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Abstract
A non-white rot fungus, Penicillium simplicissimum (isolate 10), was investigated for its biodegradation activities towards 
toxic triphenylmethane (TPM) dyes such as Crystal Violet (CV), Methyl Violet (MV), Malachite Green (MG), and Cotton 
Blue (CB). High decolorization efficiencies of 98.7, 97.5, 97.1, and 96.1% were observed for CV, MV, MG, and CB, respec-
tively, within 2 h of incubation in the dye solutions (50 mg L−1, pH 5.0, 25 ± 2 °C). UV–visible spectral analysis of dyes 
conducted before and after treatment with P. simplicissimum indicated the occurrence of biodegradation. This was confirmed 
when enzymatic analyzes revealed induced production of manganese peroxidase (MnP, EC 1.11.1.13; 23.31 U mL−1), tyrosi-
nase (EC 1.14.18.1; 16.18 U mL−1), and triphenylmethane reductase activities (1.15 U mL−1), particularly in biodegrading 
MG. For MV and CB, increased activities of tyrosinase (20.35 and 18.74 U mL−1, respectively) were detected, whereas 
no enzyme activities were detected for CV. Dye biodegradation by P. simplicissimum led to reduced toxicity (particularly 
for MG) based on phytotoxicity and microbial toxicity assays. It was concluded that P. simplicissimum showed potential in 
biodegrading and detoxifying TPM dyes via MnP, tyrosinase and triphenylmethane reductase activities, resulting in less 
harmful treated dye solutions.

Article Highlights

• P. simplicissimum biodegraded TPM dyes via enzymatic activities
• Rapid and efficient decolourization (96.1–98.7%) were achieved within 2 h
• MnP, tyrosinase, and triphenylmethane reductase biodegrades TPM dyes
• Dye biodegradation reduced dye toxicity (particularly for MG)
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Introduction

Triphenylmethane (TPM) dyes such as Crystal Violet (CV), 
Methyl Violet (MV), Malachite Green (MG), and Cotton 
Blue (CB) account for one of the largest and most com-
monly used synthetic colorants for dyeing of textiles, leather, 
paper, pharmaceuticals, and food (Chaudhry et al. 2014; 

Jegan et al. 2016). Industrial effluents often contain high 
concentrations of dyes due to inefficient dyeing and finish-
ing processes. The release of untreated dyestuffs into water 
bodies can reduce sunlight penetration and consequently, 
interfere with photosynthetic activities and dissolved oxygen 
levels (Shedbalkar et al. 2008). TPM dyes are also recalci-
trant molecules capable of exerting mutagenic and carci-
nogenic effects on living organisms (Mani and Bharagava 
2016; Vyavahare et al. 2018; Wu et al. 2013). Therefore, 
effective treatment of wastewater is crucial in preventing 
environmental pollution.

Wastewater containing TPM dyes are conventionally 
treated via physico-chemical methods, such as membrane 
filtration, adsorption, photodegradation, chemical precipi-
tation, and reverse osmosis (Rodrigues et al. 2013; Vergili 

 * Adeline Su Yien Ting 
 adelsuyien@yahoo.com; adeline.ting@monash.edu

1 School of Science, Monash University Malaysia, Jalan 
Lagoon Selatan, Bandar Sunway, 46150 Petaling Jaya, 
Selangor, Malaysia

2 School of Chemical Sciences, Universiti Sains Malaysia, 
11800 Penang, Malaysia

http://orcid.org/0000-0002-8015-2690
http://crossmark.crossref.org/dialog/?doi=10.1007/s41742-019-00171-2&domain=pdf


274 International Journal of Environmental Research (2019) 13:273–282

1 3

et al. 2012). However, costly procedures, high chemical 
demands, and generation of toxic sludge often limit these 
approaches. An environment-friendly and cheaper alterna-
tive is the biological approach, which utilizes plants (phy-
toremediators) and microorganisms such as fungi, yeast, 
algae, and bacteria (Casas et al. 2009; Chaturvedi and Verma 
2015; Fu et al. 2013; Jegan et al. 2016). Fungi are versa-
tile natural decomposers with degradative capabilities for a 
diverse range of pollutants, such as synthetic dyes, polycy-
clic aromatic hydrocarbons, and pesticides (Agrawal et al. 
2018; Chen and Ting 2015b; Szewczyk et al. 2018). For 
dyes, effective decolorization has been reported for fungal 
species of the genera Phanerochaete, Trametes, Fusarium, 
Aspergillus and Penicillium (Ali et al. 2016; Casas et al. 
2009; Chen and Ting 2015b; Radha et  al. 2005). Their 
removal capabilities are attributed to biosorption and bio-
degradation mechanisms.

In biosorption, dye molecules are mainly bound onto the 
cell wall of live and dead cells for sequestration (Chaudhry 
et al. 2014). This process is aided by the presence of func-
tional groups with excellent binding capacities and the 
large cell-to-surface ratio of fungal biomass. Biodegrada-
tion of dyes, which occurs only in live cells, is attributed 
to the secretion of extracellular and intracellular lignino-
lytic enzymes such as laccase, lignin peroxidase, manga-
nese peroxidase, tyrosinase, and triphenylmethane reduc-
tase (Barapatre et al. 2017; Jasińska et al. 2012; Shedbalkar 
et al. 2008). These enzymes have broad substrate specific-
ity and generate free radicals to mediate dye decoloriza-
tion via reactions like demethylation, hydroxylation, and 
ring cleavage (Barapatre et al. 2017). Dye decolorization 
through biodegradation is more desirable than biosorption as 
complete mineralization may occur to yield less hazardous 
products (Shedbalkar and Jadhav 2011). For biosorption, dye 
molecules are entrapped within the biomass matrix in their 
toxic parent forms, which pose additional waste disposal 
problems.

This study evaluates the use of Penicillium simplicissi-
mum as a biological agent to adsorb and biodegrade toxic 
TPM dyes. This is a departure from the standard approaches 
of using white rot fungi, to realize the potential of non-white 
rot fungi as dye degraders. Little is known about Penicil-
lium simplicissimum in regards to dye removal (Bergsten-
Torralba et al. 2009; Chen and Ting 2015b). The scarce 
literatures available on this specific species, were studies 
by Bergsten-Torralba et al. (2009) on the decolorization 
potential of P. simplicissimum INCQS 40,211 towards azo 
dyes Reactive Blue 21, Reactive Red 198, and Reactive 
Blue 214. The other study is by Chen and Ting (2015b) 
who have documented the initial decolorization potential 
of P. simplicissimum (isolate 10) attributed to lignin peroxi-
dase and NADH–DCIP reductase towards TPM dyes (CV, 
MV, MG, and CB). Hence, this study is expected to further 

illustrate the biodegradation activities of P. simplicissimum 
in TPM dyes, using other key enzymes such as manganese 
peroxidase, tyrosinase, and triphenylmethane reductase. 
The impact and efficacy of the enzymatic biodegradation 
is further evaluated via phytotoxicity and microbial toxic-
ity assays. This will bridge the knowledge gap on the role 
of non-white fungi as dye degraders, the range of enzymes 
involved and their efficacy in reducing toxicity of TPM 
dyes. This study also determines the feasibility of using 
P. simplicissimum as a bioagent to reduce toxicity level of 
wastewaters and to ensure that the treated wastewaters are 
environmentally safe for discharge or re-use.

Materials and Methods

Culture Establishment

Penicillium simplicissimum (isolate 10) was isolated by 
Ting et al. (2011) from the metal-rich wastewater of Atomic 
Absorption Spectrometer (AAS) located at Monash Univer-
sity Malaysia. The isolate was maintained on Potato Dex-
trose Agar (PDA, Merck) at 25 ± 2 °C and sub-cultured 
periodically. Mycelial plugs from 7-day old cultures (5 mm 
diameter) were used to inoculate 100 mL of Potato Dex-
trose Broth (PDB, Merck) to yield fungal biomass after 
5 days of standing incubation at 25 ± 2 °C. The biomass was 
washed with sterile distilled water, homogenized and filtered 
using Miracloth (Calbiochem) according to the procedure 
described by Chen and Ting (2015b) to obtain “live cells”.

Dye Decolorization Tests

TPM dyes Crystal Violet (CV) and Malachite Green (MG) 
were purchased from Merck, while Methyl Violet (MV) and 
Cotton Blue (CB) were from Sigma Aldrich. The respec-
tive dye powders were dissolved in sterile distilled water 
to achieve an initial dye concentration of 50 mg L−1 [con-
centration commonly observed in industrial effluents (Lima 
et al. 2017)]. The solutions were then adjusted to pH 5 ± 0.2 
using diluted HCl and NaOH (concentration in M or N).

The dye removal experiment was initiated by inoculating 
100 mL of each dye solution (50 mg L−1) with 4.0 ± 0.1 g 
(for CV, MV and MG solutions) and 8.0 ± 0.1 g (for CB 
solution) wet weight of the biomass (homogenized mycelia). 
The amount of biomass used here were the optimum bio-
mass determined for the removal of these dyes as established 
in the earlier study (Chen and Ting 2015b). All mixtures 
were incubated with agitation at 150 rpm (25 ± 2°C). Simi-
lar incubation conditions were used for non-inoculated dye 
solutions (negative controls). Aliquots of the samples were 
collected at every 2-h interval for the first 8 h, then at 24 h. 
The samples were centrifuged at 3500 rpm for 15 min. The 
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cell-free supernatants were then evaluated for the color of 
dye left via absorbance analysis. The Tecan Infinite M200 
plate reader was used to measure the absorbance of MV, CV, 
CB and MG solutions at their respective λmax at 584, 590, 
599, and 617 nm (Chen and Ting 2015b). The decolorization 
efficiency was calculated as follow (El-Batal et al. 2015):

where Ao initial absorbance of dye (untreated); Af final 
absorbance of dye (treated).

Ultraviolet–Visible (UV–Vis) Spectral Analysis

UV-Vis spectral analysis was performed to investigate the 
occurrence of dye biodegradation by P. simplicissimum. The 
absorbance of cell-free supernatants collected from the dye 
decolorization tests were analyzed at wavelengths ranging 
from 300 to 800 nm. Absorption spectra were then plotted 
and compared for spectra peaks generated from dye solu-
tions before and after treatment with P. simplicissimum.

Enzymatic Assays as Indicators of Dye 
Biodegradation

The key enzymes responsible for dye-degrading activities, 
such as manganese peroxidase (EC 1.11.1.13), triphenyl-
methane reductase, and tyrosinase (EC 1.14.18.1), were 
assayed to establish biodegradation activities of the TPM 
dyes. The activity of manganese peroxidase was assayed by 
monitoring the oxidation of  MnSO4 at 238 nm (molar extinc-
tion coefficient, ε238 = 6500 M−1 cm−1) in a reaction mixture 
containing 1mM  MnSO4, 50 mM sodium malonate buffer 
(pH 4.5), and 0.1 mM  H2O2 (Asgher et al. 2016). Tyrosinase 
activity was detected at 420 nm by monitoring the formation 
of catechol quinone in a reaction mixture (2.0 mL) consist-
ing of 0.01 M pyrocatechol in 50 mM potassium phosphate 
buffer (pH 7.4) (Bora et al. 2004). Triphenylmethane reduc-
tase activity was detected at the respective maximum wave-
lengths of the TPM dyes (CV at 590 nm, MV at 584 nm, MG 
at 617 nm, CB at 599 nm). The reaction mixture (2.0 mL) 
contained 20 µM dye, 20 mM sodium phosphate buffer (pH 
7.0), and 0.1 mM β-nicotinamide-adenine dinucleotide, 
reduced (NADH) (Jang et  al. 2005). Reaction mixtures 
without enzyme solutions (supernatant) served as refer-
ence blanks. One enzyme unit was defined as the amount of 
enzyme required catalyzing the conversion of 1 micromole 
of substrate per min at 25°C. Enzyme activity was calculated 
using the following formula (Abd El Monssef et al. 2016):

(1)

Decolorization efficiency, DE(%) =

(

A0 − Af

)

A0

× 100%,

Enzyme activity
(

UmL−1
)

=

(

ΔA

mins
−

ΔA

minb

)

× V

� × d × v
,

where ΔA∕mins is change in absorbance per min for sample; 
ΔA∕minb is change in absorbance per min for blank; V is 
total volume of the reaction mixture (ml); � is molar extinc-
tion coefficient  (mM−1 cm−1); d is pathlength (cm); and v is 
volume of enzyme solution (mL).

Phytotoxicity and Microbial Toxicity Assays

The toxicities of TPM dyes before and after treatment with 
P. simplicissimum were evaluated by monitoring their effects 
on the growth of Vigna radiata and the bacteria Bacillus 
cereus, Staphylococcus aureus, Pseudomonas aeruginosa, and 
Escherichia coli. The seeds of V. radiata were surface steri-
lized with 10% v/v hydrogen peroxide for 10 min and washed 
generously with sterile distilled water (Ahmad et al. 2008). 
A total of 10 seeds were then placed on a Petri dish layered 
with two pieces of sterile Whatman No. 1 filter paper at the 
bottom of the Petri dish (Pandey et al. 2016). The seeds were 
immersed with either 7 mL of sterile distilled water (control), 
fungal-treated dye solutions, or untreated dye solutions on a 
daily basis (from dye decolorization tests; sterile filtered with 
0.45 µm membrane filter). The length of roots and shoots were 
recorded after 7 days (25 ± 2°C). The germination rate was 
also calculated as in Eq. 2 (Vyavahare et al. 2018):

Microbial toxicity assays were conducted using the agar 
diffusion method (Chaturvedi and Verma 2015). Sterile filter 
paper disks containing 20 µL of fungal-treated TPM dye solu-
tions were loaded on nutrient agar containing bacterial lawn. 
After incubation for 24 h at 37°C, the clear zone of inhibition 
around the disks were measured (diameter in mm). Both assays 
were also performed on untreated TPM dyes, sterile distilled 
water (negative control), and 10 µg/µL antibiotic Tetracycline 
(positive control).

Statistical Analysis

All experiments were carried out in triplicates. The data were 
analyzed by One-Way Analysis of Variance (ANOVA) using 
the Statistical Package for the Social Sciences (SPSS) software 
(version 20.0). Means were compared using the Tukey’s Hon-
estly Significant Difference test (HSD, P < 0.05), or independ-
ent t-test analysis (P < 0.05) where relevant.

(2)

Germination rate (%) =
Number of seeds germinated

Total number of seeds
× 100.
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Results

Dye Decolorization Activities of P. simplicissimum

P. simplicissimum decolorized the TPM dyes (CV, MV, MG, 
and CB) with high decolorization efficiencies (between 93.0 
and 95.8%) within 1 day of incubation under optimum con-
ditions (as established in the previous study by Chen and 
Ting (2015b)) (Fig. 1). Fungal cells decolorized MV, MG, 
and CV at similar efficiencies of 95.8, 95.80, and 94.4% 
respectively, while 93.0% of CB were removed (Fig. 1). The 
removal of TPM dyes by P. simplicissimum in this study 
occurred rapidly, with relatively high decolorization effi-
ciency observed even within the first 1 h (91.2% for MV, 
86.4% for MG, 72.7 for CV, and 65.4% for CB). Maximum 
decolorization efficiencies were achieved within 2 h for CV 
(98.7%), CB (97.5%), and MG (97.1%), and 8 h for MV 
(97.7%) (Fig. 1). Nevertheless, 2 h was sufficient to decolor-
ize MV at 96.1%.

UV–Vis Spectral Analysis

The major absorption peak present at 580 nm for untreated 
CV and 580–590 nm for untreated MV disappeared com-
pletely after application with P. simplicissimum (Fig. 2a, 
b). Similar observations were recorded for the absorption 
peaks of CB at 600 and 310–320 nm (Fig. 2c). For MG, the 
major peak at 610–620 nm decreased in intensity such that 
it nearly disappeared after fungal treatment (Fig. 2d). On the 
contrary, complete disappearance of minor peaks at 310–320 
and 420–430 nm were observed. UV–Vis spectral analysis 
was thus able to establish that biodegradation occurred as a 

mechanism of dye removal by P. simplicissimum. This was 
evident from the type of changes to the absorption spec-
tra before and after treatment with fungal cells after 1 day. 
According to Ayed et al. (2008), a proportional decrease in 
peak intensity was indicative of the occurrence of biosorp-
tion, whereas complete disappearance of major absorption 
peak or emergence of a new peak suggested biodegradation 
as chromophoric groups were broken-down. Nevertheless, 
the involvement of biosorption in dye decolorization, espe-
cially for CV, MV and MG, was implied with fungal cells 
retaining the bright colors of the dyes, as described by Casas 
et al. (2009). This corresponded with the high removal rates 
of P. simplicissimum (65.4–91.2%) for TPM dyes within the 
first hour (Fig. 1). The return of the original greenish-white 
color of fungal cells after CB treatment suggested that decol-
orization occurred mainly by biodegradation.

Enzyme Activities as Indicators of Biodegradation

Enzyme assays revealed that the activities of manganese 
peroxidase, triphenylmethane reductase, and tyrosinase 
were generally induced in cultures supplemented with dyes 
as compared to control (without dye) (Table 1). The range 
of manganese peroxidase, triphenylmethane reductase, and 
tyrosinase were 4.68–23.31, 1.15–3.85, and 16.18–20.35 U 
 mL−1, respectively compared to 0.019, 0.003, and 
0.003 U mL−1 from control (Table 1). All three enzymes 
showed enhanced activities in response to MG, whereas only 
tyrosinase activities were higher when inoculated into MV 
and CB (Table 1). This suggested that dye degradation by P. 
simplicissimum involved oxidative and reductive reactions 
catalyzed by enzymes (Jang et al. 2005; Radha et al. 2005). 
On the contrary, the levels of all three enzymes were not 

Fig. 1  Decolorization efficiency 
of live cells of P. simplicissi-
mum for 50 mg L−1 of TPM dyes 
(  ) CV (  ) MV (  ) 
MG, and (  ) CB over 24 h 
at 25 ± 2 °C. Means with the 
same letters within dye–group 
are not significantly different at 
Honestly Significant Differ-
ence  (HSD(0.05)). Bars represent 
standard error of mean (± SEM)
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significantly enhanced when exposed to CV. In CV, levels 
of manganese peroxidase, triphenylmethane reductase, and 
tyrosinase were 14.37, 2.06, and 9.65 U mL−1, compared 
to 0.019, 0.003, and 0.003 U mL−1 from control (Table 1). 
The large standard error for some of the enzyme activities 
in Table 1 could be due to variation between biomass in 
their expression of enzymes in response to TPM dyes. A 
possible solution would be to increase the number of fungal 
biomass tested.

Phytotoxicity Tests

Both phytotoxicity and microbial toxicity assays revealed 
that biodegradation of toxic TPM dyes by P. simplicissimum 
may yield degradation products with similar, higher or lower 

toxicities. The toxicity of untreated solutions of 50 mg L−1 
CV, MV, and MG towards Vigna radiata was evident with 
shorter roots observed after dye exposure (Fig. 3). In most 
cases, shoot growth was less affected than root growth, sug-
gesting that roots might have higher sensitivity towards dye 
toxicity compared to shoots. Among the four TPM dyes 
tested, CB (at 50 mg L−1) was considered as less toxic than 
others as untreated CB solutions resulted in seedlings with 
root length similar to those in control (without dye applica-
tion), and the shoots were slightly longer (Fig. 3). The dyes 
responded differently to biodegradation by P. simplicissi-
mum. MG was most effectively degraded by P. simplicis-
simum and the resulting treated dye was reduced in toxicity, 
evident with longer root lengths of Vigna radiata seedlings 
watered with the treated dye (Fig. 3). For treated CV and 

Fig. 2  UV–Vis absorbance spectra of a CV, b MV, c CB, and d MG (  ) before and (  ) after 24 h of treatment with P. simplicis-
simum at 25 ± 2 °C

Table 1  Enzyme activities in the supernatants of TPM dyes solutions and PDB (control) after treatment with P. simplicissimum for 24 h

Data is presented in mean ± standard error (±SEM)
Asterisk indicate significant difference from control based on t test (P < 0.05)

Enzyme Enzyme activity (U mL−1)

PDB CV MV MG CB

Manganese peroxidase 0.019 ± 0.004 14.366 ± 5.534 17.591 ± 9.482 23.309 ± 6.397* 4.675 ± 1.773
Tyrosinase 0.003 ± 0.002 9.646 ± 2.803 20.349 ± 3.936* 16.184 ± 4.563* 18.735 ± 4.578*
Triphenylmethane reductase 0.003 ± 0.000 2.055 ± 1.481 2.001 ± 0.788 1.153 ± 0.204* 3.854 ± 1.588
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MV, toxicity of the degradation products was similar as for 
the parent dye compounds (untreated dyes) since root elon-
gation of Vigna radiata was still inhibited (Fig. 3). The most 
significant observation was that treated CB was even more 
toxic than untreated CB, as the growth of both roots and 
shoots of Vigna radiata was inhibited (Fig. 3). Despite the 
reduction in shoot or root length, the germination rate of 
V. radiata applied with treated or untreated dyes solutions 
were not affected (100% germination), except for treated MG 
solutions (97% germination). It is concluded that the possi-
ble by-products from the biodegradation activities may have 
yielded components that are possibly detrimental to growth 
but not to the germination of seeds.

Microbial Toxicity Assays

Untreated CV, MV, and MG inhibited the growth of 
Bacillus cereus and Staphylococcus aureus as forma-
tion of large inhibition zones were observed (8.17–10.25 
and 16.08–21.25 mm, respectively) (Table 2; Fig. 4). The 

application of treated solutions of the same three dyes did 
not inhibit growth. The results suggested possible detoxifi-
cation of CV, MV, and MG. The validity of the microbial 
toxicity assay was confirmed with non-inhibited growth in 
response to sterile distilled water (negative control) and 
occurrence of inhibition zone for broad-spectrum antibiotic 
tetracycline (positive control; 22.08–31.33 mm) (Table 2). 
Nevertheless, the phytotoxicity test showed toxicity to the 
tested seeds, with only lowered toxicity for treated MG. This 
suggested that microbial toxicity assays might be less sensi-
tive than phytotoxicity tests. On the contrary, the growth of 
test pathogens Pseudomonas aeruginosa and Escherichia 
coli was not inhibited by both untreated and treated TPM 
dyes (Fig. 4).

Fig. 3  Phytotoxicity of TPM 
dyes before and after treatment 
with live cells of P. simplicis-
simum, with sterile distilled 
water as negative control. Data 
presented in mean ± standard 
error (SEM)

Table 2  Microbial toxicities 
of TPM dyes before and after 
treatment with live cells of P. 
simplicissimum with sterile 
distilled water as negative 
control and tetracycline as 
positive control

Data presented in mean ± standard error (SEM)
NI No inhibition, “–” Not tested

Type of treatments Diameter of inhibition zone (mm)

Bacillus cereus Staphylococcus aureus

Untreated samples Treated sam-
ples

Untreated samples Treated 
samples

Distilled water NI – NI –
Tetracycline 22.08 ± 0.04 – 31.33 ± 0.12 –
CV 10.25 ± 0.06 NI 17.17 ± 0.06 NI
MV 9.17 ± 0.08 NI 16.08 ± 0.02 NI
MG 8.17 ± 0.19 NI 21.25 ± 0.03 NI
CB NI NI NI NI
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Discussion

In this study, TPM dyes CV, MV, MG and CB were effec-
tively decolorized by cells of P. simplicissimum. Success-
ful decolorization of these TPM dyes are similar to other 
species of Penicillium such as P. ochrochloron (Shedbalkar 
et al. 2008; Shedbalkar and Jadhav 2011), and P. pinophilum 
(Jasińska et al. 2012), revealing the nature of Penicillium 
species as dye degraders. P. simplicissimum is now part of 
the fungal species cluster capable of degrading dye mol-
ecules, which include Aspergillus niger (Ali et al. 2016), 
Mucor mucedo (Moturi and Singara Charya 2009), Cori-
olopsis sp. (Chen and Ting 2015a), Phanerochaete chrys-
osporium (Radha et  al. 2005), and Trametes versicolor 
(Casas et al. 2009). This clearly indicated that non-white 
rot fungi also have the potential to decolorize recalcitrant 
dyes just as white rot fungi (i.e., Coriolopsis sp., Phan-
erochaete sp., Trametes sp.). The rapid decolorization rate 
of TPM dyes by P. simplicissimum is similar to the decol-
orization capacities by other Penicillium species. Accord-
ing to Shedbalkar et al. (2008) and Shedbalkar and Jadhav 
(2011), P. ochrochloron decolorized 93% of 50 mg L−1 CB 
and MG within 2.5 and 14 h, respectively. P. pinophilum 
was discovered to remove 87.1% of 10 mg L−1 MG within 
48 h, whereas P. janthinellum decolorized 150 mg L−1 CV 
at 56.9% after 24 h of incubation (Jasińska et al. 2012; Wang 
et al. 2015). Moturi and Singara Charya (2009) reported that 
Mucor mucedo removed 0.02% CV (78%) and MG (65%) 
within 15 days. Aspergillus niger took 10 days to decolor-
ize 80.9% of 10 mg L−1 CV, while complete decolorization 
of 20 mg L−1 MV by Aspergillus sp. occurred within 1 day 

(Ali et al. 2016; Kumar et al. 2011). Coriolopsis sp. removed 
97, 94, 91, and 52% of MV, CV, CB, and MG, respectively, 
within 7, 7, 1, and 9 days (Chen and Ting 2015a). The dif-
ferent dye removal rates in these studies compared to pre-
sent study may be attributed to the type of fungal species 
used, chemical structures of the dyes, and different experi-
ment parameters (e.g., pH, temperature, agitation speed, 
nutrient availability, and concentration of fungal cells and 
dyes) (Jasińska et al. 2012). In this study, homogenization 
of mycelia during the biomass preparation stage could have 
enhanced the decolorization efficiency of P. simplicissimum 
by increasing the surface area for dye adsorption (Jin et al. 
2015).

The decolorization of TPM dyes by P. simplicissimum 
presumably involved biosorption and biodegradation. 
Biosorption was deduced based on the high decolorization 
efficiencies observed at the start of the test (within the first 
1 h) (Fig. 1) and dye-colored biomass at the end (especially 
for CV, MV and MG). The initial rapid removal could be 
attributed to the availability of sorption sites on the bio-
mass surface for binding with dye molecules (Banerjee et al. 
2017). According to Bouras et al. (2017), biosorption of 
dyes on the cell surface of fungi involved functional groups 
such as carboxyl, sulphonate, amide and amine groups that 
were determined via Fourier Transform InfraRed (FTIR) 
analysis on Penicillium glabrum biomass exposed to Congo 
Red. The profiling of key enzymes in P. simplicissimum is 
not known, thus this study revealed the key enzymes respon-
sible for dye biodegradation.

It was discovered that the removal of TPM dyes (except 
for CV) by P. simplicissimum involved the enzymes 

Fig. 4  Exemplary toxicities of CV and MV towards aBacillus cereus and bEscherichia coli, before and after treatment with live cells of P. sim-
plicissimum. Sterile distilled water and tetracycline acted as negative and positive controls, respectively
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tyrosinase, manganese peroxidase and triphenylmethane 
reductase (Table 1). According to Yang et al. (2016), deg-
radation of MG by crude manganese peroxidase of Irpex 
lacteus involved N-demethylation and oxidative cleavage of 
C–C double bond. The degradative mechanisms of tyrosi-
nase for TPM dyes remains to be elucidated. Nevertheless, 
tyrosinase of Brevibacterium sp. was found to cleave the azo 
and sulfonate bonds of Reactive Red 198 (azo dye) (Francis-
con et al. 2012). Triphenylmethane reductase of Citrobacter 
sp. is known to catalyze the degradation of TPM dyes via 
NADH-dependent reduction (Jang et al. 2005). MG reduc-
tase of P. pinophilum mediated the decolorization of MG 
to yield leucomalachite green, N-demethyl-leucomalachite 
green and N-demethyl-malachite green (Jasińska et  al. 
2012). The lower specificity of triphenylmethane reductase 
for CV than for MG observed in this study has been attrib-
uted to the higher number of dimethylamino group present 
in the CV structure (Kim et al. 2008). Nevertheless, CV 
still has a relatively high decolorization, and this may be 
attributed to other enzymes produced by P. simplicissimum 
such as NADH–DCIP reductase (Chen and Ting 2015b). 
This enzyme has also been observed to render similar bio-
degradation activities towards MV, MG, and CB (Chen and 
Ting 2015b). Chen and Ting (2015b) also discovered the 
contributions of lignin peroxidase in MV and CB removal. 
Hence, all these results suggested that effective decolori-
zation of TPM dyes by P. simplicissimum may require the 
contributions of several enzymes. The decolorization of CV 
by Trichoderma asperellum was mediated by laccase, while 
CB removal by P. ochrochloron involved lignin peroxidase, 
tyrosinase, and aminopyrine N-demethylase (Shanmugam 
et al. 2017; Shedbalkar et al. 2008). Mucor mucedo decol-
orized CV and MG with the aid of lignin peroxidase and 
triphenylmethane reductase (Moturi and Singara Charya 
2009). Future studies on P. simplicissimum could investigate 
the decolorization efficiency of purified enzymes for TPM 
dyes and the influence of heavy metals on dye removal as 
industrial effluents often contain both hazardous substances.

Phytotoxicity tests revealed that the roots of Vigna 
radiata had stunted growth when exposed to untreated TPM 
dyes (particularly CV, MV and MG), while the shoots were 
unaffected. Similar observations have been reported for V. 
radiata, Brassica chinensis Tsen & Lee, and Arabidopsis 
thaliana in other TPM dye studies (Chaturvedi and Verma 
2015; Fu et al. 2013; Matpang et al. 2017). According to 
Jayanthy et al. (2014), toxic untreated dyes may impede the 
growth of V. radiata roots and leaves by reducing protein 
and carbohydrate contents. For CB, the non-toxic nature of 
50 mg L−1 untreated dye towards V. radiata in this study 
could be attributed to more prominent toxicity occurring at 
higher concentration (700 mg L−1), as reported for Triticum 
aestivum and Ervum lens Linn (Shedbalkar et al. 2008). Of 
the four TPM dyes treated with P. simplicissimum, only the 

degradation products of MG showed lower toxicities than 
the parent compound (Fig. 3). The similar or higher toxici-
ties of treated CV, MV, and CB than for untreated dyes could 
be due to partially degraded products or the formation of 
toxic metabolites during the biodegradation process. Similar 
observations were recorded for the degradation of MG by 
Aspergillus flavus (Barapatre et al. 2017), and Procion Red 
MX-5B (azo dye) decolorization by A. terreus (Almeida and 
Corso 2014). This suggests that a longer incubation period 
with fungal biomass may be required to reduce dye toxicity.

In this study, the microorganisms used in toxicity 
assays were deduced to be tolerant towards TPM dyes as 
degraded dye products that were toxic towards V. radiata 
(such as CV and MV) (Fig. 3) did not inhibit microbial 
growth (Table 2). Bacteria, especially of the Gram nega-
tive variety, have been known to tolerate dye toxicity with 
the aid of the outer membrane. This layer of the cell serves 
as a permeability barrier to impair entry of dye molecules 
into the cells, as well as act synergistically with efflux 
pumps to actively transport these molecules out of the 
cytoplasm (Stancu and Grifoll 2011). The growth of test 
pathogens Pseudomonas aeruginosa and Escherichia coli 
was not inhibited by both untreated and treated TPM dyes 
(Fig. 4), which suggested possible dye tolerance in these 
strains (Kalyani et al. 2012).

Conclusion

This study demonstrated the rapid decolorization of 
50 mg L−1 TPM dyes Crystal Violet, Methyl Violet, Mala-
chite Green, and Cotton Blue by cells of P. simplicissimum. 
Biosorption of dyes occurred at the initial stage of removal 
as high decolorization efficiencies were recorded within 2 h. 
The absence of major absorption peaks of the dyes upon 
treatment with P. simplicissimum indicated the involvement 
of biodegradation in dye removal as well. Extracellular 
enzymes such as manganese peroxidase, tyrosinase, and 
triphenylmethane reductase, secreted by P. simplicissimum, 
mediated this process. This reveals that P. simplicissimum 
also produces key enzymes that allow for degradation of dye 
molecules. The lower toxicity of dye degradation products 
(especially for treated Malachite Green) towards plant seeds 
and microorganisms suggested detoxification capabilities of 
P. simplicissimum. Hence, the fungal isolate is a potential 
candidate for the bioremediation of TPM dyes in wastewater.
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