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Abstract

Large language models (LLMs) have rapidly become important tools in Biomedi-
cal and Health Informatics (BHI), potentially enabling new ways to analyze data,
treat patients, and conduct research. This study aims to provide a comprehensive
overview of LLM applications in BHI, highlighting their transformative potential
and addressing the associated ethical and practical challenges. We reviewed 1698
research articles from January 2022 to December 2023, categorizing them by
research themes and diagnostic categories. Additionally, we conducted network
analysis to map scholarly collaborations and research dynamics. Our findings reveal
a substantial increase in the potential applications of LLMs to a variety of BHI
tasks, including clinical decision support, patient interaction, and medical document
analysis. Notably, LLMs are expected to be instrumental in enhancing the accuracy
of diagnostic tools and patient care protocols. The network analysis highlights dense
and dynamically evolving collaborations across institutions, underscoring the inter-
disciplinary nature of LLM research in BHI. A significant trend was the application
of LLMs in managing specific disease categories, such as mental health and neuro-
logical disorders, demonstrating their potential to influence personalized medicine
and public health strategies. LLMs hold promising potential to further transform
biomedical research and healthcare delivery. While promising, the ethical implica-
tions and challenges of model validation call for rigorous scrutiny to optimize their
benefits in clinical settings. This survey serves as a resource for stakeholders in
healthcare, including researchers, clinicians, and policymakers, to understand the
current state and future potential of LLMs in BHI.
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1 Introduction

Large language models (LLMs) have emerged as pivotal technologies, redefin-
ing the landscape of natural language processing (NLP) and showing significant
potential in the intersection of artificial intelligence (AI) and other domains, such
as Biomedical and Health Informatics (BHI) [1-3]. The advent of groundbreak-
ing models, including OpenAI’s Generative Pre-trained Transformer (GPT) [4]
has demonstrated its capabilities to process, understand, and generate human-like
text by leveraging extensive datasets and sophisticated neural network architec-
tures [5, 6]. These advances have set the stage for transformative applications
within BHI, a domain where the accuracy and nuance of language understanding
significantly impact patient care, medical research, and healthcare delivery.

Since the introduction of models like ChatGPT, the role of LLMs in BHI has
been increasingly recognized. These potential applications include clinical deci-
sion support, patient engagement enhancement, and medical literature analysis
[7-9]. These developments have provided enormous possibilities for not only aug-
menting traditional methodologies but also paving the way for novel approaches
to addressing complex challenges in the healthcare sector.

Our review uniquely contributes to the discourse by offering a comprehen-
sive analysis of LLM applications in BHI in 1698 papers from January 2022 to
December 2023. Through an examination of research themes, scholarly networks,
and the evolution of LLM technologies, we delve into the integration and impact
of LLMs across various BHI fields. The scope of this study is twofold:

e Research themes and topics: We explore the development of LLM algorithms
through the lenses of NLP and medical tasks, as well as the LLMs applications
in various disease categories, identifying LLM-based applications in BHI.

e Scholarly networks and partnerships: Our analysis includes an examination of
the collaborative efforts and research networks, underlying the dynamics of
research paradigms of LLM research in the BHI domains.

By examining current literature, this review aims to highlight key trends and
gaps in current research and further points out the opportunities. Our findings aim
to provide a foundation for future research, giving stakeholders important insights
to understand and contribute to this rapidly developing field. This review not only
shows the enormous prospects of LLMs improving healthcare outcomes but also
emphasizes the need to consider ethics and address practical challenges in the
case of using LLMs in BHI.

The rest of the paper is organized as follows: We begin by providing back-
ground on the intersection of LLMs and BHI from three perspectives, i.e. the
evolution of LLMs, their applications in BHI, and the synthesized knowledge
of LLMs in BHI (Sect. 2). The methods section outlines our review approaches
(Sect. 3), including data collection and description, topic classification, network
analysis, and visualization techniques employed. The result sections are organ-
ized in an overall-to-specific manner. First, we provide a two-fold overview
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(Sect. 4): the first fold is about content analysis, focusing on research themes and
topics; the second one is on network analyses, focusing on scholarly networks
and partnerships. Based on the analysis of research themes and topics, we further
highlight three findings, including (1) the distributed methodologies (Sect. 5), (2)
the diverse prospects of LLM applications (Sect. 6), and (3) specific disease cat-
egories where LLMs have shown promise (Sect. 7). Finally, the conclusions and
discussion section (Sect. 8) summarizes our key findings, addresses limitations,
and provides recommendations for future work in this rapidly evolving field'.

2 Backgrounds

The intersection of LLMs and BHI represents a frontier of innovation. To better under-
stand the application prospects of LLMs in the BHI domain, we conducted a back-
ground investigation from three perspectives: (1) the evolution of LLMs, (2) applica-
tions of LLMs in the domain of BHI, and (3) synthesized knowledge of LLMs in BHI.

2.1 Evolution of Large Language Models

LLMs represent a sophisticated category of language models that utilize neural net-
works with multi-billion parameter architectures. These models are trained on vast
unlabeled textual data using self-supervised learning techniques [10, 11]. An earlier
milestone was made in 2017 when Google released the Transformer model. This
model introduced the self-attention mechanism, which was fundamental for LLMs
by capturing contextual relationships and nuanced information among input tokens
[12]. Following this model, the introduction of Bidirectional Encoder Representa-
tions from Transformers (BERT) in 2018 was another milestone that revolutionized
the way that machines understand human language [13].

Later, the evolution of LLMs witnessed a significant moment with the release of Ope-
nAI’s GPT-3 in 2020, which has been widely regarded as a game-changer in the field.
Having trained using 175 billion parameters, GPT-3’s transformer-based model demon-
strated an unprecedented capacity for generating text that resembles human writing [14].
This period also gave rise to other significant models such as T5 [15], ERNIE [16], and
EleutherAI’'s GPT-Neo [17], each contributing uniquely to the LLM landscape.

In recent years, the development of LLMs has pivoted towards enhancing both effi-
ciency and contextual understanding. This shift has unlocked more sophisticated and
nuanced applications [18, 19]. In particular, recent models are not only linguistically
adept but also integrate multimodal capabilities, processing both text and other forms
of data [20]. This advancement has led to the emergence of various generative Al mod-
els, both in closed-source and open-source domains. Prominent closed-source LLMs
include ChatGPT by OpenAl [4], Claude 2 by Anthropic [21], and Gemini by Google
[22]. Typical models in the open-source domain include LLaMa 2 by Meta [23] and
Phi-family models by Microsoft [24].

! We also provide the workflow and relations among sections in Appendix 1.
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2.2 Applications of LLMs in BHI

In the early stages, NLP applications in BHI primarily focused on extracting and cat-
egorizing information from electronic medical records and medical literature. These
applications aimed to improve information retrieval [25, 26], learn semantic relations
of clinical text [27], and train word embeddings [28, 29]. These early implementations
of NLP have set the stage for the integration of sophisticated models that could handle
a broader range of linguistic tasks.

With the advancement of LLMs, the scope of NLP in healthcare has expanded dra-
matically. In particular, the research on the BERT model in BHI has transitioned from
rule-based text processing to more advanced applications [30]. One of its notable appli-
cations is text classification, where BERT’s contextual analysis significantly enhances
the accuracy of categorizing clinical notes, research papers, and patient feedback into
relevant medical categories [31-34]. The BERT model has been extensively applied
in named entity recognition (NER) and relation extraction within the BHI domain
[35-37]. In addition, there has been significant progress in fine-tuning the BERT model
for specific applications within BHI. Noteworthy among these are BioBERT and Clini-
calBERT, introduced by [38] and [39], respectively.

Compared to BERT models, the advanced LLMs have shown general-purpose
capabilities, which enable them to excel across a broad set of NLP tasks in BHI [40],
rather than being designed solely for a single NLP task, such as NER or text classifica-
tion. For example, LLMs have shown potential for interpreting complex patient data
and suggesting medical diagnoses [41-45]. This capability is useful for synthesizing
unstructured patient information and supporting clinical decisions. They are also inte-
gral to drug-disease identification and drug discovery, where they have shown promise
in identifying drug candidates and their effects [46, 47]. In addition, the customization
abilities of LLMs have unlocked new possibilities in medical education [48—51]. These
models could adapt to the learning pace and style of individual students, providing per-
sonalized learning experiences.

Among these applications, there are several studies to highlight. For example, Kung
et al. [52] evaluated the performance of ChatGPT on the United States Medical Licens-
ing Exam (USMLE). Their findings revealed that ChatGPT achieved scores at or near
the passing threshold across all three sections of the exam without any training or rein-
forcement. Singhal et al. [1] proposed an approach for the evaluation of LLMs in the
context of medical question-answering. Their study showed the promise of LLMs in
clinical knowledge and question-answering capabilities.

2.3 Synthesized Knowledge of LLMs in BHI

Several review papers on applications of LLMs in BHI have appeared [40, 53-57].
We present an overview of the reviewed papers in Table 1. Two of the earliest review
papers of applied research on LLMs in BHI surveyed how LLM applications could
be developed and leveraged in clinical settings [40].

As a systematic review of ChatGPT in healthcare, Li et al. [53] selected papers on
PubMed with keywords “ChatGPT.” A two-sided taxonomy (application-oriented
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and user-oriented) was provided to categorize three levels of papers (generic com-
ment about the applications in healthcare as level 1, one or more example uses in
specific medical specialty as level 2, and qualitative and quantitative evaluation of
ChatGPT in a specialty as level 3). The comprehensive survey by Tian et al. [54]
particularly focused on the areas of biomedical information retrieval, question
answering, medical text summarization, information extraction, and medical educa-
tion. Their study found significant advances made in the area of text generation but
modest advances in other applied research in BHI, such as multimodal LLM. More-
over, they selected papers with keywords LLM and ChatGPT only within PubMed.
Some emergent research may be omitted because of the limited scope of PubMed.

Additionally, although the review papers about LLMs involved multiple elec-
tronic resource libraries [54, 55], applied research on LLLMs in healthcare was only
one aspect of their broader research. Conversely, Li et al. [56] solely focused on
the applied study of LLMs in investigating electronic health records (EHRs). They
categorized 329 papers on OpenAlex with LLM keywords (LLM, Bert, et al., and
Electronic Medical Record, et al.) into seven major topics: named entity recognition,
information extraction, text similarity, text summarization, text classification, dia-
logue systems, and diagnosis and prediction. However, concentrating only on EHRs
might not fully explore the broader impact and versatility of LLMs in various facets
of healthcare, including clinical decision support and medical imaging analysis.

Our survey of 1698 papers with bibliometric analysis offers several distinct
advantages by providing a more comprehensive and systematic examination of the
current state of applied research on LLMs in BHI. We employ a hybrid approach
that not only offers a panoramic overview of the field but also facilitates a detailed
exploration of specific research themes. This includes both general LLM research
themes and their applied research on major diagnostic categories within BHI
domains. By integrating a bibliometric analysis, we could be able to quantify and
visualize trends, research hotspots, and the impact of various studies, providing a
data-driven perspective that enhances the depth and rigor of our review.

Another key advantage of our survey is its dedicated focus on emerging LLMs,
specifically the ChatGPT model family. This allows us to delve deeply into the unique
characteristics and capabilities of these models, which are at the forefront of tech-
nological advancement in natural language processing. By concentrating on these
state-of-the-art models, we provide valuable insights that are directly relevant to the
current and future applied studies of LLMs in BHI. Recently, multimodal LLMs have
emerged in the domain of BHI, which integrate and process multiple modal data
types such as text and images and offer significant potential for more comprehensive
and accurate data analysis, diagnosis, and personalized treatment planning. Our sur-
vey highlights the transformative potential of these multimodal models and under-
scores the need for further exploration and application in the field of BHI.

Our investigation into the existing review papers highlights a research gap in the
literature: there remains a need for a survey that encapsulates the full spectrum of
LLM developments and their specific applications. Our review paper stands out for
its multifaceted contributions. Firstly, it offers a detailed survey and bibliometric
analysis of the latest LLM applications in BHI, providing a perspective on the evolv-
ing trends and challenges within this field. Secondly, the data-driven nature of our
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review allows for a deeper understanding of the interdisciplinary connections within
the published literature and assists in locating the key contributors through semantic
network analysis. Thirdly, unlike previous reviews that may have concentrated on
particular facets, our work presents a holistic perspective on the trajectory of LLMs
in BHI, elucidating how these models have both shaped and been shaped by the
needs and advancements in biomedical sciences and health practices.

1. Tt offers a detailed survey and bibliometric analysis of the latest LLMs’ applied
research in BHI, providing a perspective on the evolving trends and challenges
within the BHI field.

2. The data-driven nature of our review allows for a deeper understanding of the
interdisciplinary connections within the published literature and assists in locating
the key contributors through semantic network analysis.

3. Unlike previous reviews that may have provided an overview of LLM in multiple
fields (e.g., engineering, humanities) [55] or one particular domain within BHI
(e.g., EHR) [56], our work presents a holistic perspective on the trajectory of
LLMs in BHI, elucidating how these models have both shaped and been shaped
by the needs and advancements in biomedical sciences and health practices.

3 Methods

In this section, we provide an overview of the methodologies employed in the
review, which include data collection and description, topic classification, network
analysis, and visualization techniques.

3.1 Data Collection and Analytics Workflow

Figure 1 shows the data retrieval, cleaning, and analysis workflow. In this study, the
primary data source is OpenAlex, a comprehensive database known for its extensive
collection of academic publications. OpenAlex includes both published papers and
preprints on platforms like arXiv and medRxiv. This feature allows us to access a
broader range of research, including early-stage findings and contributions yet to be
peer-reviewed, thereby enriching our dataset with a wider variety of scholarly work.
The specific query” employed to extract relevant data was:

(large language model OR GPT) AND (health OR medical) + [2022 — 2023]

This query was chosen to ensure the inclusion of relevant documents that dis-
cuss or mention LLMs, including GPT, in the context of health or medical fields.
The time frame of 2022-2023 was selected to gather the most recent and relevant
insights®. Importantly, the decision to avoid explicitly including model names such

2 We conducted the data collection on 01/05/2024.
3 Some papers that were officially published in 2024 had their original versions published on arXiv in
either 2022 or 2023.
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Fig. 1 Data selection and analytic workflow

as “llama” in the query was deliberate. While “llama” is a term associated with
certain models (i.e., Llama by Meta) [23], it also commonly refers to the animal.
Including it could dilute the relevance and focus of the research. By structuring the
query in this manner, we were able to efficiently isolate documents that are specifi-
cally relevant to the intersection of LLMs like GPT and health or medical studies,
without the interference of unrelated topics.

Following this, we implemented a more focused local restriction based on the
English-language papers and terms “large language model” or “GPT.” Accord-
ing to the information on the OpenAlex help page, the API scans through titles,
abstracts, and full texts of documents while searching. However, it employs
techniques like the removal of stop words and the use of stemming (specifically,
the Kstem token filter) to enhance search results. Although these techniques are
generally effective, they could sometimes lead to the inclusion of non-relevant
documents, particularly after the stemming process. To counteract this issue, we
performed a second round of cleaning, aiming to retain only those documents
that explicitly mention the model query terms in their titles and abstracts. This
step was crucial in refining the results to ensure the relevance and precision of
our dataset.

The final step in our filtering process involved the removal of irrelevant papers
through human annotation. Even with the advanced algorithmic filtering, some false
positives—particularly non-health and non-medical articles—may be retained. To
address this issue, we engaged two human annotators who independently reviewed
the dataset. Their task was to identify and eliminate any remaining irrelevant papers.
After this independent annotation, we measured the agreement rate between the two
annotators, which stood at 96%. This human element of the filtering process was
vital in ensuring the highest possible accuracy and relevance of the final collection
of 1698 papers for our research.
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3.2 Topic Classification for Content Analysis
3.2.1 RoBERTa Text Classification

For the paper topic classification task, we employed the “roberta-large-mnli” model,
a pre-trained transformer-based neural network designed for natural language under-
standing tasks. While unsupervised methods like topic modeling are generally valu-
able for exploratory analysis, we’ve empirically tried a SBERT-based topic mod-
eling method named BERTopic, but the specificity of the BHI domain made the
general semantic-based unsupervised clustering hard to distinguish topics [58, 59].
Another reason for the challenge with SBERT-based models is that the clusters are
not as distinguishable for closely related tasks within one field compared to more
distinct topics across multiple fields, such as engineering and social science [60].
This lack of clear differentiation further complicates the effective classification of
BHI research topics using unsupervised methods. Additionally, SBERT methods
typically do not classify a single paper into multiple categories, which can be a sig-
nificant limitation given that research papers often span multiple topics [61].

Instead, supervised models such as RoOBERTa offer enhanced precision for well-
defined categories. Specifically, we choose roberta-large-mnli for its high perfor-
mance on the Multi-Genre Natural Language Inference (MNLI) benchmark and
capability to leverage pre-trained knowledge, which makes it well-suited for zero-
shot learning tasks [62—65]. This model is especially adept at categorizing LLM
research papers, which may encompass multiple topics within a single document.

The zero-shot classification process involved defining a set of target topics related
to LLMs, such as “model evaluation,” “sentiment analysis,” “education,” and “eth-
ics.” There are 14 topics in total, selected by combining research themes of promi-
nent NLP conferences, such as Empirical Methods in Natural Language Processing
(EMNLP) and Association for Computational Linguistics (ACL). The final topic list
was reviewed by three researchers independently. The purpose of the selection of
these topics was to capture a wide spectrum of impactful applied research on LLMs
in BHI. We have carefully curated the 14 topics from the original sub-domain lists
of EMNLP and ACL. In addition, while these topics may not cover every aspect
of the literature corpus, they represent key areas of interest and innovation in the
applied research of LLMs in the BHI field.

Using the roberta-large-mnli model, each title and abstract was classified into one
or more of the 14 predefined topics. The model inferred the relevance of each topic
to a given text by predicting the likelihood that the text would be a hypothetical
premise for a human-written hypothesis representing each topic*. To select the most
likely set of predefined topics, we restrict the likelihood to be above 0.1°.

EEINT3

* In our analysis, the hypothesis is “The topic of this paper is {}.” The classification did not require any
fine-tuning or training on a labeled dataset, as the model leveraged its pre-trained knowledge to make
inferences about the unseen topics.

> We tested various thresholds by sampling 100 papers to manually inspect their relevance. The thresh-
old of 0.1 was chosen to balance between specificity and sensitivity in the zero-shot classification pro-
cess.
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3.2.2 Major Diagnostic Categories

To evaluate the applied research of LLMs in medical domains, we extracted the
specific diseases and symptoms from paper abstracts and grouped them into their
corresponding Major Diagnostic Categories (MDC). The MDC is a system of clas-
sification that organizes diseases and medical conditions into 25 mutually exclusive
diagnosis areas that are related to the affected organ system or the etiology of the
condition. As the diseases and symptoms mentioned in the abstract directly align
with the specific research objectives or questions each study aims to address, this
process classifies research papers into their corresponding broader diagnostic cat-
egories®. For example, epilepsy, Parkinson’s disease, and Alzheimer’s disease are
under “nervous system” disorders.

Specifically, we employed a multi-step approach to categorize diseases mentioned
in abstracts, ensuring accuracy and reliability with collaborative and systematic
methods. First, two researchers with biomedical backgrounds reviewed the abstract
and identified mentions of disease, disorder, symptoms, and public health crises.
Following the identification phase, another pair of researchers group the identified
diseases, disorders, and symptoms into their corresponding MDC. Next, to ensure
the reliability and consistency of the categorization process, an intercoder reliability
check is performed with Cohen’s Kappa of 0.9. We then include a third annotator,
who is an experienced researcher in the BHI fields, to judge the annotation result
and resolve discrepancies in data labeling.

3.3 Network Analysis Algorithm and Visualization

To construct the bibliometric networks, we employed the VOSviewer [66] soft-
ware. These networks’ entities include organizations, researchers, or individual
publications, and the analysis is based on co-citation, bibliographic coupling,
or co-authorship relations. VOSviewer utilizes a clustering algorithm based on
the Visualization of Similarities (VOS) technique, which effectively maps and
visualizes complex bibliometric networks. This algorithm begins by calculating
the similarity between items (such as publications, authors, or journals) based
on criteria such as co-citation or co-authorship. These similarities then form a
matrix, which is used to spatially arrange items that reflect their mutual similari-
ties. Leveraging modularity-based techniques, the algorithm groups items into
clusters, which allows for an intuitive representation of the relationships and pat-
terns within BHI. In each network, the size of the node represents the total link
strength’, indicating the cumulative strength of the connections an entity has
with entities. The edge represents the connections or links between the nodes,
illustrating the specific relationships such as co-citation, bibliographic coupling,
or co-authorship.

6 For detailed disease to MDC mapping, refer to Table 1.
7 The mathematical definition of total link strength is provided in Appendix 2.
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Fig.2 Keyword co-occurrence network

4 Mapping the Terrain: an Overview of the Diverse Ecosystem of LLM
Research in BHI

This section delves into the comprehensive landscape of LLM research within the realm
of BHI. Our exploration is structured into two sections: first, the core research themes
and topics employing LLMs, and second, the scholarly networks and partnerships that
facilitate this research. Through the overview, we identify representative papers that
exemplify significant developments and findings. These selected papers are discussed in
subsequent results sections (Sects. 5-7) to highlight their contributions and innovations.

4.1 Research themes and topics

In the burgeoning field of BHI, LLMs have emerged as pivotal tools, enabling the
transformation of data into actionable insights. As shown in Fig. 2, the keyword co-
occurrence network adeptly represents the diverse research themes and topics that
converge in this multidisciplinary domain®. At the center of this complex network
lies the interdisciplinary interplay between technologies and BHI fields: social sci-
ence (cluster 1: blue), computer science (cluster 2: red), biomedical science (cluster
3: green), and psychological science (cluster 4: yellow). Their synergy illustrates the
multifaceted nature of the application of LLMs in BHI research.

8 Appendix 2 shows the top 50 keywords in the network ranked by the total link strength in descending
order.
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Cluster 1 highlights the social implications of deploying LLMs in the biomedical
and health sciences, including terms such as “engineering ethics,” “data transpar-
ency,” and “knowledge management,” which are indicative of a keen awareness of
the social dimensions intrinsic to the deployment of technology in sensitive fields.
Cluster 2 is strongly associated with the core technical disciplines of LLMs, such
as computer science and mathematics. This cluster’s prominence underscores a sig-
nificant research focus on the theoretical and computational foundations that are
necessary for the development and refinement of LLM algorithms. The high level
of connectivity within this cluster suggests a concerted effort toward advancing the
capabilities of LLMs in handling and interpreting complex biomedical data. Cluster
3 emphasizes the potential practical medical applications of LLMs and encompasses
various medical specialties and fields, such as internal medicine and medical educa-
tion. This cluster signifies the prospective role of LLMs in clinical practice, medical
training, and patient care. Cluster 4 shows concepts at the crossroads of psychologi-
cal science and its applications within the biomedical and health sectors. This clus-
ter signifies an emerging trend where LLMs have been used to obtain insights into
patient psychology, public health, and the societal impact of health interventions.

Overall, this keyword network provides an overview of the state-of-the-art LLM
application in BHI. It shows the main topics being studied and the interdisciplinary col-
laborations that are crucial for making progress in this field. The following sections will
examine each of these topics in-depth, explaining their contributions and highlighting
the interconnected research efforts that could drive the continued advancement of BHI.

4.1.1 LLM Research Themes

The categorization of tasks associated with LLMs in the context of BHI into meth-
odology and outcome is a strategic way of organizing the research papers’ focus
areas’, which delineates between technical development and practical applications/
evaluation. Figure 3 shows the number of papers within each research theme, with
red bars indicating the outcome theme and blue bars indicating methodologies.

In terms of methodology (blue), LLM topics such as information extraction,
inference, summarization, sentiment analysis, and named entity recognition show
the nuanced capabilities of LLMs in processing and analyzing textual data, which
could support various aspects of clinical and research activities in the biomedical
sector. The topic of multilinguality and the topic of text generation are also well-rep-
resented, illustrating the technical versatility of LLMs and their potential for creat-
ing understandable medical content in multiple languages, which is vital for diverse
patient communication and international research collaboration. From a technical
standpoint, the topic of image, vision, video, and multimodality acknowledges the
integration of LLMs with other data forms, which is an important step towards com-
prehensive analytics in diagnostics and patient care.

For outcome (red), the highest number of papers centered on the model evaluation cat-
egory, which suggests that there is a significant emphasis on validating and testing the

° In Appendix 3, we present the representative papers for each LLM task.
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Model Evaluation 725
Information Extraction 231
Dialogue and Interactive Systems 217
Multilinguality 198
Text Generation 179
Education 143
Meta Analysis and Literature Review — 138
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Fig.3 LLM tasks by research theme and topic (We include Meta-analysis and literature review to clas-
sify the papers. However, since it is not within the scope of LLM methodology or outcome, detailed
analysis of papers of this category is presented in Appendix 4)

effectiveness and reliability of LLMs within the biomedical field. Model Evaluation is
critical because the outputs of such models often inform decision-making in health-related
matters where accuracy is paramount. Other LLM tasks in the outcome category include
Sects. 6.1, 6.3, and 6.2, representing the substantial interest in using LLMs to distill medi-
cal information from various data sources to enhance patient interaction, medical educa-
tion, and research. The topic of ethics also has a dedicated focus, which is crucial given
the sensitive nature of medical data and the implications of Al in healthcare decisions.

4.1.2 Major Diagnostic Categories

Table 2 categorizes the research papers according to the health issues they address,
showcasing the wide-ranging capabilities and applications of LLMs in BHI. Research
has predominantly focused on mental health conditions, including depression and
ADHD. Similarly, diseases of the nervous system also attract considerable attention,
with studies covering disorders from Parkinson’s to Alzheimer’s disease. The appli-
cation of LLMs in tracking and managing infectious and parasitic diseases, such as
complications from infections and COVID-19, underscores their importance in infec-
tious disease surveillance, particularly in light of recent global health emergencies.
Furthermore, research on the circulatory system targets widespread conditions such
as heart disease, which continues to be a leading cause of death globally. Other less-
represented diseases, such as those affecting the musculoskeletal and endocrine sys-
tems, metabolic and digestive disorders, and urinary tract issues, demonstrate LLMs’
versatility in tackling a broad spectrum of chronic and acute health challenges.

4.2 Scholarly networks and partnerships

The visualization of the citation network shown in Fig. 4 offers a detailed per-
spective on the emergent field of LLMs in healthcare. The network includes
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Fig. 4 Paper co-citation network

312 papers, each with at least five citations, which ensures that the visualiza-
tion emphasizes the more influential and recognized studies within the field. The
structure of the network indicates a close connection among studies, with certain
seminal papers emerging as central nodes with their high citations. Sallam [50],
Kung et al. [52], and Gilson et al. [67] are particularly prominent, suggesting that
their works on model performance evaluation and systematic literature reviews
have been widely recognized across the field. Additionally, the network shows the
emergence of subfields or specialized areas of research, as illustrated by distinct
clusters. For instance, cluster A (cyan) highlights the focus on radiology reports
[68-71], whereas cluster B (blue) is dedicated to educational applications within
medical specialties, such as dentistry [72-74].

The dynamic and collaborative nature of the citation network indicates the ongo-
ing development within this field of study. New theories and methodologies are con-
tinuously being integrated. This dynamic is typical for an emerging field where the
foundational work is still being established and where there is significant potential
for discoveries and applications.

4.2.1 Organization Collaboration Network

The network map in Fig. 5 provides a visual representation of the co-authorship
links (with more than 5 co-occurrences) that exist among research organizations
across the globe. We observe that the nodes are predominantly universities and
research institutions. However, the presence of hospitals and healthcare organiza-
tions within this network cannot be overlooked; it signals an integrated research
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Fig.5 Organization collaboration network

approach where clinical settings play a crucial role in the translation of academic
findings into healthcare advancements. The inclusion of these healthcare entities not
only diversifies the nature of the collaborations but also enhances the potential for
practical, patient-centered outcomes to emerge from these scholarly partnerships.

Certain institutions appear as pivotal nodes within this network. These nodes,
often representing universities and research centers like Harvard University, Stan-
ford University, and the University of Oxford, are heavily interconnected with a mul-
titude of other nodes. This finding suggests a high degree of collaborative engage-
ment, which is often a reflection of the institutions’ broad research portfolio and its
pivotal role in facilitating multidisciplinary studies.

The network also includes tightly interconnected research clusters indicated by
colors, suggesting the existence of consortia or research groups that may be work-
ing in concert towards a common scientific objective. The network includes edges
connecting institutions from multiple continents and countries, which signifies the
extent of international collaboration efforts.

4.2.2 Collaboration Network Among Countries

Figure 6 provides a visual representation of a collaboration network among coun-
tries and regions, with an overlay that indicates the average publication year of
papers from each country and region. This visualization not only shows the col-
laborations that exist among countries but also provides a temporal dimension of
how the research landscape has evolved. There are three main findings regarding the
early pioneers, the major collaborators, and the dynamic and evolving network.

@ Springer



Journal of Healthcare Informatics Research

india

Posad istael

united states L 4
Teadish
united kingdom ; caliiina
il
soutfijorea fintand
= Rdwine
\p s chile taigian 1 gegmany .
wn ,,,,,, \
e austria neth@flands SN -
="t
e qm? southeefrica
PO ireland 5

hong kongsar chine

azerbaijan

Fig. 6 Collaboration network among countries

Early Pioneers It is shown that countries such as Japan and the Netherlands have
begun research on LLM:s earlier, making them pioneers in this field. Their early start
suggests that these countries have established a strong foundation in LLM research,
contributing significantly to the early development and understanding of these tech-
nologies in the field of BHI.

Major Collaborators As shown in Fig. 6, the USA and the UK are depicted with
a large total link strength (as indicated by the size of the nodes), which is indica-
tive of their strong influence and the density of their collaborative networks. A large
link strength suggests these countries are central nodes in the network, engaging in
numerous collaborative research projects and often being the driving force behind
pushing the frontiers of LLMs. Their central role in the network underscores their
importance in both producing and disseminating LLM knowledge.

Dynamic and Evolving Network The network is dynamic and evolving, with coun-
tries like Ireland, Turkey, and the United Arab Emirates emerging as participants. It
indicates that the field of LLMs is growing, attracting a diverse set of contributors,
and expanding the geographic diversity of research. The participation of these coun-
tries may bring new perspectives and innovations to the field, and their increasing
involvement highlights the global interest in and importance of LLM research.

@ Springer



Journal of Healthcare Informatics Research

5 Navigating the Spectrum: the Distributed LLM Methodologies
in BHI

The study of LLMs in the area of BHI covers a wide range of methods and use
cases, showing a major change in how Al is used in the biomedical and health fields.
This detailed review starts with how LLMs change information extraction, making it
easier to handle and understand different types of data, like clinical notes and radiol-
ogy reports. The discussion then moves on to multilinguality, looking at how well
LLMs perform in different languages and the challenges and solutions to creating
content in multiple languages. The next parts focus on text generation, highlighting
how LLMs play a role in both medical writing and communication with patients.
The study also looks at how LLMs can handle multiple types of data, like images
and genomic data, which helps improve diagnosis and prediction. As the discussion
continues, it emphasizes how LLMs are important for drawing conclusions and ana-
lyzing sentiment, showing their significant impact on understanding complex medi-
cal data and human feelings. The study ends with a look at how LLMs are used
in named entity recognition, pointing out current progress and potential for future
improvements. Overall, each part highlights the diverse and specific applications of
LLM methods in changing BHI research and practice.

5.1 Information Extraction (Including Sentiment Analysis and Named Entity
Recognition)

The utilization of LLMs has rapidly reshaped the BHI research landscape, notably in
the domain of information extraction. Recent literature underscores their transform-
ative impact across multiple applications, which we will discuss in three main areas:
structured information extraction, sentiment analysis, and NER. Sentiment analysis
and NER are sub-tasks of information extraction that play crucial roles in under-
standing and organizing unstructured data.

For structured information extraction, some studies demonstrate LLMs’ proficiency
in enhancing diagnostic accuracy in hematology [75], extracting structured informa-
tion (e.g., diseases, symptoms, and signs) from vast textual data (e.g., clinical notes,
EMR notes, and radiological reports) in various languages [76—80], and identifying
narrative entities in the news domain [81-83]. In addition, a part of the research illus-
trated the ability of LLMs to assist in the extraction of evidence-based explanations
and enable the accurate retrieval of information from clinical documentation, provid-
ing support for medical practitioners’ decision-making [84—88]. Our review also indi-
cated that LLMs are instrumental in extracting medication mentions [89], classifying
events and contexts in clinical notes [90], and improving the understanding of medica-
tion adherence through the detection of drug discontinuation events from social media
data [91]. They also excel at generating structured outputs on medications and tempo-
ral relations, further aiding in disease prediction and clinical decision support [92-94].
These advancements, coupled with self-verification techniques [77] and the extrac-
tion of demographics and social determinants of health from EHRs [95-99] illustrate
LLMSs’ capacity to integrate and analyze healthcare data effectively.
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In BHI domains, LLMs contribute to the refinement of sentiment analysis
tools [100-102]. For instance, a model utilizing weights from a publicly avail-
able zero-shot classifier, which is built from the BART LLM and fine-tuned
on the MNLI dataset, has been employed to evaluate linguistic nuances during
psychological therapy sessions [103]. Similarly, other research finds that LLMs
could be used to analyze patient feedback, clinical notes, and public health dis-
cussions, thereby gauging public sentiment on health-related matters [104],
understanding patient experiences [105], monitoring mental health trends [106,
107], and identifying cognitive distortions or suicidal tendencies [108]. Addi-
tionally, LLMs in sentiment analysis facilitate medical education [102, 109—-111]
by fostering interactions between medical trainees and educators, detecting the-
matic differences and potential biases, and revealing how feedback language
may reflect varying attitudes toward learning and improvement [112]. LLMs
could also contribute to the sentiment analysis of research articles and medi-
cal journals, offering insights into the research community’s responses to novel
findings or treatments [113, 114].

Moreover, LLMs have been applied to improve the efficiency and performance
of NER in BHI domains. For instance, LLLMs have helped identify ancient Chinese
medical prescriptions from the Song Dynasty [115, 116]. While there is not too
much representative literature compared to other methodology subdomains, [117]
identifies the need to further develop supervised medical NER models, especially
when human-annotated data are unavailable.

5.2 Multilinguality

Our review highlights the emerging research applications of multilingual LLMs in
BHI. Some research has explored how to use multilingual LLM to generate multilin-
gual content in BHI. The content generation tasks include using multilingual LLMs
for dataset generation [115, 118, 119] and question generation [115, 118, 119719,
Multilingual LLMs are also leveraged to identify personal health information in
Chinese-English code-mixed clinical text and ancient Chinese medical prescriptions
[120, 121]. These studies demonstrate the versatility and potential of multilingual
LLMs in processing low-resource multilingual and cross-cultural biomedical and
health information.

Other research papers concentrate on evaluating LLM performance across various
languages, including English, Korean, Spanish, Turkish, and Chinese [122-128].
Studies explore multilingual question answering using the Japanese National Exami-
nation for Pharmacists (JNEP) [129], the Korean dermatology specialty certificate
examination, and the Persian medical residency examination [125]. LLMs, including
ChatGPT, were also tested for their ability to generate multilingual health-related
questions [115] and their ability to facilitate multilingual communication [130]. By
comparing the results obtained from different language settings, these studies focus
on the correctness, consistency, and verifiability of LLMs’ responses.

10 The generation tasks here exclude text generation, which is discussed in Sect. 5.3.
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5.3 Text Generation

Research LLM-based text generation in BHI concentrates on two main purposes:
medical scientific writing and clinical patient-facing writing.

In medical scientific writing, current research on text generation predominantly
focuses on two areas. The first area focuses on the potential utility of LLMs, particu-
larly GPT-4, as tools for authoring various scientific publications. The general con-
sensus is that human-written texts are more concrete, diverse, and typically contain
more useful information [131-133]. In contrast, medical texts generated by GPT-4
prioritize fluency and logic, often using general terminologies instead of context-
specific information [131, 134]. Al-generated texts may include inaccurate informa-
tion, fabricated references, and lack the inclusion of recent literature [135-137].

The second area is the effectiveness of distinguishing LLM-generated texts
through human evaluation or Al-driven output detection mechanisms. Some stud-
ies focus on detecting Al-written text in specific sections of BHI papers, such as the
abstract and background [138, 139]. While LLM-based methods are generally useful
in distinguishing Al-written abstracts from original ones, they struggle in the field
of radiology where both human reviewers and output detectors fail to differentiate
GPT-generated abstracts from original ones [139]. It has also been claimed that dis-
tinguishing Al-written backgrounds from human-written ones is challenging [139].
More robust output detectors have been developed to distinguish Al-generated text
from human-generated text [140, 141]. Overall, researchers advocate for chatbots
to serve as assistants rather than authors in scholarly work, emphasizing the impor-
tance of transparency if chatbots are involved in generating academic content [142].

For clinical patient-facing writing, efforts have been made to evaluate the feasi-
bility of using GPT-4 for generating case reports and responses to various patient
inquiries about surgical procedures and health-related matters. These include
responding to postoperative questions [143], generating health messages [144], aes-
thetic surgery advice [145], pro-vaccination message generation [146], and commu-
nication in palliative care [8]. Most studies show positive results regarding GPT-4’s
ability to generate coherent, easily comprehensible answers. One study even sug-
gests that Al-generated messages are comparable to human-generated ones in terms
of sentiment, reading ease, semantic content, and suggestions [144]. However, its
accuracy, completeness, and extent of personalization still need improvement [145].
Therefore, AI models cannot replace a human agent at present [8].

5.4 Multimodality

Multimodality in large language models within BHI refers to the ability of these
models to understand and process multiple types of data beyond text, which includes
imaging, audio, and genomic data. In our scoping review, papers on multimodal
LLMs have been applied to various aspects of BHI, including healthcare in general
[147, 148], medical image analysis [149-152], radiology [153, 154], pharmaceutical
sciences [155], dentistry [73], and public health informatics [156]. Methods used in
these papers can be crudely classified into pretrain-from-scratch [157-163] as well
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as finetuning based on the pre-trained or instruction-tuned models [164—170] such
as Vicuna, SAM, BLIP, Llama, OpenLlama, etc.

As healthcare and medicine are highly specialized fields, many multimodal mod-
els are uniquely adapted to enhance tasks in vision, audio, and genomic analysis. In
vision applications, models are designed for tasks including image-to-text medical
report generation [164, 167, 171-173], medical image captioning [159, 161, 174],
medical video retrieval [175], and video anomaly detection [169]. In [173], LLMs
integrate Vision Transformers (ViT) and Faster R-CNN with GPT-2 to analyze brain
images for dementia, enhancing diagnostic accuracy by capturing intricate visual
features and generating detailed textual reports. Specified models are also devel-
oped in audio and genomic applications: LLMs such as the Diagnosis of Thought
(DoT) model [176] assist in psychotherapy by detecting cognitive distortions from
patient speech and aiding therapists in understanding and addressing mental health
issues more effectively. In the field of genomics, protein language models predict the
impact of genetic variations on protein structure and function, identifying potential
compensatory mutations in pathogenic variants [177].

5.5 Inferences

In addition to LLMs’ application in correlational or empirical studies in BHI, they
have also been instrumental in inferences, with a focus on analyzing associations and
causal relationships. For example, LLMs facilitated a Socratic dialogue with Chat-
GPT to analyze the causal effects of PM2.5 on human mortality risks. After extensive
fine-tuning and addressing confounding factors, a causal link was established [100].
Moreover, LLMs have been adapted to develop a natural language inference system
specifically for clinical trial reports. This system focuses on extracting and interpret-
ing medical evidence to enhance the accuracy and reliability of these reports [101].
In a different application, the GPT model has been utilized for medical image analy-
sis. Demonstrating its capabilities as a plug-and-play transductive inference tool, GPT
has proven effective in detecting prediction errors and improving accuracy in medical
images, highlighting its potential for broader applications in this field [102].

6 Expanding the Horizon: the Diverse Outcomes of LLMs in BHI
Applications

The integration of LLMs has also expanded the horizons of BHI, leading to a
diverse array of outcomes and applications. Beyond enhancing NLP capabilities,
LLMs have facilitated a more personalized and nuanced approach to patient engage-
ment, enabling healthcare providers to tailor their communication and interventions
based on individual patient profiles through dialogue and interactive systems. In
addition, LLMs have revolutionized scholarship and manuscript writing, which are
also applicable to BHI fields. Furthermore, the evaluation and ethics assessment of
LLMs have become essential research topics in BHI, given the high standards of
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precision and stability in healthcare and medical systems. This section explores the
multifaceted impact of LLMs across various BHI applications, highlighting their
potential to revolutionize patient care and medical research.

6.1 Dialog and Interactive Systems

The LLMs have been implemented in the newly developed chat box as an Al assistant
for healthcare conversion, including personalized health diagnosis and intervention
in BHI. Typically, the chat assistant, based on either naive conversational Al or gen-
erative Al systems, was designed to help in the analysis of the message from dialogs
[178-181], the estimation and evaluation of the health status [178], and the generation
of high-quality responses [178, 179] after considering the possible knowledge, includ-
ing the patient’s EHRs and medical knowledge in the clinical setting. For example,
an LLM-derived chatbot called CareCall [178] was designed to support people and
alleviate feelings of loneliness. It leads to frequent open-ended conversations, gener-
ates replies by using a pre-trained LLM model, captures health metrics and emergency
alerts, and displays the reports for social works. Another newly developed application
powered by the ChatGPT-3.5 model [179] allows callers to receive up-to-date person-
alized medical suggestions based on the conversation. In addition, a prospective use
of ChatGPT within healthcare, especially during the pandemic period, was proposed,
which helps with answering the patients’ health-related questions [182]. The high-
quality performance of using the Al assistant confirms that the models can under-
stand and reply to people’s needs. However, privacy, ethics, and information accuracy
are the major concerns while the LLM/AIs are involved in generating professional
responses regarding disease diagnoses and drug suggestions [182, 183]. More rigorous
tests are needed to guarantee the safety of using the LLM in clinics [183].

6.2 Scholarship and Manuscript Writing

As more researchers in the BHI domain use ChatGPT and other Al technologies
in writing manuscripts, the discussions around the use of LLMs in scientific writ-
ing have been emphasized, accompanied by a rise in various concerns. Although
LLMs can improve writing quality, summarize relevant articles, and facilitate
manuscript translation [184], they face challenges in accurate referencing [185],
unintentional plagiarism, and data biases [186]. Establishing regulations and
guidelines for the use of LLMs in scientific writing is crucial for assessing both
effectiveness and ethical considerations [48, 187].

6.3 Education
Researchers have assessed LLMs’ abilities to enhance medical education, discuss-

ing their potential to improve the current education and decision-making process.
LLMs exhibit similar performance in comparison to human achievement without
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specialized training on both the USMLE [52] and more specialized domains such as
neurology board-style examinations [188]. LLMs can also enhance student engage-
ment and learning experiences [49], especially personalized curriculum develop-
ment and study plans [189], albeit with considerations of ethical challenges [49,
50], algorithmic bias, and plagiarism [50, 189]. Additional efforts are required from
educators, students, and model developers to establish clear guidelines and rules for
their applications ethically and safely in academic activities [189]. These perspec-
tives on using LLMs highlight both the potential benefits and ethical considerations
surrounding the integration of LLMs in medical education and practice.

6.4 Model Evaluation

As demonstrated in the previous sections, LLMs are widely utilized in a range of appli-
cations within BHI. To assess their effectiveness, new frameworks, benchmarks, and
metrics for evaluating the performance of these models have been developed. Frame-
works such as the Translational Evaluation of Healthcare Al (TEHAI) have been pro-
posed by research teams to evaluate the capability, utility, and adoption of such systems
in healthcare [190]. Papers also set benchmarks by assessing the performance of LLMs
on various tasks [111, 191, 192], using relevant datasets such as MIMIC for general
medical information and Openl for radiographs [193]. In their evaluation, metrics such
as ROUGE-L have been frequently used [194]. In some cases, additional human evalu-
ations are introduced, which rely on the qualitative coding of LLM outputs. For exam-
ple, for LLMs applied to summarize medical evidence [195], human efforts to evalu-
ate the model-generated summaries involve the open coding of qualitative descriptions
of error types for medical evidence summarization, drawn from qualitative methods
in grounded theory. As another example, human evaluation involves recruiting human
subjects to interact with chatbots and solicit their responses [196, 197].

In Appendix 5, we present a thorough analysis of the specialized and contextual-
ized model evaluation in specific disease categories. Taking mental health disease as
an example, we highlight evaluation techniques in mental health applications against
various metrics and datasets.

6.5 Ethics

Ethical discussions on LLMs caution against the application of LLMs in high-stakes
contexts and center around issues of misinformation, bias, inequalities, privacy,
and transparency [198, 199]. The use of LLMs as a clinical decision support tool
as well as a service-providing tool through chatbots can potentially harm patients
when they make false recommendations, diagnoses, or prescriptions [198, 200].
Such harms, while unintended, are rooted in the corpus of training data embedded
in unequal social processes [201]. Moreover, those negative consequences can also
be compounded when human health professionals’ judgments and decision-mak-
ing processes are influenced by such biased diagnoses [198]. In particular, the use
of Al-generated texts or conversational chatbots in medical contexts often involves
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patient-specific medical information [198, 202, 203]. This might introduce additional
privacy harm to patients since these technologies often require access to patients’
sensitive information and medical record data [204]. For the responsible use of such
technologies, clinicians will need to critically review and validate generated texts or
outputs before deploying them in practical settings. Moreover, the lack of consent
sharing poses another concern around data privacy and security in healthcare [205].

7 Applying LLMs in Specific Disease Categories: Popular Fields
and Open Opportunities

This section provides a detailed exploration of the transformative impact of LLMs
on various disease categories, focusing particularly on mental health, nervous sys-
tem disorders, and other open opportunities. Mental health and nervous system dis-
orders are the top two widely represented topics in the collected corpus, as indi-
cated by the counts in Table 1. We focus on these two areas as examples to analyze
the trending LLM-based BHI applications while uncovering additional domains as
open opportunities. By understanding how LLMs can be effectively applied in these
well-represented domains, we can extend these insights to other disease categories,
thereby broadening the scope and impact of LLM technology in healthcare.

7.1 Mental Health

As shown in Fig. 7, LLMs are poised to revolutionize mental healthcare by enhanc-
ing diagnostic processes, intervention strategies, and overall mental health and well-
being promotion. The potential for LLMs in these domains is vast, ranging from
facilitating early detection of mental health issues to providing scalable interventions.

@ LLM-assisted
Diagnostic Tools

Diagnosis

<
= 9
Q &
LLM-enhanced 3 §) LLM-powered
Conxersational O(\. . Iy Virtual Therapist
gents g (7)
S S
<

Fig.7 Integration of LLM technology in the mental healthcare cycle
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7.1.1 Diagnosis

The application of Al in mental health diagnostics has been rapidly advanced
with tools like GPTFX [206], which exhibits a remarkable ability to classify men-
tal health disorders and generate relevant explanations. This approach not only
enhances the performance of mental health disorder detection but also provides val-
uable interpretability for the predictions, which is a crucial aspect of clinical appli-
cations. The study Advancing mental health diagnostics: GPT-based method for
depression detection [7] leverages transformer networks like BERT, GPT-3.5, and
GPT-4 to analyze clinical interviews. They have shown strong abilities to understand
complex linguistic patterns and contextual cues.

These pioneering studies indicate that LLMs could be instrumental in mental
healthcare by providing nuanced, scalable, and efficient tools for diagnosis. By
analyzing language with unprecedented depth and breadth, LLMs could uncover
mental health patterns that may be imperceptible to humans, assist in early detec-
tion, and offer continuous support for individuals struggling with mental health
issues.

7.1.2 Intervention

The field of mental health intervention has benefited through the integration of
LLMs and digital health technologies. In [109], researchers proposed a mobile app
that utilizes GPT technology for tracking psychological mood changes and providing
e-therapy. By offering a platform for users to record and analyze their psychologi-
cal fluctuations, it aids in identifying triggers for negative mood changes, effectively
functioning like a virtual therapist. The app’s evaluation underscores its efficacy in
journaling and basic Al-driven mental health guidance, exemplifying the potential
of LLMs in personal mental health management.

Community-based mental health support can also leverage the advanced
capabilities of Al and LLMs, providing more healthcare resources. The paper
titled Enhancing psychological counseling with a LLM: a multifaceted decision-
support system for non-professionals [207] highlights the need for psychological
interventions in the social media sphere, where expressions of negative emo-
tions, including suicidal intentions, are alarmingly prevalent. The model lever-
ages the advanced capabilities of Al and LLMs to empower non-professionals
or volunteers to provide psychological support. By analyzing online user dis-
courses, the system assists non-professionals in understanding and responding
to mental health issues with a degree of accuracy and strategy akin to that of
professional counselors.

These pioneering applications of LLMs in mental health interventions demon-
strate their immense potential in both personal and community settings. Supporting
nuanced, user-friendly, and scalable solutions, LLMs have reshaped the landscape
of mental health care. They offer innovative tools for real-time emotional tracking,
mood analysis, and intervention, facilitating broader access to mental health support
and enabling effective responses to complex emotional expressions.
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7.1.3 Promotion

Healthcare promotion, particularly in the realm of mental health and well-being,
has undergone a significant transformation with the advent of Al-based conversa-
tional agents (CAs) [208, 209]. The integration of these advanced technologies has
not only reshaped therapeutic approaches but also expanded access to mental health
resources. This shift is well-articulated in the comprehensive paper titled Systematic
review and meta-analysis of Al-based conversational agents for promoting mental
health and well-being [210]. The study underscores that the quality of human—AlI
therapeutic relationships, content engagement, and effective communication signifi-
cantly shape the user experience. It implies that while Al-based CAs could be highly
effective, their impact is greatly influenced by the quality of interaction and the rel-
evance of the content they provide.

Additionally, LLMs play a crucial role in healthcare promotion, not only by rais-
ing overall awareness but also by offering patient-centric recommendations [211].
They effectively address and dispel common misconceptions and myths about
mental health, significantly contributing to the reduction of stigma associated with
mental health issues. By educating the public in a non-judgmental and informa-
tive manner, LLMs help cultivate a more understanding and supportive community.
Furthermore, these models are adept at disseminating a wealth of health-related
information in formats that are easily comprehensible. They offer insights on a
wide range of topics, from general wellness and stress management to the criti-
cal importance of mental health. This comprehensive approach aids in heightening
awareness and educating people about the importance of maintaining good mental
health, as well as recognizing the early signs of potential issues.

7.2 Nervous System

In the realm of neurological disorders, leveraging LLMs for disease prediction signi-
fies a groundbreaking shift toward harnessing the intricacies of human language and
clinical data. Two pivotal studies exemplify this innovative approach, particularly
focusing on multimodal data to predict diseases of the nervous system.

The study, Predicting dementia from spontaneous speech using large language
models, [212] delves into the predictive potential of LLMs by analyzing physi-
cians’ clinical notes for signs indicative of seizure recurrence in children fol-
lowing an initial unprovoked seizure. Their work demonstrates that the nuanced
understanding captured from electronic medical records could significantly aug-
ment the predictive accuracy of seizure recurrence. Another paper, Multimodal
approaches for Alzheimer’s detection using patients’ speech and transcript [213],
ventures into the domain of Alzheimer’s disease detection by employing a mul-
timodal strategy that integrates patients’ speech and transcript data. This study
underscores the immense potential of multimodal data in enhancing Alzheimer’s
detection and sheds light on the complexities and opportunities inherent in lever-
aging speech data for the prediction of neurological diseases, paving the way for
more effective and nuanced diagnostic tools.
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Both of the above studies underscore the significant advancements made in the
domain of neuroscience, particularly through the use of LLMs and multimodal
data analysis. By capturing and integrating diverse data types, from clinical notes
to speech and transcripts, researchers could unveil previously obscure patterns and
indicators of disease, offering promising new avenues for early detection and treat-
ment strategies for conditions affecting the nervous system.

7.3 Open Opportunities

The application of LLMs in BHI holds promising potential to revolutionize disease
diagnosis, prediction, and intervention, other than the mental health and neurolog-
ical disorders that have been extensively researched. Though their use in clinical
fields is still in the beginning stages, there are several opportunities for LLMs to
significantly enhance patient care and disease prognosis, particularly in areas such
as hospital management, adverse drug reactions, infectious diseases, and health
promotion.

In clinical settings, LLMs could be instrumental in identifying correlations
or even casual relationships [214] by referencing vast datasets such as clinical
notes, emergency care reports, and poison control center data. It could lead to
the development of more effective triage systems in emergency departments
[215] and quicker, more accurate diagnoses [216]. Ultimately, it would help
reduce the time needed to administer antidotes or interventions that alleviate
symptoms and monitor drug/treatment reactions. Additionally, through the in-
depth analysis of the language and semantic information embedded in these full
EHRs, LLMs could predict potential personalized treatments [217] to mitigate
adverse drug reactions [218].

In the management of infectious diseases with or without pandemic potential,
such as sexually transmitted disease (STD), influenza, and COVID-19, LLMs could
play a pivotal role in improving patient engagement, promoting adherence to antiret-
roviral/antibacterial therapy, and monitoring disease progression [219]. By analyz-
ing patient interactions, social media, and support group communications, LLMs
could identify language indicative of treatment fatigue or social determinants affect-
ing adherence [98]. Furthermore, through the analysis of clinical narratives over
time, LLMs could detect subtle changes in patient status, predict potential comor-
bidities, and personalize patient education and intervention programs [220]. It could
lead to improved health outcomes and quality of life for individuals affected by dis-
eases that currently have no cure.

Finally, LLMs could also extend their contributions beyond disease settings. For
example, LLMs can also support the training of medical professionals through simu-
lations and interactive learning platforms, providing personalized learning experi-
ences and improving the quality of medical education [189]. LLM can also benefit
public health promotion by enabling more precise and targeted health communica-
tion strategies [221].
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The potential of LLMs in these medical domains is vast, offering opportunities
for enhanced diagnostic accuracy, personalized treatment, and patient care. As the
technology and methodologies behind LLMs continue to advance, their integra-
tion into clinical workflows and research initiatives will likely become increasingly
prevalent, driving forward the capabilities of modern medicine. As the capabili-
ties and applications of LLMs in healthcare expand, there will be a growing need
for research into their ethical, legal, and social implications to ensure they are used
responsibly and equitably.

8 Conclusions and Discussion

Our review has shown important trends and developments in using LLMs for BHI.
Applying LLMs has changed the methods and potential outcomes in the health-
care field. Particularly from January 2022 to December 2023, there has been a big
increase in the number of research articles, showing rapid progress in this field.
This applied research includes better diagnostic tools, improved patient engage-
ment, more efficient management of EHRs, and the emerging field of personalized
medicine.

The use of LLMs in BHI has captured advanced natural language processing
capabilities, potentially improving medical diagnosis, patient care, and research
methods. Our network analysis shows that LLMs have also fostered collabora-
tive networks across different disciplines, including academia, healthcare, and
technology industries. This multidisciplinary approach is vital for the responsible
growth and ethical application of LLMs. Our review also highlights an increas-
ing focus on addressing practical challenges and ethical implications, such as
data privacy and AI bias, underlining the need for robust policy frameworks.
The potential impact of LLMs in BHI is significant, but it requires a balanced
approach considering both the technological capabilities and the ethical, legal,
and social implications.

In summary, our review provides a comprehensive resource for stakeholders in
the healthcare sector. It offers an overview of the current state of LLMs in BHI and
insights into future directions. As LLMs continue to evolve and integrate further
into healthcare, understanding their development could be crucial for researchers,
clinicians, policymakers, industry leaders, and all stakeholders. It is also impor-
tant to remain committed to the ethical and responsible use of LLMs in advancing
healthcare.

8.1 Limitations

This review is subject to certain limitations. First, our classification methodology,
while able to conduct multi-label classification, primarily focuses on identifying
the most relevant topics within each article. This approach is effective in streamlin-
ing the analysis but may overlook the multi-faceted nature of some research papers,
where secondary topics could also hold significant relevance.
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Second, the scope of our review is centered on LLMs, potentially excluding foun-
dation models operated in other modalities such as vision and voice. Additionally,
the specific use of biomedical and health-related keywords in our search criteria may
have inadvertently excluded relevant studies that do not explicitly use these terms
but are pertinent to the field.

Another potential limitation stems from the data-collection process. At the time
of our data collection, OpenAlex did not facilitate a refined search based on keyword
matches within titles or abstracts. Therefore, we applied several predefined rules,
such as filtering articles based on key search terms in the abstracts. We also note
that a significant portion of the collected papers are preprints, which have not under-
gone the peer-review process and whose findings and assertions are not established.
Although studies, such as [222], have found that over 75% of preprints are eventu-
ally published in peer-reviewed journals, we recognize the need for additional vali-
dations to ensure the reliability and accuracy of the information presented in these
preprints.

These limitations present several opportunities for future work to refine the
review. One future work could investigate the application of foundation models
in other modalities in BHI fields, including vision and voice. Another future work
could continue to collect articles and track trends in this area.

8.2 Future Work

Looking ahead, LLMs have recognizable potential to transform healthcare deliv-
ery and patient outcomes. As LLM capabilities continue to evolve, our future work
will focus on exploring more advanced ways to integrate LLMs into BHI. This will
involve addressing emerging ethical and operational challenges, such as ensuring
responsible and fair use of LLMs in healthcare, which is crucial for fully realizing
their potential.

The field is evolving rapidly, so ongoing monitoring and analysis will be nec-
essary. We anticipate a surge in publications and citations related to LLMs in
the near future. Therefore, continuously updating our review will be essential to
maintaining its relevance and impact. Our future work will also explore foun-
dation models beyond LLMs, acknowledging the growing importance of multi-
modal systems in healthcare. By expanding our research focus, we aim to pro-
vide a more comprehensive understanding of the role of advanced computational
models in BHI, thereby contributing to the development of more effective and
ethical healthcare solutions.

Appendix 1 Paper Organization Workflow

Here, we provide a visual representation of the workflow used for organizing this
research paper Fig. 8.
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Appendix 2 Top 50 Concepts in Keyword Co-occurrence Network
Ranked by Total Link Strength

Table 3 shows the top 50 keywords represented in the keyword co-occurrence net-

work by total link strength. The total link strength refers to the sum of the link
strengths of one keyword over all the other keywords. The greater the frequency of
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Table 3 Top 50 concepts in

keyword co-occurrence network

Keyword Occurrences  Total link strength
Computer science 1394 16,099
Artificial intelligence 932 11,246
Medicine 1033 10,710
Psychology 719 8286
Political science 483 5850
Law 461 5602
Natural language processing 371 4845
Mathematics 344 4749
Sata science 363 4606
Biology 344 4585
Programming language 334 4471
Economics 303 4262
Healthcare 324 4239
Philosophy 294 3869
Medical education 349 3813
Engineering 301 3752
Machine learning 285 3699
Paleontology 238 3309
Pathology 244 2945
Context (archaeology) 187 2593
World Wide Web 208 2514
Economic growth 161 2273
Operating system 166 2242
Linguistics 172 2220
Mathematical analysis 145 2134
Social psychology 174 2118
Task (project management) 136 2117
Internal medicine 208 2044
Generative grammar 170 2027
Epistemology 142 1929
Physics 139 1906
Language model 133 1845
Domain (mathematical analysis) 123 1813
Computer security 140 1812
Geography 124 1741
Management 114 1732
Psychiatry 143 1693
Set (abstract data type) 111 1552
Medical physics 144 1540
Sociology 112 1492
Quantum mechanics 102 1458
Information retrieval 113 1448
Family medicine 134 1447
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Table 3 (continued)

Keyword Occurrences  Total link strength
Knowledge management 104 1439
Pure mathematics 102 1422
Field (mathematics) 98 1380
Test (biology) 96 1347
MEDLINE 112 1205
Radiology 103 1204
Engineering ethics 103 1198

the co-occurrence, the higher the link strength. Occurrence is the number of times a
given keyword appears across the corpus.

Appendix 3 Representative Papers for Each LLM Task

Table 4 presents the representative papers for each LLM task and their respective DOL

Appendix 4 Analysis of LLM Task: Meta-analysis and Literature
Review

Systematic reviews and meta-analyses in this domain critically assess LLMs,
focusing on their capacity to revolutionize various aspects of medical practice [9,
223-226] and providing guidelines on their applications [227]. One mainstream in
this sub-topic focused on the comprehensive evaluations of different model perfor-
mances, highlighting the strengths of LLMs in processing medical information and
their potential to augment clinical decision-making while also acknowledging their
limitations, such as occasional inaccuracies and biases [228-231]. Detailed investi-
gations into the methodologies reveal how advanced techniques like generative pre-
trained transformers [232] and fine-tuning [233] on medical datasets are applied to
create innovative applications, from automated medical reporting to virtual patient
engagement tools [234]. The other literature suggests future developments, such as
emphasizing the need for richer training data [235, 236], enhancing interdisciplinary
research collaborations [237], and setting up stringent ethical standards to ensure
that LLMs can be safely integrated into patient care [228, 238]. However, they ulti-
mately pave the way for more personalized and efficient healthcare solutions. This
collective body of work benchmarks current LLM capabilities and charts a strategic
course for their evolution in the healthcare domain.
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Appendix 5 Specialized and Contextualized Model Evaluation
in Disease Categories

Model evaluation represents the largest portion of LLM tasks. Specifically, LLMs
have been evaluated in their applications for detecting various diseases, from mental
health conditions to infectious diseases (Fig. 9; Table 5). The classification tasks are
usually the focus of model evaluation.

Technical literature on the use of LLMs for mental health analysis has examined
the performance of LLMs and LLM-based ChatGPT on basic psychopharmacologic
tasks [239], explanation generation of analysis results [240], detection of mental dis-
eases and disorders [241], and so on. Such studies usually evaluate the performance
of trained LLMs on pre-labeled datasets compared to a baseline model, with a focus
on the accuracy of classification tasks and automatic evaluation metrics [157, 241,
242]. For instance, [241] evaluates LLM-based ChatGPT on mental health classifi-
cation tasks with three publicly available datasets on stress, depression, and suicidal-
ity consisting of annotated social media posts with varying numbers of classes. The
model achieved higher classification accuracy compared to a baseline model that
always predicted the dominant class.

When datasets are not publicly available, researchers come up with classification
tasks on their own in specific scenarios [239, 243]. For example, [239] created brief
vignettes about the decision to select antidepressant treatment for adults with major
depressive disorder, a basic psychopharmacologic task for clinicians. The authors
created and validated the vignettes with experienced clinicians, against which the
ChatGPT’s ratings of the treatment options are compared.

Explanations of decisions are taken into account in understanding the decisions made
by LLMs on classification tasks and analysis of health conditions and their explainabil-
ity [206, 239, 240]. In addition to popular automatic evaluation metrics like perplexity,
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Fig. 9 Sankey diagram of LLM tasks and disease categories (with paper count more than 10)
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BLEU-n, and ROUGE-1 [206, 242], studies also use human annotation for evaluation
and for benchmarking automatic evaluation metrics [240, 244]. Additionally, approaches
based on prompt engineering are also taken to evaluate the interaction between LLMs
and agents by analyzing their mental health referral patterns [245]. Apart from technical
literature, other research has also examined and identified the benefits and harms of using
LLM:s for mental health counseling [246, 247] and the issues of hallucination [244].
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