening the anti-poisoning and mechanical prop-
erties through commercialization.

2. As the environmental concerns are attracting increas-
ing attention, new activation methods that use renew-
able energy sources or develop closed-loop systems for
carbon recovery and reuse are being explored.

3. Designing heteroatom-doped carbon catalysts with tai-
lored properties and functionalities can help optimize
their performances for specific applications. This may
improve our understanding of the structure—property
relationships of these catalysts. Further research efforts
are required to optimize their performance and reduce
costs for widespread commercial adoption of such cata-
lysts.

4. In-depth understanding of the mechanisms involved in
the catalytic activity of carbon materials is required.

5. A recovery method for used carbon catalysts is needed
to conserve the valuable resources.
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