REVIEW ARTICLE

Carbon-Based Catalysts for Clean Environmental Remediation

Ajit Dattatray Phule^{1,2} · Md. Wahad Uz Zaman¹ · Sahar Elkaee¹ · Seul Yi Kim¹ · Sang Gyu Lee¹ · Gibeom Park¹ · Jae Hwan Yang^{1,2}

Received: 3 August 2023 / Revised: 26 September 2023 / Accepted: 5 November 2023 / Published online: 6 December 2023 © University of Tehran 2023

Abstract

Air pollution, owing to gaseous pollutants, especially NOx, VOCs (toluene), acidic gas (H_2S), and elemental mercury (Hg^0), and the resulting climate issues have become major concerns. Carbon-based catalysts play a key role in removing toxic gases through selective catalytic reduction (SCR), oxidation, and adsorption processes. Catalyst selection has a crucial effect on the final toxic gas removal performance of catalyst. Herein, strategies for modifying carbon-based catalysts through physical or chemical treatment/activation, metal oxide doping, and heteroatom doping are systematically reviewed. In addition, the effects of the carbonization temperature, pore structure, heteroatom dopants, and oxidizing agents on the surface area, pore structure, and catalytic effects of carbon-based catalysts are analyzed and discussed. Finally, the further direction and need for developing carbon-based catalysts for environmental remediation is prospected.

Highlights

- Carbon-based catalysts for environmental remediation are discussed.
- Modification strategies for carbon-based catalysts are provided in detail.
- Various air pollutant-removal performances of the modified catalyst are briefed.
- Challenges and future prospects of carbon catalysts are presented.

Keywords Porous carbon catalyst · Air pollution · Heteroatom doping · Metal oxides · Carbonization · Porous structure

Abbreviations

AC	Activated catalyst
C/SAC-2	Chemically activated catalyst
Co/SAC-2	Co-activated catalyst
NOAC	N- and O-doped AC
NHPC	N-doped hierarchical porous carbon
NPC	N-doped porous carbon
NSDG-10	N- and S-doped nanoporous carbon
PBC ₉₀₀	P-doped biochar
PAN	Polyacrylonitrile
P/SAC	Physically activated catalyst

SAC	Sargassum-Based carbon
SCR	Selective catalytic reduction
SMC-900	S-doped mesoporous carbon
SSA	Specific surface area
WS	Wheat straw
NG	Nitrogen doped graphene
ORR	Oxygen reductive reaction

Introduction

Although industrialization has improved the quality of life of everyone, it has also created a huge problem of air pollution—a major global health and environmental challenge. The chief sources of toxic gases are industries (coal power plants, refineries, and petrochemicals), coal combustion, mining of mineral resources, transportation (land, water, and air), landfills, and waste management (Damma et al. 2019; Li et al. 2022c; Wang et al. 2014; Zhang et al. 2017). Many methods have been developed for controlling air pollution,

☑ Jae Hwan Yang yjh98@cnu.ac.kr

¹ Department of Environmental Engineering, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 34134, South Korea

² Department of Environmental and IT Engineering, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 34134, South Korea

Int J Environ Res (2024) 18:3

including selective catalytic reduction (SCR), oxidation, adsorption, and photochemical treatments (Ahmadi et al. 2021; Li et al. 2023a, c; Zhou et al. 2019). The catalysts used in such remediation methods typically have an active site with a support/carrier to facilitate the mineralization of toxic gases. Metal oxide-based catalysts are excellent commercial candidates for removing toxic gases through SCR, oxidation, and adsorption (Anthonysamy et al. 2018; Kim et al. 2018; Murindababisha et al. 2021). However, their narrow operating window, toxicity, high cost, and thermal instability limit their applicability. Hence, such catalysts need to be further improved.

Porous carbon catalysts have shown great potential for environmental remediation due to their distinctive properties such as a high specific surface area, a distinct structure, tunable porosity, and excellent chemical stability (Chiang et al. 2001; Gao et al. 2019; Tian et al. 2001). These carbon catalysts are commonly used in various applications, including for removing pollutants from air and water, for degrading organic compounds, photocatalytic degradation activity, and for electrocatalysis (especially carbon-based single atom catalyst) (Bai et al. 2023a, b; Guo et al. 2020; Gupta and Saleh 2013; Jin et al. 2022b; Li et al. 2015b; Pan et al. 2022; Shi et al. 2021; Shi et al. 2022b, c; Shi et al. 2023; Tang et al. 2022, 2023a, b, c; Wang et al. 2023b; Zhang et al. 2017). Porous carbon materials can also be sintered as active support materials. Several methods that use porous carbon materials have been modified to improve the catalytic performance of such materials (Anthonysamy et al. 2018). A porous carbon-based catalyst with good adsorption properties and a good support/carrier is a crucial component of catalytic systems for removing toxic gases (Cho et al. 2023). However, the insufficient activity of carbon materials, inadequate waste recycling, and poor high-temperature stability need to be effectively addressed before porous carbon-based catalysts could be used for removing pollutants.

This review summarizes the progress made so far in developing porous carbon material-based catalysts for achieving clean environmental remediation. Although several review papers have dealt with carbon-based materials for applications of various catalytic reactions, it still lacks the systematic study that delves into the utilization of carbon-based catalysts for the clean air environments. The current review mainly focuses on the methods developed for removing major toxic gases such as NO_x, VOCs (such as toluene), acidic gases (such as H_2S), and elemental mercury (Hg^{0}) . It also discusses the modification strategies for the development of porous carbon with physical or chemical treatments, metal oxide doping, and heteroatom doping, as well as the effects of various physicochemical parameters on reducing the release of the above mentioned toxic gases (Fig. 1). Finally, future perspectives and possible directions are presented.

Strategies for Fabricating Modified Carbon-Based Catalysts for Removing Air Pollutants

Carbon as a support material plays a vital role in heterogeneous catalysis because of its superior physical and chemical properties compared to those of other supports (Fidalgo and Menéndez 2011). Support materials with a high surface area, suitable chemical composition, and porous structure can accommodate catalytic species/active phases to improve the activity or selectivity of the corresponding catalyst, which can also influence the dispersion and accessibility of catalytic species on the surface of carbon support materials. Catalysts can be further modified by physicochemical treatments, using metal oxides, and through heteroatom (N, O, and S/P, B) doping to improve their activity.

Modification of Carbon Support Materials

Physical or Chemical Treatment/Activation

The aim of activation, which involves physical or chemical treatment, is to improve the porosity, pore volume, and surface area of carbon materials. Activation through physical treatments mainly involves thermal treatment (pyrolysis or carbonization) at high temperatures through steam or gas purging (using gases such as CO₂, steam, and N₂). The oxidation of the carbon source material at high temperatures (i.e., the conversion of surface carbon and hydrogen into CO₂ and H₂O, respectively) changes the surface area and porosity in a controlled way (Li et al. 2015b; Panwar and Pawar 2022). CO₂ activation forms micropores, while steam activation increases their size. Chemical treatments commonly employ chemical agents [such as KOH, NaOH, H_3PO_4 , H_2SO_4 , and $(NH_4)_2SO_4$] in one- or two-step processes. These treatments improve the surface area and pore structure of the catalyst and increase its surface oxygen functional moieties (Ku et al. 1994). In a one-step process, the carbonization and activation of the precursor material can be achieved simultaneously by using a chemical agent (Li et al. 2015b). In contrast, the two-step process involves carbonization, followed by activation using chemical agents or pretreatment of the precursor material with a chemical agent before carbonization (Guo et al. 2007).

Metal Oxide Doping

Carbon materials can be modified by doping with metal oxides (mostly transition metal oxides) that improves the

Fig. 1 Schematic illustration of the removal of toxic gases by modified catalyst with different strategies

physical and/or chemical properties of carbon, which further enhances their air-pollutant-removal efficiency through SCR, catalytic oxidation, or adsorption (Table 2).

Heteroatom Doping

Heteroatom doping refers to the incorporation of noncarbon elements (such as N, S/P, B, and O) into the carbon lattice. Heteroatom doping introduces new chemical functionalities, such as Lewis acid sites, which can interact with toxic gases and facilitate their adsorption and/or reaction. In addition, the heteroatoms can alter the electronic properties of the carbon lattice and make it more polar and enhance its affinity for polar gas molecules, which further helps control the catalytic reaction or remove toxic gases such as NO_x , H_2S , Hg^0 , and toluene (Table 3). Heteroatom doping into porous carbon not only serves as a highly efficient catalyst, but can also be utilized as an ideal support for immobilizing metal nanoparticles (Ma et al. 2016).

Heteroatom doped (S/N) carbon-based single-atom catalyst leads to enhance the high stability, catalytic reaction, and/or electrocatalysis activity (Bai et al. 2023b; Tang et al. 2023b, c); wherein, it observed that benefiting from the synergic action of metal active sites, N-doped graphene nanosheets (FeCo-NG) exhibited higher catalytic performance, i.e. ORR. Anchoring metal on S/N co-doped graphene (Mn-S/N-C) improved the electrocatalytic performance of the catalyst system (Bai et al. 2023b). The d-orbital adjustment of the M-center (Mn) in M-N-S-C catalyst material by S/N co-doping benefits to improve the electrocatalytic activity, which is most superior to previously reported Mn-based electrocatalysts and commercial iridium dioxides. The S-doping and presence of asymmetric structure contributes to the ortho-Mn₁-N₂-S₂G site which is more active than Mn_N₄G, Mn-N₃SG, para Mn-N₂-S₂G, and Mn-NS₃G sites. The ORR rate-limiting steps on the ortho-Mn₁-N₂-S₂C_x have been predicted as the transformation of OH* to H₂O (Bai et al. 2023b).

Applications of Carbon-Based Catalyst for Clean Environmental Remediation

NO_x Removal

In general, steam/gas purging increases the pore volume (Wang et al. 2016) and develops internal pores by removing trapped volatile gases or particles during carbonization. An increase in the steam-activation temperature enhances the pore volume and specific surface area (SSA) of the

catalyst. The SSAs of PCNF10-800, PCNF10-850, and PCNF10-900-polyacrylonitrile (PAN)-based modified carbon materials—are 778, 876, and 1206 m²/g, respectively, while their total pore volumes are 0.272, 0.315, and 0.562 cm^{3}/g , respectively. Increased surface area and pore volume improve the NO-removal efficiency (Wang et al. 2016). Use of different carbonization and steam-activation temperatures has an obvious impact on the NO conversion. The PCNF catalyst carbonized and steam-activated at 800 °C exhibited 60% NO conversion performance, whereas the catalyst only activated at 800 °C afforded 27.6% NO conversion at room temperature (Table 1). Ku et al. (1994) analyzed the catalytic activity of the coconut-shell-derived activated carbon (AC) prepared via chemical activation using O₂-NH₃, H₂SO₄, and $(NH_4)_2SO_4/H_2SO_4$. The carbon catalyst treated with $(NH_4)_2SO_4/H_2SO_4$ exhibited the highest surface area and catalytic activity (Table 1). Li et al. (2015b) examined the effects of physical activation, chemical activation, and coactivation of the Sargassum-based activated carbon (SAC) for low-temperature SCR of NOx. The Co/SAC-2 (co-activated) catalyst afforded the highest NO conversion achieved so far (82.05%) at 125 °C, whereas C/SAC-2 (chemically activated) could afford 75% NO conversion) and P/SAC (physically activated) could afford only 45% NO conversion. Hence, it is clear that chemical co-activation improves the NO_x-removal performance.

The porous nature of carbon allows for a better diffusion of gaseous pollutants through the catalyst, which promotes contact between the reactants and the catalyst. Furthermore, carbon modified by metal oxide doping can be utilized for NO_x removal, mostly by low-temperature NH_3 -SCR. In addition, these superior properties can enhance the tolerance to catalyst poisoning. Zhu et al. reported that doping with 5 wt% of V_2O_5 enhanced the NO_x-removal efficiency of the AC catalyst from 20 to ~80% at 220 °C with a better SO₂ poisoning tolerance, which could be owing to the increased catalyst surface acidity because SO2 oxidizes to SO_4^{-2} . In addition, the pre-oxidation of the catalyst plays a crucial role in improving the NO_x-conversion performance (to up to 98%) (Zhu et al. 1999). Wang et al. (2014) described that doping activated semicoke (ASC) with 3 wt% of V_2O_5 improved the SCR catalytic performance (from 25%) to > 90%) at 250 °C. Li et al. (2022b) demonstrated that the Ce-modified V_2O_5/AC afforded a higher NO_x conversion (i.e., 90%) than that achieved with the unmodified $V_2O_5/$ AC (<80% NO_x conversion) at 200 °C (Table 2). They also discussed the effect of the regeneration temperature (470 $^{\circ}$ C) and regeneration cycling on the improved SCR performance (i.e., >95%) of the Ce-V₂O₅/AC catalyst. This result suggests that cyclic regeneration is conducive to desulfurization and SCR. Huang et al. (2007) reported that doping CNTs with 2.35 wt% of V_2O_5 enhanced the NO_x conversion from < 10 to > 80% at 190 °C. However, V_2O_5 /CNTs prepared using

CNTs with an outer diameter of 60-100 nm afforded better NO_x conversion (92%), perhaps owing to the dispersion of vanadium over the CNT surface and presence of oxygenated groups on the CNT surface with different diameters (during HNO₃ treatment). Liu et al. (2021) reported a highly efficient MnO_x-doped biochar catalyst obtained by air oxidation for the SCR of NO₁, where pre-oxidation (400 °C) and postoxidation (250 °C) were performed before and after doping MnO_x into the biochar. After pre-oxidation, the SSA and total pore volume of the sample increased from 557 to 734 m²/g and from 0.353 to 0.440 cm³/g, respectively, whereas post-oxidation increased the contents of Mn⁴⁺ and chemisorbed oxygen, which enhanced the surface acidity and redox capabilities of the catalyst. The catalyst exhibited the highest NO_x conversion, i.e., 97% at 150 °C, compared with that achieved without air oxidation (61.8%). Jiang et al. (2019) investigated the low-temperature NO_r -removal performance and high poisoning stability of a MnCe-doped AC and a V₂O₅ co-doped MnCe/AC catalyst. The doping of the AC with MnCe enhanced the NO_x conversion from 25 to > 90% at 200 °C. Doping with 0.4 Ce/(Mn + Ce) further increased the NO_x conversion to > 97%. The codoping of V_2O_5 slightly improved the NO_x conversion to > 98%, although it also broadened the reaction window (100–300 °C). In addition, it prevents the active sites from being blocked or poisoned. Figure 2 shows the mechanism of improved SO₂ tolerance over the Mn-Ce(0.4)-V/AC catalyst.

Jia et al. (2022) reported MnO_x -doped biochar and the effect of the modification method for biochar on the NO_x-conversion performance at low temperatures. NaOHmodified biochar doped with 25% MnO_x resulted in the highest NO_x conversion (95%) and a high tolerance to SO₂ and H₂O at 225 °C, compared to those achieved with acid- and CTAB-modified biochar. Highly dispersed MnO_x is easily formed on the NaOH-modified biochar surface, which is crucial for improving the SCR performance. Li et al. (2023a) demonstrated that doping coal-based AC with 10 wt% of Fe_2O_3 improved the SCR performance from 15 to 30%; however, 10 wt% of Fe₂O₃/OAC1.5-60-3 (OAC: oxidized AC with APS oxygen functionalization) dramatically enhanced NO conversion to > 99% at 180 °C. In addition, the reaction temperature window broadened (from 120 to 250 °C) with superior NO_x conversion (>90%) and high tolerance to SO_2 and H₂O. This result suggests that the physical structure was not the key factor in the APS oxygen functionalization strategy, which affects the catalyst performance. Xue et al. (2008) reported 100% NO_x conversion of the CuO-impregnated wet oxidized AC (treatment with H₂O₂) catalyst at 272 °C, wherein the surface oxygen moieties and NO adsorption on the AC played a crucial role in the production of carbon active sites. Notably, it is not the rate-limiting step for the catalytic reduction of NO over CuO by AC. Zhu et al. (2011) reported that surface-modified AC fibers doped with 9 wt%

Table 1 Carbon mo	diffed through physical/chemica	l treatment and its performance	in removing toxic gases			
Catalyst	Catalyst material source	Physical/chemical treat- ment conditions	Gas concentration	Surface area (m ² /g)	Performance	References
SCA750	Coal-based AC	Steam activation	1000 ppm NO, 1500 ppm NH ₃ , 3.5% O ₂ , Ar	460	40% NO conversion, adsorption	Rubel and Stencel (1997)
C/SAC-2	Sargassum-based AC	${ m H_3PO_4}$ activation, 500 °C, ${ m N_2, 1~h}$	500 ppm NO, 500 ppm NH ₃ , 5% O ₂ , N ₂	604	~ 75% NO conversion, SCR at 125 °C	Li et al. (2015b)
Co/SAC-2	Sargassum-based AC	H_3PO_4 activation, 500 °C, N ₂ , 1 h+physical activa- tion at 500 °C with CO ₂ , 1 h	500 ррт NO, 500 ррт NH ₃ , 5% О ₂ , N ₂		~ 82% NO conversion, SCR at 125 °C	Li et al. (2015b)
P/SAC	Sargassum-based AC	Physical activation at 500 °C with CO ₂ , 1 h	500 ppm NO, 500 ppm NH ₃ , 5% O ₂ , N ₂		~45% NO conversion, SCR at 125 °C	Li et al. (2015b)
PCNFs	PAN	Carbonization at 800 °C with N ₂ , activated at 800 °C with 30% steam in N ₂ for 30 min	20 ppm NO, 21 vol% O ₂ , N ₂ balanced	710	60% NO conversion, adsorption followed by catalytic oxidation at 30 °C	Wang et al. (2011)
PCNF10	PAN	Carbonization at 800 °C with N_2 for 30 min, activated at 850 °C with 20% steam in N_2 for 30 min	20 ppm NO, 21 vol% O ₂ , N ₂ balanced	778	30% NO conversion, adsorption followed by oxidation at 30 °C	Wang et al. (2016)
S9	Coconut-shell-based AC	O ₂ /NH ₃ , H ₂ SO ₄ , (NH ₄) ₂ SO ₄ treatment at 400 °C	500 ppm NO, 500 ppm NH ₃ , 3 vol% O ₂ , N ₂	970/1018/1183	39/47/67% NO conversion at 150 °C	Ku et al. (1994)
AC4	Cattle manure	Carbonization at 650 °C with N ₂ for 1 h, activation CO ₂ flow 1000 mL/min at 850 °C 1 h	1200 ppm H ₂ S, balance N ₂ , O ₂	408	868.45 mg/g, H ₂ S adsorp- tion capacity at 25 °C, 100 kPas	Tuerhong and Kuerban (2022)
CH biochar	Coconut husk	Carbonization at 500 °C for 1 h, activation with $CO_2^/$ H_2O at 650/750/850 °C	1 vol% H ₂ S (CO ₂ 39%, CH ₄ 60%)	332/604/811	29.7/38.7/26.7 mg/g H_2S -adsorption capacity at 20 °C	Su et al. (2021)
PC7PA	Pistachio nutshell	Carbonization at 750/800 °C for 1 h with H_2O/CO_2 , carbonization at 500/700 °C for 1 h + activation with CO_2/H_2O at 900 °C for 1 h	1 vol% H ₂ S concentration	391/877, 277/1204	9.4/11.3/7.1/10.5 mg/g H ₂ S-adsorption capacity	Bazan-Wozniak et al. (2017)
GS_KOH_1	Guava seed	Hydrothermal at 200 °C for 48 h, KOH activation for 2 h, carbonization at 900 °C with N ₂ for 2 h	$20 \text{ ppm H}_2\text{S}$	1682	48.18 mmol/g H ₂ S-adsorption capacity at STP	Nicolae et al. (2022)

Table 1 (continued)						
Catalyst	Catalyst material source	Physical/chemical treat- ment conditions	Gas concentration	Surface area (m ² /g)	Performance	References
	Oil palm shell	Carbonization at 900 °C for 2 h with H_2O/CO_2 , KOH/ H_2SO_4 activation for 24 h+pyrolysis at 700 °C for 2 h	2000 ppm H ₂ S balanced with He	1062/1148/1014	46/68/76 mg/g H ₂ S-adsorption capacity at 25 °C	Guo et al. (2007)
SAC-800/EAC-800	Seaweed (SargassumlEnteromarpha)	Pyrolysis at 400–800 °C N_2 , ZnCl ₂ activation for 12 h, 400–800 °C,	80 μg/m ³ Hg ⁰ , 5 vol% O ₂ , 300 ppm NO, 500 ppm SO ₂ , 3 vol% H ₂ O	524/565	2382.6/2909.5 μg/g Hg ⁰ removal, adsorption	Liu et al. (2019)
C8Br9	Sargassum char	Pyrolysis at 400–800 °C with N ₂ , NH ₄ Br activa- tion for 12 h at 90 °C	60 µg/m ³ Hg ⁰ , 5% O ₂ , 1 vol% H ₂ O, 400 ppm NO, 600 ppm SO ₂ , N ₂ balanced	19	91% Hg ⁰ -removal effi- ciency, adsorption at 120 °C	Yang et al. (2018)
WSW10/RSW10	Wheat straw/rice stalk	Pyrolysis at 600 °C with N_2 for 20 min; activation in a microwave oven with steam at 60 °C for 1 h; chemical treatment with H_2O_2 at 30 °C for 1 h	60 µg/m ³ Hg ⁰ , 5 vol% O ₂ , 5 vol% H ₂ O, 300 ppm NO, 8000 ppm SO ₂ , N ₂	433/276	1293.19/1485.61 µg/g Hg ⁰ -adsorption capacity, 130 °C	Li et al. (2021)
ACUV9	AC	H ₂ O ₂ steam modifica- tion 45 °C with N ₂ ; UV irradiation (254 nm, 5 W) at 80 °C for 2 h	75 μg/m ³ Hg ⁰ , 400 ppm NO, 600 ppm SO ₂ , N ₂	1373	3636.43 µg/g Hg ⁰ -adsorption capacity, 120 °C	Dou et al. (2023)
MSW3UV	Corn stalk biochar	600° C carbonization for 20 min; activation with steam + N ₂ by microwave (700 W) for 30 min; 3% H ₂ O ₂ + UV light (254 nm) for 2 h	65 µg/m ³ Hg ⁰ , 400 ppm NO, 800 ppm SO ₂ , 5% O ₂ , 65 µg/m ³ Hg ⁰ , 5% H ₂ O, N ₂	520	2052.51 µg/g Hg⁰-adsorption capacity, 120 °C	Liu et al. (2023b)
LPC	Peptone and pork bone	Pyrolysis at 400 °C for 4 h with N ₂ , K ₂ CO ₃ treatment, pyrolysis at 800 °C, 1.5 h N ₂	50 μg/m ³ Hg ⁰ , 400 ppm NO, 500 ppm SO ₂ , 6% O ₂	2926	571 mg/g Hg ⁰ -adsorption capacity at 150 °C	Wang et al. (2023a)
ACAC	Anthracite-coal-based AC	KOH activation, pyrolysis at $700-900 \circ C$ for 1 h with CO_2/N_2 , Br impregnation	$35,000 \text{ ng/m}^3 \text{ Hg}^0, \text{N}_2$	527	476 μg/g Hg ⁰⁻ adsorption capacity at 100 °C	Song et al. (2020)
C6WN5	Cotton residue	Pyrolysis at 600 °C with N ₂ for 1 h, Activation for 4 h with microwave+ steam, NH ₄ Cl treatment	6 vol% O ₂ , 13 vol% CO ₂ , 3 vol% H ₂ O, 300 ppm NO, 1200 ppm SO ₂ , N ₂	203	11,400 µg/g Hg ⁰ -removal efficiency, adsorption at 120 °C	Li et al. (2015a)

Table 1 (continued)						
Catalyst	Catalyst material source	Physical/chemical treat- ment conditions	Gas concentration	Surface area (m ² /g)	Performance	References
TO-CI	Rice/tobacco/corn/wheat/mil- let/black bean straw	Carbonization at 600 °C for 1 h, HCl activation for 12 h	20 μg/m ³ Hg ⁰	353	80 µg/g Hg ⁰ -adsorption capacity at 150 °C	Wang et al. (2018a)
PHAC/PHAC-AM	Coconut-shell-based carbon	Carbonization at 600– 700 °C for 1–4 h, KOH impregnation for 24 h at 105 °C Activation with CO ₂ and microwave for 4 min, ammonia treat- ment	50–250 mg/L toluene	478/361.8	238.10/357.14 mg/g toluene-adsorption capac- ity at 30 °C	Mohammed et al. (2015)
PCS-MClx	Biomass (sodium lignin sulfonate)	Carbonization at 500 °C for 2 h with a metal-chloride- activating agent	1–10 g/L toluene in paraf- fin oil	703	2300 mg/g toluene-adsorp- tion capacity at 25 °C	Li et al. (2020a)
SRC-3K700/800	Waste soybean residue	Pre-carbonization at 450 °C, KOH activation at 500-800 °C	250 ppm toluene	4293/3603	1587/2187 mg/g toluene- adsorption capacity at 25 °C	Li et al. 2022a)
NHPC-CC	Corn straw, wheat stalk, bam- boo, pine, corncob	$(NH_4)_2C_2O_4\cdot H_2O$ and KHCO ₃ + carbonation at 900 °C with N ₂ for 1 h	300 ppm toluene	2266	5.94 mmol/g toluene- adsorption at 30 °C	Huang et al. (2023)

Catalyst	Support material condition	Metal oxide-doping condi- tions	Gas concentration	Surface area (m ² /g)	Performance	References
5 wt% V ₂ O ₅ /AC	Coal-derived semi- coke + HNO ₃ activation	Pore volume impregna- tion, calcination at 300–600 °C; peroxidation at 250 °C for 5 h	500 ppm NO, 560 ppm NH ₃ , 3.3% O ₂ , Ar bal- anced		88% NO _x conversion at 220 °C (SCR)	Zhu et al. (1999)
3 wt% V ₂ O ₅ /ASC	Activated semicoke + HNO ₃ activation + calcination at 700 °C for 4 h with Ar	Impregnation + calcination at 500 °C for 5 h with Ar, pre-oxidation in air at 200 °C for 2 h	1000 ppm NO, 1000 ppm NH ₃ , 2% O ₂ , Ar balanced	220	> 90% NO _x conversion at 250 °C (SCR)	Wang et al. (2014)
Ce-V/AC	AC HCl + HF treatment	V-Impregnation + calcina- tion at 500 °C with N ₂ for 8 h, air oxidation at 250 °C for 5 h; Ce- impregnation at 400 °C in N ₂ for 2 h	500 ppm NO, 500 ppm NH ₃ , 5 vol% O ₂ , N ₂ bal- anced	966	90% NO _x conversion at 200 °C (SCR)	Li et al. (2022b)
2.35 wt% V ₂ O ₅ /CNT	Multiwall CNT prepared by CVD+HNO ₃ treatment	Incipient impregnation, cal- cination at 350 °C for 2 h	800 ppm NO, 800 ppm NH ₃ , 5 vol% O ₂ , He bal- anced	368.254	92% NO _x conversion at 463 K	Huang et al. (2007)
MnCe(0.4)V/AC	AC + HNO ₃ treatment	Ultrasonic impregnation, calcination in Ar at 400 °C for 4 h	500 ppm NO, 500 ppm NH ₃ , 5 vol% O ₂ , N ₂ bal- anced	723	98% NO _x conversion at 200 °C (SCR)	Jiang et al. (2019)
BC-OMO	Coconut shell biochar, calcination at 400 °C under O_2/N_2 for 2 h, post-oxidation at 250 °C	Impregnation, calcination at 250 °C for 2 h in air	400 ppm NO, 440 ppm NH ₃ , 5 vol% O ₂ , N ₂ balanced	734	97% NO _x conversion at 150 °C (SCR)	Liu et al. (2021)
25% Mn/LBC-OH	Lotus leaf + NaOH treat- ment and calcined at 800 C with N ₂ for 2 h (LBC- OH)	Ultrasonic impregnation, calcination at 400 °C for 2 h with N ₂	600 ppm NO, 600 ppm NH ₃ , 50 ppm SO ₂ , 2.5 vol% O ₂ , N ₂ balanced	377.5	> 95% NO _x conversion at 225 °C	Jia et al. (2022)
10 wt% Fe ₂ O ₃ /OAC1.5–60- 3	Coal-based $AC + (NH_4)_2 S_2 O_8$ oxidation	Ultrasound impregnation, calcination at 400 °C for 4 h, N ₂	550 ppm NO, 550 ppm NH ₃ , 5 vol% O ₂ , 200 ppm SO ₂ , N ₂ balanced		> 99% NO _x conversion, SCR at 180 °C	Li et al. (2023a)
15 wt% CuO/AC-H	Coconut-shell-based AC+HNO ₃ /H ₂ O ₂ /H ₂ SO ₄ activation	Wet impregnation, calcina- tion at 250 °C for 4 h	2000 ppm NO, Ar balanced	1038/1064/796	~ 100% NO _x conversion, SCR at 272 °C	Xue et al. (2008)
9 wt% CeO2 ACFN/AACFP	Viscose-based AC + HNO ₃ / low-temperature oxygen plasma treatment	Impregnation, calcination at 350 °C for 6 h with N ₂	1000 ppm NO, 1000 ppm NH ₃ , 5% O ₂ , Ar	874/1124	93.96/86% NO conversion, SCR at 180 °C	Zhu et al. (2011)
ZnO _{0.2} -MgO _{0.8} /AC	Coal-based AC	Impregnation at 350 °C for 2 h with N ₂	850 mg/m ³ H ₂ S, balance N ₂ , O ₂	653	113.4 mg/g, H ₂ S adsorption capacity at 30 °C, 100 kPas	Yang et al. (2020b)

Table 2 (continued)						
Catalyst	Support material condition	Metal oxide-doping condi- tions	Gas concentration	Surface area (m ² /g)	Performance	References
ZnO _{(0.5})-CuO _{(0.5})/AC	Lignite-based AC	Incipient wetness impregna- tion, thermal treatment at 250 °C with N ₂ for 3 h	$3000 \text{ ppmv H}_2\text{S} (\text{in N}_2)$	570	50 mg/g H ₂ S adsorption capacity at 30 °C, 100 kPas	Balsamo et al. (2016)
ZnO-CuO/AC	AC	Incipient wetness impregna- tion, thermal treatment at 250 °C with N ₂ for 3 h	$3000 \text{ ppmv H}_2\text{S}$	570	1.46 mmol/g H ₂ S-adsorption capacity at 30 °C	de Falco et al. (2018)
ZFOB-10	BAX-wood-based carbon phosphoric acid activation	Wet impregnation, calcina- tion at 400 °C for 4 h	$1000 \text{ ppm H}_2\text{S}$	1403	122.5 mg/g H ₂ S-adsorption capacity	Yang et al. (2020a)
1 wt% Mn/AC	AC	Pore volume impregnation, calcination at 400 °C for 4 h with N ₂	$3000 \text{ ppm H}_2\text{S}$	905	142 mg/g, H ₂ S-catalytic oxidation at 180 °C	Fang et al. (2013)
Cu2.56WRS300	Rice straw (RS)-based bio- char + microwave steam activation 30 min	RS pyrolysis at 600 °C for 20 min with N ₂ , impregnation, calcination at $200/300/400$ °C for 1.5 h with N ₂	$250 \text{ ppm H}_2\text{S} (\text{in N}_2)$	51/60/32	1191.1 mg/g H ₂ S-adsorption capacity at 125 °C	Cui et al. (2022)
MCS-MgO-15	Resorcinol, formaldehyde	Carbonization at 800 °C for 3 h, MgO treatment 400 °C with N ₂ for 3 h	1000 ppm H_2 S, 1% O_2 , N_2 balanced	660	2.46 g/g, H ₂ S-catalytic oxidation at 30 °C	Zhang et al. (2016)
6% Co _{0.5} Cr _{0.5} /AC	Activated coke + pretreat- ment with HNO ₃	Ultrasound impregnation, pyrolysis 500 °C with N ₂ for 6 h	$100 \mu\text{g/m}^3 \text{Hg}^0$, 6 vol% O ₂ , N ₂ balanced	217.72	88.3% Hg ⁰ -removal, adsorption, and catalytic oxidation at 240 °C	Gao et al. (2023)
15% Co _{0.4} Ce _{0.6} /BAC	Maize straw, ZnCl ₂ impregnation, activation at 750 °C for 2 h with N ₂ , HNO ₃ treatment (BAC)	Impregnation, calcination at 550 °C with N ₂ for 4.5 h	100 $\mu g/m^3~{\rm Hg}^0, N_2$ balanced	628.85	96.8 μg/g Hg ⁰ -adsorption capacity, 230 °C	Gao et al. (2018)
15% Co _{0.4} Mn _{0.6} /BAC	Maize straw, ZnCl ₂ impregnation, activation at 750 °C for 2 h with N ₂ , HNO ₃ treatment (BAC)	Ultrasound impregnation, calcination at $500 \circ C$ with N_2 for 4 h	100 $\mu g/m^3 Hg^0$, N ₂ balanced	617.14	98.5% Hg ⁰ -removal efficiency, adsorption at 240 °C	Gao et al. (2019)
CuFe _{0.3} /WSWU10(500)	Wheat straw, pyrolysis at $600 ^{\circ}$ C for 20 min under N ₂ (WS), microwave + steam activation	Ultrasound impregnation, calcination at $500 \circ C$ with N_2 for 1 h	65 µg/m ³ Hg ⁰ , N ₂	253.49	2276.45 µg/g Hg ⁰ -adsorption capacity, 130 °C	Yang et al. (2019)
MnFe/Char-BM4	Rice straw	Ball milling for 4 h at 25 Hz, followed by 800° C pyrolysis for 1 h	35 μg/m 3 Hg 0 , 5% O $_2$, N $_2$	311.4	> 95% Hg ⁰ -removal efficiency, adsorption at 100 °C	Zhang et al. (2021)
AC03 (3 wt% CuO/AC)	Commercial AC	Ultrasonication for 15 min, kept for 12 h at RT, calci- nation at 250 °C for 2 h	33,803 mg/m ³ toluene	985.2	701.8 mg/g toluene-adsorp- tion capacity at 20 °C	Lei et al. (2020)

Table 7 Case

of CeO₂ exhibited high NO_x conversion (93.96%) at 180 °C; the surface modification of the ACF by HNO₃ afforded a better catalytic activity (i.e. > 90%) over a broad temperature window (150–240 °C) compared to that achieved with the oxygen plasma treatment (<85% NO_x conversion).

Heteroatom doping (especially that of N) into carbon can be used to modify its physical and chemical properties to enhance the NO_x-removal performance (Table 3). Li et al. (2014) reported the effects of impregnation duration (5 h) and calcination temperature (900 °C) on the N-content and NH₃-SCR activity of the modified AC. ACM-5-900 exhibited 51.67% of NO conversion at 80 °C, while that shown by undoped AC was 21.92%. However, they demonstrated that the form of N-containing functional groups {ACM-5–900 had highest proportion of N-6 (pyridinic-N) groups, i.e., 57.3% influenced NO conversion rather than the total N-content. In addition to the impregnation duration, the N-doped precursor also played a crucial role in improving the NO_x conversion of the modified AC, as shown schematically in Fig. 3. The N-doped ACM-5 catalyst with a KHCO₃ promoter exhibited a higher NO_x-conversion efficiency (52%) than that the reported N-doped carbon catalysts (30%). In contrast, undoped AC showed only 10% NO_x-conversion efficiency (Li et al. 2020d). N-6 was reported as an activated site for the catalytic direct decomposition of NO at 500 °C in N-doped porous carbon; in the absence of N-doping, the carbon catalyst showed only < 10% NO conversion (Wang et al. 2018b). Yao et al. (2020) reported the N-doped semicoke-based catalyst, i.e., ASC-10U10Mn, with a high NO, conversion of 94.5% at 275 °C, while the ASC showed 10% NO_x conversion. They also demonstrated that N-groups with unpaired electrons (N-6, N-5 pyrrolic, and N-Q- quaternary) play a crucial role in enhancing the adsorption and oxidation of NO and NH₃ adsorption owing to abundant Lewis acid sites. N-doping also improves the electron distribution of the catalyst and the electron mobility between the Mn and oxygen moieties. Figure 4 shows the promotion mechanism of N-doping over the MnO,/semicoke catalyst for low-temperature SCR.

Lin et al. (2018) reported the effects of N-dopant precursors/additives on the SCR of NO_x over the modified AC, where the N-doped AC with the pyridine additive/ precursor exhibited a higher NO_x conversion (66%) than that achieved with other catalysts. Zhu et al. (2019) investigated the influencing mechanism of N-doping on NO_2 adsorption and reduction over the AC using computational studies. AC600 with a higher N-content exhibited the highest NO_2 -adsorption capacity (135.6 mg/g) and the lowest NO-release percentage. Li et al. (2020c) reported N-doped porous biochar with 82% NO_x conversion at 260 °C, where N-6 played a major role in boosting up the denitrification activity. However, raw biomass reacts more readily with N-containing additives, which facilitates carbon formation

Fig. 2 Mechanism of better SO₂ tolerance over Mn-Ce(0.4)-V/AC and effect of V-oxide doping over SCR of NO (Jiang et al. 2019)

with an ultrahigh N-content, resulting in the formation of modified carbon with an N-content of 17.71 at. % (N-6: 9.09 at.%). This modified carbon catalyst demonstrated > 90% of NO conversion at 200 °C, which is higher than that achieved with non-N-doped carbon (<20%). Li et al. (2023b) investigated the synergistic effect of dual heteroatom dopants (N and O) on the carbon-catalyzed NH₃ SCR of NO_r. The Nand O-doped AC (NOAC) was prepared through one-step NH₃·H₂O activation of the AC, followed by HNO₃ oxidation. The NOAC exhibited enhanced NO_x conversion at 200 °C $(\sim 90\%)$ compared to that shown by the O-doped $(\sim 62\%)$ or N-doped AC (~73%); non-doped AC exhibited only 30% of NO_x conversion. In addition to N and O dopants, B and P dopants in carbon catalysts also demonstrated effective NH₃ SCR of NO_x (Li et al. 2020e; Yang et al. 2021), wherein the Lewis acid properties of the dopants can enhance the adsorption and activation of the reactants (NH₃ and O₂).

H₂S Removal

Physically and chemically activated carbon can also be utilized for H_2S removal, mainly by physi-/chemisorption. Physisorption is a relatively weak, nonspecific adsorption that involves intermolecular forces between the adsorbate (H_2S) and the adsorbent (with carbon as the solid surface). Physisorption of H_2S occurs when weak van der Waals forces form between the sulfur atoms of H_2S and the surface atoms or molecules of the adsorbent material. Physisorption is reversible and typically occurs at low temperatures and high pressures. It does not involve any significant chemical changes to the adsorbate or adsorbent. In contrast, chemisorption is a stronger, specific adsorption that involves the formation of chemical bonds between the adsorbate and the adsorbent. Chemisorption of H₂S occurs when its sulfur atom forms chemical bonds with the atoms or molecules on the adsorbent surface. Chemisorption typically involves breaking and forming of chemical bonds, leading to a more stable adsorption state. Chemisorption is generally irreversible and can occur at lower pressures and higher temperatures than physisorption. Cattle manure-based AC catalysts are generally prepared through steam and CO₂ activation at 850 °C to remove H_2S . The AC4 catalyst prepared by pyrolysis at 650 °C and activated with CO₂ exhibited the highest SSA (408.36 m^2/g) and H₂S adsorption capacity (868.45 mg/g) compared to those of AC (AC3) activated with steam. These results indicated that pH and surface area, rather than porosity, are crucial factors for the H₂S adsorption (Tuerhong and Kuerban 2022). Su et al. also reported an enhanced surface area with an increase in the pyrolysis temperature, wherein the coconut husk carbonized at 500 °C showed small SSA (0.18 m^2/g), which dramatically increased after activation at 650 °C (331.9 m²/g), 750 °C (604.1 m²/g), and 850 °C (811.4 m²/g). However, the surface area does not follow the same trend as that followed by the H₂S-adsorption capacity; the adsorption capacities of the catalyst activated at 650, 750, and 850 °C are 29.7, 38.7, and 26.7 mg/g, respectively (Table 1). Therefore, the H₂S-adsorption capacity is not entirely dependent on

Table 3 Heteroaton	n-doped carbon and its toxic	c gas-removal performance					
Catalyst	Dopant source	Carbon source + activator/ porogen	Doping experimental conditions	Gas concentration/pres- sure used	Surface area (m ² /g)	Performance	References
ACM-5-900	Melamine (N)	Coal-based AC	Impregnation at RT for 1/3/5/7 h, carbonization at 600/700/950 °C for 40 min	0.05% NO, 0.05% NH ₃ , 5% O ₂ , 0.01% SO ₂ , N ₂ balanced	816	51.67% NO conversion at 80 °C (SCR)	Li et al. (2014)
ACM-5	Melamine (N)	Coal-based AC + KHCO ₃	Impregnation for $1/3/5/7$ h, calcination at 900 °C for 40 min in N ₂	500 ppm NO, 500 ppm NH ₃ , 5 vol% O ₂ , N ₂ balanced	830	52% NO _x conversion at 150 °C (SCR)	Li et al. (2020b)
NPC-500	Melamine (N)	EDTA+KOH	Thermal condensa- tion, carbonization at 450/500/550 °C 0.5 h with Ar	400 ppm NO, Ar bal- anced	341	> 93% NO decomposi- tion at 500 °C	Wang et al. (2018b)
ASC-10U10Mn	Urea (N)	ASC (activated semicoke)	Wet impregnation, calcination at 400 °C for 6 h with N ₂	0.05% NO, 0.05% NH ₃ , 5% O ₂ , 0.01% SO ₂ , 5% H ₂ O, N ₂ balanced	38	94.5% NO _x conversion, SCR at 275 °C	Yao et al. (2020)
AC-4	Pyridine/Pyrrole/Mela- mine/Urea (N)	Anthracite AC	Heating at 900 °C with N_2 for 2 h, carbonation at 600 °C with N_2 for 1 h	500 ppm NO, 500 ppm NH ₃ , 5 vol% O ₂ , N ₂ balanced	111	66% NO _x conversion at 150 °C (SCR)	Lin et al. (2018)
RH/K/M	Melamine (N)	Rice Husk + KOH	Carbonization at 800 °C under N_2 for 2 h	400 ppm NO, 400 ppm NH ₃ , 5 vol% O ₂ , N ₂ bal- anced, H ₂ O 2.5%, SO ₂ 100 ppm	452	90% NO _x conversion at 200 °C (SCR)	Li et al. (2020a)
NMAC-1.5-7	Urea (N)	Cotton stalk based bio- char $+ H_3PO_4$	H_3PO_4 impregnation at 1.5 h, carbonization at 600 °C with N ₂ for 2 h, biochar + urea 24+h mix- ing calcined at 500 °C for 1 h with N ₂	500 ppm NO, 500 ppm NH ₃ , 5 vol% O ₂ , N ₂ balanced	954	82% NO _x conversion at 260 °C	Liu et al. (2023a)
P-CA-800 _{vac}	Phosphoric acid (P)	m-cresol, Phenol	One pot sol-gel, carboni- zation at $600-900 \circ C$ for 3 h with N ₂ , heat treat- ment at 380 °C under vacuum for 8 h	500 ppm NO, 500 ppm NH ₃ , 5 vol% O ₂ , N ₂ balanced	315	76.8% NO conversion at 200 °C SCR	Li et al. (2020e)
B-CA	Phenyl boronic acid	Catechol, Resorcinol	Sol-gel, heat treatment at $400 \circ C$ for 1 h with N ₂	500 ppm NO, 500 ppm NH ₃ , 5 vol% O ₂ , N ₂ balanced	512	96% NO _x conversion at 120 °C (SCR)	Yang et al. (2021)
NOAC	NH ₃ ·H ₂ O (N)	Coal-based AC + HNO ₃ oxidation	NH ₃ ·H ₂ O activation at 900 °C for 1 h in N ₂ atmosphere	500 ppm NO, 500 ppm NH ₃ , 5 vol% O ₂ , 200 ppm SO ₂ , 5/10% H ₂ O, N ₂ balanced	1350	~ 90% NO _x conversion at 200 °C (SCR)	Li et al. (2023b)

Catalyst	Dopant source	Carbon source + activator/ porogen	Doping experimental conditions	Gas concentration/pres- sure used	Surface area (m ² /g)	Performance	References
A-N-OMC-700	m-aminophenol (N)	Block copolymer F127	Carbonization at 700–900 °C for 1 h with N ₂ , KOH activation at 800 °C for 2 h	500 ppm H_2S , 2500 ppm O_2 , balanced N_2	1538	10.5 mmol/g H ₂ S-adsorption capac- ity at 0 °C, 1 bar	Liang et al. (2020)
N-OMCS-700	m-aminophenol with HMTA (N)	Block copolymer tem- plate F1 <i>27</i>	Hydrothermal curing at 95 °C for 12 h, carboni- zation at 700–900 °C, air oxidation at 250 °C 2 h, KOH activation at 800 °C for 2 h under N ₂	5000 ppm H ₂ S, 2500 ppm O ₂ , balance N ₂ ,	1575	13.4 mmol/g, H ₂ S-adsorption capac- ity at 0 °C, 1 bar	Kan et al. (2019)
YC-0.5-2(7)	Melamine cyanurate (N)	Poplar saw dust	KOH treatment 5 min, drying at 105 °C for 24 h, carbonization at 800 °C for 2 h with N,	0.05 vol% H ₂ S, 0.5 vol% O ₂ , balanced N ₂	678	1872 mg/g H ₂ S-adsorption capac- ity at 25 °C	Wu et al. (2022)
NPC-1	Carbon nitride (N)	Cypress saw dust	Magnetic stirring 3 h, pyrolysis at 800 °C with N, for 2 h	1000 ppm H ₂ S (in N ₂)	1839	426 mg/g H ₂ S-adsorption capacity at 30 °C, 100 kPas	Chen et al. (2021)
KHC-1	Waste Polyurethane foam	Waste Polyurethane foam powder	Hydrothermal carboniza- tion at 160–220 °C for 2-15 h, K ₂ CO ₃ activa- tion at 800 °C for 1 h with N ₂	1000 рршv H ₂ S	1419	205.06 mg/g H ₂ S-adsorption capac- ity at 25 °C	Chen et al. (2020)
HNBC	Urea (N)	Cypress saw dust + H ₂ O ₂ treatment	Hydrothermal treatment at 190 °C for 12 h, Cal- cination at 900 °C 4 h	500 ppm H_2 S, 10,000 ppm O ₂ , balance N ₂ ,	841	181 mg/g H ₂ S-adsorption capacity at 25 °C	Chen et al. (2022)
NC-700-2	Urea phosphate (N)	Sawdust	Impregnation, calcination at 700–900 °C for 2 h with N ₂	$100 \text{ ppmv H}_2\text{S}$	1189	54.80 mg/g H ₂ S-adsorption capac- ity at 30 °C	Ma et al. (2021)
HNMC-800	Ethylene diamine	Pyromellitic dianhydride	Hydrothermal treatment 180 °C for 12 h, pyroly- sis at 700–1000 °C for 2 h with N ₂	$0.5 \text{ vol}\% \text{ H}_2 \text{S}, 0.25 \text{ vol}\% \text{O}_2, \text{ balanced N}_2$	330.5	100% H ₂ S conversion at 150 °C	Lei et al. (2023)
JW-NC-4-900-120	Jute waste biomass (N and S)	Jute waste biomass	Carbonization at 600 °C for 1 h with N ₂ , magnetic stirring, KOH activation at 700–900 °C		2579	17.19 mmol/g H ₂ S-adsorption capac- ity at 1 bar	Ahmadi et al. (2021)
PBC ₉₀₀	H_3PO_4 (P)	Waste wood	Agitation for 2 h, pyroly- sis at 700–900 °C with N ₂ for 1 h	90 μg/m ³ Hg ⁰ , 3–9 vol% O ₂ , N ₂ balanced	1038	15,047.64 μg/g Hg ⁰ -adsorption capac- ity, 100 °C	Zhou et al. (2022a)

Table 3 (continued)

Page 13 of 26 3

Table 3 (continued	(
Catalyst	Dopant source	Carbon source + activator/ porogen	Doping experimental conditions	Gas concentration/pres- sure used	Surface area (m ² /g)	Performance	References
SMC-900	2-Thiophene (S)	Thymol blue	Template method, impregnation, car- bonization for 2 h at 700–900 °C with N ₂	27 μg/m ³ Hg ⁰ , 6% O ₂ , SO ₂ 0–1260 ppm, N ₂ balanced	933	> 97% Hg ⁰ removal at 50–150 °C	Zhou et al. (2022b)
NSDG-10	Cabbage+Thiourea (N,S)	Cabbage waste	Pyrolysis at 400 °C with N ₂ , KOH activation at 850 °C with N ₂		504	2100 μg Hg ⁰ -adsorption capacity, 100 °C	Vakili et al. (2021)
NPC-1	Urea (N)	Kelp Biomass	Carbonization at 500 °C for 2 h, KOH treatment for 6-h mixing and heating at 800 °C for 1 h with N_2	50-1000 ppm toluene	3235	691.1 mg/g toluene- adsorption capacity at 30 °C	Jin et al. (2022a))
PSAC-K-N	Melamine (N)	Pistachio shell + NaHCO ₃ and K ₂ CO ₃ activator	Impregnation with an activator, carbonization activation at 700 °C for 2 h with N ₂	110 mg/m³ toluene	1000	223 mg/g toluene-adsorp- tion capacity at 30 °C	Cheng et al. (2023)
NOHC-gr	Urea (N, O)	Biomass	Carbonization at 900 °C for 2 h with N ₂	2.5 kPa	1650	627 mg/g toluene-adsorp- tion capacity at 15 °C	Du et al. (2020)
NC900	Ammonia gas (N)	Cork biomass carbon	Pre-carbonization in N ₂ at 800 °C for 1 h, activation with NH ₃ at 700–900 °C for 1 h	3 kPa	2060	720 mg/g toluene-adsorp- tion capacity at 25 °C	Xu et al. (2021)
NHPC-CC	(NH ₄) ₂ C ₂ O ₄ (N)	Biomass + KHCO ₃	Carbonization activation at 900 °C for 1 h with N ₂	500 ppm toluene	2266	5.94 mmol/g toluene- adsorption capacity at 30 °C	Huang et al. (2023)
MUF ₂ -800	Melamine Urea (N)	Urea, Formaldehyde	Carbonization at 400 °C for 1 h with N ₂ , KOH activation at 500– 800 °C for 1 h with N ₂	3.8 kPa	2578	813.6 mg/g toluene- adsorption capacity at 25 °C	Shi et al. (2022a)

the SSA; instead, it is related to the pore size distribution (Su et al. 2021). Similarly, Bazan et al. suggested that the SSA and micropore volume are crucial for enhancing the H₂S-adsorption capacity of pistachio nutshell-based catalysts prepared via H₂O/CO₂ activation. When the total and micropore volumes of the pistachio nutshell-based catalyst were 0.19 and 0.14 cm^3/g , respectively, the H₂S adsorption was 7.1 mg/g, which further increased to 11.3 mg/g with an increase in the total and micropore volume (0.64/0.54) cm^{3}/g) of the catalyst. The SSA is another important factor that affects adsorption under wet conditions (Bazan-Wozniak et al. 2017). Nicolae et al. (2022) reported that the pore volume, rather than the SSA, affects the H₂S-adsorption performance. KOH activation of the GS_KOH_1 catalyst prepared using guava seeds by hydrothermal carbonization has more micropores, which increase the gas uptake (48.18 mmol/g; in contrast, the GS KOH 1 catalyst without KOH activation

demonstrated an uptake of only 1.52 mmol g⁻¹), compared to the carbon catalyst activated with H_3PO_4 and K_2CO_3 that exhibited micropore volumes of 0.46 and 0.58 cm³/g with H_2S -adsorption capacities of 7.1 and 11.3 mg/g, respectively (Bazan-Wozniak et al. 2017). Guo et al. also reported that the chemical activation and micropore volume of oil palm fiber-based AC enhanced the H_2S -removal performance (68/76 mg/g; KOH/ H_2SO_4 activation) compared to that achieved by physical activation (48 mg/g, CO₂ activation) (Table 1). H_2SO_4 -activated carbon has a larger micropore volume (0.28 cm³/g) than that of KOH-activated carbon (0.25 cm³/g) (Guo et al. 2007). Hence, it is clear that H_2S removal is affected by the combined effects of the SSA, pore volume (total/micro), humidity, and functional moieties.

Doping porous carbon catalysts with metal oxides can modify the physical and chemical properties of such catalysts, which would in turn improve the adsorption capacity of these catalysts for H₂S. AC was doped with various metal oxides (such as ZnO, MgO, CuO, ZnFe₂O₄, MnO_x, V_2O_5 , CoO_r , and CeO_2) to improve the adsorption and catalytic oxidation of H₂S (Table 2). Yang et al. (2020b) reported that MgO_{0.2}ZnO_{0.8}-doped AC exhibited the highest H₂S-adsorption capacity (113.4 mg/g among catalysts with different molar ratios of Mg/(Mg + Zn) at 30 °C). The H₂S-removal performance was linked to MgO; its basicity continuously increased the formation of HS⁻ for reactive adsorption on active ZnO and for its catalytic oxidation to elemental sulfur. Doping of AC with Zn and Cu oxides (i.e., $Cu_{0.5}Zn_{0.5}O/AC$) afforded 50 mg/g of H₂S-adsorption capacity at 30 °C, which is higher than that achieved with ZnO/ AC (33 mg/g). Doping with low amounts of Cu reduced the diffusional limitations in the lattice of the active of the composite phase and through the reacted overlayer-a known issue for ZnO-based sorbents at low temperatures (Balsamo et al. 2016; de Falco et al. 2018). Yang et al. (2020a) reported the use of 10 wt% ZnFe₂O₄-doped AC as a reusable adsorbent for H₂S removal. It is regenerated at 500 °C and exhibits a higher adsorption capacity (122.5 mg/g) at room temperature than that achieved with AC (5.6 mg/g)and ZnFe₂O₄ (1.6 mg/g) alone. This result reveals the synergistic effect between ZnFe₂O₄ and AC on the removal of H₂S. AC was doped with various metal oxides (such as Mn, Cu, Fe, Ce, Co, and V) to observe the effects of metal oxide doping on their H₂S-adsorption capacities. The Mn oxidedoped AC catalyst exhibited the highest H₂S-adsorption capacity (142 mg/g) among all the catalysts. This high capacity remained unaffected even after four consecutive adsorption-regeneration cycles. The SSA of all the metal oxide-doped AC catalysts increased only slightly from 876 to 905 m^2/g , which is an unusual behavior (Fang et al. 2013). The copper-oxide-doped biochar exhibited an outstanding H₂S-adsorption capacity (1191.1 mg/g) at 125 °C, wherein along with the metal oxide concentration, the microwave steam activation and calcination temperature also played a crucial role in enhancing the H₂S-adsorption efficiency (Cui et al. 2022). Zhang et al. (2016) reported an MCM-MgO-15 catalyst with the highest H_2S -adsorption capacity (2.46 g/g) along with a high total pore volume $(1.74 \text{ cm}^3/\text{g})$ (Table 2). They prepared AC from resorcinol with carbonation at 800 °C, followed by the caustic impregnation of MgO. The caustic impregnation and its loading determine the performance of the catalyst; however, MgO performed better than conventional salts did, such as Na₂CO₃, NaOH, K₂CO₃, and KOH. Hence, the surface area was not a major factor affecting the H₂S-removal performance; instead, large pores and high mesoporosity are essential for improved H₂S removal.

Heteroatom doping is considered an efficient strategy for promoting the catalytic process of carbon, such as desulfurization (Table 3). In particular, N-doped carbon can act as a basic site, enhancing the electron-donating ability of the carbon lattice, and further increasing its redox activity and corrosion resistance. Liang et al. (2020) discussed N-doped carbon with KOH activation via a calcination-induced self-assembly route, which exhibited a high SSA of 1538 m^2/g and a H₂S-adsorption capacity of 10.5 mmol/g (0 °C, 1 kPas). N-6 is responsible for the improved H₂S-removal performance of N-doped carbon. Kan et al. (2019) also fabricated the N-doped ordered mesoporous carbon (N-OMCST-700) with KOH activation; however, the hydrothermally carbonized catalyst exhibited superior performance for the selective adsorption of H₂S with an adsorption capacity of up to 13.4 mmol/g (0 °C, 1 bar). KOH activation of the catalyst increased the SSA (1575 m^2/g) and pore volume ($0.52 \text{ cm}^3/\text{g}$). Such catalysts also exhibited a high N-content (4.46 wt%). DFT (Density Functional Theory) studies demonstrated strong interactions between the N-6 and N-5 sites. In addition, the basic surface nitrogen sites also participated in the dissociation of H₂S to HS⁻ and H⁺, thus initiating the selective oxidation of H₂S to elemental sulfur. Wu et al. (2022) described N-doped AC with a high N-content (17.2%) and a high meso-pore volume, which exhibited a high breakthrough sulfur capacity (1872 mg/g) for the catalytic oxidation of H₂S under KOH activation. K₂CO₃ activation enhanced the SSA (from 187 to 2459 m^2/g) and total pore volume (from 0.255 to 1.453 cm³/g) of the N-doped hierarchical carbon compared with those of N-doped and only K₂CO₃-activated porous carbon. It also exhibited excellent H₂S removal with a sulfur capacity of 426.2 mg/g at room temperature compared to that shown by undoped porous carbon (i.e. 12.5 m/g); N-5 and N-6 acted as active sites for H₂S adsorption (Chen et al. 2021). Chen et al. (2020) also highlighted the N-doped porous carbon (NPC) with a high SSA (1419 m^2/g) and total pore volume $(0.80 \text{ cm}^3/\text{g})$; the H₂S-adsorption capacity (205.06 mg/g) is an obvious effect of K₂CO₂ activation over N-doped carbon prepared by hydrothermal carbonization. The hydrothermal temperature and duration helped increase the proportions of N-5 and N-6 in the porous carbon, which played a crucial role in H₂S removal. The proposed mechanism for desulfurization using the NPC is detailed in Fig. 5. Chen et al. (2022) developed the N-doped interconnected mesoporous carbon with H_2O_2 -assisted hydrothermal carbonization. H_2O_2 played a crucial role in H_2S removal by forming a cross-linked mesoporous structure (the mesoporous volume increased from 0.01 to 0.31 cm³/g) and increasing the numbers of abundant N-5 and N-6 sites. H₂O₂-activated N-doped carbon exhibited excellent H2S-removal performance, with a H₂S-adsorption capacity of 181 mg/g, which was five times higher than that for obtained without H₂O₂ activation. Ma et al. (2021) reported N-doped carbon with an enhanced H₂S-adsorption capacity of 54.8 mg/g, higher SSA (1189 m^2/g), and larger total pore volume (0.433 cm³/g) than those achieved using porous carbon without N-doping and

Fig. 5 Schematic illustration showing H₂S oxidation in the N-doped porous carbon (NPC) from waste PU (Chen et al. 2020)

activation. Among the N-containing groups, N-6 played a crucial role in H₂S removal. Lei et al. (2023) reported a 3D cluster like the N-doped mesoporous carbon catalyst with a high SSA (330.5 m^2/g), hierarchical nanopores, and a large N-content (8.6%; where % N-6, N-5 > N-Q, i.e., > 60). Such catalysts exhibited 100% H₂S conversion at 150 °C, with 94% sulfur selectivity. In addition, Ahmadi et al. (2021) highlighted that N-doping along with S-co-doping in carbon resulted in a high SSA (2579 m²/g), large total pore volume (1.5 cm³/g), and very high H₂S-adsorption capacity (17.19 mmol/g at 100 kPas). DFT studies confirmed the prominent role of N-5 in enhancing the adsorption energy of the molecules over the adsorbents. The S atom, as a codopant around the N-5 atom, controls the adsorption of H₂S molecules with a lower adsorption energy, indicating that physisorption is more favorable than chemisorption. S codoping (defects) plays a complementary role in controlling the adsorption mechanism of gas molecules. In addition, a higher S/N ratio results in better regeneration cycles. Thus, they established the source of novel electronic structures and, thereby, that of N-S-defected localities, both theoretically and experimentally.

Hg⁰ Removal

Hg⁰ removal can be achieved through both physi-/chemisorption, which needs high surface area and porosity to produce more active sites. To improve the Hg⁰-adsorption capacity, Liu et al. (2019) prepared seaweed-based novel ACs and demonstrated high Hg⁰-adsorption capacity (2382.6 μ g/g for SAC-800 and 2909.6 μ g/g for EAC-800 catalyst) (Table 1). They demonstrated that an increase in the carbonization temperature enhances the SSA (from 399.57 to 524.57 m²/g in the SAC and from 339.04 to 565.82 m²/g in the EAC), with improved Hg⁰-removal efficiency (from 40.4 to 88.9% in the SAC and from 34.25 to 90.7% in the EAC). The Hg⁰-removal process involves both physisorption and chemisorption with suitable SSAs, pore structures, and functional moieties on the modified AC. Yang et al. (2018) also reported that the seaweed-based modified AC afforded an enhanced Hg⁰-removal efficiency (91%). They revealed that the enhanced SSA (from 1.95 to 26.20 m^2/g) and Hg⁰-removal performance (from 12 to 29.07%) were in line with those achieved at the increased carbonization temperature. Further chemical activation (using NH₄Br) decreased the surface area of the catalyst; however, it enhanced the Hg⁰-removal efficiency, which is an obvious effect of the functional moieties (C-Br and C=O) serving as chemisorption sites. Li et al. developed a clean and modified method (a combination of microwave steam activation and H₂O₂ impregnation) to develop a porous carbon catalyst. The results suggest that microwave activation and H₂O₂ modification enhance the SSA (from to 154.92 to 433.03 m²/g in RSW10 and 108.80 to 273.91 m²/g in WSW10) and improve the pore structure (increase the pore volume from 0.217 to 0.2877 cm³/g in WSW10 and from 0.186 to 0.1860 cm³/g in RSW10) of the porous carbon (Li et al. 2021), which further facilitate the Hg⁰-removal performance of the modified catalyst (i.e. 1293.19 µg/g for WSW10 and 1485.61 µg/g for RSW10) (see Table 1). Dou et al. described that H₂O₂ modification with UV improved the SSA of the modified AC (1408.61 cm³/g), which further enhanced its Hg⁰-removal efficiency (from 61.71 to 90.04%). The maximum Hg⁰-adsorption capacity was 3636.43 μ g/g. H₂O₂ modification has a slight destructive effect on the pore structure; however, the significant increase in functional moieties (e.g.,–OH, C–O, and C=O) along with the

Fig. 6 Schematic diagram of **a** modification of AC using UV/H_2O_2 advanced oxidation process (AOP) and **b** Hg⁰ adsorption mechanism on the modified AC (Dou et al. 2023)

chemisorbed oxygen (O*) enhances the mercury-removal performance of the catalyst. A schematic of the modification mechanism of AC using the UV/H₂O₂ advanced oxidation process (AOP) and the Hg⁰-adsorption mechanism on the modified AC is shown in Fig. 6 (Dou et al. 2023). Liu et al. (2023b) reported a high Hg⁰-adsorption capacity of 2052.51 μ g/g for corn-stalk-based porous carbon developed by UV/H₂O₂ clean modification. Hence, it can be suggested that the SSA, pore volume, and functional moieties improve the Hg⁰-removal performance of porous carbon catalysts. They also demonstrated that 3% of H₂O₂ is the critical concentration to achieve a high Hg⁰-removal performance.

Wang et al. (2023a) reported a porous carbon catalyst prepared by secondary carbonation and activation with K₂CO₃, which showed SSA values as high as 2925 m²/g and Hg⁰-adsorption capacities as high as 571 mg/g. In addition, the Hg⁰-removal performance remained stable for five consecutive adsorption-desorption cycles. A micromesoporous structure with fewer macropores greatly improves the Hg⁰-adsorption capacity. The possible reaction pathways for Hg⁰ adsorption onto the layered porous carbon (LPC) are shown in Fig. 7. Song et al. (2020) demonstrated the effects of carbonization temperature and KOH activation on the Hg⁰-removal performance of anthracite-coal-based AC. They reported that the SSA increased (from 2.60 to 527.43 m^2/g) with increasing carbonization temperature and KOH activation, resulting in a catalyst with a better pore structure that afforded better Hg⁰-removal performance. Li et al. (2015a) reported different solid-waste-based porous carbons developed using microwave and steam activation, which exhibited improved SSA, pore volume (especially micro), and Hg⁰-removal efficiency (30–70%). Further impregnation with NH₄Cl decreased the pore structure and surface area, although an enhanced Hg⁰-adsorption capacity of 11,400 g/g was observed (Table 1). Wang et al. (2018a) reported HCl-modified porous carbon obtained

Fig. 7 Possible reaction pathways of Hg⁰ adsorption on layered porous carbon (LPC) (Wang et al. 2023a)

from various biochar sources with improved Hg^0 adsorption. The Hg^0 -adsorption efficiency increased from 8.2 to 100% along with a better SSA (from 29.9 to 110.1 m²/g); the macropores played a crucial role in this phenomenon.

Doping of porous carbon with metal oxides modifies its physicochemical properties, which can then be utilized to enhance the Hg⁰ removal through adsorption and catalytic oxidation (Table 2). Gao et al. (2023) reported the effects of doping with metal and bimetal oxides on the Hg⁰-removal efficiency of AC in a broad operating window (80-360 °C). Bimetal-oxide-doped AC (i.e., 6% Co_{0.5}Cr_{0.5}/AC) showed the optimal Hg⁰-removal performance (88.3%) at 240 °C; in contrast, the use of undoped AC afforded only 40% H₂S removal. This result shows the excellent tolerance of the doped catalyst to SO₂ and H₂O, which contributed to the redox cycle and synergistic effect between CrO_x and CoO_x . Consequently, a large amount of sufficiently active Co³⁺ species and surface-active oxygen were produced. In addition, the formation of a CoCrO₄ spinel was observed, which entailed the presence of abundant lattice defects, increment in the SSA and the number of active sites with a strong redox capacity, and a higher dispersion of active phases. Addition of CoO_x to CeO₂-doped biomass AC (15% Co_{0.4}Mn_{0.6}/ BAC) resulted in excellent Hg⁰-removal efficiency (96.8%) at 230 °C through adsorption and catalytic oxidation, owing to the better texture, lower crystallinity, and strong redox ability of this AC. Moreover, the synergistic effect between CoO_r and CeO_r generated more Ce^{3+} and Co^{3+} , inducing a large number of anionic defects and producing more active oxygen with oxygen vacancies (Gao et al. 2018). CoO_x-modified MnO_x-doped biomass AC afforded 98.5% H₂S-removal efficiency at 240 °C, which was higher than that achieved with undoped biomass AC (60%).

Addition of 15% CoO_r to Mn-doped biomass AC contributed to the synergistic effect, which increased the SSA and Mn⁴⁺ content, enhanced the redox ability and the strength, and restrained the MnO_x crystallization, which might be responsible for the enhanced catalytic performance and SO₂ resistance of this catalyst (Gao et al. 2019). Yang et al. (2019) reported the effect of microwave steam treatment and iron-copper oxide doping on the wheat straw (WS)-derived carbon to improve the Hg⁰-removal efficiency. The microwave steam treatment improved the Hg⁰-removal efficiency of WS-derived carbon from 20 to 70% and further enhanced it to 90.58% (2276.45 µg/g of Hg⁰-adsorption capacity) in CuFe0.3/WSWU10(500) at 130 °C owing to Cu-Fe oxide doping. The Cu-Fe active phases, chemisorbed oxygen, and lattice oxygen play crucial roles in the removal of Hg⁰. Chemisorption is the key rate-controlling step. Zhang et al. (2021) discussed the promotional effect of FeO_x and the doping effect of MnO_r on a biochar-based composite prepared by ball milling for Hg⁰ removal. The MnFe/char-BM4 catalyst exhibited >95% Hg⁰-removal efficiency at 100 °C through the physical adsorption and catalytic oxidation mechanism.

Heteroatom doping (with N, S, and P) is an effective method for modifying carbon sorbents and improving their chemical reactivity for Hg⁰ removal (Table 3). Zhou et al. (2022a) discussed the P-doped biochar (PBC₉₀₀) without any additional modification, which exhibited a high SSA $(1038.34 \text{ m}^2/\text{g})$ and large Hg⁰ adsorption $(15,047.64 \mu\text{g/g})$; in contrast, undoped BC (BC900) showed an SSA of 394.86 m^2/g and a Hg⁰-adsorption capacity of 36.58 µg/g. In addition, more organic functional groups were generated on the PBC surface, such as C-O=P and C=O. With these groups, the O-C=O group can serve as an electron acceptor, accelerating the electron-migration process for Hg⁰ oxidization. Zhou et al. (2022b) reported S-doped mesoporous carbon (SMC-900), which exhibited a high SSA (993 m^2/g) and excellent Hg⁰-removal performance (>97% at 50–150 °C) and discussed the effects of the precursor ratio and carbonization on the mercury-removal performance. The sulfur was in the form of thiophene (C-S-C) and oxidized sulfur (C-SO_x-C), and the S-content was 10.29%. However, Vakili et al. (2021) highlighted that the N- and S-doped nanoporous carbon (NSDG-10) exhibited the highest Hg⁰-removal performance (94.5%), whereas that for unmodified or nondoped carbon was 71%. These results indicate that high SSA and pore volume did not contribute significantly to high mercury adsorption because the N- and S-doped carbon showed better Hg⁰ removal despite having a lower SSA and a smaller pore volume.

VOC (Toluene) Removal

Physically and chemically activated carbon can also be used for removing toluene. Mohammed et al. (2015) reported a toluene-adsorption capacity of 238.10 mg/g for coconutshell-based AC with KOH activation. Further, the ammonia-treated AC (PHAC-AM) catalyst exhibited a decreased surface area (from 478 to 361.8 m²/g) and a reduced total pore volume (from 0.61 to 0.16 cm^3/g). However, the toluene-adsorption capacity enhanced by 10%, i.e., 357.14 mg/g. Ammonia treatment increases the number of basic surface functional groups, which further improves the affinity of AC for VOCs. Li et al. (2020a) reported a sodium lignin sulfonate-based carbon catalyst with very high toluene adsorption (> 2300 mg/g); the porous carbon was activated by metal salts. Among them, ZnCl₂-activated porous carbon exhibited the highest SSA (1524 m²/g) and mesopore volume (1092 m²/g), which facilitated VOC adsorption. In addition, many functional groups play crucial roles in enhancing the toluene adsorption. Highly porous carbon with a toluene-adsorption capacity of 1587 mg/g and an extremely high surface area (4293 m²/g) was developed using waste soybean residues with pre-carbonization, KOH activation,

and pyrolysis. The activation temperature and KOH dosage affected the SSA and total pore volume (mesopores and micropores). Porous carbon exposes the aromatic sites (e.g., phenol) for π - π interaction with toluene. Presence of metallic K in porous carbon causes extensive intercalation at the surface of graphitic microcrystals, which exposes the microscale space. The exposed aromatic π system may interact with toluene molecules through strong π - π stacking (Li et al. 2022a). Overall, the SSA, pore volume, and functional moieties play key roles in enhancing the toluene-removal rate.

Metal-doped porous carbon can also be utilized to remove toluene by modifying its physicochemical properties (Lei et al. 2020; Li et al. 2020b). The CuO-doped AC exhibited a toluene-adsorption capacity of 701.8 mg/g at 20 °C. CuO doping mainly increases the pore size, which facilitates the migration and diffusion of toluene and improves its adsorption (Lei et al. 2020). Li et al. (2020b) reported the CuCo_{0.5}/C catalyst with better performance, i.e., 90% toluene removal at 243 °C, owing to a large SSA, more chemisorbed active oxygen species, and a high ratio of Co²⁺/Co³⁺.

Toluene removal can also be achieved by using heteroatom-doped modified porous carbon. In particular, the NPC enhanced the surface charge distribution and activity of carbon, which further enhanced the adsorption performance for toluene removal (Table 3). Jin et al. (2022a) developed N-doped porous carbon (NPC-1) with an ultrahigh SSA (3235 m^2/g) and total pore volume (2 cm³/g), exhibiting a higher adsorption capacity (691.1 mg/g) compared to those reported previously (Fig. 8), which originated from the use of an alkali metal activator (KOH) and an N-dopant (urea). NPC-1 showed a three-dimensional pore structure. Micropore filling is the main mechanism of toluene adsorption. DFT analysis revealed that N-6, as an active site, promoted the adsorption capacity through an interaction mechanism. Cheng et al. (2023) also reported the effect of N-doping and activators on improving the pore structure, increasing the SSA (1000 m²/g), and enhancing the toluene-adsorption capacity (223 mg/g), which maintained 80% adsorption capacity under humid conditions. Besides, a DFT study revealed the dependency

Fig. 8 Toluene-adsorption property of NPCs (N-doped porous carbon): a Breakthrough curves for toluene, b adsorption isotherms, c comparison of adsorption capacity of similar carbon materials, and d cyclic performance of NPCs (Jin et al. 2022a)

of N-containing functional groups over the π - π dispersion and hydrophobic and electrostatic interactions, which promote toluene adsorption. Figure 9 shows the selective adsorption mechanism of toluene on the aminofunctionalized modified carbon under humid conditions. Xu et al. (2021) reported the N-doped carbon with good performance for the adsorption of toluene (720 mg/g) and high SSA (2060 m²/g). A DFT study revealed that a large number of amino functional groups (3.6%) exhibited highly strong affinity for toluene than that for N-6, N-5, and so on. Biomass-derived N-doped hierarchical porous carbon (NHPC) exhibited a large SSA (2266 m²/g), a high pore volume $(1.14 \text{ cm}^3/\text{g})$, and a particularly high toluene adsorption (5.94 mmol/g), while corncob-derived N-doped carbon with a higher total cellulose content and lower ash content resulted in a better pore activation effect (Huang et al. 2023). Du et al. (2020) reported an N-O co-doped hierarchical carbon material with a high SSA (1650 m^2/g) and toluene-adsorption capacity (627 mg/g), where the hierarchical porosity and high SSA were the key factors for physical adsorption. N-containing functional moieties significantly enhanced the chemical adsorption, while N-5 exhibited the highest affinity for toluene molecules. Shi et al. (2022a) reported N-O co-doped porous carbon with a high SSA (2784.53 m²/g), a hierarchical pore structure, high N (16.16%) and O (15.75%) contents, and excellent toluene adsorption (813.6 mg/g). DFT studies revealed that the interaction among the toluene molecules can be improved by N-O functional groups and multilayer adsorption can be achieved, wherein the optimal adsorption pore size of the N-O co-doped porous carbon was 3-7 times the dynamic diameter of toluene. These optimal adsorption pores provide pathways and adsorption sites that allow the highest adsorption capacity of toluene.

Conclusions

Different strategies have been developed to improve the airpollutant-removal performance of carbon-based catalysts, such as physical or chemical treatment/activation, metal oxide doping, and heteroatom doping. In physical treatment, CO₂ and steam played a major role in controlling the surface properties (such as SSA, pore size distribution, and pore volume), which further enhanced the removal of toxic gases/pollutants (NO_x, H₂S, Hg⁰, and toluene). Chemical treatment/activation (with acid or alkaline salts) provides more functional moieties with an improved pore structure and SSA, which enhance the adsorption of porous carbon (particularly, the adsorption capacity of H₂S, Hg⁰, and toluene). In addition, carbonization and calcination temperatures affect the pore structure of carbon-based catalysts, which is important for reactive gas adsorption during catalysis.

Metal oxide doping enhances the surface acidity and redox ability of the catalyst, which in turn enhances the SCR of NO_x and poisoning tolerance. Moreover, pre- and/or post-oxidation of the catalyst helps in improving the surface and structural properties of carbon. Co-doping with metal oxides increases the catalytic performance by broadening the reaction window and resisting poisoning. In addition, metal oxide doping with acid/base modification (i.e., oxygen functionalization/surface modification) provides high SO₂/H₂O tolerance to catalyst poisoning and enhances the catalytic performance. The basicity and synergistic effect of the carbon catalyst also help improve the H₂S-adsorption capacity, wherein the calcination temperature and activation play a crucial role. For Hg⁰ adsorption, metal oxide doping provides more active oxygen and vacancies, better redox strength, and a synergistic effect, which are beneficial for pollutant adsorption and oxidation. The enlarged pore size with increased SSA and active chemisorbed oxygen due to

Fig. 9 Selective adsorption mechanism of toluene on amino-functionalized modified biochar under humid conditions (Cheng et al. 2023)

metal oxide doping enhance the toluene-adsorption capacity of the carbon catalyst.

Heteroatom doped (N/S) carbon-based single-atom carbon leads to enhance the high stability, catalytic reaction, and/or electrocatalysis activity. Regulating the electronic structure of N-doped carbon metal catalyst at atomic level effectively enhances the catalytic activity. Heteroatom doping (with N, O, S/P, and B) plays a critical role in enhancing the catalytic properties of porous carbon. In particular, the N-content with unpaired electrons is crucial for enhancing the adsorption and oxidation of NO and NH₃ because of the abundant Lewis acid sites that promote the SCR of NO. In addition, the N-containing functional groups (especially N-6) play a significant role in promoting the SCR performance of the carbon catalyst. The synergistic effect of dual heteroatom dopants (N and O) enhances the carbon-catalyzed NH₃ SCR of NO_y. The basic surface nitrogen sites (N-6 and N-5) also participate in the dissociation of H₂S to HS⁻ and H⁺, thus initiating the selective oxidation of H₂S to elemental sulfur. N and S co-doping along with H₂O₂ hydrothermal treatment improve the SSA and pore volume, which have a significant effect on the H₂S-adsorption capacity of the carbon catalyst with a high N-5 content. P- and S-doped carbon materials enhance the SSA and pore volume, leading to high Hg⁰ adsorption. However, this is not the case for N- and S-co-doped carbon. In addition, the activator significantly enhances toluene adsorption with a modified carbon catalyst.

After exploring the development of carbon catalysts with various modifications, the following conclusions can be drawn:

- Development of new precursor materials can be explored for producing carbon catalysts with enhanced gaspollutant (multipollutant)-removal efficiency, thereby strengthening the anti-poisoning and mechanical properties through commercialization.
- 2. As the environmental concerns are attracting increasing attention, new activation methods that use renewable energy sources or develop closed-loop systems for carbon recovery and reuse are being explored.
- 3. Designing heteroatom-doped carbon catalysts with tailored properties and functionalities can help optimize their performances for specific applications. This may improve our understanding of the structure–property relationships of these catalysts. Further research efforts are required to optimize their performance and reduce costs for widespread commercial adoption of such catalysts.
- 4. In-depth understanding of the mechanisms involved in the catalytic activity of carbon materials is required.
- 5. A recovery method for used carbon catalysts is needed to conserve the valuable resources.

Author contributions Jae Hwan Yang: Conceptualization, review, editing, and supervision. Ajit Dattatray Phule: Conceptualization, writing-original draft preparation, writing-review and editing. Md. Wahad Uz Zaman: writing-review and editing. Sahar Elkaee: writing-review and editing. Seul Yi Kim: writing-review and editing. Sang Gyu Lee: writing-review and editing. Gibeom Park: writing-review and editing. All authors have read and agreed to the published version of the manuscript.

Funding This research was financially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R111A3050146 & RS-2023-00249553), the Ministry of Science and ICT (MSIT) (No. RS-2023-00218203), and Korea Ministry of Environment (MOE) as Waste to energy recycling Human resource development Project.

Data availability The authors have included all the relevant data and the source of freely available data in the manuscript.

Declarations

Conflict of interest The authors declare that they have no known competing financial or non-financial interest that could have appeared to influence the work reported in this paper.

References

- Ahmadi R, Alivand MS, Haj Mohammad Hossein Tehrani N, Ardjmand M, Rashidi A, Rafizadeh M, Seif A, Mollakazemi F, Noorpoor Z, Rudd J (2021) Preparation of fiber-like nanoporous carbon from jute thread waste for superior CO₂ and H₂S removal from natural gas: experimental and DFT study. Chem Eng J 415:129076. https://doi.org/10.1016/j.cej.2021.129076
- Anthonysamy SBI, Afandi SB, Khavarian M, Mohamed ARB (2018) A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide. Beilstein J Nanotechnol 9:740–761. https://doi.org/10.3762/bjnano.9.68
- Bai X, Han J, Niu X, Guan J (2023a) The d-orbital regulation of isolated manganese sites for enhanced oxygen evolution. Nano Res 16:10796–10802. https://doi.org/10.1007/s12274-023-5859-8
- Bai X, Wang Y, Han J, Niu X, Guan J (2023b) Engineering the electronic structure of isolated manganese sites to improve the oxygen reduction, Zn-air battery and fuel cell performances. Appl Catal B Environ 337:122966. https://doi.org/10.1016/j.apcatb. 2023.122966
- Balsamo M, Cimino S, de Falco G, Erto A, Lisi L (2016) ZnO-CuO supported on activated carbon for H2S removal at room temperature. Chem Eng J 304:399–407. https://doi.org/10.1016/j. cej.2016.06.085
- Bazan-Wozniak A, Nowicki P, Pietrzak R (2017) The influence of activation procedure on the physicochemical and sorption properties of activated carbons prepared from pistachio nutshells for removal of NO₂ /H₂S gases and dyes. J Clean Prod 152:211–222. https://doi.org/10.1016/j.jclepro.2017.03.114

- Chen W, Zhang G, Li D, Ma S, Wang B, Jiang X (2020) Preparation of nitrogen-doped porous carbon from waste polyurethane foam by hydrothermal carbonization for H_2S adsorption. Ind Eng Chem Res 59:7447–7456. https://doi.org/10.1021/acs.iecr.0c00498
- Chen L, Yuan J, Li T, Jiang X, Ma S, Cen W, Jiang W (2021) A regenerable N-rich hierarchical porous carbon synthesized from waste biomass for H₂S removal at room temperature. Sci Total Environ 768:144452. https://doi.org/10.1016/j.scitotenv.2020.144452
- Chen L, Jiang X, Chen W, Dai Z, Wu J, Ma S, Jiang W (2022) H₂O₂-assisted self-template synthesis of N-doped biochar with interconnected mesopore for efficient H₂S removal. Sep Purif Technol 297:121410. https://doi.org/10.1016/j.seppur.2022. 121410
- Cheng T, Bian Y, Li J, Ma X, Yang L, Zhou L, Wu H (2023) Nitrogendoped porous biochar for selective adsorption of toluene under humid conditions. Fuel 334:126452. https://doi.org/10.1016/j. fuel.2022.126452
- Chiang Y-C, Chiang P-C, Huang C-P (2001) Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon 39:523–534
- Cho S-H, Lee S, Kim Y, Song H, Lee J, Tsang YF, Chen W-H, Park Y-K, Lee D-J, Jung S, Kwon EE (2023) Applications of agricultural residue biochars to removal of toxic gases emitted from chemical plants: A review. Sci Total Environ 868:161655. https:// doi.org/10.1016/j.scitotenv.2023.161655
- Cui S, Zhao Y, Liu Y, Pan J (2022) Preparation of copper-based biochar adsorbent with outstanding H₂S adsorption capacity and study on H₂S removal. J Energy Inst 105:481–490. https://doi.org/10. 1016/j.joei.2022.11.004
- Damma D, Ettireddy P, Reddy B, Smirniotis P (2019) A review of low temperature NH₃-SCR for removal of NOx. Catalysts 9:349. https://doi.org/10.3390/catal9040349
- de Falco G, Montagnaro F, Balsamo M, Erto A, Deorsola FA, Lisi L, Cimino S (2018) Synergic effect of Zn and Cu oxides dispersed on activated carbon during reactive adsorption of H₂S at room temperature. Microporous Mesoporous Mater 257:135–146. https://doi.org/10.1016/j.micromeso.2017.08.025
- Dou Z, Wang Y, Liu Y, Zhao Y, Huang R (2023) Enhanced adsorption of gaseous mercury on activated carbon by a novel clean modification method. Sep Purif Technol 308:122885. https://doi.org/ 10.1016/j.seppur.2022.122885
- Du Y, Chen H, Xu X, Wang C, Zhou F, Zeng Z, Zhang W, Li L (2020) Surface modification of biomass derived toluene adsorbent: hierarchically porous characterization and heteroatom doped effect. Microporous Mesoporous Mater 293:109831. https://doi.org/10. 1016/j.micromeso.2019.109831
- Fang H, Zhao J, Fang Y, Huang J, Wang Y (2013) Selective oxidation of hydrogen sulfide to sulfur over activated carbon-supported metal oxides. Fuel 108:143–148. https://doi.org/10.1016/j.fuel. 2011.05.030
- Fidalgo B, Menéndez JÁ (2011) Carbon materials as catalysts for decomposition and CO₂ reforming of methane: a review. Chin J Catal 32:207–216. https://doi.org/10.1016/S1872-2067(10) 60166-0
- Gao L, Li C, Zhang J, Du X, Li S, Zeng J, Yi Y, Zeng G (2018) Simultaneous removal of NO and Hg⁰ from simulated flue gas over CoOx -CeO₂ loaded biomass activated carbon derived from maize straw at low temperatures. Chem Eng J 342:339–349. https://doi.org/10.1016/j.cej.2018.02.100
- Gao L, Li C, Li S, Zhang W, Du X, Huang L, Zhu Y, Zhai Y, Zeng G (2019) Superior performance and resistance to SO₂ and H₂O over CoOx-modified MnOx/biomass activated carbons for simultaneous Hg⁰ and NO removal. Chem Eng J 371:781–795. https://doi. org/10.1016/j.cej.2019.04.104
- Gao L, Yi L, Xie D, Wang H, Li C, Li L, Liu Y, Xie J, Zhou Y, Liu Y (2023) Insight into the design and construction of Cr substituted

Co-based columnar activated coke catalysts for effective and reliable removal of methylbenzene and Hg⁰ concurrently. Fuel 334:126732. https://doi.org/10.1016/j.fuel.2022.126732

- Guo J, Luo Y, Lua AC, Chi R, Chen Y, Bao X, Xiang S (2007) Adsorption of hydrogen sulphide (H₂S) by activated carbons derived from oil-palm shell. Carbon 45:330–336. https://doi.org/10. 1016/j.carbon.2006.09.016
- Guo F, Huang X, Chen Z, Sun H, Shi W (2020) Investigation of visiblelight-driven photocatalytic tetracycline degradation via carbon dots modified porous ZnSnO₃ cubes: Mechanism and degradation pathway. Sep Purif Technol 253:117518. https://doi.org/10. 1016/j.seppur.2020.117518
- Gupta VK, Saleh TA (2013) Sorption of pollutants by porous carbon, carbon nanotubes and fullerene- an overview. Environ Sci Pollut Res 20:2828–2843. https://doi.org/10.1007/s11356-013-1524-1
- Huang B, Huang R, Jin D, Ye D (2007) Low temperature SCR of NO with NH₃ over carbon nanotubes supported vanadium oxides. Catal Today 126:279–283. https://doi.org/10.1016/j.cattod.2007. 06.002
- Huang X, Tang M, Li H, Wang L, Lu S (2023) Adsorption of multicomponent VOCs on various biomass-derived hierarchical porous carbon: a study on adsorption mechanism and competitive effect. Chemosphere 313:137513. https://doi.org/10.1016/j. chemosphere.2022.137513
- Jia X et al (2022) Lotus leaves-derived MnOx/biochar as an efficient catalyst for low-temperature NH_3 -SCR removal of NOx: effects of modification methods of biochar. J Chem Technol Biotechnol 97:3100–3110
- Jiang L, Liu Q, Ran G, Kong M, Ren S, Yang J, Li J (2019) V₂O₅-modified Mn-Ce/AC catalyst with high SO₂ tolerance for low-temperature NH₃-SCR of NO. Chem Eng J 370:810–821. https://doi.org/10.1016/j.cej.2019.03.225
- Jin B, Li J, Wang Y, Yang Z, Yao X, Sun W, Lu Y, Zhu X, Zhang T (2022a) Nitrogen doping and porous tuning carbon derived from waste biomass boosting for toluene capture: experimental study and density functional theory simulation. Chem Eng J Adv 10:100276. https://doi.org/10.1016/j.ceja.2022.100276
- Jin Y, Ding S, Li P, Wang X (2022b) Coordination of thin-film nanofibrous composite dialysis membrane and reduced graphene oxide aerogel adsorbents for elimination of indoxyl sulfate. Chin J Chem Eng 49:111–121. https://doi.org/10.1016/j.cjche.2022. 01.024
- Kan X, Chen X, Chen W, Mi J, Zhang J-Y, Liu F, Zheng A, Huang K, Shen L, Au C, Jiang L (2019) Nitrogen-decorated, ordered mesoporous carbon spheres as high-efficient catalysts for selective capture and oxidation of H₂S. ACS Sustain Chem Eng 7:7609–7618. https://doi.org/10.1021/acssuschemeng.8b05852
- Kim et al (2018) Development of high performance catalytic filter of V_2O5 -WO₃/TiO₂ supported-SiC for NOx reduction. Powder Technol 327:282–290
- Ku BJ, Lee JK, Park D, Rhee H-K (1994) Treatment of activated carbon to enhance catalytic activity for reduction of nitric oxide with ammonia. Ind Eng Chem Res 33:2868–2874. https://doi.org/10. 1021/ie00035a042
- Lei B, Liu B, Zhang H, Yan L, Xie H, Zhou G (2020) CuO-modified activated carbon for the improvement of toluene removal in air. J Environ Sci 88:122–132. https://doi.org/10.1016/j.jes.2019.07. 001
- Lei G, Fan Z, Hou Y, Liu F, Wang S, Shen L, Zhan Y, Jiang L (2023) Facile template-free synthesis of 3D cluster-like nitrogen-doped mesoporous carbon as metal-free catalyst for selective oxidation of H₂S. J Environ Chem Eng 11:109095. https://doi.org/10. 1016/j.jece.2022.109095
- Li Q, Hou Y, Han X, Huang Z, Guo Q, Sun D, Liu J (2014) Selective catalytic reduction of NO with NH₃ over activated carbon impregnated with melamine at low temperature. J Fuel Chem

Technol 42:487–493. https://doi.org/10.1016/S1872-5813(14) 60025-6

- Li G, Shen B, Wang Y, Yue S, Xi Y, An M, Ren K (2015a) Comparative study of element mercury removal by three bio-chars from various solid wastes. Fuel 145:189–195. https://doi.org/ 10.1016/j.fuel.2014.12.083
- Li W, Tan S, Shi Y, Li S (2015b) Utilization of sargassum based activated carbon as a potential waste derived catalyst for low temperature selective catalytic reduction of nitric oxides. Fuel 160:35–42. https://doi.org/10.1016/j.fuel.2015.07.045
- Li B, Xiong H, Xiao Y, Hu J, Zhang X, Li L, Wang R (2020a) Efficient toluene adsorption on metal salt-activated porous carbons derived from low-cost biomass: a discussion of mechanism. ACS Omega 5:13196–13206. https://doi.org/10.1021/acsom ega.0c01230
- Li J-R, Wang F-K, He C, Huang C, Xiao H (2020b) Catalytic total oxidation of toluene over carbon-supported Cu Co oxide catalysts derived from Cu-based metal organic framework. Powder Technol 363:95–106. https://doi.org/10.1016/j.powtec.2019. 12.060
- Li Q, Hou Y, Wang J, Liu Y, Xiang N, Huang Z (2020c) Superiority of raw biomass and potassium hydroxide in preparation of ultrahigh nitrogen doping of carbon for NH₃-SCR reaction. ACS Sustain Chem Eng 8:11308–11316. https://doi.org/10.1021/acssuschem eng.0c03193
- Li Q, Hou Y, Xiang N, Liu Y, Huang Z (2020d) A new insight into the promotional effect of nitrogen-doping in activated carbon for selective catalytic reduction of NO_X with NH₃. Sci Total Environ 740:140158. https://doi.org/10.1016/j.scitotenv.2020.140158
- Li W, Jin S, Zhang R, Wei Y, Wang J, Yang S, Wang H, Yang M, Liu Y, Qiao W, Ling L, Jin M (2020e) Insights into the promotion role of phosphorus doping on carbon as a metal-free catalyst for lowtemperature selective catalytic reduction of NO with NH₃. RSC Adv 10:12908–12919. https://doi.org/10.1039/D0RA01654C
- Li Y, Liu Y, Yang W, Liu L, Pan J (2021) Adsorption of elemental mercury in flue gas using biomass porous carbons modified by microwave/hydrogen peroxide. Fuel 291:120152. https://doi.org/ 10.1016/j.fuel.2021.120152
- Li D, Yang J, Zhao Y, Yuan H, Chen Y (2022a) Ultra-highly porous carbon from Wasted soybean residue with tailored porosity and doped structure as renewable multi-purpose absorbent for efficient CO₂, toluene and water vapor capture. J Clean Prod 337:130283. https://doi.org/10.1016/j.jclepro.2021.130283
- Li Q, Liang M, Han X, Hou Y, Huang Z (2022b) Insight into the enhancing activity and stability of Ce modified V_2O_5/AC during cyclic desulfurization-regeneration-denitrification. J Hazard Mater 424:127397. https://doi.org/10.1016/j.jhazmat.2021. 127397
- Li Y, Yu J, Liu Y, Huang R, Wang Z, Zhao Y (2022c) A review on removal of mercury from flue gas utilizing existing air pollutant control devices (APCDs). J Hazard Mater 427:128132. https:// doi.org/10.1016/j.jhazmat.2021.128132
- Li S, Huang Y, Zhu H, Long J, Xiao L, Li P, Zhao L, Zhang J (2023a) Dual improvement in acid and redox properties of the FeO/OAC catalyst via APS oxygen-functionalization: high low-temperature NH3-SCR activity, SO₂ and H₂O tolerance. Fuel 341:127716. https://doi.org/10.1016/j.fuel.2023.127716
- Li X, Sun F, Qu Z, Zhu X, Gao J, Zhao G, Zhang L (2023b) Insight into synergistic effects of oxygen and nitrogen dual-dopants in carbon catalysts on selective catalytic reduction of NOx with NH₃: a combined computational and experimental verification. Chem Eng J 454:140098. https://doi.org/10.1016/j.cej.2022.140098
- Li Y, Wang Y, Dou Z, Liu Y (2023c) Removal of gaseous Hg0 using biomass porous carbons modified by an environmental-friendly photochemical technique. Chem Eng J 457:141152. https://doi. org/10.1016/j.cej.2022.141152

- Liang S, Mi J, Liu F, Zheng Y, Xiao Y, Cao Y, Jiang L (2020) Efficient catalytic elimination of COS and H₂S by developing ordered mesoporous carbons with versatile base N sites via a calcination induced self-assembly route. Chem Eng Sci 221:115714. https:// doi.org/10.1016/j.ces.2020.115714
- Lin Y, Li Y, Xu Z, Xiong J, Zhu T (2018) Transformation of functional groups in the reduction of NO with NH₃ over nitrogen-enriched activated carbons. Fuel 223:312–323. https://doi.org/10.1016/j. fuel.2018.01.092
- Liu Z, Adewuyi YG, Shi S, Chen H, Li Y, Liu D, Liu Y (2019) Removal of gaseous Hg⁰ using novel seaweed biomass-based activated carbon. Chem Eng J 366:41–49. https://doi.org/10. 1016/j.cej.2019.02.025
- Liu L, Wang B, Yao X, Yang L, Jiang W, Jiang X (2021) Highly efficient MnOx/biochar catalysts obtained by air oxidation for lowtemperature NH₃-SCR of NO. Fuel 283:119336. https://doi.org/ 10.1016/j.fuel.2020.119336
- Liu S, Feng X, Liu Z, Zhao W, Li Y, Zhang J (2023a) Nitrogen doping in porous biochar from cotton stalk with H₃PO₄ activation for reduction of NOx with NH₃-SCR at low temperatures: Characteristics and catalytic activity analysis. Fuel 332:126256. https:// doi.org/10.1016/j.fuel.2022.126256
- Liu Y, Cui S, Wu P, Liu L, Dou Z, Wang Y (2023b) Removal of gaseous elemental mercury using corn stalk biochars modified by a green oxidation technology. Fuel Process Technol 242:107621. https://doi.org/10.1016/j.fuproc.2022.107621
- Ma Z, Zhang H, Yang Z, Ji G, Yu B, Liu X, Liu Z (2016) Mesoporous nitrogen-doped carbons with high nitrogen contents and ultrahigh surface areas: synthesis and applications in catalysis. Green Chem 18:1976–1982. https://doi.org/10.1039/C5GC01920F
- Ma Q, Chen W, Jin Z, Chen L, Zhou Q, Jiang X (2021) One-step synthesis of microporous nitrogen-doped biochar for efficient removal of CO₂ and H₂S. Fuel 289:119932. https://doi.org/10. 1016/j.fuel.2020.119932
- Mohammed J, Nasri NS, Ahmad Zaini MA, Hamza UD, Ani FN (2015) Adsorption of benzene and toluene onto KOH activated coconut shell based carbon treated with NH₃. Int Biodeterior Biodegrad 102:245–255. https://doi.org/10.1016/j.ibiod.2015.02.012
- Murindababisha D, Yusuf A, Sun Y, Wang C, Ren Y, Lv J, Xiao H, Chen GZ, He J (2021) Current progress on catalytic oxidation of toluene: a review. Environ Sci Pollut Res 28:62030–62060. https://doi.org/10.1007/s11356-021-16492-9
- Nicolae SA, Louis-Therese J, Gaspard S, Szilágyi PÁ, Titirici MM (2022) Biomass derived carbon materials: synthesis and application towards CO₂ and H₂S adsorption. Nano Sel 3:165–177. https://doi.org/10.1002/nano.202100099
- Pan J, Wang L, Shi Y, Li L, Xu Z, Sun H, Guo F, Shi W (2022) Construction of nanodiamonds/UiO-66-NH₂ heterojunction for boosted visible-light photocatalytic degradation of antibiotics. Sep Purif Technol 284:120270. https://doi.org/10.1016/j.seppur. 2021.120270
- Panwar NL, Pawar A (2022) Influence of activation conditions on the physicochemical properties of activated biochar: a review. Biomass Convers Biorefin 12:925–947. https://doi.org/10.1007/ s13399-020-00870-3
- Rubel AM, Stencel JM (1997) The effect of low-concentration SO₂ on the adsorption of NO from gas over activated carbon. Fuel 76:521–526. https://doi.org/10.1016/S0016-2361(96)00221-9
- Shi W, Shi C, Sun W, Liu Y, Guo F, Lin X (2021) Dual enhancement of photooxidation and photoreduction activity by coating CdS nanoparticles on lignin-based biomass carbon with irregular flower-like structure. J Mater Sci 56:19452–19465. https://doi. org/10.1007/s10853-021-06589-4
- Shi R, Liu K, Liu B, Chen H, Xu X, Ren Y, Qiu J, Zeng Z, Li L (2022a) New insight into toluene adsorption mechanism of melamine urea-formaldehyde resin based porous carbon: experiment

and theory calculation. Colloids Surf Physicochem Eng Asp 632:127600. https://doi.org/10.1016/j.colsurfa.2021.127600

- Shi W, Hao C, Fu Y, Guo F, Tang Y, Yan X (2022b) Enhancement of synergistic effect photocatalytic/persulfate activation for degradation of antibiotics by the combination of photo-induced electrons and carbon dots. Chem Eng J 433:133741. https://doi.org/ 10.1016/j.cej.2021.133741
- Shi W, Liu Y, Sun W, Hong Y, Li X, Lin X, Guo F, Shi J (2022c) Improvement of synergistic effect photocatalytic/peroxymonosulfate activation for degradation of amoxicillin using carbon dots anchored on rod-like CoFe₂O₄. Chin J Chem Eng 52:136–145. https://doi.org/10.1016/j.cjche.2021.10.030
- Shi W, Hao C, Shi Y, Guo F, Tang Y (2023) Effect of different carbon dots positions on the transfer of photo-induced charges in type I heterojunction for significantly enhanced photocatalytic activity. Sep Purif Technol 304:122337. https://doi.org/10.1016/j.seppur. 2022.122337
- Song G, Deng R, Yao Z, Chen H, Romero C, Lowe T, Driscoll G, Kreglow B, Schobert H, Baltrusaitis J (2020) Anthracite coal-based activated carbon for elemental Hg adsorption in simulated flue gas: preparation and evaluation. Fuel 275:117921. https://doi. org/10.1016/j.fuel.2020.117921
- Su L, Chen M, Zhuo G, Ji R, Wang S, Zhang L, Zhang M, Li H (2021) Comparison of biochar materials derived from coconut husks and various types of livestock manure, and their potential for use in removal of H₂S from biogas. Sustainability 13:6262. https://doi. org/10.3390/su13116262
- Tang T, Wang Z, Guan J (2022) Electronic structure regulation of single-site M-N-C electrocatalysts for carbon dioxide reduction. Acta Phys Chim Sin 39:2208033. https://doi.org/10.3866/PKU. WHXB202208033
- Tang T, Duan Z, Baimanov D, Bai X, Liu X, Wang L, Wang Z, Guan J (2023a) Synergy between isolated Fe and Co sites accelerates oxygen evolution. Nano Res 16:2218–2223. https://doi.org/10. 1007/s12274-022-5001-3
- Tang T, Wang Y, Han J, Zhang Q, Bai X, Niu X, Wang Z, Guan J (2023b) Dual-atom Co-Fe catalysts for oxygen reduction reaction. Chin J Catal 46:48–55. https://doi.org/10.1016/S1872-2067(22)64189-5
- Tang T, Wang Z, Guan J (2023c) Structural optimization of carbonbased diatomic catalysts towards advanced electrocatalysis. Coord Chem Rev 492:215288. https://doi.org/10.1016/j.ccr. 2023.215288
- Tian W et al (2001) Heteroatom (N or N-S)-doping induced layered and honeycomb microstructures of porous carbons for CO₂ capture and energy applications. Adv Funct Mater 26(47):8651–8661
- Tuerhong T, Kuerban Z (2022) Preparation and characterization of cattle manure-based activated carbon for hydrogen sulfide removal at room temperature. J Environ Chem Eng 10:107177. https:// doi.org/10.1016/j.jece.2022.107177
- Vakili F, Rashidi A, Taghavi L, Mansouri N (2021) Single-step synthesis of N, S co-doped waste-derived nanoporous carbon sorbent for mercury vapor removal. Environ Sci Pollut Res 28:17265– 17274. https://doi.org/10.1007/s11356-020-12075-2
- Wang M-X, Huang Z-H, Shimohara T, Kang F, Liang K (2011) NO removal by electrospun porous carbon nanofibers at room temperature. Chem Eng J 170:505–511. https://doi.org/10.1016/j. cej.2011.01.017
- Wang J, Yan Z, Liu L, Chen Y, Zhang Z, Wang X (2014) In situ DRIFTS investigation on the SCR of NO with NH₃ over V₂O₅ catalyst supported by activated semi-coke. Appl Surf Sci 313:660–669. https://doi.org/10.1016/j.apsusc.2014.06.043
- Wang M, Guo Z, Huang Z, Kang F (2016) Preparation of porous carbon nanofibers with controllable pore structures for low-concentration NO removal at room temperature. New Carbon Mater 31:277–286. https://doi.org/10.1016/S1872-5805(16)60013-6

- Wang T, Wu J, Zhang Y, Liu J, Sui Z, Zhang H, Chen W-Y, Norris P, Pan W-P (2018a) Increasing the chlorine active sites in the micropores of biochar for improved mercury adsorption. Fuel 229:60–67. https://doi.org/10.1016/j.fuel.2018.05.028
- Wang Y, Zhou Y, Shen Y, Zhu S (2018b) Pyridinic N: a special group for enhancing direct decomposition reaction of NO over N-doped porous carbon. Microporous Mesoporous Mater 265:98–103. https://doi.org/10.1016/j.micromeso.2018.02.006
- Wang A, Chen W, Liu S, Lin W, Tian C (2023a) Layered porous carbon material derived from food residues and its application for elemental mercury adsorption in flue gas. Fuel 335:126876. https://doi.org/10.1016/j.fuel.2022.126876
- Wang H, Wu F, Wu L, Guan J, Niu X (2023b) Nanozyme colorimetric sensor array based on monatomic cobalt for the discrimination of sulfur-containing metal salts. J Hazard Mater 456:131643. https://doi.org/10.1016/j.jhazmat.2023.131643
- Wu J, Chen W, Chen L, Jiang X (2022) Super-high N-doping promoted formation of sulfur radicals for continuous catalytic oxidation of H₂S over biomass derived activated carbon. J Hazard Mater 424:127648. https://doi.org/10.1016/j.jhazmat. 2021.127648
- Xu X, Guo Y, Shi R, Chen H, Du Y, Liu B, Zeng Z, Yin Z, Li L (2021) Natural Honeycomb-like structure cork carbon with hierarchical micro-mesopores and N-containing functional groups for VOCs adsorption. Appl Surf Sci 565:150550. https://doi.org/10.1016/j. apsusc.2021.150550
- Xue Y, Guo Y, Zhang Z, Guo Y, Wang Y, Lu G (2008) The role of surface properties of activated carbon in the catalytic reduction of NO by carbon. Appl Surf Sci 255:2591–2595. https://doi.org/ 10.1016/j.apsusc.2008.07.167
- Yang W, Liu Z, Xu W, Liu Y (2018) Removal of elemental mercury from flue gas using sargassum chars modified by NH₄Br reagent. Fuel 214:196–206. https://doi.org/10.1016/j.fuel.2017.11.004
- Yang W, Li Y, Shi S, Chen H, Shan Y, Liu Y (2019) Mercury removal from flue gas by magnetic iron-copper oxide modified porous char derived from biomass materials. Fuel 256:115977. https:// doi.org/10.1016/j.fuel.2019.115977
- Yang C, Florent M, de Falco G, Fan H, Bandosz TJ (2020a) ZnFe₂O₄/ activated carbon as a regenerable adsorbent for catalytic removal of H₂S from air at room temperature. Chem Eng J 394:124906. https://doi.org/10.1016/j.cej.2020.124906
- Yang C, Wang Y, Fan H, de Falco G, Yang S, Shangguan J, Bandosz TJ (2020b) Bifunctional ZnO-MgO/activated carbon adsorbents boost H2S room temperature adsorption and catalytic oxidation. Appl Catal B Environ 266:118674. https://doi.org/10.1016/j. apcatb.2020.118674
- Yang M, Wang H, Jin S, Zhang R, Wang Y, Huo W, Wang X, Jin M, Qiao W, Ling L (2021) Insight into the mechanism of borondoping of carbon aerogel for enhancing the activity of low-temperature selective catalytic reduction of NO with NH₃. Catal Sci Technol 11:2057–2072. https://doi.org/10.1039/D0CY02006K
- Yao L, Liu Q, Mossin S, Nielsen D, Kong M, Jiang L, Yang J, Ren S, Wen J (2020) Promotional effects of nitrogen doping on catalytic performance over manganese-containing semi-coke catalysts for the NH₃-SCR at low temperatures. J Hazard Mater 387:121704. https://doi.org/10.1016/j.jhazmat.2019.121704
- Zhang Z, Wang J, Li W, Wang M, Qiao W, Long D, Ling L (2016) Millimeter-sized mesoporous carbon spheres for highly efficient catalytic oxidation of hydrogen sulfide at room temperature. Carbon 96:608–615. https://doi.org/10.1016/j.carbon.2015.10.001
- Zhang X, Gao B, Creamer AE, Cao C, Li Y (2017) Adsorption of VOCs onto engineered carbon materials: a review. J Hazard Mater 338:102–123. https://doi.org/10.1016/j.jhazmat.2017.05. 013
- Zhang X, Ren K, Wang Y, Shen B, Shen F, Shang Y (2021) Solventfree synthesis of MnOx-FeOx/biochar for Hg⁰ and *o* -xylene

removal from flue gas. Energy Fuels 35:15969–15977. https:// doi.org/10.1021/acs.energyfuels.1c02508

- Zhou K, Ma W, Zeng Z, Ma X, Xu X, Guo Y, Li H, Li L (2019) Experimental and DFT study on the adsorption of VOCs on activated carbon/metal oxides composites. Chem Eng J 372:1122–1133. https://doi.org/10.1016/j.cej.2019.04.218
- Zhou M, Xu Y, Luo G, Zhang Q, Du L, Cui X, Li Z (2022a) Facile synthesis of phosphorus-doped porous biochars for efficient removal of elemental mercury from coal combustion flue gas. Chem Eng J 432:134440. https://doi.org/10.1016/j.cej.2021.134440
- Zhou Q, Di G, Song T, Lu P, Xu G (2022b) Template synthesis of sulfur-doped mesoporous carbon for efficiently removing gasphase elemental mercury from flue gas. Fuel 321:124112. https:// doi.org/10.1016/j.fuel.2022.124112
- Zhu Z, Liu Z, Liu S, Niu H (1999) A novel carbon-supported vanadium oxide catalyst for NO reduction with NH₃ at low temperatures.

Appl Catal B Environ 23:L229–L233. https://doi.org/10.1016/ S0926-3373(99)00085-5

- Zhu L, Huang B, Wang W, Wei Z, Ye D (2011) Low-temperature SCR of NO with NH₃ over CeO₂ supported on modified activated carbon fibers. Catal Commun 12:394–398. https://doi.org/10. 1016/j.catcom.2010.10.028
- Zhu X, Zhang L, Zhang M, Ma C (2019) Effect of N-doping on NO₂ adsorption and reduction over activated carbon: an experimental and computational study. Fuel 258:116109. https://doi.org/10. 1016/j.fuel.2019.116109

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.