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Abstract
Equipping robotics with the capacity to make decisions based on real-time information about their physical environment is 
crucial to the success of in situ robotics and offers many process advantages in prefabrication scenarios as well. However, the 
perceived technical challenges of producing environmentally-aware closed-loop robotics have limited their use in construction 
and design applications. To address this challenge, a low-cost and largely open-source computer vision-guided closed-loop 
robotic control paradigm is developed. The system is used here to identify construction materials in the workspace and cal-
culate their position in space and determine their place in the facade panel assembly. The industrial robot arm is equipped 
with an RGB-depth camera in an eye-in-hand configuration to give control over the positioning of the camera for greatest 
accuracy. The control system relies on a simple TCP client/server connection between the robot and a central control com-
puter to pass information and instructions from the computer vision system to the robot and vice versa. This setup delivers 
process flexibility, enabling pick-and-place procedures of the material positioned randomly within the workspace. In this 
work, the technologies are deployed in a factory-type setting but would also be necessary for any on-site robotic construction 
system, building towards an on-site robotics future. The final product of this research is a unitized spandrel panel wherein 
the vision-guided robot finds and places the insulation, cement board, and masonry cladding materials.
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1 Introduction

Robotic fabrication has been the subject of intense research in 
architecture and engineering for the last decade. For design, it 
has enabled new modes of expression and the making of many 
exciting projects, prototypes, and pavilions. Poorly, however, 
are the realities of the construction industry addressed in these 
new robotic processes, and building construction remains a 
slow, expensive, imprecise, and largely manual process. 
While highly controlled, offsite manufacturing of construc-
tion materials and assemblies (e.g. prefabrication) has shown 
to improve precision and reduce costs, they often resist robotic 

automation due to the complex and heterogeneous material 
flows required for their assembly. The growing accessibility 
of closed-loop robotic fabrication promises the industry a way 
to automate aspects of the construction process, either on- or 
off-site, that require feedback from the physical environment 
for their success. This feedback may come as information 
about the state of a task, the progress of an assembly, or the 
location of items or obstacles in the workspace, but critically 
allows the robotic fabrication to progress upon certain physi-
cal events or with parameters from the physical environment. 
This is in contrast to open-loop robotic processes which can 
only be executed according to their pre-programmed logic.

Simultaneously, advances in computer vision and their 
incorporation into open-source libraries have placed power-
ful image processing techniques within reach of non-experts 
in the field. Computer vision techniques hold advantages 
over mechanical means of providing feedback within the 
workspace as the camera can be programmed to execute a 
variety of tasks with high precision without extra hardware 
costs. Mechanical methods, such as sliding tables or hard-
ware stops, typically require unique hardware and fixturing 
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for each material or process, which would require significant 
investment in the case of complex material assemblies such 
as façade systems.

There exists, therefore, the latent potential to combine 
these increasingly accessible closed-loop robotic and com-
puter vision technologies into a flexible and easy-to-develop 
platform to enable environmentally aware robotic fabrication 
processes. This platform would be highly useful to construc-
tion industry experts who are keenly aware of the challenges 
of applying robotic fabrication to complex assembly pro-
cesses in a factory-type setting or to the unstructured and 
chaotic nature of construction sites. This platform lowers 
the burden of developing custom computer vision workflows 
for experimental and practical applications such as these and 
many others. The research presented here assembles low-
cost hardware components with open-source libraries to 
offer researchers and practitioners in design and construc-
tion a simple method of implementing closed-loop, vision-
guided robotic processes.

1.1  Precedents

While robots have proven to be adept at many things, the 
ease with which humans can identify and grasp various 
objects in our environment has belied the complexity of 
pick and place operations in terms of robotics applications. 
Much of the early research in the fields of computer vision 
and robotics was conducted in the 1980s as automation 
worldwide boomed. Key algorithms from this period are 
still in use today as a part of the OpenCV library, including 
hand-in-eye calibration methods and shape approximation 
algorithms (Tsai and Lenz 1989; Douglas and Peucker 1973; 
Feddema and Mitchell 1989; Bradski 2000). In particular, 
the Japanese construction industry made a major push 
towards automation in the 1980s, which featured advanced 
laser feedback systems to provide quality control informa-
tion. However, the complexity and constantly changing 
nature of construction sites made these solutions extremely 
costly and time-consuming to implement especially in rela-
tion to their relative benefits (Bechthold 2010).

The pick and place procedures that are at the heart of 
autonomous construction assembly processes have a clear 
affinity to the bin picking research aimed at automated 
manufacturing and packaging workflows. Ikeuchi first dem-
onstrated the utilization of a three-dimensional (3D) CAD 
model to generate identifying features of a non-continuous 
3D object at any angle in a bin (Ikeuchi 1987). More recent 
work has developed a novel multi-directional flash camera 
which uses flashes from multiple angles to generate robust 
depth-edge images to identify objects in a cluttered environ-
ment (Liu et al. 2012). This research also used a second cam-
era to determine the pose of the object once it is in the gripper 
and calculate the error in the picking procedure, which is 

useful for the precise placement of the object. Oh et al. devel-
oped a generic method to estimate the pose of objects in a bin 
by using feature detection on a two-dimensional image and 
then querying the feature points in three-dimensional space 
through stereo vision (Oh et al. 2012). Finally, Mahler et al. 
have developed a convolutional neural network to estimate 
grasp quality trained on a dataset of millions of point clouds 
representing everyday objects (Mahler et al. 2017).

As construction environments are typically chaotic and 
unstructured, there is a similar need for computer vision and 
other sensing regimes in construction robotics applications to 
provide the robot with real-time information about its physical 
surroundings. Giffthaler et al. report the usage of laser range 
finders and camera systems paired with fiducial markers to 
solve the localization of their mobile in situ fabricator plat-
form (Giftthaler et al. 2017). The authors ultimately suggest 
that camera systems offer greater flexibility due to their ability 
to be tuned to different usages. In their work, the stereo cam-
era rig mounted on the robot’s end effector was able to verify 
the progress of the assembly and catch any deformations that 
occurred during fabrication. Feng et al. also approached the 
issue of on-site construction robotics by developing a vision-
guided autonomous assembly system (Feng et al. 2015). The 
computer vision system used fiducial markers on the assembly 
components, in this case wood blocks, to identify them and 
calculate their position in space using a 3D camera.

Elashry and Glynn developed a Grasshopper plug-in 
which allowed for real-time feedback from a camera to be 
incorporated into a bricklaying procedure, taking on the 
challenge of automating the mortar-laying process using 
the camera feedback (Elashry and Glynn 2014). Vasey et al. 
developed a closed-loop feedback system to apply correc-
tions to the process of robotic rod bending, and prototyped 
computer vision methods using stereo vision and laser range 
finders (Vasey et al. 2014). Jeffers assembled wood sticks 
of various lengths into an unplanned structure through the 
use of two sensory feedback systems, a mechanical limit 
switch and an IR depth camera (Jeffers 2016). Additionally, 
a closed-loop system was developed to feedback the dimen-
sions of irregular materials from a 3D scanner into the fabri-
cation of a timber envelope for a two-story structure (Evers-
mann 2018). Other research has developed techniques to 3D 
scan a collection of natural stone objects and autonomously 
determine their best stacking configuration and associated 
robotic pose planning (Furrer et al. 2017).

Computer vision techniques have also been used to iden-
tify the correct orientation of part geometries in irregular 
offcuts of stock material (Wu and Kilian 2016). Finally, 
recent work produced a workflow to compare point cloud 
information from an RGB-D camera to a Building Infor-
mation Modeling (BIM) part database to correctly identify 
the assembly component and calculate the proper gripping 
pose for assembly (Dawod and Hanna 2019). This process 
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has the advantage of being able to identify complex three-
dimensional objects positioned in any orientation, rather 
than modular parts, and can assemble them according to 
a pre-planned logic. However, in a number of the projects 
described here, the computer vision system was unable to 
deliver information with enough precision to ensure the suc-
cess of the fabrication process, highlighting an area of neces-
sary improvement moving forward.

With this context, the research presented here develops a 
computer vision aided robotic workflow for the assembly of 
prefabricated, materially heterogeneous construction panels. 
The goal of this research was to develop a computer vision 
system to identify and estimate the pose of construction 
materials in the workcell within the assembly tolerances of 
the construction industry without the use of fiducial markers 
or QR codes on the materials themselves. By developing a 
marker-less technology, the method saves time by eliminating 
the material labeling step and works with construction mate-
rials as they would be delivered to the site or factory. This is 
pursued by equipping the robot with an RGB-D camera and 
developing a control system for which the robot positions the 
camera strategically and information from the camera is pro-
cessed and turned into pose targets for the robot. This process 
enables flexible robotic fabrication methods that are tested 
off-site but will aid the transition to on-site robotic assembly.

2  Methods

2.1  Computer vision

A computer vision system was developed to identify and 
estimate the pose of marker-less construction materi-
als in the workcell. The end effector is fitted with an Intel 
RealSense D435 RGB-D camera. This depth camera uses 
active infrared stereo to construct three-dimensional point 
clouds of its field of view and includes a color sensor as 
well. Within 500 mm from the target, the accuracy of the 
depth sensor is less than 1 mm, making it precise enough 
for this task, although the error does increase exponentially 
to approximately 4 mm when the camera is placed 1 m away 
from the target. This accuracy combined with an affordable 
price under $200 USD, small form factor and accessible 
SDK for the camera make it a logical choice for the develop-
ment of the computer vision system.

2.1.1  Eye‑in‑hand calibration and coordinate system 
transformation

When using computer vision with robots, one challenge 
rests on transforming the information from the camera into 
the robot’s coordinate frame to use it to determine action 
targets. Using 3D information from an RGB-D camera, 

one can simply transform the camera’s point cloud by the 
end-effector position and orientation to spatialize it in the 
robot’s coordinate system. This method is error prone, how-
ever, as it requires the center point of the camera’s imager 
to be known in relation to the tool center point with high 
precision, meaning that slight inaccuracies in the mount-
ing position can compound into large errors. A more robust 
method is to calculate the transformation matrix based on 
a calibrated chessboard (Fig. 1). Using a set of vectors that 
describes the chessboard corners with respect to the camera 
frame and another with respect to the robot frame, the trans-
formation can be calculated using the Kabsch algorithm, 
which finds the rotation and translation between two sets of 
vectors which minimizes the root mean squared deviation 
between the two (Kabsch 1976). The result may be applied 
to all 3D coordinates observed by the camera to spatialize 
them in the robot’s coordinate system.

2.1.2  Image segmentation

With the camera properly calibrated, the initial step for the 
material identification process is the image or point cloud 
segmentation. This process filters the incoming informa-
tion to separate objects of interest from the background. 
To provide the most accurate estimation of the material’s 
centroid, it is required that only the top face of the materials 
be returned from the image segmentation. To achieve the 
separation of material top face from side faces, a process 
was developed to segment the point cloud with respect to the 
robot coordinate space. By working from the transformed 
point cloud rather than the depth frame alone, the method 
proved to be accurate from all camera angles and for all 
objects. After filtering null pixels, each point with a Z-com-
ponent in the 90th percentile of the current scene could be 
separated from the rest of the scene, then used to produce a 
thresholded image for object identification (Fig. 2).

2.1.3  Object identification

To detect the various material types in our assembly, a dic-
tionary of the material types and their dimensions was con-
structed. As all of the construction materials in our assembly 
were standardized and are delivered in rectilinear forms, the 
dictionary simply holds the length and width dimensions 
of each object. Object identification starts by determining 
the image contours from the segmented image produced 
from the 3D point cloud thresholding operation. Using the 
OpenCV library, the shape of these contours is then approxi-
mated and checked to determine if the objects in view are 
mostly quadrilateral. If the object is quadrilateral, the corner 
points of the object are transformed from the camera frame 
to the robot frame.
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Fig. 1  Eye-in-hand calibration method with RGB-D camera assisted 
by chessboard grid of known points. Final transformation matrix is 
composed of the transformation between the camera and the robot 

space from the calibration pose (TCam) and the transformation from 
the current robot pose to the calibration pose (TRob)

Fig. 2  Depiction of computer vision image segmentation and object 
detection workflow. Top, L to R: Base RGB image, transformed point 
cloud Z height map, thresholding by Z value. Bottom, L to R: Con-

tour of threshold image, object identification and rectangle recon-
struction, final computer vision and RGB image composite
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Two methods to serve as the final object detection layer 
were developed from this stage. The first compared the ratio 
of length to width of the observed object to the expected 
material dimensions. This method served as a quick and 
robust prototyping method but proved failure prone when 
partial objects appear in the camera’s view that have the 
same ratio as the target objects. To fix this issue, the approxi-
mate width and length dimensions of the object as observed 
in the transformed robot coordinate space are compared 
directly to the expected dimensions of the current material 
type from the pre-stored dictionary. If the measured dimen-
sions are within the allowable tolerance, the location of the 
object centroid and rotational deviation of the object from 
the robot’s XY axes are recorded for pose estimation. As 
there may be many appropriate materials in the workspace, 
all the identified objects are collected from the scene, and the 
algorithm selects for assembly the object with the highest Z 
value in the space to avoid collisions with other materials.

3  Closed‑loop robotic assembly

The research culminated in the robotic assembly of a uni-
tized spandrel panel as a demonstrator. To fabricate the uni-
tized spandrel panel system, the research developed many 
tools and workflows particular to this application. The main 
structural system of the unitized spandrel panel was a struc-
tural aluminum frame which was welded and bolted together 
manually; it also provided the base for subsequent fabrica-
tion processes. Additionally, a light gauge steel stud framing 
system was fabricated to specification by a Howick custom 
steel roll-forming machine and was sheathed in plywood. 
This assembly accepted the bolts from the structural frame 
to hold it in place and attach the robotically assembled ele-
ments to follow to the structural frame. While it was planned 
to coordinate the placement of this framing assembly with 
the robot, the tolerances on the bolt alignment proved to be 
too tight to accurately position with the robot and were done 

manually. From this basis, rigid insulation panels, cement 
backer boards, and a bio-based finish cladding system were 
all positioned in place by the robot and affixed manually. The 
ABB IRB 4600 industrial robotic arm used here is mounted 
on a 9 m track, to move from the material loading area and 
the assembly area.

3.1  End effectors

To facilitate the assembly of the panel and handle varied 
materials during that process, two different robot end effec-
tors are used. The first uses a Schmalz vacuum area gripping 
system to handle the larger construction panels. This grip-
ping system features internal vacuum generation and there-
fore only needs to be supplied pressurized air to function. 
This end effector is capable of lifting and positioning full 
1.2 m × 2.4 m plywood sheets when mounted on the ABB 
IRB 4600 (Fig. 3).

The second tool is custom-built and sized for cladding 
elements that are placed in the assembly process and features 
two 40 mm suction cups fed by an in-line venturi vacuum 
generator each. These venturi generators are capable of pro-
ducing enough vacuum pressure to overcome the pressure 
loss from the porosity of the cladding elements. This tool 
includes a mount for the Intel RealSense camera, positioned 
so that the depth camera imager is placed directly above the 
Tool Center Point, which is the midpoint between the two 
suction cups.

3.2  Control flow

To drive the robot, we use a simple, off-the-shelf TCP cli-
ent/server implementation (Dawson-Haggerty 2017). In 
practice, it allows for minimal and periodic communication 
between the two endpoints, does not require a continuous 
or high-frequency connection, and is easy to configure. The 
server executes on the robot and is written in RAPID. It 
listens for incoming instructions, executes a routine using 

Fig. 3  One sheet of cement backer board being placed in the spandrel panel assembly



24 Construction Robotics (2020) 4:19–29

1 3

the parameters included with those instructions, then replies 
with information about the success or failure of the routine. 
The client runs on a central PC and is written in Python. It 
sends outgoing instructions then listens for a reply.

The control system for the assembly process utilizes a 
finite state machine, which steps through a sequence of high-
level routines: Home, Calibrate, Pick, Place, and, as needed, 
Change Tool. This state machine also coordinates the storage 
and passage of information between the computer vision and 
robotic processes (Fig. 4).

3.2.1  Home and calibrate routines

During the home routine, the robot moves to a known loca-
tion in the material pickup zone and unwinds any rotations 
from previous sequences. During the calibrate routine, the 
robot maneuvers the camera over the calibrated chessboard 
pattern and runs the computer vision calibration process 
described above. The camera is calibrated before each 
pickup operation to ensure precise pose estimations, espe-
cially when the seventh axis track is in use.

3.2.2  Pick routine

The pick routine begins by positioning the camera about 
1000 mm above the material pickup area to fit the entire plat-
form in the field of view of the camera. The algorithm then 
performs the image segmentation based on the projected 3D 
point cloud of the scene in view. With the active material 
information taken from the global parameters of the state 

machine, the object identification function then checks all 
of the objects that are present in the image segmentation to 
determine if they match the expected dimensions. From all 
of the positive matches in the scene, the algorithm selects 
the object with the highest Z coordinate as the target mate-
rial (Fig. 5).

As the cladding material comes in two sizes, the object 
identification function looks for a match to either mod-
ule size and then stores which material has been selected. 
Knowing the limitations of the camera’s accuracy at that 
distance, the robot is then positioned 450 mm directly above 
the target object to perform a more detailed target estimation 
using the same methods as above. During this verification 
step, the center point of the object and rotation of the object 
in the robot’s coordinate frame are calculated three times and 
averaged together for a more accurate result.

The robot then uses these target parameters to execute a 
pickup routine which slows the approach to the material and 
activates the vacuum generation. Each of the end effectors 
feature some form of dampening to allow for tolerance in 
the Z direction so that the robot is sure to make firm contact 
with the material without crushing it.

3.2.3  Place routine

With the proper assembly material now in hand, the place 
routine determines where to put the material in the assem-
bly. As the rigid insulation panels and the cement backer 
boards are all the same size, this is handled by simply 
stepping through a list of pre-calculated positions for each 

Fig. 4  Information flow diagram of the closed-loop control system
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type of panel. The robot takes this pose and runs a routine 
to slowly place the material on the assembly and deacti-
vate the vacuum.

However, as the cladding material features two differ-
ent module sizes, a more flexible system had to be devel-
oped. Since the pickup procedure does not give preference 
to one module over the other, the position that the object 
will be placed in needs to be calculated once the dimen-
sions of the material in hand are known. The progress of 
the assembly is tracked through two global parameters, 
used as counters, to which the X and Y dimensions of 
the cladding modules are added cumulatively. The target 
point for the placement of the module in hand is then 
half of the dimension of that module plus the progress of 
the row so far. Nearing the end of a row, a check is made 
to determine if the longer module would not fit but the 
shorter module would. In that case, the picking procedure 
is constrained to only look for the shorter modules to 
complete the row.

This system thus generates quasi-random cladding pat-
terns based on the vision system’s choice of the material 
available (Fig. 6). It, therefore, suggests a shared design 
agency between the autonomous assembly system and 
the designer. After the placing procedure is finished, the 
control algorithm loops back to the Home state to start 
the process of picking and placing the next material in 
the assembly.

4  Results

The low-cost and largely open-source computer vision 
system developed in this research proved to be accurate 
enough to assemble the panel within the given mate-
rial tolerances, but certainly left room for improvement 
(Fig. 7). Previous studies have suggested that for assembly 
tasks in the building industry, the desired level of precision 
is between 2 and 3 mm positionally and 0.1° rotationally 

Fig. 5  Vision-guided pick and place workflow. From L to R, top to bottom: 1. Home, 2. Calibrate camera and calculate transform matrix 3. Full 
workspace CV object identification 4. Hi-Res object identification verification and pose estimate 5. Pick with vacuum 6. Place in the assembly

Fig. 6  Placing a cladding module in the assembly. Placement targets 
are calculated on the fly based on the assembly progress thus far and 
the dimensions of the material in hand
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(Shohet and Rosenfeld 1997). In the panel fabrication for 
this project, cladding materials are given a 5.25 mm gap 
between modules for the mortar between them. Therefore, 
the system could be lacking the desired precision but still 
avoid collisions between objects on the panel, just risking 
differences in mortar spacing.

During the cladding assembly process, no method of 
physically measuring the positional or rotational error was 
developed. However, the result of the computer vision object 
identification is saved for each object, which can be visually 
analyzed to determine the error in the computer vision deci-
sion-making. This was done by manually tracing the outline 
of the material in the color image taken by the camera and 
comparing the object centroid and rotation between the com-
puter vision and manual processes. These results show that, 
during assembly, the computer vision system operated with 
an average positional error of 1.77 mm from the center point 
of the material, and an average rotational error of 0.15°. Due 
to inaccuracies in the image segmentation process and the 
presence of null pixels near the edges in the depth image, 
the computer vision system consistently misjudged the upper 
edge of the short modules, leading to a recurrent error along 
the long axis of the module of about 1.50 mm. However, 
since this error was repeated for nearly every module, it did 
not have a significant impact on the spacing between the 
modules. The rotational errors caused a larger visual impact 
in the panel assembly, with some nearing 0.50° within the 
computer vision system alone. Due mostly to failures in the 
image segmentation process, the computer vision system 
also failed to identify a material in the workspace with some 
regularity during assembly. The overall rate of identifica-
tion failure was 30.4%, for which the control system would 
restart the pick state in these situations.

A series of tests were conducted post-assembly to more 
accurately measure the grasping error of the computer 
vision guided process. In these tests, the robot identifies 

a material’s pose in the workspace with the same meth-
ods used during the assembly process. Once the target is 
acquired, a clear acrylic piece is precisely aligned to the 
vacuum pads on the end effector and held in place using 
vacuum pressure. The acrylic sheet is etched to locate the 
tool center point and orientation of the end effector when it 
is properly aligned. Upon making contact with the selected 
material, rather than activating the vacuum to pick up the 
object, the robot turns off the vacuum to place the acrylic 
TCP marker on the object. With the physical center point 
of each object in the scene marked, the positional and rota-
tional difference between the robot’s TCP from the acrylic 
sheet and the actual object center point can be measured to 
represent the grasping error of the robotic pickup process.

The results from this test show that the computer vision 
error accounted for only part of the grasping error in the 
whole procedure during the assembly process. The results 
determined that, on average, the positional error was 
2.33 mm and the rotational error was 1.07°. The remaining 
error in the pickup process can be assumed to come from 
inaccuracies in the calibration and coordinate system trans-
formation processes. This may be attributed to the somewhat 
limited resolution of the depth camera and the distance at 
which the calibration operation was executed. This result 
still fits within the overall desired positional precision range 
of 2–3 mm, however, the rotational error is liable to cause 
issues and the precision would exclude some low-tolerance 
applications.

During the process of conducting these tests, however, it 
was discovered that the computer vision system was far more 
accurate when the long axis of the module was aligned to the 
X axis of the camera. In those situations, the precision was 
in the submillimeter range with errors as low as 0.53 mm. It 
appears that the alignment of the object to the natural pixel 
grid of the image helps improve the accuracy of both the 
image segmentation and the object identification processes.

As a result, a new control algorithm was designed to take 
advantage of this increased precision. For this new method, 
the robot executes the initial object identification from an 
elevated position as described earlier. However, the rotation 
of the selected object as well as it’s position is saved to be 
used for the verification step. In the new target verification 
process, the robot positions the end effector directly over 
the object and rotates the end effector to align the X-axis of 
the camera with the long axis of the target material. This 
alignment of the object to the camera’s X-axis carries two 
crucial benefits. As previously mentioned, the alignment is 
beneficial for both of the key computer vision processes. 
Second, it also allows the camera to be positioned much 
closer to the target object, as the long edge of the material is 
aligned to the long axis of the image, which further increases 
the accuracy of the depth camera and provides more fidelity 
for the object identification process (Fig. 8). Taken together, 

Fig. 7  Image of full panel being assembled during the cladding place-
ment phase
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this new rotated verification method is significantly more 
accurate than the initial method implemented during the 
panel assembly.

The rotated verification method does introduce slightly 
more complexity in the coordinate system transformations, 
however. Since the camera is rotated in relation to the cali-
bration pose, an additional rotational transformation about 
the TCP must be applied to the camera’s point cloud to 

properly align it with the robot coordinate system to create 
an accurate target pose. These transformations can be easily 
managed through the use of the transforms 3d open-source 
library or a series of matrix algebra operations (Brett 2019).

With this new verification method, the average posi-
tional error is 1.07 mm and the rotational error is 0.51°. 
Interestingly, the error along the long axis of the modules, 
which was the most problematic during panel assembly is 

Fig. 8  Diagrams of verification methods and their resulting computer 
vision object identification, blue lines represent threshold contour, 
green rectangle is the result of the object identification. Left: Results 
from panel assembly, note the top of each module is missed in the 

contouring and identification, producing an error in the pose estima-
tion. Right: Results from rotated verification method with signifi-
cantly less identification error
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reduced to 0.31 mm with the new method (Fig. 9, X-axis 
in the graph). The reliability of the process also improved 
significantly. With the initial method, the positional stand-
ard deviation in the data collected was about 1.03 mm. The 
new method reduced this standard deviation to 0.37 mm, 
expressing far more consistency in the process, an impor-
tant characteristic in highly repetitive assembly sequences. 
Perhaps most significantly, the rotated verification method 
shows that through intelligent positioning and careful cali-
bration, an inexpensive camera and open-source libraries 
can deliver robotic target generation nearing submillimeter 
levels of precision.

5  Discussion

The research here presents an attempt to establish a highly 
accessible suite of low-cost components and open-source 
libraries that can deliver high-precision vision-guided 
robotic processes for the construction industry. More work 
is required to automate more stages of the spandrel panel 
construction, including the placement and fastening of the 
steel-framed elements and the application of appropriate 
weather and vapor barriers (Fig. 10). This work should be 
undertaken with partners from the construction industry 
to guide the automation efforts towards the challenges that 
most require attention in the industry. 

However, more work could be done on the computer 
vision system to improve the performance and avail 

new paradigms for fabrication. More accurate targeting 
with the computer vision system could be accomplished 
by solving the object identification and pose estimation 
from multiple angles around the work area. Averaging 
the pose estimation result from multiple camera angles 
would counteract the tendency for the depth shadow to 
appear in one direction, skewing the results. This would 
require the registration and compilation of multiple point 
clouds into a single master 3D view but would result in 
a better representation of the work area. To increase the 
precision, another option is to introduce a second camera 
to the system to measure the grasping error of the object 
picked by the robot. A similar system was introduced by 
Liu et al. and could be used to measure the translation and 
rotation error of the material in hand, and calculate a new 
target pose for that object in the assembly to account for 
that error.

Building off the assembly workflow introduced in this 
work, the computer vision system could be further devel-
oped to help track the progress of the assembly. Rather 
than relying on algorithmic counters, the camera could be 
used to identify where material had or had not been placed. 
This would help not only to calculate the position of the 
next object in the assembly but also verify the accuracy of 
the assembly as it progresses and introduce compensation 
for any errors that have accrued if necessary. Enabling this 
type of system could also lead to the ability to assemble 
non-standard parts, such as waste stream materials with 
unique shapes. The camera could identify the shape of all 
of the materials in view and decide which piece would fit 
best in the assembly. This type of process requires high-
fidelity information of both the stock of available materials 
and the voids left in the assembly.

Fig. 9  Graph of the average grasping error results from the two verifi-
cation methods. The initial method used during panel assembly shows 
significantly higher errors than the final rotated method across all 
measures. The black error bars represent the 25th and 75th percen-
tile of results, demonstrating the increased reliability of the rotated 
method as well

Fig. 10  Image of the finished spandrel panel assembly in the robotic 
workcell
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6  Conclusion

As industrial robot arms are generalized positioning devices, 
they require extra layers of intelligence and sensing to be 
aware of the environment around them. The computer vision 
system developed in this work allows for assembly processes 
to take place with greater flexibility to adapt to changes in 
the work environment without an appreciable loss of preci-
sion. This is critical to the development of low-cost auto-
mation strategies for prefabricated elements but will also 
be required of in situ robotic construction technologies, as 
construction sites are chaotic, unstructured, and in a constant 
state of change.

The research develops the image segmentation, object 
identification, and camera-to-robot coordinate space trans-
formations required for pick and place assembly workflows 
using a RGB-D camera, and pairs these capabilities with 
a closed-loop control system for real-time control of the 
robotic arm. This system is built with inexpensive compo-
nents and largely open-source libraries, allowing for easy 
deployment of the technology in a number of applications. 
This modular approach allows for many more possibilities 
than the ones presented here. This technology enables new 
modes of robotic fabrication and the ability to fabricate 
unplanned assemblies through a shared agency between 
designer and robot.
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