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Abstract
Soil erosion is a major environmental problem in developing countries mainly due 
to forest cover loss driven by agricultural expansion. The current study aimed to 
analyze the impact of vegetation cover loss from elevated areas on soil erosion in the 
Upper Anger watershed using geospatial techniques and the revised universal soil 
loss equation (RUSLE) model. The mean annual soil loss in the study area was cal-
culated using five factors: rainfall, soil type, slope length and steepness, cover man-
agement, and conservation practices. Furthermore, the normalized difference veg-
etation index and slope were used to calculate the relationship as well as the cause 
and effect of soil loss in the study area. The results revealed that the mean annual 
soil loss in the Upper Anger watershed was 44  ton/ha/year in 1989, 66.4  ton/ha/
year in 2002, and 87.9 ton/ha/year in 2020. The annual soil loss in agricultural land 
increased from 75.9 ton/ha/year in 1989 to 98.5 ton/ha/year in 2002 and 103.8 ton/
ha/year in 2020. The annual soil loss of the Upper Anger watershed increased by 
99.8% due to a decline in vegetation cover from elevated areas for agricultural 
expansion based on adjusted  R2, with the remaining percentage possibly increasing 
due to other factors. Due to deforestation, the area of soil erosion increased from 
551.8   km2 (29.5%) in 1989 to 821.6   km2 (44%) and 1043.8   km2 (55.8%) in 2002 
and 2020, respectively. This study identifies severe erosion loss areas for mitigation 
measures. To minimize the severity of soil loss in the study area conservation meas-
ures, such as re-afforestation, area closure, agroforestry practices, and participatory 
watershed management, should be promoted by governmental and nongovernmental 
organizations.
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1 Introduction

Soil erosion caused by a loss of vegetation cover in highland areas is the most 
serious environmental problem worldwide (Gobin et  al. 2004; Pimentel 2006; 
Borrelli et  al. 2017). Rainfall intensity, soil erodibility, poor soil conservation 
practices, and land use land cover (LULC) change is a challenge in Ethiopia, 
particularly in the highlands where highly rugged topography, and cultivating on 
steep slope  lands, which accelerate soil erosion (Shiferaw 2011; Belayneh et al. 
2019; Olika and Iticha 2019; Tsegaye 2019; Aneseyee et  al. 2020; Nut et  al. 
2021). The removal of fertile soil is  aggravated by an increase in surface run-
off and a decrease in vegetation cover from steep slopes (WoldeYohannes et al. 
2018; Kidane et al. 2019). The LULC change and ridged topography are the most 
important key parameters influencing soil erosion, particularly in Ethiopian high-
lands (Bewket and Abebe 2013; Gessesse et al. 2015; Moisa et al. 2021; Negash 
et  al. 2021). According to Li et  al. (2020), the rate of soil erosion increases as 
the catchment slope length and gradient increase. In areas where soil erosion is a 
risk, immediate action is required to implement soil and water conservation strat-
egies (Haile et  al. 2006; Molla and Sisheber 2017; Girmay et  al. 2020; Moisa 
et al. 2021). The expansion of agricultural land to the highlands is a major cause 
of soil erosion in Ethiopia (Sisay et al. 2014; Kidane and Alemu 2015). Earlier 
studies (Gashaw et  al. 2017, 2018, 2019) have reported that the expansion of 
cultivated land around steep slopes is the major driving force for soil erosion in 
the Ethiopian highlands. Every year, approximately 3.5 billion tons of top soil is 
removed due to soil erosion in the Ethiopian highlands, and soil erosion rates in 
Ethiopia are extreme (Kidane and Alemu 2015).

There are three soil erosion models, which include conceptual-, physical-, 
and empirical-based model (Santos et al. 1998). The conceptual models empha-
sized on the process governing system behaviors that makes unique from physi-
cal and empirical models (Beck 1987). The conceptual models focused on catch-
ment processes, without considering various interactions (Renschler 1996). The 
physical-based models focused on the understanding of the physics of erosion 
process and the parameters used are measurable and known. In physical-based 
model, the parameters should be calibrated against observed data (Beck 1987). 
The empirical models are based on simulation of natural processes (Adongo et al. 
2019) and mathematically simple to use but they are limited to the area where 
they have been developed (Santos et  al. 1998). The revised universal soil loss 
equation (RUSLE) model, developed by Renard et al. (1997) was widely used due 
to relatively easy to use. The compatibility with geographic Information System 
(GIS) and remote sensing techniques is another advantage of using RUSLE model 
in soil erosion loss assessment and prioritization of hotspot areas for conservation 
action (Moisa et al. 2021).

Ethiopia has 60 million hectares of agricultural land (Douglass 1984; Sisay 
et  al. 2014). Approximately 27 million and 14 million hectares of agricul-
tural land have been highly and extremely eroded (Lema et  al. 2016; Tilahun 
et  al. 2018). In Ethiopia’s highlands, agricultural land has a high risk  for soil 
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fertility decline (Habtamu et al. 2014; Balabathina et al. 2020). In Ethiopia, soil 
loss from cultivated fields is estimated to be approximately 42 ton/ha/year (Hurni 
et al. 2008; Bekele and Gemi 2021). According to Hurni et al. (2015) and Atoma 
et  al. (2020), western Ethiopia has the highest rate of soil erosion. The Upper 
Anger watershed is located in western Ethiopia and is known for its undulating 
terrain with rolling plains and valleys, agricultural expansion, deforestation, over-
grazing, land fragmentation, and poor land management practices, all of which 
have exacerbated the situation.

Although the consequences of soil erosion as a result of declining vegetation cover 
in elevated areas were severe, it received little research attention. Several studies have 
been conducted on the impact of LULC change on soil erosion in Ethiopia (Kidane 
et al. 2019; Gashaw et al. 2019; Aneseyee et al. 2020; Moisa et al. 2021, 2022c; Negash 
et al. 2021; Negese 2021), but these studies did not address the impacts of vegetation 
cover losses from elevated areas on soil erosion. The southwestern parts of the country 
do not get the attention of scholars because of its relatively good in vegetation cover as 
compared to other parts of Ethiopia. Even though, some areas are covered by vegeta-
tion, substantial areas are highly exposed to deforestation driven by agricultural land 
expansion. The loss of vegetation cover aggravates the problem of soil erosion in south-
western parts of Ethiopia which in turn leads to decline in agricultural productivity and 
increased the problem of food insecurity. This problem needs research attention to sus-
tain communities’ wellbeing on one hand, and on the other hand, providing robust evi-
dence on the linkage between deforestation and soil loss can alert local administration 
and decision-makers to actively engaged in natural resources conservation in general 
and soil erosion protection in particular, which may increase agricultural productivity. 
Furthermore, this study analyzes the correlation between normalized difference vegeta-
tion index (NDVI) and slope with mean soil loss in the study area. Finally, this study 
indicates the effectiveness of RUSLE model and geospatial technologies to estimate the 
impact of vegetation cover loss on soil erosion in the highland areas of Ethiopia.

2  Materials and methods

2.1  Descriptions of the study area

This research was conducted in the Upper Anger watershed which is situated in the 
Abay River basin. The study area was located between the East Wollega Zone and 
the Horo Guduru Wollega Zone of Oromia National Regional State, Western Ethio-
pia (Fig.  1). Geographically, the Upper Anger watershed lies between 9°27′30″ and 
10°23′00″ N and 36°39′00″ and 37°73′00″ E and the elevation of the study area lies 
between 1330 and 3171 m above sea level. It covers an area of 1869.1  km2.

2.2  Data sources and data types

In the present study, the required data were obtained from Landsat TM, Landsat 
ETM + and Landsat OLI/TIRS for the years of 1989, 2002 and 2020, respectively from 
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the U.S. Geological Survey (USGS) website (https:// earth explo rer. usgs. gov/). Rainfall 
data from the National Meteorological Agency of Ethiopia, and soil types from digital 
soil map of Ethiopia developed by Food and Agriculture Organization (FAO), 30 m 
resolution of digital elevation model (DEM) from the Advanced Spaceborne Ther-
mal Emission and Reflection Radiometer (ASTER) website https:// aster web. jpl. nasa. 
gov/ gdem. asp of USGS were used for this study (Fig. 2). Materials used for the study 
included: Handled GPS and Digital Camera as well as software, such as ArcGIS 10.3, 
ERDAS 2015, Arc SWAT and Google Earth pro, were used for the analysis.

2.3  Data analysis

2.3.1  Land use land cover change analysis

In classifying the images, supervised image classification with the maximum likelihood 
algorithm was used to categorize different LULC types (Khatami et al. 2016). Images 
were classified into agricultural land, forest land, grassland, bare land and settlement 
using the ERDAS Imagine 2015 software.

Fig. 1  Map of the study area

https://earthexplorer.usgs.gov/
https://asterweb.jpl.nasa.gov/gdem.asp
https://asterweb.jpl.nasa.gov/gdem.asp
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2.4  Estimation of soil loss

To estimate the amount of soil loss in the Upper Anger watershed, the RUSLE 
model with integration of the Geographic Information System (Wischmeier and 
Smith 1978) was adopted to estimate the annual soil loss (Eq. 1).

where A = average soil loss per unit area in ton∕ha∕year , R = rainfall–runoff ero-
sivity factor in MJ mm   ha−1   h−1   year−1, K = soil erodibility factor in ton ha/MJ/
mm, LS = slope length and steepness , C = cropping and management systems , 
P = conservation practices

(1)A = R ∗ K ∗ LS ∗ C ∗ P

Fig. 2  Methodological flowchart of the study
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2.4.1  Rainfall erosivity (R) factor

The erosivity factor reflects the effects of raindrops on soil erosion (Ganasri and 
Ramesh 2016; Napoli et al. 2016; Lal and Elliot 2017; Ouyang et al. 2018; Koi-
rala et al. 2019). Therefore, the erosivity factor R was calculated according to the 
equation given by Hurni (1985), derived from a spatial regression analysis for 
Ethiopian conditions based on the available mean annual rainfall data (Eq. 2).

where P is mean annual rainfall in (mm).
Seven metrological stations (Shambu, Anger Gute, Sibu Sire,  Nekemte, Haro, 

Chagni and Debremarkos) with mean annual rainfall of 31 years were used to cal-
culate the R factor. The annual rainfall was interpolated from each station using 
Inverse Distance Weighting (IDW) interpolation techniques (Fig. 3).

2.4.2  Soil Erodibility (K) factor

The K factor is used to estimate the vulnerability of soil to erosion (Prasannakumar 
et al. 2012; Atoma et al. 2020; Nasidi et al. 2020). The susceptibility of soil to ero-
sion varies based on the soil types (Gayen et al. 2020). The value of K was estimated 
using soil color which adopted by Hurni (1985) for Ethiopian condition (Table 1). 
The FAO digital soil map of Ethiopia were used for this study, which was obtained 

(2)R = − 8.12 + (0.562∗P)

Fig. 3  Annual rainfall and R factor map
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Table 1  Soil types and K factor Soil types Area  (km2) K factor

Calcic cambisols 50.1 0.05
Chromic cambisols 254.5 0.28
Dystric gleysols 71.5 0.35
Dystric nitisols 522.2 0.25
Eutric cambisols 3.0 0.34
Eutric nitisols 305.0 0.25
Haplic xerosols 117.3 0.2
Leptosols 155.3 0.3
Orthic acrisols 17.5 0.22
Orthic luvisols 93.3 0.2
Orthic solonchaks 232.9 0.15
Phaeozems 2.4 0.2
Vertic cambisols 44.0 0.24

Fig. 4  Soil types and K factor map
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from Oromia Water Works Design and Supervision Enterprise (OWWDSE) and 
used to develop the soil map for soil erosion risk analysis (Fig. 4). Then, erodibility 
value (K factor) is assigned for each of the soil types based on their colors accord-
ing to (Hurni 1985; Gelagay and Minale 2016; Gashaw et al. 2017; Esa et al. 2018; 
Desalegn et al. 2018). 

2.4.3  Slope length and steepness (LS) factor

In this study, the slope length and steepness factor were determined using digital 
elevation model (DEM) with 30 m resolution (Fig. 5). Based on FOA (2006) slope 
gradient classes (Table 2), we re-classified slope class of the Upper Anger water-
shed by considering great topographic variation (1330–3171), and LULC dynamics. 
Accordingly, the slope of the study area was classified as: flat to almost flat terrain 
(0–2%); gently flat to undulating terrain (2–10%); rolling terrain (10–15%); hilly ter-
rain (15–30%), and steep dissected to mountain terrain (> 30%).

Fig. 5  LS factor map of the study area
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The LS is calculated using (Eq. 3). LS is the ratio of observed soil loss related 
to the soil loss of standardized plot (22.13) as developed by Moore and Burch 
(1986), and used by (Ostovari et al. 2017).

where Flow accumulation represents the contribution of an area accumulated 
upslope for a given cell, LS is the combination of the slope length and slope steep-
ness factor, cell size refers to the size of the grid cell (for this study, the specific 
DEM is 30 m pixel size) and the sin slope is the slope degree value in sin.

2.4.4  Cover management (C) factor

Cover management (C factor) is used to estimate the relative influence of the 
management approach on the conservation plan (Fayas et  al. 2019; Almagro 
et al. 2019) which was calculated from LULC types in the study area. The Upper 
Anger watershed was classified into five LULC types and the C factor value was 
assigned (Table  3; Fig.  6) based on the existing literature (Moisa et  al. 2021; 
Negash et al. 2021).

(3)LS = Flow accumulationX
(

Cell size

22.13

)0.4

X

(

sin Slop

0.0896

)1.3

Table 2  Slope gradient classes 
(FOA 2006)

Description Slope range in %

Flat 0–0.2
Level 0.2–0.5
Nearly level 0.5–1.0
Very gently sloping 1–2
Gently sloping 2–5
Sloping 5–10
Strongly sloping 10–15
Moderately sloping 15–30
Steep 30–60
Very steep  > 60

Table 3  C factor and P factor of 
the study area

LULC types C factor P factor

Agricultural land 0.18 0.9
Bare land 0.05 0.73
Forest 0.001 0.53
Grassland 0.05 0.63
Settlement 0.05 0.63
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2.4.5  Erosion control practice factor

The P factor signifies the ratio of soil erosion from a land treated with a specific 
conservation measure to its equivalent soil loss from up and down slope tillage (Esa 
et al. 2018; Belayneh et al. 2019). The P factor for different land use categories was 
assigned based on the existing literature (Fig. 7) as previously used by (Fayas et al. 
2019; Olika and Iticha 2019; Prasannakumar et al. 2012).

2.5  Normalized difference vegetation index (NDVI)

The NDVI was calculated from Landsat images of multi-spectral bands and used to 
calculate the extent to which vegetation covers the earth’s surface (Tran et al. 2017). 
Band 4 was used to measure near-infrared bands on Landsat 5 and 7, and band 5 was 
used on Landsat 8. The red bands of the Landsat data were measured using band 4 for 
Landsat 8 and band 3 for Landsat 5 and 7 (Asare et al. 2020). In this study, NDVI was 
calculated using red bands and near-infrared images from Landsat 5 in 1990, Landsat 

Fig. 6  C factor map of the study area
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7 in 2000, and Landsat 8 in 2020. High reflectivity in the near-infrared (NIR) region 
indicates healthy vegetation, while low reflectance in the red band indicates stressed 
vegetation (Mahajan and Bundel 2016). This index’s formula is presented in (Eq. 4)

The NDVI scale spans from − 1.0 to 1.0 (Mahajan and Bundel 2016). For health 
and dense vegetation, the NDVI values are always between 0.2 and 0.9 (Ahmed and 
Akter 2017). Land cover such as rock, water, and barren plains, on the other hand, are 
represented by values less than 0.1 (Ju and Masek 2016).

(4)NDVI =
NIR - Red

NIR + Red

Fig. 7  P factor map of the study area
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3  Results and discussion

3.1  Land use land cover of the study area

Land use land cover classes in the study area were classified into agricultural, forest, 
grassland, bare land and settlement during the study period (1989, 2002 and 2020) 
(Fig. 8). The results show that, agricultural land was the most dominant LULC types 
with an area of 846.9   km2 (45.3%), 1245.8   km2 (66.7%) and 1554.3   km2 (83.2%) 
during 1989, 2002 and 2020, respectively. This clearly revealed that agricultural 
lands were growing significantly over the study period. A recent study by Moisa 
et al. (2022a) in the Anger River Sub-basin reported the increasing trends of agri-
cultural land between the year 1990 and 2020. The results revealed that forest land 
shows a decreasing trend from 1989 to 2020 due to the encroachment of agricul-
tural land and other underlying factors. Results show that forest cover in 1989 was 
about 380.2  km2 (20.3%) and declined to 342.0  km2 (18.3%) in 2002 and then rap-
idly reduced to 200.3  km2 (10.7%) in 2020 (Table 4). Bare land and settlement cover 
classes showed an increasing trend. For instance, the bare land has been increased 

Fig. 8  LULC types of the study area between 1989 and 2020
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from 3.9   km2 in 1989 to 18.4   km2 by the year 2020. Similarly, the settlement 
increased from 1.3  km2 in 1989 to 3.6  km2 and 5.6  km2 in the year 2002 and 2020, 
respectively. 

3.2  Land use land cover conversion between 1989 and 2020

The land use transfer matrix (LUTM) method was used to analyze the LULC change 
over the study period (1989 to 2020) as recently used by Moisa et al. (2021). The 
results show that about 530  km2 of grassland land cover was converted to agricul-
tural land, while about 241.5  km2 of forest cover was converted to agricultural land 
between 1989 and 2020 (Table 5). The high conversion of forest cover to agricul-
tural land has been reported by Negassa et al. (2020) in Komto protected forest pri-
ority area from the years 1991 to 2019. Other study by Moisa et al. (2022b) found 
that vegetation covers substantially declined due to agricultural expansions. The 
spatial distribution of the major LULC conversion is presented in (Fig. 9). 

3.3  Topography of the study area

Similar to other highland areas in southwestern parts of Ethiopia, the study area was 
dominated by hilly terrain with an area of 718.3  km2. Next to hilly terrain, study area 

Table 4  LULC change of the 
study area

Area of LULC 1989 2002 2020

(km2) % (km2) % (km2) %

Agricultural land 846.9 45.3 1245.8 66.7 1554.3 83.2
Bare land 3.9 0.2 12.0 0.6 18.4 1.0
Forest 380.2 20.3 342.0 18.3 200.3 10.7
Grassland 636.8 34.1 265.7 14.2 90.4 4.8
Settlement 1.3 0.1 3.6 0.2 5.6 0.3
Total 1869.1 100.0 1869.1 100.0 1869.1 100.0

Table 5  LULC change matrix of the study area  (km2)

LULC class 2020

Agricultural land Bare land Forest Grassland Settlement Total

1989 Agricultural land 781.6 11.7 24.9 25.8 2.7 846.7
Bare land 0.8 0.4 0.0 0.7 1.0 2.9
Forest 241.5 0.6 116.9 22.1 1.2 382.2
Grassland 530.0 5.8 58.5 41.9 0.5 636.7
Settlement 0.0 0.0 0.0 0.0 0.7 0.7
Total 1553.8 18.4 200.3 90.4 6.1 1869.1
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situated in gently flat to undulating terrain and rolling terrain by area of 477.5  km2 
and 383.5  km2 respectively (Table 6; Fig. 10).

3.4  Land use land cover change over slope range in 1989

From the result of LULC change, agricultural land was increased on highland 
(> 30%) slope than gentle slope or low land (0–2%) in 1989 by an area of 50.3  km2 
and 13.8   km2,  respectively. This is the main reason for the decline in vegetation 
cover and increase of soil erosion rate (Table 7).

Fig. 9  Spatial distribution of LULC conversion map between 1989 and 2020

Table 6  Slope classes name and their corresponding area coverage

Slope range (%) Classes name Area  (km2)

0–2 Flat to almost flat terrain 21.6
2–10 Gently flat to undulating terrain 477.5
10–15 Rolling terrain 383.5
15–30 Hilly terrain 718.3
 > 30 Steep dissected to mountainous terrain 267.9
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Fig. 10  Slope and slope range of the study area

Table 7  LULC types with slope 
range in 1989

LULC types Slope (%)

0–2 2–10 10–15 15–30  > 30

Agricultural land 13.8 290.5 205.4 286.1 50.3
Bare land 0.003 0.05 0.07 0.5 1.2
Forest 3.1 75 64.5 148.6 90.7
Grassland 4.3 110.3 113.2 282.8 125.6
Settlement 0.09 0.4 0.08 0.1 0.01

Table 8  LULC types with slope 
range in 2002

LULC types Slope in (%)

0–2 2–10 10–15 15–30  > 30

Agricultural land 14.3 334.4 270.8 458.3 116.5
Bare land 0.02 0.35 0.17 0.23 0.17
Forest 3.1 71.4 64.6 161.7 101.6
Grassland 3.6 68.4 47 96.7 49.5
Settlement 0.2 1.6 0.6 1 0.07
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3.5  Land use land cover change over slope range in 2002

From the result of LULC change, agricultural land was increased on high land 
(> 30%) slope than gentle slope or low land (0–2%) in 2002 by an area of 116.5  km2 
and 14.3   km2 respectively. This is the main reason for decline of vegetation cover 
and increment of soil erosion rate (Table 8).

3.6  Land use land cover change over slope range in 2020

From the result of LULC change, agricultural land was increased on highland 
(> 30%) slope than gentle slope or lowland (0–2%) in 2020 by an area of 187.2  km2 
and 18.9   km2 respectively. This is the main reason for decline of vegetation cover 
and increment of soil erosion rate (Table 9).

3.7  Estimation of annual soil loss of Upper Anger watershed

The results revealed that the mean annual soil loss in the Upper Anger watershed 
increased from 44.8  ton/ha/year in 1989 to 66.4 and 87.9  ton/ha/year in 2002 and 
2020, respectively (Fig. 11). The annual soil loss of the Upper Anger watershed is 
greater than the indicated tolerable range by Hurni (1985) for different agro-ecolog-
ical zones of Ethiopia, i.e., 2 ton/ha/year to 16 ton/ha/year. The rate of soil erosion 
increases as the slope length and gradient of the catchment increase. The highest 
key parameters that affect soil erosion are LULC change and ridged topography. It 
is necessary to implement soil and water conservation strategies in areas where soil 
erosion is a risk. As the result, decline of vegetation cover for agricultural expansion 
to steep slope was the main causes for substantial increasing of soil loss rate from 
time to time in the study area. Moisa et al. (2021) confirmed that, LULC change has 
an impact on soil erosion.

Results revealed that about 68% of the study area were classified under sever 
and very sever soil loss severity range in 2020 while it was about 44% in the year 
1989 (Table  10). This clearly indicates that there  is high LULC change in the 
study area which was driven by agricultural expansions. Moisa et al. (2021) con-
firmed that changes in LULC have an effect on soil erosion. Other study by Gem-
eda et al. (2021) reported that LULC change is one of the major driving forces for 
the increasing trends of temperature in southwestern parts of Ethiopia. The LULC 

Table 9  LULC types with slope 
range in 2020

LULC types Slope (%)

0–2 2–10 10–15 15–30  > 30

Agricultural land 18.9 420.6 331.6 594.6 187.2
Bare land 0.2 4.4 4.1 7.2 2.3
Forest 1 29.9 31.8 81.3 56.1
Grassland 0.9 18.4 14.7 34.1 22.2
Settlement 0.28 2.7 0.9 0.6 0.1
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Fig. 11  Annual soil loss map of the study area

Table 10  Severity classes and area of soil loss in the study area

Severity 
range (ton/ha/
year)

Severity classes 1989 2002 2020

Area  (km2) Area (%) Area  (km2) Area (%) Area  (km2) Area (%)

0–5 Very slight 477.5 25.5 474.2 25.4 256.5 13.7
5–15 Slight 242.6 13.0 158.5 8.5 136.2 7.3
15–30 Moderate 324.7 17.4 203.8 10.9 202.0 10.8
30–50 Severe 272.6 14.6 211.0 11.3 230.6 12.3
 > 50 Very severe 551.8 29.5 821.6 44.0 1043.8 55.8
Total 1869.1 100.0 1869.1 100.0 1869.1 100.0
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change highly contributes to annual soil loss. The spatial distribution of soil loss 
severity varies across the study area and very severe soil loss was observed in the 
southeastern parts of the watershed (Fig.  12). The annual rainfall and R factor 
map showed that the southeastern parts of the watershed receive high amount of 
annual rainfall, while the northwestern receive low amount of annual rainfall. 

3.8  Soil loss rate per slope from 1989 to 2020

The mean of soil loss in the study area increased from low land (0–2%) slope to 
high land (> 30%) slope from 1989 to 2020 by 2.25 ton/ha/year to 207.6 ton/ha/year, 

Fig. 12  Soil loss severity map of the study area

Table 11  Mean soil loss and 
slope range

Slope range (%) Mean soil loss (t/ha/year)

1989 2002 2020

0–2 2.25 3 3.3
2–10 16.2 19.3 22.9
10–15 34.7 45.2 53.3
15–30 57.9 85.4 107.4
 > 30 78.5 134.2 207.6
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respectively (Table 11). Expansion of agricultural to high land area by decreasing 
vegetation cover is the main factor for increasing soil erosion over the study period. 
Beyene (2019) confirmed that soil erosion increased with slope.

3.9  Land use land cover change and soil erosion rate

The relationship between LULC types and mean soil loss was calculated in ArcGIS 
using zonal statistics. As a result, soil erosion in agricultural land increased in the 
study area from 1989 to 2020. By reducing vegetation cover, agricultural land was 
expanded to elevated land. Soil loss was increased from 75.9 ton/ha/year in 1989 to 
98.5 ton/ha/year in 1990, and 103.8 ton/ha/year in 2020 (Table 12). The findings of 
this study are consistent with Moisa et al (2021) and Negash et al. (2021) in the case 
study areas of Temeji and Chogo watersheds, respectively.

3.10  Correlation analysis of mean soil loss with NDVI and slope

Soil erosion in the study area has a negative relationship with the NDVI with 
R2 = −  0.89 and a positive relationship with slope with R2 = 0.99 (Table  13). The 
results show that a significant decrease in vegetation cover for agricultural expan-
sion to large land areas was the primary reason for an increase in mean annual soil 
loss from time to time in the study area.

3.11  Correlation analysis of annual soil loss with rainfall erosivity

In the study area, soil loss showed a positive correlation (Fig. 13) with the rainfall 
erosivity factor (R2 = 0.93). This indicates that as the amount of rainfall increases 

Table 12  LULC types with 
mean soil loss from 1989 to 
2020

LULC types Mean soil loss (t/ha/year)

1989 2002 2020

Agricultural land 75.9 98.5 103.8
Bare land 19.7 21.7 35.7
Forest 0.5 0.6 3.1
Grassland 21.1 28.2 28.8
Settlement 12.2 12.4 23.3

Table 13  Correlation of soil 
loss with NDVI and slope

Correlation Soil loss NDVI Slope

Soil loss 1
NDVI − 0.8633 1
Slope 0.99766 − 0.893 1
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there is an increment in annual soil loss that significantly affects the environment 
in general and agricultural production in particular in Ethiopian highlands par-
ticularly during the crop growing season (June to September).

3.12  Regression analysis of soil loss rate with NDVI and slope

Descriptive statistics were used to summarize the data, primarily mean annual 
soil loss, while inferential statistics in the form of a one-way analysis of variance 
(ANOVA) were used to investigate the effect of vegetation cover and slope. The 
independent variables in the ANOVA were NDVI and slope, while the dependent 
variable was annual soil loss (Fig. 14). According to the R2 values for each year, 
NDVI and  slope as a predictor of annual soil loss. The primary causes for the 
rising of annual soil loss were the declining of NDVI and an increasing of slope. 
Other investigations have yielded similar results (Zhou et  al. 2014; Akinyemi 
et al. 2019). The coefficient of determination (R2) between annual soil loss, NDVI, 
and slope was determined for the years 1989 to 2020 (R2 = 0.99). In general, the p 
values in (Table 14) show that an increase in agricultural output. The annual soil 
loss of the Upper Anger watershed increased by 99.8% due to a decline in vegeta-
tion cover from elevated areas for agricultural expansion based on adjusted R2, 
with the remaining percent possibly increasing due to other factors. 
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Fig. 13  Correlation between soil erosion and rainfall erosivity
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4  Conclusion

Water erosion is the most common and serious problem in Ethiopian highland 
particularly in western parts of the country due to decline in vegetation cover 
from steep slope. In the present study, the causes and effects of slope and decline 
of vegetation cover on soil loss are calculated using multiple regression analysis. 

Fig. 14  Slope, NDVI and soil loss regression analysis of the study area

Table 14  Regression analysis of the study: soil loss, NDVI and slope

*Dependent variable: Soil loss; Coefficient is statistically significant at p < 0.01

Variables Coefficients Standard error t Stat p value Lower 95% Upper 95%

*Soil loss − 257.48491 32.770649 − 7.85718 4.97E−05* − 333.0542 − 181.91565
NDVI 520.465344 90.982379 5.720507 0.000444* 310.6596 730.27109
Slope 12.0100062 0.2551894 47.0631 4.59E−11* 11.421538 12.598474
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The loss of vegetation cover from elevated areas has a significant impact on 
soil erosion. Soil erosion has a significant impact on food security by reduc-
ing agricultural yields due to the loss of fertile soil. In this study, an integration 
of RUSLE model and a geospatial technique are used to estimate the impact of 
deforestation on soil erosion in highland areas of Ethiopia. In this study, different 
parameters, such as rainfall, soil types, slope length and steepness, cover manage-
ment, and conservation practices, are considered. In the study area, the NDVI 
and slope are computed to determine the cause-and-effect relationships with soil 
loss. Our results conclude that a decline in vegetation cover is a key factor on 
soil erosion in the study area. Due to the declining trend of vegetation cover and 
continuous LULC change, the mean annual soil loss in the study area is substan-
tially increased from 44.8 ton/ha/year in the year 1989 to 87.9 ton/ha/year in the 
year 2020. Our study concludes that the increasing trend of annual soil loss was 
associated with the declining of vegetation cover over the study period. Moreo-
ver, the amount of annual soil loss is influenced by slope steepness and LULC 
conversion. Our findings clearly identify erosion hotspot areas that require fur-
ther research and policy intervention. Hence, conservation measures, such as re-
afforestation, area closure, agroforestry practices, and community mobilization, 
to strengthen the ongoing participatory watershed management should be encour-
aged by all concerned stakeholders.
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