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Abstract
Cantilever based piezoelectric energy harvesters (PEHs) have been optimized in terms of shape, size, material properties

and damping to improve their electrical outputs. In most of the PEHs, a cantilever beam with width of rectangular,

triangular and trapezoidal shapes, respectively, have been analyzed in optimizing the power output. In this paper, we

investigate the influence of non-uniform beams with linearly and quartic varying widths. To analyze the model, we first

modify the electromechanical formulation of uni-morph piezoelectric cantilever beam with uniform section to include the

non-uniform variation of beam width. Subsequently, we obtain the voltage, current and the power output versus fre-

quencies at different external loads for uniform and non-uniform beams with varying tapering parameters. Based on the

analysis, we found that the diverging beam with tapering parameter of 0.6 can produce an enhanced power output by

3833% as compared to that of uniform beam. Since, the frequency also changes due to change in the tapering parameter of

non-uniform beam, such significant changes in the output are also demonstrated for designing a wide band PEH based on

an array of uniform and non-uniform beams. Finally, we also performed numerical study of PEHs of unimorph as well as

coupled beams with uniform and non-uniform sections.
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Introduction

There have been numerous studies related with the devel-

opment of vibration based energy harvesting devices

ranging from macro-scale (Sodano et al. 2004) and to

micro-scale (Jeon et al. 2005) which converts mechanical

to electrical energy. To carry out such conversions, dif-

ferent methods such as the electromagnetic, electrostatic,

and the piezoelectric are used. Among all the three, the

piezoelectric method offers great advantages in terms of

simple structure, high output voltage, efficiency, etc. To

develop piezoelectric energy harvester (PEH), the can-

tilever beam with uni-morph (single piezoelectric layer)

(Erturk and Inman 2008a) or bi-morph (two piezoelectric

layers) (Ajitsaria et al. 2007) piezoelectric materials is

used under the influence of harmonic excitation (Erturk and

Inman 2008a, b). To optimize the power of PEH, the

rectangular, triangular, and trapezoidal shapes of cantilever

beam along its length have been considered (Roundy et al.

2005; Goldschmidtboeing and Woias 2008; Benasciutti

et al. 2010; Friswell and Adhikari 2010). Recently, Sri-

ramdas and Pratap (2017) have developed scaling analysis

for designing efficient MEMS piezoelectric energy har-

vester. In this study, we focus on analyzing the perfor-

mance of non-uniform cantilever beam with linearly and

quartic varying widths in a uni-morph piezoelectric energy

harvester (PEH).

To optimize the performance of piezoelectric energy

harvester, the coupled mechanical and electrical modeling

is done either using the single degree of freedom (SDOF)

model (Sirohi and Mahadik 2011) or Rayleigh–Ritz

method based distributed parameter model (Erturk and

Inman 2009; Erturk et al. 2009). In SDOF model, the

spring-mass-damper characteristics of cantilever beam can

be coupled easily with lumped electrical components of

piezoelectric layer to model electro-mechanical coupling.
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However, this approach is limited to single mode vibration,

and it is not valid for multi-modal vibration problems.

Therefore, the focus has shifted towards using the Ray-

leigh–Ritz method based distributed parameter model in

order to capture electromechanical coupling under multi-

modal vibration (Erturk and Inman 2008a). The results

based on both the methods for the cantilever based PEH

also compared with experimental results by various

researchers (Abdelkefi et al. 2013; Zhao et al. 2013). To

analyze the performance of PEH, Yang et al. (2013) have

studied the influence of various tip geometries on the

performance characteristics of energy harvester. They

found that the tip geometry with square section gives

superior response. Roundy et al. (2005), Goldschmidtboe-

ing and Woias (2008), Benasciutti et al. (2010), and Fris-

well and Adhikari (2010) performed theoretical and

experimental analysis to improve the power output of

energy harvesters by changing the shape of rectangular

beam to triangular and trapezoidal. The optimization based

on other factors such as stress and strain distribution have

also been studied by other researchers (Benasciutti et al.

2009; Yang et al. 2009; Park et al. 2012) based on

numerical modeling in ANSYS. Bayik et al. (2016) have

performed numerical simulation of a piezo-patch integrated

to a fully clamped thin plate and shunted to a resistive load

in ANSYS. Seba et al. (2006) numerically modeled a beam

structure with a piezoelectric actuator bonded to the surface

of the structure and an accelerometer placed on the tip

using ANSYS and Matlab. Meiling et al. (2009, 2010)

have also used the finite element model to perform coupled

analysis to improve the performance of PEH. Soliman

et al. (2008) proposed the use of piecewise linear oscillator

and Cammarano et al. (2014) optimized the non-linear

response of harvester. Fan et al. (2015) have also presented

a non-linear piezoelectric energy harvester to harvest

energy from various mechanical motions. To improve the

frequency band, Roundy et al. (2005) discussed about

utilizing a system of N-spring-mass damper systems. Wen

et al. (2014) incorporated PZT beam array configuration to

increase the voltage output. Liu et al. performed experi-

mental and numerical analysis for an array of cantilever

beams to increase the frequency band. In short, to optimize

the performance of these transducers, studies have been

done to increase the output power/voltage and frequency

bandwidth. The studies related with increasing the

power/voltage output have been there for quite some time

which involve methods to use efficient piezoelectric

material, piezoelectric configuration, using different

mechanical structures, optimizing power conditioning cir-

cuits, etc. The work involving the improvement of fre-

quency bandwidth are limited to incorporating resonance

tuning with uniform cantilever beam arrays, multi-modal

excitation, utilizing non-linearity, etc. (Tang et al. 2010).

Recently, we found that the frequency of a non-uniform

cantilever beam with quartic converging width can be

increased by more than 100% by changing the level of non-

uniformity (Singh et al. 2015). In this paper, we system-

atically analyze the influence of non-uniform cantilever

beam with quartic and linearly varying width on the fre-

quency bandwidth and electrical output of vibration based

piezoelectric energy harvesters.

To do the analysis, first, we briefly revisit the mathe-

matical modeling of the piezoelectric uni-morph cantilever

beam to capture the effect of non-uniform width by fol-

lowing the approach developed by Erturk and Inman

(2008a) for uniform cantilever beam. We highlight the

terms concerning varying width in the equation. Consid-

ering the Euler–Bernoulli beam equation, the cantilever

beam equation is obtained under the influence of base

excitation. Although, the damping related with non-uni-

form beams vary as compared to the uniform cantilever

beams, we assume same damping ratios as that of uniform

beam as we have focused on frequency band related study.

The non-uniformity in the beam is modeled based on the

approximation suggested by Abrate (1995) which is also

described by Singh et al. (2015). The modal frequencies

are validated with the results proposed by Kim and Lee

(2013), and Mabie (1964). After obtaining the undamped

modal frequencies and mode shapes, we perform the cou-

pled electromechanical analysis using the first order RC-

circuit equation (based on an external resistive load and

internal capacitance due to piezoelectric layer on the can-

tilever beam) and the fourth order beam equation. Using

the Galerkin approach based on three modes approxima-

tion, we solve the beam as well as electrical circuit equa-

tions simultaneously to obtain the frequency response

functions of the voltage, current and the power gain as also

obtained by Erturk and Inman (2008a) for uniform can-

tilever beam. After validating the solution technique for

uniform beam, we compare the response for non-uniform

cantilever beams with different tapering. To show the

application of non-uniform beam in frequency tuning in an

array of uniform and non-uniform beams, we have done

coupled analysis using ANSYS by following the approach

described by Meiling et al. (2009, 2010). We first validate

the numerical modal with the analytical results for uniform

beams at different resistance. Subsequently, we performed

simulation to show frequency tuning for two coupled

beams array and an arrays of coupled uniform beam,

converging beams and diverging beams.
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Electro-mechanical modelling of PEH

In this section, we present the mathematical model to

capture the effect of linear and quartic varying width of

uni-morph piezoelectric cantilever beam on electrical out-

puts of PEH. To perform the analysis, we present detail

model for uni-morph PEH.

Beam equations of uni-morph cantilever based
PEH

To write the governing equations of piezoelectric can-

tilever beam with non-uniform width, b(x), we revisit the

governing equations derived by Ertuk and Inman for beam

with uniform section. Let us consider an uni-morph PEH as

shown in Fig. 1. It shows the vibration of a typical com-

posite Euler–Bernoulli beam with upper layer of PZT

material under the influence of transverse g(t) and rotatory

h(t) excitations at the base such that the base motion

wbðx; tÞ can be written as

wbðx; tÞ ¼ gðtÞ þ xhðtÞ: ð1Þ

Consequently, the governing equation of non-uniform

beam can be written same as that in Erturk and Inman

(2008a)

o2M

ox2
þ o2

ox2
CsIðxÞ

o3wrelðx; tÞ
ox2ot

� �
þ Ca

owrelðx; tÞ
ot

þ mðxÞ o
2wrelðx; tÞ

ot2

¼ �mðxÞ o
2wbðx; tÞ
ot2

� Ca

owbðx; tÞ
ot

ð2Þ

where, wrelðx; tÞ is the transverse deflection of the beam,

M(x, t) is the internal bending moment, CsIðxÞ is the

equivalent structural damping of the composite section, Ca

is the damping coefficient due to viscous air damping, and

m(x) is the mass per unit length of the beam. Considering

the composite beam into an equivalent beam as shown in

Fig. 1c, we can write the internal bending moment as

Mðx; tÞ ¼ �
Z hb

ha

Ts
1bðxÞydy�

Z hc

hb

T
p
1bðxÞydy ð3Þ

where, T is the stress (subscripts 1, 2 and 3 stand for x, y

and z directions, respectively), b(x) is the width of the beam

at a particular value of x, ha is the position of the bottom of

the substructure from the neutral axis (NA), hb is the

position of the bottom of the PZT layer from NA and hc is

the position of the top of the PZT layer from NA. Taking Ys
and Yp as the Young’s modulus of substructure and

piezoelectric layers and the strain as S1 ¼ �y o2wrel

ox2
, the

constitutive relations can be written as (Erturk and Inman

2008a),

Ts
1 ¼ YsS

s
1; T

p
1 ¼ YpðSp1 � d31E3Þ; ð4Þ

where, p and s stand for piezoelectric layer and substruc-

ture layer, respectively. Using the above equations, the

internal bending moment from Eq. (3) can be written as

(Erturk and Inman 2008a)

Fig. 1 a Schematic of PZT

based cantilever energy

harvester under base excitation.

b Top view of beam with non-

uniform width

bðxÞ ¼ b0ð1� a x
L
Þn, where, n ¼

1 for linearly varying beam, n ¼
4 for quartic varying beams, and

n ¼ 0 for uniform beam,

positive and negative signs

represent diverging and

converging beams, respectively.

c Sectional view of the cross-

sections of composite beam and

its transformed form at any

distance x, where, l is the ratio

of the Young’s modulus of

substructure layer to the

piezoelectric layer
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Mðx;tÞ¼�
Z hb

ha

YsS
s
1bðxÞydy�

Z hc

hb

YpðSp1�d31E3ÞbðxÞydy

¼
Z hb

ha

Ys
o2wrel

ox2
bðxÞy2dy

�
Z hc

hb

Yp �y
o2wrel

ox2
�d31E3

� �
bðxÞydy

¼
Z hb

ha

Ys
o2wrel

ox2
bðxÞy2dyþ

Z hc

hb

Yp
o2wrel

ox2

� �
bðxÞy2dy

�
Z hc

hb

Yp
d31

hp
vðtÞÞbðxÞydy

¼bðxÞo
2wrel

ox2
Ys

Z hb

ha

y2dyþYp

Z hc

hb

y2dy

� �

�Yp
d31

hp
vðtÞÞbðxÞ h2c�h2b

2

� �

¼bðxÞo
2wrel

ox2
Ys

h3b�h3a
3

� �
þYp

h3c�h3b
3

� �� �

�Yp
d31

hp
vðtÞÞbðxÞ h2c�h2b

2

� �

¼YIðxÞo
2wrel

ox2
þmðxÞvðtÞ;

ð5Þ

where, m is the electro-mechanical coupling term which is

given by

mðxÞ ¼ �Yp
d31

hp
bðxÞ h2c � h2b

2

� �
ð6Þ

and YI(x) is the flexural rigidity which is given by

YIðxÞ ¼ bðxÞ Ys
h3b � h3a

3

� �
þ Yp

h3c � h3b
3

� �� �
: ð7Þ

Substituting M(x, t) in Eq. (2), we get the final governing

equation to model the transverse motion of a non-uniform

piezoelectric cantilever as

o2

ox2
YIðxÞ o

2wrel

ox2

� �
þ o2

ox2
CsIðxÞ

o3wrelðx; tÞ
ox2ot

� �

þ Ca

owrelðx; tÞ
ot

þ mðxÞ o
2wrelðx; tÞ

ot2

þ mðxÞvðtÞ odðxÞ
ox

� odðx� LÞ
ox

� �

¼ �mðxÞ o
2wbðx; tÞ
ot2

� Ca

owbðx; tÞ
ot

:

ð8Þ

For uni-morph composite beam, YI can be found by finding

equivalent beam width in terms of piezoelectric material

properties (Erturk and Inman 2008a) as shown in Fig. 1b,

c. If hp and hs are piezoelectric and substructure thick-

nesses then the neutral axis of equivalent beam of

piezoelectric material from the bottom is found as hsa ¼
h2pþ2hphsþlh2s
2ðhpþlhsÞ and that from the top as hpa ¼

h2pþ2lhphsþlh2s
2ðhpþlhsÞ ,

where, l ¼ Yp=Ys. The distance between the neutral axis

and the mid axis of top layer is hpc ¼ lhsðhpþhsÞ
2ðhpþlhsÞ . Conse-

quently, the flexural rigidity can be found as

YIðxÞ ¼ Yp
lbðxÞh3s

12
þ lbðxÞhs hsa �

hs

2

� �2

þ
bðxÞh3p
12

þ bðxÞhph2pc

" #
:

ð9Þ

Alternatively, YI(x) can also be found from Eq. (7) with

ha ¼ �hsa, hb ¼ hpa � hp and hc ¼ hpa.

Derivation of electric-circuit equation

In order to obtain electric circuit equation with mechanical

coupling, we need to use piezoelectric constitutive relation

as (Erturk and Inman 2008a)

D3 ¼ d31T1 þ �T33E3; ð10Þ

where, D3 is the electric displacement, �T33 is the permit-

tivity at constant stress, E3 ¼ �vðtÞ=hp is the electric field

across the PZT, T1 ¼ YpðSp1 � d31E3Þ is the longitudinal

stress. Using the above parameters, Eq. (10) can be written

as

D3ðx; tÞ ¼ d31YpS
p
1ðx; tÞ � �s33

vðtÞ
hp

; ð11Þ

where, �s33 ¼ �T33 � d231Yp is the permittivity at constant

strain. Since, the average bending strain in the piezoelectric

layer, S
p
1ðx; tÞ, can be written as S

p
1ðx; tÞ ¼ �hpc

o2wrelðx;tÞ
ox2

,

where hpc is the distance from the neutral axis of composite

beam to the mid of piezoelectric layer, the above Eq. (11)

can be written as,

D3ðx; tÞ ¼ �d31Yphpc
o2wrelðx; tÞ

ox2
� �s33

vðtÞ
hp

: ð12Þ

Now, computing the charge developed in PZT by inte-

grating the electric displacement over the electrode area as

qðtÞ ¼
Z
A

D3:ndA

¼ �
Z L

x¼0

d31YphpcbðxÞ
o2wrelðx; tÞ

ox2
dxþ �s33bðxÞ

vðtÞ
hp

� �
dx;

ð13Þ

and finding the current, i(t), and the voltage, v(t), generated

by PZT as
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iðtÞ ¼ dqðtÞ
dt

¼ �
Z L

x¼0

d31YphpcbðxÞ
o3wrelðx; tÞ

ox2ot
dx

�
Z L

x¼0

�s33
hp

bðxÞ dvðtÞ
dt

dx

ð14Þ

and

vðtÞ ¼ RliðtÞ

¼ �Rl

Z L

x¼0

d31YphpcbðxÞ
o3wrelðx; tÞ

ox2ot
dxþ

Z L

x¼0

�s33
hp

bðxÞ dvðtÞ
dt

dx

� �
;

ð15Þ

we get the final circuit equation from Eq. (15) as

vðtÞ
Rl

þ
Z L

x¼0

�s33
hp

bðxÞ dvðtÞ
dt

dx ¼ �
Z L

x¼0

d31YphpcbðxÞ
o3wrelðx; tÞ

ox2ot
dx:

ð16Þ

Reduced order model equation

To obtain the reduced order form of the beam equation

given by Eq. (8), we apply Galerkin method by assuming

the relative displacement wrelðx; tÞ as series of eigen

functions as

wrelðx; tÞ ¼
X1
r¼1

/rðxÞgrðtÞ; ð17Þ

where, /rðxÞ and grðtÞ are the mass normalized eigen

function and modal co-ordinate of a cantilever beam for rth

mode, respectively. By substituting Eq. (17) in Eq. (8) and

using Eq. (1), we get

o2

ox2
ðYIðxÞgrðtÞ/rðxÞ00Þ þ

o2

ox2
ðCsIðxÞ _grðtÞ/rðxÞ00Þ þ Ca/rðxÞ _grðtÞ

þ mðxÞ/rðxÞ€grðtÞ þ mðxÞvðtÞ odðxÞ
ox

� odðx� LÞ
ox

� �

¼ �mðxÞ x
o2h

ot2
þ o2g

ot2

� �
� Ca x

oh

ot
þ og

ot

� �
:

ð18Þ

Multiplying Eq. (18) with /rðxÞ and integrating the resul-

tant equation from x ¼ 0 to x ¼ L, we get

grðtÞ
Z L

0

/sðxÞ
o2

ox2
ðYIðxÞ/rðxÞ00Þdxþ _grðtÞ

Z L

0

/sðxÞ
o2

ox2
ðCsIðxÞ/rðxÞ00Þdx

þ _grðtÞCa

Z L

0

/sðxÞ/rðxÞdxþ €grðtÞ
Z L

0

mðxÞ/sðxÞ/rðxÞdx

þvðtÞ
Z L

0

mðxÞ/sðxÞ
odðxÞ
ox

� odðx� LÞ
ox

� �
dx

¼ �
Z L

0

mðxÞ/sðxÞ x
o2h

ot2
þ o2g

ot2

� �

�Ca

Z L

0

/sðxÞ x
oh

ot
þ og

ot

� �
:

ð19Þ

Using the orthogonality conditions
R L

0
mðxÞ/sðxÞ/rðxÞdx ¼

drs and
R L

0
/sðxÞ o2

ox2
ðYIðxÞ/rðxÞ00Þdx ¼ x2

rdrs, where drs is

Kronecker delta function, and the Dirac delta dðxÞ with the

following properties

Z 1

�1

dðnÞdðx� x0Þ
dxðnÞ

f ðxÞdx ¼ ð�1Þn df
ðnÞðx0Þ
dxðnÞ

; ð20Þ

we get the final form of Eq. (19) as

o2grðtÞ
dt2

þ 2frxr

ogrðtÞ
dt

þ x2
rgrðtÞ þ vrvðtÞ ¼ NrðtÞ

ð21Þ

where, 2frxr ¼ Csx2
r

Y
þ Ca

R L

0
/rðxÞ/rðxÞdx is the mechan-

ical damping ratio and vr ¼ d
dx
ð/rðxÞmðxÞÞjx¼L is term

associate with the electromechanical coupling and the

forcing term can be expressed as NrðtÞ ¼
� cwr

d2gðtÞ
dt2

þ chr
d2hðtÞ
dt2

� �
� ca cwr

dgðtÞ
dt

þ chr
dhðtÞ
dt

� �
, cwr ¼

R L

x¼0

mðxÞ/rðxÞdx and chr ¼
R L

x¼0
mðxÞx/rðxÞdx.

Similarly, the electrical-circuit equation from Eq. (16)

can also be simplified by substituting wrel from Eq. (17) as

vðtÞ
Rl

þ �s33
hp

dvðtÞ
dt

Z L

0

bðxÞdx ¼ �d31Yphpc
X1
r¼1

Z L

0

bðxÞ/00
r ðxÞ _grðtÞdx

ð22Þ

Note that b(x) will be constant for uniform beam and it will

be a function of x for non-uniform beams. Clubbing the

terms of the above Eq. (22), we get its final form as

dvðtÞ
dt

þ vðtÞ
sc

¼
X1
r¼1

ur _grðtÞ ð23Þ

where, ur ¼ � d31Yphpchp
�s
33

R L

0
bðxÞ/00

r ðxÞdxR L

0
bðxÞdx

and sc ¼
Rl�

s
33

R L

0
bðxÞdx

hp

which are dependent on b(x). For uniform beam, bðxÞ ¼ b,

and for non-uniform beams bðxÞ ¼ b0ð1þ ax
L
Þn, where n ¼

1 for linearly tapered beam and n ¼ 4 for quartic tapered

beam. Finally, we solve the coupled equations of beam

(Eq. (21)) and electrical circuit (Eq. (23)) to get elec-

tromechanical frequency response of piezoelectric can-

tilever beam with uniform and non-uniform widths.

To obtain the coupled frequency response, we solve

Eqs. (21) and (23) simultaneously by assuming the har-

monic base excitation as gðtÞ ¼ Y0e
jxt and hðtÞ ¼ h0ejxt.
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Assuming the output modal co-ordinate as grðtÞ ¼ gr0e
jxt

and neglecting the rotational component and excitation

term based on damping (Erturk and Inman 2008a), we get

the voltage and current frequency response functions (FRF)

as,

vðtÞ
�x2Y0ejxt

¼
P1

r¼1
�jxurc

w
r

x2
r�x2þj2frxxrP1

r¼1
jxvrur

x2
r�x2þj2frxxr

þ 1þjxsc
sc

ð24Þ

and

iðtÞ
�x2Y0ejxt

¼ vðtÞ
�Rlx2Y0ejxt

¼
P1

r¼1
�jxurc

w
r

x2
r�x2þj2frxxr

Rl

P1
r¼1

jxvrur

x2
r�x2þj2frxxr

þ 1þjxsc
sc

� � :

ð25Þ

The power FRF is obtained from the product of voltage and

current FRFs from Eqs. (24) and (25). Although, the above

expressions are written in terms of infinite modes, we

consider only first three transverse modes for the analysis

in this paper. Therefore, we briefly describe the procedure

of finding first three modal frequencies and corresponding

mode shapes of uniform as well as non-uniform cantilever

beams in the subsequent sections.

Mode shapes and modal frequencies of beam

• Uniform beam: To find the response of uniform can-

tilever beam, we take the mode shapes under undamped

and free vibration conditions as (Singh et al. 2015)

/rðxÞ ¼ A1 sin kr
x

L

� �
þ A2 cos kr

x

L

� �
þ A3 sinh kr

x

L

� �

þ A4 cosh kr
x

L

� �
:

ð26Þ

Using the boundary conditions for the cantilever beam

as

/rð0Þ ¼
o/rðxÞ
ox

����
x¼0

¼ 0; YI
o2/rðxÞ
ox2

����
x¼L

¼ YI
o

ox

o2/rðxÞ
ox2

� �����
x¼L

¼ 0

ð27Þ

and the transcendental frequency equation for non-

trivial solutions as

ð2þ 2 cosðkrÞ coshðkrÞÞ ¼ 0; ð28Þ

where, k4r ¼ x2
r
L4m
YI
, we find the mode shapes and modal

frequencies. For first three transverse modes, the fre-

quency parameters are k1 ¼ 1:8751, k2 ¼ 4:6949 and

k3 ¼ 7:855. The corresponding values of mode shapes

and frequencies can be found from Eq. (26) and xr ¼

k2r
L2

ffiffiffiffi
YI
m

q
( fr ¼ xr

2p), where, m ¼ qsbhs þ qpbhp and YI can

be found from Eq. (7) with bðxÞ ¼ b.

• Linearly tapered beam: The mode shapes and

frequencies of linearly tapered non-uniform beam is

found by transforming the governing equation for non-

uniform beam into an equivalent equation of uniform

beam as described by Abrate (1995) and Singh et al.

(2015). Since, the width of linearly tapered cantilever

beam varies as bðxÞ ¼ b0ð1þ a x
L
Þ, the corresponding

mode shapes can be written as (Singh et al. 2015),

/rðxÞ ¼
A1 sinðkr x

L
Þ þ A2 cosðkr x

L
Þ þ A3 sinhðkr x

L
Þ þ A4 coshðkr x

L
Þffiffiffiffiffiffiffiffiffiffiffiffi

1þ ax
L

p :

ð29Þ

Using the fixed-free boundary conditions of cantilever

beam as

/rð0Þ ¼
o/rðxÞ
ox

����
x¼0

¼ 0; YIðxÞ o
2/rðxÞ
ox2

����
x¼L

¼ o

ox
YIðxÞ o

2/rðxÞ
ox2

� �����
x¼L

¼ 0

ð30Þ

where, for bðxÞ ¼ b0ð1þ ax
L
Þ, where b0 is the width of

the beam at the fixed end, a is the tapering parameter,

the flexural rigidity and cross-sectional area can be

written as YIðxÞ ¼ YI0ð1þ ax
L
Þ and AðxÞ ¼ A0ð1þ ax

L
Þ.

After substituting the mode shapes into boundary con-

ditions, we obtain transcendental equation governing

the frequency parameter kr for non-trivial solutions as
described by Singh et al. (2015). The readers can refer

the above paper for the transcendental equations for

converging (a\0) and diverging (a[ 0) beams.

However, for uniform beam, we can take a ¼ 0. The

frequency parameters can be obtained by solving tran-

scendental equation for linearly converging and

diverging beams. For converging beam with tapering

parameter a ¼ �0:2, the frequency parameters for first

three transverse modes are k1 ¼ 1:9364, k2 ¼ 4:7462

and k3 ¼ 7:886. For diverging beam of a ¼ 0:2, the

frequency parameters are k1 ¼ 1:8231, k2 ¼ 4:6582

and k3 ¼ 7:8352. The corresponding frequencies can be

found from xr ¼ k2r
L2

ffiffiffiffiffi
YI0
m0

q
, where YI0 and m0 ¼ qsb0hs þ

qpb0hp are flexural rigidity and mass per unit length at

the fixed end.

• Quartic tapered beam: Similarly, the mode shapes

and frequencies of quartic tapered beam can be found

by following the same procedure as described in the

case of linearly tapered beam in the previous section. In

this case, the beam width varies as bðxÞ ¼ b0ð1þ a x
L
Þ4,

the corresponding mode shapes can be written as

(Abrate 1995; Singh et al. 2015),
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/rðxÞ ¼
A1 sinðkr x

L
Þ þ A2 cosðkr x

L
Þ þ A3 sinhðkr x

L
Þ þ A4 coshðkr x

L
Þ

1þ ax
L


 �2 :

ð31Þ

For the given boundary conditions, the transcendental

equation is obtained. For the first three modes, the

frequency parameters for converging beam with a ¼
�0:2 are k1 ¼ 2:1419, k2 ¼ 4:8949 and k3 ¼ 7:9762.

For diverging beam with a ¼ 0:2, the frequency

parameters are k1 ¼ 1:6731, k2 ¼ 4:5348 and

k3 ¼ 7:7671. The corresponding mode shapes and fre-

quencies are found from Eq. (31) and xr ¼ k2r
L2

ffiffiffiffiffi
YI0
m0

q
.

Finally, based on the mode shapes of uniform and non-

uniform beams with varying widths, b(x), we obtain the

voltage FRF, current FRF and the power FRF by separately

computing ur ¼ � d31Yphpchp
�s
33

R L

0
bðxÞ/00

r ðxÞdxR L

0
bðxÞdx

and sc ¼

Rl�
s
33

R L

0
bðxÞdx

hp
for each type of beams.

Results and discussion

In this section, we first validate the voltage frequency

response curves with that obtained by Erturk and Inman

(2008a) for uniform beam at different load resistances

corresponding to first modal frequency. Subsequently, for a

given load resistance, we investigate the variation of these

curves at different tapering parameters for linearly and

quartic varying beams. Finally, we have performed

numerical analysis in ANSYS to compare the voltage fre-

quency response curves with analytical model for uniform

beam. Subsequently, we have performed numerical analy-

sis for coupled beams to enhance the electrical out and

frequency bandwidth.

To do the above analysis, we take dimensions and

properties of substructure layer and piezoelectric layer of

cantilever beam as mentioned in Table 1 (Erturk and

Inman 2008a).

For the above dimensions and properties, the mass per

unit length for uni-morph beam is found as m ¼ 0:13405

kg/m. The flexural rigidity for uniform beam is found as

YI ¼ 0:097982 Nm2. For non-uniform beams with linearly

varying width and quartic varying width, the flexural

rigidities are given by YIðxÞ ¼ YI0ð1þ ax
L
Þ and

YIðxÞ ¼ YI0ð1þ ax
L
Þ4, respectively, where, YI0 ¼ 0:097982

Nm2 at the fixed end. The frequencies of uniform and non-

uniform beams with linearly and quartic varying width at

a ¼ �0:2 are computed and mentioned in Table 2.

To find the frequency response curve corresponding to

first mode, we take the same modal damping ratio f1 ¼
0:01 as found by Erturk and Inman (2008a) for uniform

beams. Although, the damping related with non-uniform

beams vary as compared to the uniform cantilever beams,

we assumed the same damping ratio as that of uniform

beam as we have focused our study mainly on frequency

bandwidth. Therefore, fr in 2frxr ¼ Csx2
r

Y
þ

Ca

R L

0
/rðxÞ/rðxÞdx as mentioned in Eq. (21) for given first

mode is taken as f1 ¼ 0:01. To improve the modeling, the

influence of non-uniform beam modeshape on damping can

be included to accurately find the voltage output. Finally,

the voltage, current and power FRFs can be obtained from

Eqs. (24) and (25) for uniform as well as non-uniform

beams with corresponding values of YI(x), mðxÞ, ur and sr.

Analysis based on analytical modeling

In this section, we study the influence of load resistance on

the electromechanical coupled response of piezoelectric

energy harvesters. We plot the modulus of voltage FRFs

for five different resistance values of 102; 103; 104; 105; 106

X, respectively. Figure 2a shows the voltage FRFs at dif-

ferent load resistance for uniform beam when a ¼ 0. The

results found to be same as that obtained by Erturk and

Inman (2008a) which validates the analytical model. As we

can clearly see from Fig. 2a that as the resistance value (Rl)

increases, the voltage output increases. Therefore, the

maximum voltage can be obtained when the system is close

to open circuit condition (Rl ¼ 1). However, we found the

similar trends for the non-uniform beams, we plot the

voltage frequency response curves for tapering beams

corresponding to a resistance value of 106 X for further

analysis.

Table 1 Dimensions and properties of substructure and piezoelectric

layers of cantilever beam (Erturk and Inman 2008a)

Length of the beam, L in mm 100

Width of the beam, b in mm 20

Thickness of the substructure, hs in mm 0.5

Thickness of the PZT, hp in mm 0.4

Young’s modulus of the sub structure Ys in GPa 100

Young’s modulus of the PZT layer Yp in GPa 66

Mass density of the substructure qs in kg/m3 7165

Mass density of the PZT layer qp in kg/m3 7800

Piezoelectric constant, d31 in (pm/V) �190

Permittivity, �s33 in (nF/m) 15.93
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Linearly tapered beam

To study the influence of tapering on the voltage FRFs in

uni-morph beams, we take a ¼ �0:2; �0:4; and þ0:6 for

linearly tapered beams. The curves in Fig. 2b are obtained

corresponding to load resistance of 106X near the first

transverse mode. It shows the variation of voltage FRF

curves with tapering parameters for linearly varying con-

verging as well as diverging beams. On analyzing the

curves in Fig. 2b, for the linearly converging beam with

tapering parameter of a ¼ �0:2, we found that the peak

value of voltage output at the load resistance of Rl ¼ 106

decreases by 23:44% with respect to that of the uniform

beam. The corresponding frequency increases by 6:5%.

Similarly, for the linearly diverging beam with tapering

parameter a ¼ 0:2, we found from Fig. 2a that the peak

voltage output at Rl ¼ 106 increases by 22:4% w.r.t. that of

the uniform beam while the natural frequency decreases by

5:1%.

As the tapering parameter varies from 0.6 for diverging

beam to -0.4 for converging beam, the resonance frequency

reduces by 12:56% for a ¼ 0:6 and increases by 11:37%

for a ¼ �0:4 with respect to uniform beam for which

a ¼ 0. Consequently, we get increase in frequency range

by 23:93% when a varies from 0.6 to -0.4. However, we

also found that the voltage output increases by 63:93%

w.r.t. that of uniform beam for diverging beam of a ¼ 0:6

and is decreased by 47:49% w.r.t. that of uniform beam for

converging beam of a ¼ �0:4. Similar trends are observed

in the current and power FRFs The current output is

increased by 63:93% for a ¼ 0:6 and is decreased by

47:49% for a ¼ �0:4. The power output is increased by

168:82% for diverging beam with a ¼ 0:6 and is decreased

by 72:43% for converging beam with a ¼ �0:4. Thus, the

above analysis shows that the power, current and the

voltage output increases but the frequency reduces for the

diverging beams. Hence, gain in power is obtained with

diverging beam for larger tapering ratio. However, the peak

values can be further improved by including actual varia-

tion of damping ratios.

Quartic tapered beam

Similarly, Fig. 2c shows the variation of the voltage FRFs

of quartic varying beam when the tapering parameter a ¼
�0:2; �0:4; and �0:6 for quartic diverging and converging

beams. In this case, the frequency decreases by 39:03% for

diverging beam with a ¼ 0:6 and increases by 75:72 and

157:38% for converging beam with a ¼ �0:4 and �0:6,

respectively, with respect to that of uniform beam. On

comparing the voltage response curves in Fig. 2c for

tapering parameter values from 0.6 to �0:6; we found that

the maximum voltage output is increased by 527:08% for

diverging beam of a ¼ 0:6 and for converging beams with

Table 2 First three modal

frequencies of uniform and non-

uniform beams with tapering

parameter a ¼ �0:2 in Hz

Mode no. Uniform beam Lin. conv. Lin. div. Quartic conv. Quartic div.

r a ¼ 0 a ¼ �0:2 a ¼ 0:2 a ¼ �0:2 a ¼ 0:2

1 47.82 50.97 45.16 62.40 38.07

2 299.67 306.31 294.78 325.86 279.68

3 839.25 845.65 834.46 865.24 820.48

Fig. 2 a Voltage FRF (frequency response function) curves for uniform beam at different load resistance Rl, b comparison of voltage FRF curves

between linearly varying and uniform beams, and c comparison of voltage FRF curves between quartic varying and uniform beams
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a ¼ �0:4 and a ¼ �0:6, the voltage outputs are decreased

by 93.45 and 99.5% respectively. However, we found that

the current output and power output for diverging beam of

a ¼ 0:6 increases by 527.08 and 3833.21%, respectively.

Similarly, for converging beams with a ¼ �0:4 and

a ¼ �0:6, the voltage outputs are decreased by 93.45 and

99.5%.

Thus, the diverging quartic beam with large tapering of

0.6 can be used to improve the power out of piezoelectric

cantilever beam based energy harvester. However, the

frequency corresponding to diverging beam reduces and

that of converging beam increases. Nevertheless, an array

of converging and diverging beams can be utilized to

design wide band piezoelectric energy harvesters. There-

fore, we have extended our study to the numerical analysis

of PEHs with single unimorph PEHs and coupled PEHs

with uniform and non-uniform sections.

Analysis based on numerical modeling

To perform the numerical analysis, we used finite element

software ANSYS (ANSYS Inc 2005). To model unimorph

piezoelectric energy harvester, we have used SOLID5 ele-

ment type (linear element with 8 nodes and each node

having 6 DOFs) to model the piezoceramic layer. However,

to model the substructure beam layer, SOLID45 (Linear

element with 8 nodes and each node having 3 DOFs) ele-

ment type is selected. To perform the electrical analysis, we

have used CIRCU94 element type for the resistor and

MESH200 for the electric wires. In ANSYS Inc (2005), the

piezoelectric elements are poled in z-direction where as

according to (Erturk and Inman 2008a) standard the prop-

erties are poled in y- direction. Therefore, the piezoelectric

compliance matrix, piezoelectric stress matrix and permit-

tivity matrix must be converted from IEEE format to

required ANSYS Mechanical APDL format.

To model the unimorph piezoelectric energy harvester in

ANSYS Mechanical APDL, the above mentioned three

element types are selected. In preprocessor, two material

models are created. The properties of the substructure

layers and PZT-5A material are taken as listed in the

Table 1. The material properties of the piezoelectric

material poled in y- direction can be taken as follow

(ANSYS Inc 2005; Meiling et al. 2009, 2010),

(a) Elastic compliance matrix/flexibility matrix

s ¼

15:2 �4:55 �5:77 0 0 0

�4:55 15:2 �5:77 0 0 0

�5:77 �5:77 1:92 0 0 0

0 0 0 3:97 0 0

0 0 0 0 5:0 0

0 0 0 0 0 5:0

2
666666664

3
777777775
10�12m2=N

(b) Piezoelectric strain matrix

d ¼

0 �190 0

0 394 0

0 �190 0

584 0 0

0 0 584

0 0 0

2
666666664

3
777777775
10�12m=V

(c) Relative permittivity matrix

�s33 ¼
1800 0 0

0 1800 0

0 0 1800

2
64

3
7510�12F=m

The solid 3D model of the substructure and the piezoce-

ramic layers are created by using the dimensions provided

in the Table 1. Figure 3a show the numerical model for the

coupled piezoelectric and structural analysis of PEH. The

two volumes of 3D solids are glued together. Subsequently,

the whole volume can be meshed with hexagonal swept

meshing or with required numbers of elements, and then

the nodes and the key-points are merged with a tolerance

value of 10�4. Subsequently, the elements of the substrate

and piezoceramic layers are attributed to their respective

element types and material models. The convergence study

is also performed based on the first modal frequency of

uniform beam to obtain optimized number of elements as

shown in Fig. 3b.

Numerical validation

To validate the numerical model, we find modal frequen-

cies and voltage power output of uniform cantilever beam

at different load resistance. Table 3 shows the comparison

between frequencies obtained using analytical and numer-

ical techniques. The percentage difference in numerical

model is found in the range of 2–4%.

To obtain the voltage frequency response, we performed

the harmonic analysis, the upper and lower layers of

piezoceramic are assigned to respective coupled sets with

voltage as degree of freedom. Then, the master node is

selected from both the coupled sets and a resistive element

is created between the two master nodes. The element type

selected for the resistive element is CIRCU94. The value of

the load resistance can be given as real constant for the

element type. To calculate the voltage across the load

resistance, the node corresponding to the bottom of the

piezoceramic layer, i.e, the top of the substructure layer is

grounded by nullifying the voltage at that node. As the

analytical results are in terms of voltage per unit linear

acceleration, a gravity load is applied at the fixed end of the

cantilever. To find the response near the 1st fundamental
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natural frequency, the harmonic analysis is done in a fre-

quency range of 0–100 Hz with 2000 sub-steps. However,

the mass and stiffness multipliers are taken as 4.886 and

1:2433� 10�5, respectively (Erturk and Inman 2008a). For

four different values of load resistance (102X, 103X,
104X; 105X), the electric potential across the resistive

element is found in the frequency range from the active

node (which is not grounded) of the resistive element.

However, the voltage FRF curves for the resistance value

of 102X and 104X are plotted with respect to frequency

ranging from 0–100 Hz in Fig. 3c, d, respectively. Fig-

ures also show the comparison between numerical FRF

obtained using ANSYS and analytical FRF obtained using

Matlab. The peak values of voltage FRFs at different

resistance values from numerical and analytical FRFs are

tabulated in Table 4. Based on the above results, we found

the percentage difference of less than 10%. For the resis-

tance value of 104X, the percentage error is minimum.

Therefore, for further analysis of coupled beams we have

considered the value of load resistance as 104X.

Numerical analysis of coupled two uniform beams

To increase the voltage output, many researchers have

proposed to use arrays of cantilever beams (Soliman et al.

2008; Liu et al. 2008). In this section, we analyze the

influence of two uniform beams of same dimensions as

mentioned in Table 1 and are separated from each other by

a constant distance 4 mm. By following the same proce-

dure as described in the previous section for single beam

and doing the analysis over the frequency range of

0–100 Hz, we analyzed the influence of coupling length Lc
along the beam length. While the length of the beam

remains constant as 100 lm from the fixed end, the cou-

pling length which is defined as the overlapping length of

two beams, i.e., Lc, as shown in Fig. 4a is varied from 0,

10, 20, 30, 40 to 50 mm (i.e., half the beam length). To

perform the numerical analysis, master nodes of upper and

bottom layers of piezoceramic beams are connected

through a resistor of 104 X. The voltage frequency

response, resonance frequency and peak voltage versus

coupling length are plotted in Fig. 4a–c, respectively.

Based on the comparison, it is found that the voltage

amplitude in two beam arrays with Lc ¼ 0 is increased by

about 48% as compared to single beam. However, its value

Fig. 3 a First transverse mode shape of the cantilever based unimorph PEH, b convergence curve. Comparison between analytical and numerical

voltage FRF with load resistance of c 102X and d 104X

Table 3 First three modal frequencies of uniform beam calculated

from analytical results and ANSYS Mechanical APDL in Hz

Mode no. Analytical Numerical % Error

1 47.82 49.437 3.4

2 299.67 306.06 2.13

3 839.25 855.86 1.98

Table 4 Values of peaks of voltage FRFs from numerical and ana-

lytical model

Rl Analytical Numerical % Error

102 0.02637 0.02785 5.61

103 0.252 0.2647 5.04

104 1.735 1.744 0.518

105 5.778 5.295 8.4
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for two beam array remains nearly constant (1%) as Lc ¼ 0

to 50 mm. Nevertheless, the coupling length helps in tun-

ing the frequencies by around 5%. Now, we will utilize the

influence of array of uniform and non-uniform beams.

Numerical analysis of an array of uniform and non-uniform
beams

Based on the theoretical analysis we found that the voltage

output increases for diverging beams and decreases for

converging beams, whereas, the resonance frequency

increases for converging beam and decreases for diverging

beam. Utilizing the above changes, we analyze a five

beams array consisting of diverging beams of tapering ratio

0.1, uniform beams, and converging beams of taper ratio

�0:1: Taking the interbeam distance as 4 mm and coupling

length as Lc ¼ 10 mm, we perform harmonic analysis over

frequency range of 0–100 Hz by following the same

approach as followed for single beam. All other parameters

are also taken same as that of single beam analysis. To

compare the results of array of uniform and non-uniform

beams, we also performed simulation for array of uniform

beams with same interbeam gap and coupling length.

Figure 5 shows the comparison of voltage FRF curves

between two coupled beams and an array of five uniform

beams and an array of combination of uniform and non-

uniform beams. From Fig. 5, we found that as the number

of uniform beams increases to 5, the voltage peak increases

by 38%. Additionally, the frequency bandwidth in the array

increases as compared to that of single beam or two beam

arrays. On utilizing arrays of uniform and non-uniform

beams with tapering ratio of 0.1, the frequency band over

which vibration can be captured is increased to 48–54 Hz

(6 Hz) as compared to arrays of uniform beams (2 Hz) as

shown in Fig. 5. The maximum peak voltage is increased

by 12% with respect to two beams array, and is reduced by

18% w.r.t to uniform beams array. Therefore, the use of an

array of uniform and non-uniform beams can be used to

increase the bandwidth of the energy harvesters. Further

analysis can be done by including the variation of damping

due to non-uniform beams and optimal value of load

resistance for arrays.

At the outset, we state that the output voltage and power

of piezoelectric harvesters can be improved by incorpo-

rating different structural/geometrical changes. In this

paper, we have explored the application of non-uniform

sections with a single cantilever beam and an array of

coupled beams to optimize the bandwidth and the electrical

outputs of the energy harvesters.

Conclusion

In this paper, we have analyzed the influence of linearly

and quartic varying width of a cantilever beam on the

electrical output of PEH. To do the analysis, we included

the effect of non-uniform beam in the existing formulation

of the electromechanical coupling of piezoelectric energy

harvesters based on uni-morph cantilever beam. Using the

modified formulation, we found the voltage, current and

power FRFs of PEH at different tapering parameters. On

analyzing the curves, we obtained that the frequency

increases with the degree of tapering for converging beam

and decreases for the diverging beam, whereas, the elec-

trical output increases for the diverging beam with constant

external resistive load. Consequently, for the quartic

Fig. 4 a Voltage FRF curves with different coupling lengths, b variation of natural frequency w.r.t the coupling length, and c variation of peaks

of voltage FRFs w.r.t coupling length (Lc)
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diverging beam with tapering parameter of 0.6, the voltage

output, current output and the power output are increased

by 527, 527, and 3833, respectively, with respect to those

of uniform beam when the external resistive load is

Rl ¼ 106X. Additionally, we have found that the frequency

also shifts due to non-uniform beams, an array of different

non-uniform beams can be used to design a wide-band

piezoelectric energy harvesters with improved electrical

output. Considering such observation, we have performed

numerical analysis of unimorph PEH with uniform section

to validate our analytical results. Then, we extend the

numerical formulation to coupled beams which helps in

improving the voltage output and the bandwidth of the

harvester. On analyzing the FRF curves of the coupled

PEHs, we found that the peak of voltage FRF of PEH

having an array of two coupled beams increases by 48% as

compared to those of the unimorph PEHs. Additionally, we

found that the resonance frequency of the coupled beams

increases with the increase in coupling length. To study the

effect of non-uniformity, an array of five uniform beams

and an array of five uniform and non-uniform beams are

modeled. While an array of five uniform beams gives more

voltage output as compared to an array of two coupled

beams, an array of uniform and non-uniform beams

increases the frequency bandwidth of the energy harvester

by more than 10% as compared to array of uniform beams.
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