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Abstract
Novel cancer therapies are associated with survival patterns that differ from established therapies, which may include survival 
curves that plateau after a certain follow-up time point. A fraction of the patient population is then considered statistically 
cured and subject to the same mortality experience as the cancer-free general population. Mixture cure models have been 
developed to account for this characteristic. As compared to standard survival analysis, mixture cure models can often lead to 
profoundly different estimates of long-term survival, required for health economic evaluations. This tutorial is designed as a 
practical introduction to mixture cure models. Step-by-step instructions are provided for the entire implementation workflow, 
i.e., from gathering and combining data from different sources to fitting models using maximum likelihood estimation and 
model results interpretation. Two mixture cure models were developed to illustrate (1) an "uninformed" approach where the 
cure fraction is estimated from trial data and (2) an “informed” approach where the cure fraction is obtained from an external 
source (e.g., real-world data) used as an input to the model. These models were implemented in the statistical software R, 
with the freely available code on GitHub. The cure fraction can be estimated as an output from (“uninformed” approach) 
or used as an input to (“informed” approach) a mixture cure model. Mixture cure models suggest presumed estimates of 
long-term survival proportions, especially in instances where some fraction of patients is expected to be statistically cured. 
While this type of model may initially seem complex, it is straightforward to use and interpret. Mixture cure models have 
the potential to improve the accuracy of survival estimates for treatments associated with statistical cure, and the present 
tutorial outlines the interpretation and implementation of mixture cure models in R. This type of model will likely become 
more widely used in health economic analyses as novel cancer therapies enter the market.

Key Points for Decision Makers 

We provide a framework to inform cure proportions 
given prior evidence.

We make our codes available to help the reader with 
model fitting.

We introduce a context to determine the plausibility of 
the existence of a cure proportion.

1 Introduction

Cancer imposes a significant clinical and economic burden 
on patients, healthcare systems, and societies around the 
world. While survival has improved for some cancers in 
recent years, it remains low for others, and the overall cancer 
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burden is projected to increase further due to population 
growth and ageing [1–4]. As prevention has been shown to 
have little effect for a number of common cancers, healthcare 
providing access to highly effective pharmacologic treat-
ments will be an important component of any cancer control 
strategy designed to reduce cancer burden and cost [1].

Several novel pharmacologic treatment options have 
become available over the past years. These include immu-
notherapy, which stimulates the host immune system to 
attack cancer cells [5, 6], and targeted therapies, which 
block specific molecular targets relevant for cancer growth 
and disease progression [7–10]. These therapies are associ-
ated with treatment response and survival patterns different 
from established treatments such as chemotherapy [6, 11]. 
In particular, these therapeutic approaches are often asso-
ciated with the potential to lead to long-term survival in 
some patients, who are considered “statistically cured” and 
no longer susceptible to the disease [12, 13]. In other words, 
for those patients, background mortality is assumed to be 
equal to that of a population without cancer [6, 11, 14].

In a mixed population of statistically cured and non-cured 
patients, overall survival may no longer show a consistent 
decline to zero over the follow-up period of clinical studies. 
In combination with the delayed onset of effect and separa-
tion of survival curves, statistical cure reduces the power 
of traditional survival analysis methods and violates key 
assumptions of these methods, e.g., assumptions concerning 
proportional hazards and accelerated failure time [6, 14, 15].

While methods like flexible parametric models address 
these issues [16], these methods have the limitation of rely-
ing on several assumptions as far as extrapolating hazard 
is concerned. Notably, assumptions on the behavior of the 
hazard beyond the observed time need to be made.

The mixture cure model assumes that there are two 
groups, “cured” and “uncured,” at diagnosis (or time = 0), 
which may not be appropriate, especially in cases where 
cure can occur at any time during the follow-up, e.g., after a 
long disease stabilization phase. However, this assumption 
does not invalidate the use of the mixture cure model as you 
can still obtain useful summary statistics for those who will 
inevitably die (with or without the disease) [17].

Mixture cure models have been used to estimate the prob-
ability of survival of the cohort in order to provide accurate 
survival estimates in the presence of statistical cure [14, 
15]. In particular, the long-term hazard is characterized by 
the one of the general population, thus requiring no extra 
assumption on its long-term behavior. It is worth mentioning 
that some disease areas suggest an increased propensity of 
dying for cancer survivors compared to the general popula-
tion. For example, a recent evaluation of a health technol-
ogy by the National Institute for Health and Care Excellence 
(NICE) suggests a background hazard for cancer survivors 
about 40% higher than that for the general population [18]. 

Mixture cure models assume that a proportion of the popu-
lation is cured (the “cure fraction”) while the remainder is 
not [15, 19–22]. Different mortality rates are applied in each 
group to reflect the impact of statistical cure on the overall 
(average) survival curve assuming all patients belong to a 
cohort with the same age at the start of the trial.

Mixture cure models have been in use for some time in 
statistics and epidemiology but have only recently received 
attention in health economics and health technology assess-
ment (HTA) [19, 23, 24]. These models may therefore be 
unfamiliar to some health economists and HTA analysts, 
especially as many of the currently available papers on mix-
ture cure models have a technical focus and target statis-
ticians and epidemiologists [15, 20]. This tutorial aims to 
provide a step-by-step introduction to mixture cure models 
and their implementation in the free statistical software R 
[25]. The tutorial is intended to complement earlier, more 
technical articles on cure models [20, 22].

2  Methods

The workflow for developing a mixture cure model is imple-
mented in R, a free software environment for statistical anal-
ysis and computing [25–28]. The datasets and code used 
and/or analyzed during the current study are available under 
a CC BY-NC 4.0 license on GitHub [29].

2.1  Mixture Cure Models: Explanation and Notation

A standard mixture cure model estimates overall survival 
So(t + a) for a patient population at time t  (since randomi-
zation, measured in years) and the mean age of the patient 
cohort, denoted a . The crucial assumption underlying mix-
ture cure models is that overall survival results from the 
survival experience of two subgroups: cured patients (with 
the cure fraction denoted as � ) and uncured patients ( 1 − � ) 
[15, 20]. Note non-mixture cure models also exist, but are 
beyond the scope of this tutorial.

In cured patients, cancer no longer negatively affects sur-
vival, which is therefore at the “background” level of a can-
cer-free population of the same age, gender, and geographic 
origin. It is important to note that a specific patient cannot 
be identified as cured or uncured. Instead, the concept of 
cure applies to an entire patient population [19]. Background 
survival is written as Sb(t + a) and applied to the fraction � 
of cured patients, with time since randomization as the time 
scale of interest.

In uncured patients, cancer negatively affects survival, 
as patients, on average, die earlier than cancer-free indi-
viduals of the same age, sex, and geographic origin. The 
survival function for uncured patients is written as Su(t) . 
It may depend on covariates such as age or sex and can be 
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estimated using parametric or flexible parametric survival 
models [20, 21].

In a mixture cure model, overall survival is then calcu-
lated as the product of background survival (for the cure 
fraction � ) and cancer-specific survival (for the uncured 
fraction 1 − �):

Mixture cure models can also be expressed in terms of 
mortality hazard functions [20, 30]. Again, the overall haz-
ard rate ho(t) has two components: the background mortal-
ity rate and the excess mortality rate due to cancer. While 
cured patients experience background mortality, uncured 
patients are affected by cancer-related excess mortality, 
yielding the following formula for the overall hazard rate:

where the term fu(t) denotes the probability density function 
for Su(t) . Both the survival and hazard functions depend on 
the set of parameters characterizing the specific parametric 
form in use, e.g., a Weibull or Gompertz distribution (see 
“funs_hazard.R” and “funs_long_term_survival.R” in the 
GitHub repository).

Expressing the model in terms of hazard rates is useful 
to calculate the log likelihood L , which is used to fit the 
model and is written as:

(1)So(t + a) = Sb(t + a) ×
(

� + (1 − �)Su(t)
)

.

(2)ho(t) = hb(t + a) +
(1 − �) × fu(t)

� + (1 − �) × Su(t)
,

where i indicates the i th patient and di indicates if patient i 
was censored (see the “funs_likelihood.R” file in the GitHub 
repository)

2.2  Building a Mixture Cure Model

Mixture cure models require data from different sources 
(Fig. 1). Initially, the countries of interest need to be defined. 
If the focus of the model is survival estimation within the 
trial, target countries are those from which trial participants 
were recruited. In contrast, if the focus is on extrapolation 
beyond the trial’s geographical and time scope (e.g., as 
part of an HTA assessment), the target country is the coun-
try for which the extrapolation is to be conducted. More 
specifically, the user can specify the country of interest in 
the hazard_time function available in the “functions/funs_
hazard.R” file in the GitHub repository. The algorithm loops 
over the distribution of age and gender for the selected coun-
try and builds a general population background mortality 
curve that is the weighted average of the ones built for age 
groups, weighted according to their proportion.

Next, background survival data need to be acquired for 
these countries. In addition, country-specific data on the 
distribution of patient age at disease onset and individual 
patient trial data are required. If an “informed” approach 
is chosen, information on the cure rate, which can be 

(3)logL =

N
∑

i=1

di × logho(ti) +

N
∑

i=1

logSo(ti),

Fig. 1  Implementation work-
flow
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based either on real-world data or on expert opinion, is 
also needed [31].

All these data are passed into the model, which is esti-
mated using maximum likelihood methods. For fitted 
models, goodness-of-fit can be assessed visually or using 
established criteria such as the Akaike information crite-
rion (AIC) and Bayesian information criterion (BIC), for 
the observed period in the trial [32, 33].

2.3  Background Survival/Mortality Data

Life tables for the mortality in the general population 
are required to estimate background survival and mortal-
ity in cure patients, i.e., Sb(t + a) and hb(t + a) in Eqs. 1 
and 2. General population life tables reflect all causes of 
death, including cancer, so their use without subtracting 
the cancer of interest as a cause of death may introduce 
bias into the estimation of background mortality [34]. If 
cause-subtracted life tables are available, these can be 
used, and methods have been developed to correct for the 
inclusion of cancer as a cause of death [35]. However, 
even if cancer is not subtracted as a cause of death, bias is 
generally negligible because specific cancers (as opposed 
to all sites combined) account for only a small fraction of 
all deaths in a population [34–36]. Cause-subtracted and 
general background mortality usually differ little, with the 
possible exception of prostate cancer and cancer in older 
age groups [35, 36].

Mortality data for the general population are available 
from national statistical offices, the World Health Organi-
zation, and the Human Mortality Database (HMD). The 
HMD is a particularly useful source of mortality data, with 
abridged and single-year life tables by gender available for 
high-income and European countries over several decades 
[37]. HMD data are used in this tutorial to estimate back-
ground mortality (see, in the GitHub repository, the “funs_
load_mort_table.R” file for downloading and the “mortal-
ity_table_wrap.R” file for combining and preparing HMD 
data for analysis).

Life tables follow a standardized format (see examples 
in [38]). Life table columns relevant to mixture cure models 
are mortality rates (column denoted mx ) and the number 
of survivors (column denoted lx ), which are used to obtain 
background mortality hazards and survival for each year of 
trial enrollment, age, and sex in the model. In the R code 
provided as part of this tutorial, life tables are automatically 
read into the model and matched to trial data by country, 
year of trial enrollment, age, and sex. Year of enrollment 
is relevant in real-world studies that recruit patients over a 
long-time period. The residual survival for patients enrolled 
later is notably larger than for patients recruited earlier, 
assuming they have the same age and gender.

2.4  Country‑Specific Age at Cancer Onset

If survival is to be projected for a specific population not 
included in the trial, the age at cancer onset for this popu-
lation is required. Country-specific data on mean ages at 
onset of cancer are available from the published literature, 
for example, national epidemiologic surveillance data such 
as the Surveillance, Epidemiology, and End Results Pro-
gram (SEER) in the United States (US) [39], and research 
organizations such as Cancer Research UK in the United 
Kingdom (UK) [40]. In the absence of distributions on age, 
we can assume the population belongs to a cohort with the 
same age.

2.5  Clinical Trial Data

Patient demographic and survival data come from the clini-
cal trial of interest. Relatively few data are required to build 
a mixture cure model, namely age at baseline, sex, and coun-
try for each patient, a censoring indicator, time under obser-
vation before censoring, and the year of trial enrollment.

For this tutorial, two datasets were simulated, based on 
the BRAF Inhibitor in Melanoma 3 (BRIM-3) and coBRIM 
trials [9, 10]. BRIM-3 was a phase 3, randomized controlled 
trial (RCT) that compared the efficacy of dacarbazine and 
vemurafenib for the treatment of melanoma. Vemurafenib 
selectively inhibits the kinase activity of BRAF molecules 
with the V600E mutation, thereby interrupting the mitogen-
activated protein kinase/extracellular signal-regulated kinase 
pathway that may lead to uncontrolled cell growth [41]. In 
BRIM-3, overall survival was assessed in 675 adult patients 
with unresectable, previously untreated stage IIIC or stage 
IV melanoma (positive for the BRAF V600E mutation) [10, 
42]. Survival patterns associated with treatments in meta-
static melanoma showed a proportion of patients to be statis-
tically cured, reflected in plateaus in overall survival Kaplan-
Meier (KM) curves, so the BRIM-3 trial was considered an 
appropriate teaching example for this tutorial [11, 42]. The 
data used in this tutorial were taken from the BRIM-3 trial. 
To ensure patient anonymity, a random Gaussian noise with 
a mean of 0 and a variance of 3 years was added to patient 
ages, while a random Gaussian noise with a mean of 0 and 
a variance of 0.01 years was added to times to events. The 
clinical data required to build a mixture cure model are illus-
trated for BRIM-3 in Table 1 (see the “brim3_simulated.csv” 
file in the GitHub repository).

The second dataset was based on the coBRIM trial, an 
RCT comparing vemurafenib plus placebo with vemurafenib 
plus cobimetinib [9, 43]. Cobimetinib is a mitogen-activated 
protein kinase inhibitor and is used in combination with 
vemurafenib for the treatment of metastatic melanoma [9, 
44]. In coBRIM, progression-free and overall survival were 
assessed in 495 adult patients with unresectable, locally 
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advanced stage IIIC or stage IV melanoma with BRAF V600 
mutation in 19 countries. Data were obtained following the 
same procedures as those illustrated for the BRIM-3 cohort 
(Table 1) (see the “cobrim_simulated.csv” file in the GitHub 
repository).

Please note that both datasets are based on simulated data 
and are used only for illustrative purposes in this tutorial. 

None of the analyses and conclusions presented here should 
be used for real-world and/or clinical decision-making.

2.6  Estimate the Cure Fraction

The cure fraction can be treated as either an output from or 
an input to the mixture cure model, depending on the focus 
of the analysis and the availability of external data (Fig. 2). 
For example, if we have a plateau in the KM curves, and 
the follow-up time is long enough, we can estimate the cure 
from the trial [45]. Conversely, if we know that the long-
term survival at—say—25 years is known to be above a 
certain value, we can use putative cure values as an input in 
determining the parameters of the survival functions repre-
senting uncured patients.

Calculating the cure fraction as a model output based on 
the trial data is labeled as an “uninformed” approach. In 
this scenario, the cure fraction � is a parameter of the model 
and estimated alongside other parameters [31]. The result-
ing value for � can then be considered the best estimate of 
the cure fraction, based on the currently available, usually 
short-term, data. Estimating the cure fraction as an output 
of a mixture cure model is illustrated in this tutorial using 
the BRIM-3 dataset [10, 42].

The cure fraction may also be an input to a mixture cure 
model, e.g., in interim analyses of RCTs when follow-up 
is not yet long enough for statistical cure to be identifiable 
[31]. In this “informed” approach, the cure fraction in the 
model is informed by and set equal to the cure fraction from 

Table 1  Structure of required clinical data: example using simulated 
patients from the BRIM-3 trial

Data for ten randomly selected patients from the entire cohort of sim-
ulated patients are presented in the table for illustrative purposes
BRIM-3 BRAF Inhibitor in Melanoma 3

Sex Age at 
diagnosis 
(years)

Country Year 
of trial 
enrollment

Censored Follow-
up (years)

Female 48 Italy 2010 Yes 3.3
Female 30 Italy 2010 Yes 0.4
Male 68 United 

States
2010 Yes 1.0

Female 41 Germany 2010 Yes 0.6
Male 51 Italy 2010 Yes 1.0
Male 54 Australia 2010 Yes 0.4
Female 44 Switzer-

land
2010 Yes 1.9

Male 30 Russia 2010 Yes 2.0
Male 35 Italy 2010 Yes 2.4
Male 63 France 2010 No 4.3

Fig. 2  Different approaches on 
using and obtaining the cure 
fraction. The cure fraction can 
be obtained as an output or be 
used as an input to the model, 
based on real-world data, expert 
opinion or the literature
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an external source. External sources that provide estimates 
of the cure fraction are expert opinion or real-world, long-
term data for the same cancer and/or class of drugs (Fig. 2). 
If real-world evidence, e.g., from cancer registries and epi-
demiologic surveillance programs, is available as individual 
patient data, a “helper” mixture cure model may need to be 
estimated first, in which the cure fraction is the outcome of 
interest. This can come from, e.g., real-world data, as we 
showed here [31]. The cure fraction derived from this inter-
mediate step can then be used as an input to the mixture cure 
model of interest. Sensitivity analyses around cure fractions 
should be performed and model fits compared across differ-
ent cure fraction values. For example, there are approaches 
the plausibility of cure values via Bayesian model averaging 
[46], comprehensive work on elicitation methods for time-
to-event and survival data have been presented Bojke et al. 
[47]. Their work does not specify the use of cure fractions 
explicitly. However, they provide a context for elicitation of 
the parameters of hazard functions in a Bayesian framework. 
In principle, the user can apply the implementation of our 
likelihoods within a Bayesian cure model framework [48] to 
build appropriate posteriors for the cure fraction and hazard 
parameters. Priors on cure proportions may, for example, 
be built from the SEER registry [39]. Using the cure frac-
tion as an input to a mixture cure model is illustrated in this 
tutorial using the coBRIM dataset [9, 43] and cure frac-
tion estimates obtained from the example demonstrating the 
uninformed approach based on simulated BRIM-3 data (see 
the “input_cure_cobrim.R” file in the GitHub repository) .

2.7  Model Estimation and Selection

Different parametric shapes can be chosen to model the 
survival and mortality hazard of uncured patients. Avail-
able options include exponential, Weibull, Gompertz, log-
logistic, lognormal, gamma, and generalized gamma distri-
butions, all of which are explored in this tutorial. For each 
model, the area under the curve is calculated to obtain 
estimated mean survival, which is typically an outcome 
of interest in decision analytical models. The model fit for 
different parametric shapes or cure fraction inputs can be 
assessed visually in plots of survival curves, e.g., by com-
paring the estimated curve to a KM curve and the value at 
which it plateaus [6]. In addition, a more formal statisti-
cal assessment of goodness-of-fit can be conducted using 
measures such as the AIC and BIC, which compare the fit 
of different models used on the same data, while penaliz-
ing models for the inclusion of additional parameters with 
little explanatory power [32, 33]. Of note, the flat tail in 
distributions like the lognormal and log-logistic distribu-
tion may affect the suitability of the AIC to choose the 
best fit in the context of cure fraction estimates (for more 
details, see [20]). This limitation needs to be considered 

when interpreting AIC values, but the AIC was still con-
sidered valuable to rule out distributions that fit the data 
poorly, e.g., the exponential and Gompertz distributions. 
In addition, visual assessment and BIC values were also 
used to assess model fit. When cure fractions were used 
as external input, potential problems regarding use of AIC 
values applied to a lesser extent. Cure fraction estimates 
that are too high or too low (see “Additional Files” in the 
electronic supplementary material) were associated with 
poor fits of the mixture extrapolations to the observed 
data. Extreme cure values could therefore be discarded. 
Maximum likelihood methods are generally used to fit 
mixture cure models [20].

3  Results

3.1  Cure Fraction as Output from Trial Data: BRIM‑3

3.1.1  Background Mortality

Life tables for the general population, indexed by age and 
sex, were sourced from the HMD [37] for the year of trial 
enrollment and all countries from which participants were 
included in the BRIM-3 trial. The importance of account-
ing for background mortality and survival differences by 
sex and country was confirmed in exploratory analyses of 
survival curves. The analyses, illustrated in Fig. 3 with the 
examples of Italy, Russia, and the US, may show differences 
in survival between countries and, within countries, between 
women and men, as for Russia in this example.

3.1.2  Age at Cancer Onset

As projections were only performed for the trial populations 
in this tutorial, age at onset data from countries were not 
required. Health economic analyses for a specific country 
would use this information to inform survival predictions.

3.1.3  Clinical Trial Data

Clinical trial data were based on simulated patients from the 
BRIM-3 trial, as described above. In the simulated cohort, 
41% were women (Additional File 1, see the electronic sup-
plementary material). Mean age at baseline was 55 years 
(standard deviation 14 years). The countries contributing the 
largest number of patients were Italy (18% of all patients), 
Australia, and Germany (10% each), while Austria, Bel-
gium, Norway, and Switzerland each contributed the fewest 
patients (~ 1%).
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3.1.4  Cure Fraction Estimation

The cure fraction was estimated using maximum likelihood 
for different parametric specifications of the mortality haz-
ard for uncured patients, i.e., we characterized the likelihood 
for each of the parametric survival functions included in the 
flexsurv package (see the “estimate_cure_brim3.R” file in 
the GitHub repository).

3.1.5  Cure Fraction Estimates

Estimates of the cure fraction ranged from 13.3% (standard 
error 2.8%) when assuming an exponential distribution to 
18.1% (standard error 2.3%) when assuming Weibull and 
Gompertz distributions (Table 2).

Goodness-of-fit criteria and visual inspection of sur-
vival curves suggested that assuming an exponential distri-
bution for the survival of uncured patients was associated 
with the poorest model fit (Fig. 4). By comparison, the 
lognormal and generalized gamma distributions provided 
a better fit, both visually and according to goodness-of-fit 
criteria. Of note, despite similar AIC values, cure frac-
tion estimates between lognormal and generalized gamma 
distributions differed by 2.7%. Although the confidence 
intervals (CIs) of cure estimates for the lognormal and 
the generalized gamma distributions overlap, suggesting 

that the cure estimates for the two distributions are not 
statistically different, we stress that structural changes in 
the shape of the hazard—reflected by the choice of the 
parametric distribution—lead to differences in the long-
term extrapolations. Notably, the generalized gamma dis-
tribution exhibits a long-term plateau due to its additional 
parameter that captures variations of the hazard. Since we 
are unaware of the true long-term behavior of the hazard, 
we stress the importance of exploring different functional 

Fig. 3  Different background 
survival by country and sex, 
illustrated for Italy, Russia, and 
the USA. Data from the Human 
Mortality Database [26]

Table 2  Estimates of the cure fraction for different parametric specifi-
cations, using simulated BRIM-3 data

AIC Akaike information criterion, BIC Bayesian information crite-
rion, BRIM-3 BRAF Inhibitor in Melanoma 3, CI confidence interval, 
SE standard error

Distribution for 
survival in uncured 
patients

Mean (%) SE 95% CI AIC BIC

Exponential 13.3 2.8 7.8–18.8 843.1 850.7
Weibull 18.1 2.3 13.6–22.5 789.7 801.1
Log-logistic 15.2 2.5 10.2–20.2 767.4 778.9
Lognormal 16.2 2.5 11.3–21.0 760.0 771.4
Gompertz 18.1 2.3 13.6–22.5 824.5 835.9
Gamma 17.9 2.3 13.4–22.4 775.5 786.9
Generalized gamma 13.5 4.0 5.7–21.3 759.9 775.2
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specifications in determining a plausible range of cure 
estimates.

Based on these results, the model user could conclude 
that approximately 13–18% of the trial population (Table 2) 
would achieve statistical cure, i.e., have long-term survival 
equal to the cancer-free population from their respective 
country of origin.

3.2  External Estimates of the Cure Fraction 
as Model Inputs: coBRIM

3.2.1  Background Mortality

Life tables for the general population were again sourced 
from the HMD [37].

3.2.2  Age at Cancer Onset

As in the example for the uninformed approach, no projec-
tions beyond trial populations were conducted, so data on 
age at cancer onset were not used for specific countries. In 
building the extrapolations we used information on age from 
the clinical trials. Again, these data would be used in health 
economic analyses for country-specific survival predictions.

3.2.3  Clinical Trial Data

Clinical trial data were based on a simulated patient cohort 
from the coBRIM trial. Of the 495 sampled patients, 42% 
were women (Additional File 2, see the electronic sup-
plementary material). Mean age at baseline was 55 years 
(standard deviation 14 years). The countries contributing the 
largest number of patients were Italy (19% of all patients), 
Australia (11%), and Germany (9%), while Switzerland con-
tributed 0.4% of patients.

3.2.4  External Cure Fraction Estimates

In this analysis, an informed approach was employed, i.e., 
the cure fraction was used as an input into the model. For 
the purpose of this tutorial, the range of cure fraction esti-
mates (0–5%, 10%, 15%, 20%) was informed by the unin-
formed approach based on simulated BRIM-3 data (Table 2). 
These estimates could also be obtained or validated from 
the real-world data, literature or expert opinion. Different 
specifications of parametric distributions (exponential, 
Weibull, log-logistic, lognormal, Gompertz, gamma, and 
generalized gamma distributions) for the survival of uncured 
patients were explored for each cure fraction estimate (see 
the “input_cure_cobrim.R” file in the GitHub repository). 
The user has the option to play with the functions we have 
included in GitHub and select any cure values they consider 
appropriate.

Note that, as opposed to the cure fraction extrapolation 
estimates for the BRIM 3 trial (Fig. 4), the extrapolations 
for the coBRIM trial show a broad spectrum of possible cure 
fraction estimations, reflected by the larger spread of differ-
ent parametric extrapolations in a mixture cure framework 
(Fig. 5).

3.2.5  Survival Estimates

For all parametric model specifications, the best model fits, 
as indicated by the AIC, were generally observed with the 
higher cure fractions 15% and 20% (Table 3). It has been 
advocated that the BIC criterion is the best at assessing a 
model’s goodness of fit [49]. However, for BRIM3, BIC 
and AIC values are fairly aligned, in that the two best-fit-
ting distributions coincide (Table 2). In particular, for each 
distribution, the model assuming no cure was found to be 
the worst fit both using goodness-of-fit criteria and visual 
assessment, indicating that a mixture cure model was an 
appropriate choice to account for cured patients.

Mean survival estimates for each cure fraction estimate 
were similar across model specifications, ranging from 5.8 
years (gamma and Weibull distribution) to 6.3 years (gener-
alized gamma) for a cure fraction estimate of 20%.

Fig. 4  Survival curves for different model specifications using simu-
lated BRIM-3 trial data—intervention arm. The KM (black dashed 
line) shows a plateau; hence, the spectrum of extrapolations with 
different functions is relatively narrow. BRIM-3 BRAF Inhibitor in 
Melanoma 3, exponential exponential distribution, gamma gamma 
distribution, gengamma generalized gamma distribution, gompertz 
Gompertz distribution, KM Kaplan-Meier curve, llogis log-logistic 
distribution, lognormal lognormal distribution, weibull Weibull dis-
tribution
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Based on these results, the model user could conclude 
that some proportion of the patient population would likely 
be statistically cured, so would need to be accounted for, 
e.g., in health economic assessments. In contrast, assuming 

no patient to be cured would likely be inappropriate and 
underestimate mean survival. As these findings were con-
firmed using different parametric distributions for survival 
in uncured patients, results can be considered reliable.

This example also illustrates how a previous trial 
(BRIM-3 in the present case) can be used to assess the likely 
trajectory of a subsequent trial (coBRIM in the present case), 
thereby contributing to early prediction of trial outcomes, 
e.g., in interim analyses. We note that the intervention arm in 
BRIM-3 and the control arm in coBRIM coincided. There-
fore, any analysis for BRIM-3 is done on the intervention 
arm of the trial and any analysis for co-BRIM on the control 
arm of the trial.

4  Discussion

This tutorial on the implementation of mixture cure models 
in oncology has been designed to provide a practical intro-
duction to data requirements and sources as well as model 
development, estimation, and interpretation to make this 
class of models more accessible to a wide range of poten-
tial users. The implementation of mixture cure models is 
described in detail and demonstrated in step-by-step instruc-
tions as well as their implementation in statistical software, 
e.g., R.

In many practical applications, the simple mixture cure 
model implemented in this tutorial may require refinements, 
e.g., adjustment of survival estimates for patient character-
istics and use of different model specifications. With regard 

Fig. 5  Survival curves for different model specifications using simu-
lated coBRIM trial data—control arm. The KM (solid dashed line) 
does not show a plateau; hence, the spectrum of possible extrapola-
tions is wide. Exponential exponential distribution, gamma gamma 
distribution, gengamma generalized gamma distribution, gompertz 
Gompertz distribution, KM Kaplan–sMeier curve, llogis log-logistic 
distribution, lognormal lognormal distribution, weibull Weibull dis-
tribution

Table 3  Goodness-of-fit and 
survival estimates for different 
cure fraction inputs and model 
specifications—coBRIM

Smallest AIC for each model in italics
Results for cure fraction estimates of 2–4% omitted from table but included in Additional Files 3–9 (see the 
electronic supplementary material)
AIsC Akaike information criterion

Distribution for survival in 
uncured patients

AIC and mean survival (years) by cure fraction estimate

0% 1% 5% 10% 15% 20%

Exponential 1140.6 1140.1 1138.1 1135.8 1133.8 1132.7
(3.0) (3.19) (3.7) (4.5) (5.2) (6.1)

Weibull 1138.3 1137.6 1134.2 1129.0 1122.3 1113.2
(2.8) (3.0) (3.5) (4.3) (5.0) (5.8)

Log-logistic 1109.6 1108.6 1104.7 1099.3 1093.9 1088.9
(3.6) (3.7) (4.2) (4.8) (5.4) (6.2)

Lognormal 1101.2 1100.6 1098.0 1094.5 1090.7 1087.1
(3.5) (3.6) (4.1) (4.7) (5.4) (6.1)

Gompertz 1136.4 1136.3 1135.9 1135.1 1133.8 1131.4
(4.2) (4.2) (4.3) (4.7) (5.2) (6.0)

Gamma 1134.9 1133.9 1129.8 1123.4 1115.4 1105.2
(2.8) (2.9) (3.5) (4.3) (5.0) (5.8)

Generalized gamma 1089.1 1089.0 1088.5 1087.8 1086.9 1085.8
(4.7) (4.7) (5.0) (5.3) (5.7) (6.3)
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to covariate adjustment, clinical trial data may suggest that 
survival and cure fraction depend on demographic, clinical, 
or socioeconomic characteristics of patients, in addition to 
age, sex, and country [15, 29, 50]. Mixture cure models can 
be extended to include covariates when estimating survival, 
with most modern statistical software packages providing 
the necessary functionality. With regard to model specifi-
cations, flexible parametric models using restricted cubic 
splines have been shown to give more flexibility for mod-
eling survival than standard parametric distributions [29, 
50]. Flexible parametric models allow the exploration of a 
wide range of functional forms for survival curves and can 
therefore improve models in scenarios where parametric dis-
tributions fail to provide a good fit [12, 21, 51].

The use of mixture cure models may be limited by the 
need for individual patient-level data, which may not be 
available to analysts outside study groups, approval and HTA 
agencies, or cancer registries. This issue is not restricted 
to mixture cure models or oncology. As for other types of 
models and disease areas, code and data sharing are recom-
mended to increase the transparency and reproducibility of 
results while considering data protection and privacy regula-
tions as well as intellectual property rights [52, 53]. Mixture 
cure models also have been suggested to be more relevant 
once a treatment is established and real-world evidence on 
the fraction is available [51]. While longer-term real-world 
evidence should be used to inform models, such evidence, 
by definition, only becomes available after a certain time 
period, which may be too late for short-term decisions on 
health policies or reimbursement. Again, this issue is not 
specific to mixture cure models and oncology. It has been 
noted that pivotal trials are unlikely to provide sufficient 
information to estimate cure fractions in HTA settings [45]. 
However, in the HTA assessment, a clinician often validates 
the predicted mean survival and can also then inform or 
validate the cure fraction in the absence of data. Survival 
extrapolation and modeling must be acknowledged as uncer-
tain and should be explored in sensitivity analyses, but may 
still be the best approach to generate information relevant 
for short-term clinical and economic decision making [54]. 
In addition, the use of external data, similar to the use of 
the cure fraction as a model input, was shown to improve 
extrapolation of cancer survival, indicating that collecting 
external data is likely to be worth the additional effort [55].

Mixture cure models are used frequently in population-
based analysis of cancer survival. In an analysis using cancer 
registry and national vital status data from Norway, mixture 
cure models were employed to estimate cure fractions and 
survival for 23 types of cancer [56]. For 15 types of can-
cer, including colon, liver, lung/trachea, and bladder cancer, 
models converged. For both women and men, cure fractions 
increased between 1963 and 2002 for most cancer sites, as 
did median survival in uncured patients with cancer of the 

rectum or central nervous system as well as non-Hodgkin 
lymphoma and leukemia in both women and men. For can-
cers for which models failed to converge, including breast 
and prostate cancer as well as melanoma, the lack of con-
vergence was attributed to the absence of a reliable medi-
cal cure during the period under study, which implied that 
statistical cure was unlikely to exist. In addition, selection 
effects, i.e., better relative survival of cancer survivors (e.g., 
for testicular cancer), as well as long-term adverse events 
associated with treatment were considered as reasons why 
survival curves did not plateau, so mixture cure models 
would be conceptually inappropriate. Future updates of these 
analyses, e.g., following the introduction of new treatments, 
could contribute to identifying the impact of new treatments 
on a population level.

A similar study was conducted in the Tyrol region of 
Austria, using 2005–2009 data for 25 cancer sites from a 
regional cancer registry [57]. Models converged for 14 can-
cer types in women and 15 in men. The lowest cure frac-
tions for each sex were calculated for women with acute 
myeloblastic leukemia and for men with pancreatic cancer, 
respectively. The highest cure fractions, in contrast, were 
observed for cervical cancer in women and high-risk non-
Hodgkin lymphoma in men. Similar to results from Norway, 
no model convergence was achieved for breast and prostate 
cancer as well as melanoma, which was again attributed to a 
lack of medical and therefore statistical cure [57].

In a large-scale analysis of cancer cases diagnosed 
between 1985 and 2005 in Italy, high cure fractions were 
observed, among others, for cervical and thyroid cancers, in 
contrast to low cure fractions for liver cancer and leukemia 
[58]. The study also explored time to cure, stratified by age 
and different cure fraction definitions, for each cancer. While 
the female population with thyroid cancer and the male pop-
ulation with testicular cancer achieved statistical cure within 
5 years after diagnosis, other populations, including those 
with liver cancer and leukemia, did not reach statistical cure 
before 15 years, if at all [58].

These examples show that mixture cure models are used 
widely but may not be appropriate for all cancer sites in 
all contexts. Analysts therefore should evaluate carefully if 
mixture cure models are appropriate, and which data assets 
are available for an analysis. Assumptions regarding cure 
and model specifications should always be assessed, ide-
ally also graphically [22]. The uncertainty associated with 
model results should be addressed by scenario analyses that 
explore, for example, the influence of different functional 
forms, cure fraction inputs, and covariates on results, as 
demonstrated in this tutorial [21, 22, 59]. A lack of data, 
e.g., due to insufficient follow-up, can possibly be circum-
vented by using an “informed” approach to cure fraction 
estimation, i.e., the analyst could use a cure fraction estimate 
from an external source or a clinical opinion, if available, as 
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an input to the model. Note that the lack of data cannot be 
fully overcome by expert opinion or modeling approaches. 
In any case, given the limited follow-up time at the time of 
HTA submission, modeling approaches can shed light on the 
most plausible long-term behavior of endpoints.

In addition to their frequent use in cancer epidemiol-
ogy, mixture cure models are receiving increased attention 
in HTA and health economics as cancer immunotherapies 
become more widely used. In a cost-effectiveness analysis 
comparing ipilimumab with glycoprotein 100 (gp100) for 
the treatment of advanced melanoma, a mixture cure model 
was compared with a standard Weibull model [19]. When 
the Weibull model was used, mean overall survival was 0.90 
years in the gp100 arm and 1.60 years in the ipilimumab 
arm. When the mixture cure model was used, cure fractions 
of 6% (95% CI 5–15) and 21% (95% CI 13–30) were esti-
mated for gp100 and ipilimumab, respectively. Mean overall 
survival in cured patients in both arms was 26 years, com-
pared with 0.75 and 0.83 years in uncured patients treated 
with gp100 and ipilimumab, respectively. Modeling the 
differences in survival between cured and uncured patients 
increased quality-adjusted life expectancy and costs in both 
arms as the long-term survival of cured patients was now 
accounted for. Consequently, a substantial reduction in the 
incremental cost-effectiveness ratio was observed when 
accounting for differential survival, from US$324,000 to 
US$113,000 per quality-adjusted life-year gained with ipili-
mumab versus gp100. The authors concluded that, relative 
to standard survival analysis, mixture cure models increased 
quality-adjusted life expectancy and cost estimates for cured 
patients, but reduced them for non-cured patients, with the 
magnitude of relative changes dependent on the cure frac-
tions, cost, and utilities [19]. Mixture cure models were rec-
ommended as more appropriate than standard analysis for 
analyzing treatments when there is evidence to suggest the 
existence of statistical cure.

5  Conclusions

In parallel with the advent of cancer therapies associated 
with statistical cure, the use of mixture cure models is likely 
to increase. Mixture cure models, which account for the dif-
ferent survival experience of cured and uncured patients, 
may more accurately reflect life expectancy and, in the con-
text of health economic analyses, quality-adjusted life expec-
tancy and healthcare costs than standard survival analyses.

As mixture cure models require the user to obtain and 
combine data from different sources and provide additional 
information compared to standard survival analysis, some 
users may be hesitant to use or interpret mixture cure mod-
els. Therefore, the present tutorial aimed to provide a prac-
tical introduction to mixture cure models, including their 

implementation in statistical software, with a specific focus 
on the algorithm, to support (potential) users, such as HTA 
analysts and health economists, in interpreting and using 
mixture cure models. We stress the fact that in the informed 
approach, the selection of any cure rate chosen needs to be 
carefully justified.
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