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Abstract
Automated robotic construction of wood frames faces significant challenges, particularly in the perception of large studs and 
maintaining tight assembly tolerances amidst the natural variability and dimensional instability of wood. To address these 
challenges, we introduce a novel multi-modal, multi-stage perception strategy for adaptive robotic construction, particularly 
for wood light-frame assembly. Our strategy employs a coarse-to-fine method of perception by integrating deep learning-
based stud pose estimation with subsequent stages of pose refinement, combining the flexibility of AI-based approaches with 
the precision of traditional computer vision techniques. We demonstrate this strategy through experimental validation and 
construction of two different wall designs, using both low- and high-quality framing lumber, and achieve far better precision 
than construction industry guidelines suggest for designs of similar dimension.

Keywords  Adaptive robotics · Robotic construction · Perception · Machine learning

1  Introduction

Traditional approaches to wood frame construction and pre-
fabrication depend heavily on manual labor and assembly-
line processes, in which parts are moved from station to 
station and assembled by teams of workers with high-contact 
tools like mallets, nailers, and tape measures. While well 
understood and suitable for high-mix, low-volume produc-
tion, these approaches can be slow and error prone. While 
there is growing exploration into how automation and 
robotization can accelerate the pace of wood frame con-
struction, the industry faces hurdles in widespread adoption 
and standardization. Notably, existing commercial solu-
tions optimized for high-volume, low-mix scenarios and 
standardized designs face significant challenges for accu-
rate fabrication of highly varied designs amidst the natural 
variability and dimensional instability of wood (Lachance 
et al. 2022). This emphasizes a need for adaptive automated 
systems that can handle the variation in materials, parts, 

and processes through the use of perception and modify 
their actions accordingly. Although robotic solutions in this 
area are often limited to one-off proofs-of-concept, there is 
a thriving discussion on adaptivity which can help to address 
these challenges.

In this work, we explore how a multi-modal, multi-stage 
perception paradigm can enable the automation of wood 
light-frame assembly tasks. We leverage a strategic coarse-
to-fine method of perception, employing consumer-grade 
sensors, to iteratively refine the precision and adaptability 
of a robotic construction system specifically geared toward 
large studs. We demonstrate our approach on a real-world 
construction project using both low- and high-quality fram-
ing lumber, requiring the system to be adaptive and flexible, 
as shown in Fig. 1. We focus on factory-based construction 
where components or structures are first assembled inside a 
factory before being installed onsite.

We also employ a basic form of human–robot col-
laboration that balances automation with human skill. In 
our setup, a robot is responsible for picking, placing, and 
holding studs while a construction worker performs the 
tasks of loading, inspecting, and fastening them. While 
this introduces several challenges for variability and inac-
curacy, it embraces the benefits of an adaptive robotic 
construction system, discussed later in more detail. This 
division of tasks also reflects an aspiration to integrate our 
process into an existing factory-based construction line by 
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replacing a manual wall framing station with a robotized 
one. Our approach aims to facilitate adoption of automa-
tion in such environments without the immediate need for 
full autonomy, and leverages the dexterity and mobility 
that skilled human workers bring to the table.

Our work contributes the following:

•	 A novel multi-stage perception strategy including 
deep-learning based models trained using synthetic 
data capable of finding, measuring, and manipulating 
wooden studs with the precision required for industrial 
construction.

•	 Experimental validation of the need for a multi-stage 
perception strategy and an experimental demonstration 
of adaptive robotic construction of two wood frame 
walls using both low and high-quality framing lumber.

•	 A strategy for incorporating robotic wall framing 
into existing factory-based construction lines by 
transitioning from manual to robot-assisted assembly 
stations.

•	 Finally, a new benchmark for positional error limits in 
the robotic construction of wood frames.

The paper is structured as follows. We first review prior 
work in automation for factory-based construction and 
highlight challenges and opportunities for automated 
construction workflows. We then provide an overview of our 
physical workcell setup and dive into our method of multi-
stage perception. We conduct experiments for each stage of 
perception and demonstrate the precision of our adaptive 
robotic construction system for two real-world walls, using 
both low- and high-quality framing lumber. Finally, we 
discuss insights gleaned from this work and future work in 
robotic construction.

Note that the term pose is used throughout this paper in 
its robotics context, referring to the 6-dimensional combina-
tion of position and orientation.

1.1 � Related work

Wood is a common and natural construction material that 
curls, warps, expands, and deforms. Additionally, there 
are no set standards for construction tolerances in wood 
framing, though most sources suggest limiting vertical 
and horizontal framing error to <1/4 in (6.35 mm) per 8 ft 
(2.44 m) for manual construction (National Association of 
Home Builders 2022; Ballast 2007; Means 2008). While the 
manufacturing industry typically expects part dimensions 
and assembly conditions to be extremely precise (sub-
millimeter), the wooden lumber used in construction are 
imprecise and dimensionally unstable, posing significant 
challenges for automation. To that end, automated wood 
frame prefabrication is typically limited to tasks like material 
preparation (i.e., cutting or shaping parts) and assembly of 
standardized designs; high-mix scenarios and dexterous 
tasks still depend primarily on manual labor (Lachance et al. 
2022). Adaptive automation systems, however, could help to 
navigate the inherent variability and dimensional instability 
of wood and not only reduce construction error but set a 
modern standard for construction tolerances in robotic wood 
framing.

The challenges of robotic wood frame construction are 
the subjects of ongoing research. Pioneering research at 
ETH Zurich has demonstrated digital construction of many 
parametrically designed wood frame assemblies, mitigating 
some of the challenges above by employing high-quality 
framing lumber (Eversmann et  al. 2017; Thoma et  al. 
2018; Willmann et  al. 2015; Leung et  al. 2021). Other 
researchers have attempted to reduce construction error 
by leveraging motion planning for large, high-aspect ratio 
framing elements (Sucan et al. 2012; Gandia et al. 2018), 
offsite prefabrication and adaptive machining processes to 
control the geometry of wooden parts (Wagner et al. 2020; 
Pedersen et al. 2021), and mechanically or force compliant 
joining techniques (Apolinarska et al. 2021; Lewis et al. 
2018). Menges (2015) and Brugnaro et al. (2016) makes 
a theoretical argument to embrace the material realities of 
wood and adopt a sensor-driven approach wherein both the 
available materials and the fabrication process influence 
the final product. Similar work has focused on scanning 
unpredictable natural materials during the assembly process 
(Vasey et al. 2016) and on developing a database of 3D 
scanned parts (Furusho et al 2021; Wu and Kilian 2018; Qi 
et al. 2021) to optimize their placement in an assembly with 
respect to design goals and previously placed parts.

In the broader scope of adaptive robotic workflows, 
computer vision has been implemented to great effect. 

Fig. 1   Mid-assembly snapshot for wall with cantilever detail and 
high-quality lumber. Shows stud in grippers after measurement 
stages, but before placing stage
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This is especially true for grasping and bin-picking tasks 
in warehouse robotics, where an RGBD camera is often 
used to adaptively pick objects of interest from structured 
or unstructured environments. Du et  al. (2021) have 
conducted a comprehensive review of this area of computer 
vision-based robotic grasping processes, and identify 
object localization, pose estimation, and grasp estimation 
as the core components to achieving this task. Many pose 
estimation models are trained on synthetically generated 
data, constructed by simulating different views or positions 
of 3D CAD models (Litvak et al. 2019; Ma et al. 2020). 
While many pose estimation models focus on small-scale 
objects, our research extends those techniques to the larger 
scale required for construction materials, drawing inspiration 
from Tish et al. (2020) and their strategy for adaptive robotic 
construction of large facade panels.

In comparison to previous approaches, our approach to 
robotic wood frame construction focuses on harnessing 
the latest AI techniques to enable a more flexible work-
flow capable of dealing with the uncertainty inherent to 
working with wood as a material and alongside a manual 
workforce. We use deep-learning perception techniques 
to locate studs in the workspace, but augment these tech-
niques in a multi-stage strategy with more traditional 
approaches to enable the higher precision required for our 
target tasks. Our approach is able to handle wood studs 
of varying sizes, texture, and shape. We believe that the 
use of deep-learning based techniques makes our approach 
more suited to the variability of the wooden studs and 
the variability in the environment as well. Finally, we 

demonstrate in an experimental robotic workcell that our 
approach achieves significantly higher precision for con-
struction of wood frames than industry guidelines suggest, 
as shown in Fig. 7.

2 � Workcell setup

To demonstrate the efficacy of these techniques, we chose 
the task of constructing full-size wood frame walls using 
both high- and low-quality framing lumber (see Sect. 4). 
We then designed and built a robotic workcell integrating 
industrial robots, sensors, end effectors, and auxiliary 
equipment needed to execute such a task, as shown in 
Fig. 2. We mount a KUKA KR60 industrial robot on a 
KL1000 linear unit with stations for picking and placing 
situated in front of it. A picking table, from where studs 
are picked up, is horizontal while the placing or assembly 
table is tilted 80◦ off horizontal to improve its reachability 
by the robot. The end effector is pitched 5 ◦ on the flange 
X-Axis to improve singularity avoidance and two pairs of 
custom two-stage jaws attached to Schunk PSH grippers 
are mounted at 45◦ on the flange Y-Axis. Additionally, 
an ATI Force/Torque sensor is mounted between the end 
effector and the robot flange. We use a closed-source 
robotics research platform to both simulate and drive our 
robotic construction process in the real world, creating a 
digital twin of the workcell, robots, sensors, fixtures, and 
environmental features (Koga et al. 2022).

Fig. 2   Workcell layout in simulation with detail of end effector and wall with doorway condition
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2.1 � Camera configuration

At the core of our multi-stage perception strategy is a 
comprehensive vision system. An overhead camera, 
mounted above the picking station, provides an “eye-in-
the-sky” view of the picking area. This camera is used 
for the initial perception stage of stud pose estimation. 
To capture a 2.74 m (9 ft) stud with 250 mm of buffer 
on either side, the overhead camera, which had a depth 
field of view (FOV) of 70◦ × 55◦ , must be mounted at 
least 4.3 m above the table, which is quite far from the 
part but still within the 9 m working range of the camera. 
We mounted it to a ceiling truss 4.67 m above the table. 
Further engineering implications of mounting the camera 
at this height are discussed in Sect. 3. To reduce reflections 
that affect depth readings, the table and surrounding floor 
area are covered with black fabric. For the subsequent 
stages of pose refinement, two additional cameras are 
needed. A tool camera is mounted in an “eye-in-hand” 
configuration on the end effector to capture close-up, 
high-accuracy depth images when grasping. A sideways 
camera is mounted to the side of the pick table to measure 
the offset of a stud held in the grippers. The stud to lens 
distance for both cameras is maintained at roughly 600 mm 
for optimal imaging.

The L515 LiDAR camera, shown in Fig. 3, was chosen 
for its high maximum range and reduced depth error over 
long distances. To discern between the common nominal 
lumber types of 2 × 4 ( 38 × 89 mm), 2 × 6 ( 38 × 140 mm), 
and 2 × 8 ( 38 × 184 mm), the depth error at a 4 m distance 
needed to be less than 22 mm. The L515 depth meas-
urements have an error and standard deviation less than 
15 mm at distances up to 9 m. While multiple LiDAR cam-
eras in the same workcell can cause interference issues, 
we observed few problems due largely to physical line of 
sight obstructions.

2.2 � Studs and studpacks

In production, studs are manually loaded by a human worker 
onto the picking table (1 to 4 studs at once) following a 
known sequence and placing them near the center of the 
table; those parts are, later, picked up and manipulated by a 
robot. Moreover, the absence of fixtures or automated part 
feeding systems means that parts can be loaded randomly 
onto the picking table, posing challenges for traditional, 
fixed automation systems that depend on precision and 
consistency. Instead, perception is required to identify 
and locate parts. This approach is core to the concept of 
adaptive robotics, wherein sensing and artificial intelligence 
offer flexibility to a robotic workcell. This approach helps 
smooth the gap between manual and automated processes, 
incorporating the skills of an existing workforce at the ends 
of a robotized construction process. This suggests a path 
for quicker adoption of automation in industry, promoting a 
collaborative rather than fully autonomous or fixed approach.

We also group adjacent studs that share a primary axis, 
as shown in Fig. 8, using contact graph analysis, allowing 
them to be treated as a single component—a studpack—
once preassembled and screwed together by a construction 
worker. While studpacks are a common design feature in 
wood framing, walls are normally built one stud at a time, 
rather than with in groups. In this work, there are several 
advantages. This strategy decreases the total number of studs 
and increases the diversity of their geometrical arrangements 
in the assembly. For workers, this means different parts can 
be more easily distinguished during loading and grouped 
parts be prefabricated at a manageable human-scale, in terms 
of total mass and dimension. For perception, AI models must 
be trained on a somewhat larger dataset of unique parts. 
The grouping strategy employed: balances the maximum 
payload of the robot and its effect on reach, since many studs 
must be placed near the extremities of the robots Cartesian 

Fig. 3   Left: Detail photo showing entire end effector, tool camera used for centerline estimation stage, and two-stage dual grippers with the 
shortest stud grasped at its center. Right: Sideways camera is shown measuring the in-hand Y-offset of a typical long stud
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range; attempts to respect human ergonomics and ensure 
a manageable carry weight for workers during loading, 
resulting in part masses that ranged from 1 to 25 kg; and 
tries to provide a graspable region on each part that fits 
within the gripper jaws and ensure that the grippers can 
open after placing a part without colliding with an adjacent 
one. Additionally, the resulting studs and studpacks vary in 
length from 0.5 to 2.6 m and arrangement, with L, U, I, and 
C-shaped cross-sections for studpacks composed of two to 
five individual studs. Per the design, all parts feature only 
square, or orthographic, end cuts.

2.3 � Assembly process

The assembly process is diagrammed in Fig. 4. For each 
stud loaded into the picking area, the automated system then 
estimates its pose using the overhead camera and estimates 
its centerline using the tool camera. The robot then picks up 
the stud and transports to the sideways camera to measure 
the in-hand offset, then to the placing station for final plac-
ing while monitoring contact; the robot and control system 
then halt. With the robot now acting as a fixture, a human 
worker enters the workcell and visually inspects the part 
for pose errors and provides measured corrections to the 
robot, repeating as needed. When complete, a worker located 
safely behind the placing table then fastens the studs to the 
plywood substrate, driving screws into the studs through 
labeled, predrilled holes. Note that the construction draw-
ing is printed onto both surfaces of the plywood at 1:1 scale, 
serving as a visual aid for these workers. Once the worker 
is finished, they exit the workcell and the robot releases the 

stud, retracts the end effector, and returns to the picking 
table. This process then repeats until all parts are assembled.

3 � Multi‑stage perception

Two challenges in the development of adaptive robotic 
assembly technologies for construction are the large scale 
of the parts being assembled and the relatively tight toler-
ances in the assembly. As noted above, a typical tolerance 
in the construction of wood frames is roughly 6 mm, which 
may seem easy to achieve. However, this dimension repre-
sents roughly 0.22% of the length of a standard 2.74 m (9 
ft) beam. This very small ratio of tolerance to overall length 
is a challenge for many perception technologies, but espe-
cially for vision systems, which can be affected by sensor 
noise at large distances and restrictions on image resolu-
tion. Moreover, capturing such large studs requires cameras 
to be positioned further away, reducing pixel accuracy and 
complicating the assembly process.

3.1 � Coarse to fine

To tackle these challenges, we developed a multi-stage 
perception method which progressively increases resolution 
along critical dimensions and refines pose estimations, as 
shown in Fig. 5. This “coarse-to-fine” strategy has several 
advantages. It allows the system to balance the flexibility 
of the AI-driven first stage with the accuracy of traditional 
methods in subsequent stages. Thus, each stage is highly 
specialized in one aspect of the pose estimation process, 

Fig. 4   Robotic construction process starting from top left. Shows robot actions, such as Move To Home, perception stages, such as Estimate 
Pose, and devices in the workcell, such as Robot and Overhead Camera 
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making the overall process robust to the variability of wood 
and able to achieve the high precision required for robotic 
construction tasks. This nuanced approach of trading off 
flexibility and precision at different stages addresses the 
unique challenges of robotic wood frame construction and 
leverages the strengths of both AI-driven and traditional 
measurement techniques.

First, we employ a deep learning model for initial pose 
estimation using the overhead camera. We then refine the 
X, Y, and Rz components of the initial pose by measuring 
the centerline of the stud using the tool camera before it is 
grasped and measuring the in-hand offset of the stud using 
the sideways camera after it is grasped. Given that the stud 
lies flat on a table, the Z component of its position relative 
to the table is equal to its depth (assuming it’s accurately 
identified), while both the Rx and Ry components of its 
rotation are nearly zero and may be ignored. Once a stud 
is picked accurately, we can generally assume it will be 
placed accurately, however, a final stage of force-based 
contact detection was added to mitigate calibration error and 
stack-up of errors caused by dimensional variation of studs 
and assembly tolerances.

3.2 � Initial pose estimation

The initial pose estimation stage locates parts on the table 
using a depth image captured from a ceiling-mounted 

camera. This image shows the entire stud and is used to 
approximate its pose prior to further stages of refinement.

The adaptive assembly process begins with a deep 
learning-based pose estimation algorithm, described 
in Koga et al. (2022). This algorithm uses a DenseNet 
architecture to regress a depth image taken from the 
overhead camera into a 6-DOF pose for the stud in 
the world frame, a technique that has demonstrated 
effectiveness in a variety of AI-driven perception tasks 
(Jégou et  al. 2017). Note that we have adapted this 
implementation to return a single grasp pose at the top 
center of the stud, rather than infer multiple possible 
grasp poses from a single image. The model is trained 
on simulated data, generated by randomly placing the 
CAD model of the stud in the picking area, capturing a 
depth image using the overhead camera, converting this 
to a depth-thresholded orthographic point cloud to remove 
background objects (such as the table) and isolate the 
stud, and then by computing a grasp proposal for the stud 
therein. This proposal coincides with the 3D center and 
orientation of the point cloud, to which we add half the 
depth of the stud to get its top for grasping downstream. 
As described in Koga et al., this training step is performed 
600,000 times for the set of parts in a given assembly and 
takes roughly 12 h on a Nvidia V100 GPU. A typical point 
cloud derived from this depth image of a stud is shown in 
Fig. 6. The simulation incorporates Perlin noise to bridge 

Fig. 5   Left to right: Overhead perception, centerline estimation, and offset estimation showing pose of camera relative to stud (top) and typical 
thresholded depth image (bottom) for each stage
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the gap between synthetic and real-world data, ensuring 
the model’s robustness in real-world applications.

However, the perception model architecture is constrained 
to 256 × 256 pixel depth images, which, at the time, 
could not easily be increased. In bin-picking or small-
scale assembly tasks, this resolution normally provides 
an acceptable degree of accuracy balanced with training 
efficiency. However, at the distance of our overhead camera, 
described in Sect. 2, the accuracy of the pose estimates is 
considerably low. Each pixel in the depth image represents 
a 14.4 mm square on the table, accurately locating an edge 
or a corner becomes unfeasible, as this dimension is greater 
than our assembly tolerances and industry guidelines.

Acknowledging these limitations, we opted for a multi-
stage approach that aligns with the realities of current 
factory environments, where implementing advanced, high-
resolution systems might not be immediately feasible due 
to cost, complexity, or integration challenges. Although 
this approach may seem less sophisticated than a single 
AI-driven stage, it allows for the use of readily deployable AI 
models supplemented by traditional perception techniques. 
Moreover, this approach could facilitate the adoption of 
automation in real-world manufacturing environments and 
enable incremental improvements alongside advances in 
AI and sensor technology. With the availability of higher 
resolution images, such as 512 × 512 pixels, or industrial-
grade sensors, it may be possible for pose estimates provided 
by this stage to be accurate enough that subsequent stages of 
refinement can be avoided entirely.

In our experiments, we found that subsequent stages of 
perception provided acceptable results as long as the initial 
pose estimate was within 150 mm for X and Y and within 15◦ 
for Rz relative to the center of the table. The pose for studs 
positioned near the edges of the table proved more difficult 
to estimate using the chosen method, suggesting an optimal 
region of interest within the camera’s view (and smaller than 
we initially expected). Hence, we defined the loading area 

carefully so that studs would start within this region. Then, 
when we encountered an obviously incorrect estimate, we 
simply manually relocated the stud within this region and 
tried again.

3.3 � Centerline estimation

The centerline estimation stage ensures accurate picking by 
capturing a depth image with the tool camera from above 
the picking table origin or previously pose. This image 
shows an uninterrupted section of the stud’s grasping area, 
allowing for the calculation of the stud’s centerline for 
precise picking.

Because studs are generally much larger than the 
captured image, they appear to clip at the edges. The center 
and rotation estimation are achieved through a two-stage 
principal component analysis (PCA) of the point cloud 
returned from the depth image from the tool camera. The 
first stage is used to transform the point cloud into an axis-
aligned 3D space and to throw out any points that exceed our 
variance threshold. The second stage is performed on the 
transformed point cloud derived from the first analysis. The 
first eigenvector from this analysis gives the vector of the 
centerline of the stud, with which we can refine Rz. Using 
the mean of the point cloud and the known position of the 
tool camera, with which we can refine the X component 
of the stud’s center. The result of this process for a typical 
studpack is shown in Fig. 6.

This two-stage process is useful for removing artifacts 
from the camera frame in the point cloud. Once transformed 
into the centered and axis-aligned space from the first 
analysis, a box clipping method trims the parallelogram-
shaped point cloud into a rectangle to maintain the accuracy 
of the centerline vector estimation. The need for this 
trimming process is mitigated by aligning the camera’s axes 
with the stud’s axes, estimated using the ML process. This 
process of alignment is not possible in every circumstance, 

Fig. 6   Left, top and bottom: Example point cloud for a typical stud, converted from a depth image taken by the overhead camera during initial 
pose estimation stage. Right: Example point cloud for a typical studpack showing estimated grasping pose after the centerline estimation stage
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however. In the rare case that a notch or other feature 
produces a non-continuous width in the camera view, a 
similar method is used to estimate the center and rotation of 
the stud from its rectangular bounds, rather than relying on 
the PCA analysis. In this analysis, the centerline is assumed 
to be parallel to the long edges and the center estimation is 
the midpoint of the diagonal.

For short studs (<600 mm) that can easily fit into the tool 
camera frame, a visual servoing method is used to ensure 
that the entire stud is visible before starting the refinement 
process. The method checks whether an object exists at the 
edge of the depth image and, if so, steers the robot above the 
previous position and in the direction of the violated edge. 
The estimated center and on-table rotation are used as the 
target point for the picking operation. While an accurate Z 
coordinate of the center point is typically returned by the 
function, we use the known heights of the pick station table 
and the stud, extracted from their CAD models, instead to 
prevent collisions with the picking table.

3.4 � In‑hand offset estimation

The in-hand offset estimation stage ensures accurate 
placement by using a sideways-mounted camera to capture 
a a depth image of one end of the stud. Using this image, we 
can measure the distance of the end of the stud to the grasp 
location, ensuring the stud is placed accurately based on 
where it was grasped.

With the stud firmly grasped, the Y component of the pose 
can be refined by measuring the offset along the longitudinal 
axis of the stud. One end of the stud is gradually passed in 
front of the sideways camera and stopped when its bottom 
edge reaches the horizontal centerline of the image, using 
traditional depth thresholding and edge detection techniques 
to do this. From this position, we subtract the Z component 
of the camera position from that of the Tool Center Point 
(TCP), thus measuring the distance from the TCP to the 
lower edge of the stud. Ideally, because the stud is grasped 
at its geometrical center, this distance is equal to half the 
total length of the stud. So, to calculate the actual in-hand 
offset from the ideal, we simply subtract half the length of 
the stud from our measurement. This offset is then added 
to Y component of the grasp transformation matrix, which 
locates the grasp in the coordinate system of the stud, and 
enables accurate placing downstream.

Since we have carefully measured and cut studs to their 
designed lengths ahead of time, we need only perform this 
measurement once. In a scenario where cut lengths are 
not guaranteed to be accurate, both ends of the part must 
be measured either simultaneously, such as with a second 
camera, or sequentially, such as by flipping the part and 
repeating this process.

3.5 � Force‑based contact detection

The force-based contact detection stage further ensures 
accurate placement against an imperfect work surface by 
monitoring contact forces using a force–torque sensor on the 
end effector. This ensures the part securely abuts the table or 
adjacent parts before being fastened.

Before placing a stud, we assume that its pose in the 
gripper is well known, and that both the end effector and 
place table have been well calibrated prior to program start. To 
compensate for any remaining translation and rotational error 
(<3 mm, 0.1◦ ), we implement contact monitoring. During 
placing, the stud is translated along a series of approach 
vectors towards its final pose until it either reaches that pose 
or abuts the table or an adjacent stud, at which point a force-
monitoring algorithm identifies that contact has been made 
and halts the motion command. After the robot has stopped 
moving, the stud is considered “placed”.

To compensate for both sensor bias and gravity and to iso-
late contact forces on each approach, we first take a contactless 
reading from the sensor then subtract it from subsequent read-
ings. To filter noise and identify an upward trend consistent 
with contact, we use an exponentially weighted moving aver-
age for each force–torque component and their magnitudes. 
Taking advantage of some material compliance in the end 
effector, we also allow the robot to press the stud against the 
table and “flatten” any rotational errors caused by deflection in 
the end effector or due to poor calibration. We also subtract the 
actual position of the stud from its design position to calculate 
the accumulated global drift of the assembly.

3.6 � Final assurances

To verify the precision of stud placement after the previous 
stages, a human worker conducts a visual inspection of the 
stud before the robot releases it, as noted in Sect. 2. In the event 
of a minor error, the worker measures it by hand and inputs the 
necessary Cartesian offsets into the control terminal, which the 
robot applies after they exit the workcell. This corrective loop 
continues as needed. For severe errors, such as a collision or 
incorrect part orientations, the worker inputs a reset command, 
prompting the robot to return to the pick table, release the part, 
and restart the entire process. While we intend to automate this 
stage in future work, it was largely unnecessary in practice due 
to the high accuracy of previous stages (Figs. 7, 8).

4 � Experiments

We conducted experiments in simulation and reality to eval-
uate the efficacy of our method. We assess each perception 
stage by having the robot pick up a stud and place it in a 
known, albeit randomized, location ten times, running its 
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estimation function ten times. We then construct two light-
frame walls to demonstrate the practical application of this 
technology.

4.1 � Stage evaluation

Two conditions were tested for the centerline estimation 
experiment: one where the overhead perception stage 
provided a valid result and the camera can be “aligned” to 
the stud; and another where it failed and the camera must 
be “centered” over the table. This allows us to capture the 
shortest distance between the actual centerline of the stud 
and the estimated center point, in addition to any errors in 
on-table rotation (Rz). For the in-hand offset estimation, the 
stud was grasped from known locations along the length 
of the studpack and passed in front of the fixed camera as 
previously described.

These experiments highlight the necessity and effective-
ness of a multi-stage approach, as in Table 1. In the initial 
pose estimation stage, the average error was 2.15 and 11.08 
mm along the X and Y axes. Additionally, results showed 
considerable variance, with 14.01 and 76.31 mm variance 
for X and Y axes and 0.05◦ for Rz. Through the subsequent 
centerline and offset estimation refinements, we reduce these 
errors to <1 mm in both positional dimensions and achieving 
nearly perfect rotational estimations. The precision of the 
results also improves dramatically, with a full variance of 
results in X and Y of 4.17 and 2.73 mm, respectively, and a 
very low standard deviation across the board. Note that these 
figures are well below the established error limits suggested 
for the construction of wood frames.

When loading studs onto the pick table, their shortest 
and longest edges were aligned perpendicular ( ±15◦ ) to the 
world X and Y axes. This setup limited the number of pixels 
available for Y-estimation during overhead perception, as 
shown in Fig. 9. Interestingly, the in-hand estimation error 
is 43% that of the centerline estimate despite its pixel resolu-
tion being slightly larger.

4.2 � Wall construction

We built two types of walls: a 1.83 × 2.74 m ( 6 × 9 ft) wall 
with a doorway header condition and a 2.74 × 2.74 m ( 9 × 9 
ft) wall with a cantilevered upper section. These walls are 
typical in a factory-based modular construction project and 
of manageable dimensions for our robots and workcell. 
Importantly, they were also chosen because they include a 
modest range of stud configurations and geometries typi-
cal in wood frame construction, as shown in Fig. 8. The 
first wall was constructed using low-grade framing lumber 

Fig. 7   Low-grade studpack after being placed by the robot, showcas-
ing the high precision of our method. Design drawings printed on 
wall for reference

Fig. 8   From left: Based on 2D construction drawings for a given wall 
(first), we create a 3D model of the entire assembly (second) and, 
then, identify unique studs and studpacks (third). Note that several 

unique parts with varying geometries are shown, some of which are 
used more than once in the design. Data needed for robotic assembly, 
such as part pose and name, is then saved to a JSON (fourth)
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which featured knots, curling, and warping. The second wall 
was constructed using clean, kiln-dried poplar with excellent 
dimensional stability. For both walls, additional tolerance of 
1 mm was created at notched joints to ease tight-fit assembly 
conditions for warped and imperfect studs.

The framing models for these walls were extracted 
from a larger building information model (BIM) and come 
from a partnership with a local construction company on 
a real-world project. We extracted the physical properties 
(i.e., mass, center of mass), geometrical properties (i.e., 
dimensions, center of geometry), and target pose from the 
framing model and define the assembly sequence, approach 
vectors, and grasping pose for each stud. Finally, we export 
this data to a JSON file, export a mesh of each stud from 
a common origin, and then fabricate the physical studs 
for assembly experiments. From the CAD model, we also 
generate a mapping of screw locations for each stud and, 
then, drill thru holes in the plywood substrate to facilitate a 
more intuitive and physically easier fastening process.

Images of the two completed wall frames, with detailed 
mid-assembly images highlighting a tight insertion task and 
an eccentric gripping condition are shown in Fig. 10. All 
studs were successfully placed as designed, and our method 
consistency delivered results below the 6 mm tolerance 

given by the force-based contact detection, ensuring there 
were no unwanted gaps in the assembly or misaligned parts. 
Although we had planned for a human worker to inspect 
the stud and suggest pose corrections after placement, parts 
were place precisely enough that those corrections were not 
needed.

5 � Conclusions

This work demonstrates a novel multi-modal, multi-stage 
perception strategy for adaptive robotic construction of 
wood frames that is precise, robust to the inherent variability 
of framing lumber and manual work, and which can handle 
reasonably diverse stud configurations. We provide a viable 
model for incorporating the skills, dexterity, and mobility of 
human workers in a factory-based construction environment 
that’s transitioning from manual processes to ones that are 
robot-assisted or fully automated. We show that balancing 
the flexibility of AI-driven pose estimation techniques 
and the precision of traditional vision-based measurement 
techniques can help address the unique challenges of robotic 
construction. Moreover, we show that higher accuracy than 
is typically suggested for manual wood frame construction 

Table 1   Dimensional error 
measured in experiments

Experiment Notes Axis Units Average STD Variance

Pose estimation – X mm 2.15 1.72 14.01
Pose estimation – Y mm 11.08 9.01 76.31
Pose estimation – Rz deg 0.012 0.009 0.05
Centerline refinement Aligned to origin X mm 1.45 0.71 4.61
Centerline refinement Aligned to stud X mm 0.93 0.70 4.17
Centerline refinement Aligned to origin Rz deg 0.005 0.008 0.034
Centerline refinement Aligned to stud Rz deg 0.0005 0.0003 0.002
In-hand refinement – Y mm 0.40 0.33 2.73

Fig. 9   Estimated position of 
stud (points) relative to ground-
truth position of stud (origin), 
showing spatial trends in error 
for overhead estimation stage 
(left) and combined centerline 
and in-hand estimation stages 
(right). Simulated estimates in 
black, real-world estimates in 
red. Right: X-axis: centerline 
error, Y-axis: in-hand error
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is achievable, even when using inexpensive sensors and 
low-grade framing materials. Thus, we offer our results as 
a sub-millimeter benchmark for limiting error in robotic 
construction of wood frames; data will be made available 
upon reasonable request. In conclusion, our work represents 
a significant stride towards overcoming the barriers to the 
adoption of robotic solutions in wood frame construction, 
and we are eager to see how this strategy can be scaled to 
meet the growing demands of this industry.
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