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Abstract
In practical electrocardiography (ECG) interpretation, the scarcity of well-annotated
data is a common challenge. Transfer learning techniques are valuable in such situa-
tions, yet the assessment of transferability has received limited attention. To tackle this
issue, we introduce MELEP, which stands for Muti-label Expected Log of Empirical
Predictions, a measure designed to estimate the effectiveness of knowledge transfer
from a pre-trained model to a downstream multi-label ECG diagnosis task. MELEP is
generic, working with new target data with different label sets, and computationally
efficient, requiring only a single forwardpass through the pre-trainedmodel. To the best
of our knowledge, MELEP is the first transferability metric specifically designed for
multi-label ECG classification problems. Our experiments show that MELEP can pre-
dict the performance of pre-trained convolutional and recurrent deep neural networks,
on small and imbalanced ECG data. Specifically, we observed strong correlation coef-
ficients (with absolute values exceeding 0.6 in most cases) between MELEP and the
actual average F1 scores of the fine-tuned models. Our work highlights the potential
of MELEP to expedite the selection of suitable pre-trained models for ECG diagno-
sis tasks, saving time and effort that would otherwise be spent on fine-tuning these
models.
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1 Introduction

Electrocardiogram (ECG) signals are non-invasive and cost-effective tools for the early
detection and accurate diagnosis of heart-related disease, one of the leading causes
of death worldwide. Early diagnosis and treatment can improve patient outcomes,
making ECG signals essential for improving health and well-being. Recently, auto-
matic ECG interpretation has gained significant popularity and witnessed remarkable
progress. This advancement can be attributed to the wide-scale digitization of ECG
data and the evolution of deep learning techniques. Notably, deep neural networks
(DNN) have achieved classification performance on par with cardiologists, as demon-
strated by Hannun et al. [1] and Ribeiro et al. [2]. These outstanding achievements
have partly been due to the availability of extensive human-labeled datasets, consisting
of 91,232 and 2,322,513 ECG recordings, respectively. However, ECG datasets used
in practice are often much smaller, due to the expensive and time-consuming data
collection and annotation process. Consequently, it becomes challenging to achieve
desirable results when training DNNs from scratch. Transfer learning is often useful in
such scenarios, resulting in improved performance [3, 4] and faster convergence [5].
Fortunately, there exists some large, publicly available ECG datasets, which enable
DNNs to learn important latent features, then transfer the learned knowledge to our
main task, typically with much less annotated data. There are two most commonly
used transfer learning techniques: head retraining [3, 6] and fine-tuning [7, 8]. Both
replace the top classification layer to match the number of target task’s outputs; how-
ever, whereas the former freezes all feature extractor layers and only updates the top
layer’s parameters during training on the target dataset, the latter does not have such
a constraint and makes all layers trainable. Research suggested that fine-tuning leads
to better performance [4, 9, 10], thus it has been accepted as a de facto standard.

Given the effectiveness of fine-tuning, a new problem arises: how do we select the
best pre-trained checkpoints among a large candidate pool? A checkpoint is a model
pre-trained on a source dataset, with a specific set of hyperparameter settings. It is
straightforward to actually do the fine-tuning and then select the top ones; however,
this method is obviously expensive and difficult to scale. Transferability estimation
[11, 12] aims to address the above bottleneck by developing ametric that indicates how
effectively transfer learning can apply to the target task, ideally with minimal inter-
action with it. Good estimation is likely to facilitate the checkpoint selection process.
In the domain of computer vision, several transferability measures were developed.
Tran et al. [39] introduced negative conditional entropy between the source and target
label sets. Bao et al. [14] proposed a transferability measure called H -score, which
was based on solving a Maximal HGR Correlation problem [15–17]. Nguyen et al.
[9] and Huang et al. [18] developed LEEP and TransRate, respectively, two efficient
estimates with no expensive training on target tasks. However, those measures only
apply to multi-class classification problems and thus cannot be directly applicable to
multi-label tasks such as ECG diagnosis, in which a patient may suffer from more
than one cardiovascular disease.
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Key Contributions

• We propose MELEP, a transferability measure that can directly apply to multi-
label classification problems in automatic ECG interpretation. To the best of our
knowledge, we are the first to develop such a measure to estimate the effectiveness
of transfer learning for multi-label ECG.

• We conducted the first extensive experiment of transfer learning for 12-lead ECG
data. We focused on small downstream datasets and covered a wide range of
source checkpoints, which were produced from multiple source datasets and rep-
resentatives of the two most popular DNN architectures for time-series analysis:
convolutional and recurrent neural networks.

Our article is structured as follows: first, we provide the mathematical foundation
behind MELEP and describe the intuition and its properties. Then, four 12-lead ECG
datasets and two DNN architectures are introduced, which build the backbone of our
experiments.We evaluate the ability ofMELEP to predict the fine-tuning performance
of a convolutional neural network by conducting extensive experiments with multiple
checkpoints produced from pre-training the model on different source datasets. To
show the versatility of MELEP, we replicate the experiment with a recurrent neural
network, affirming that its capability is not tied to a specific model architecture. Next,
wedemonstrate the effectiveness ofMELEP in a real-world scenario,which is selecting
the best checkpoints among a group of pre-trained candidates. Finally,we discuss some
notable properties, extensions, and applications of MELEP and suggest promising
directions for future study.

2 Materials andMethods

2.1 Multi-label Expected Log of Empirical Predictions (MELEP)

Consider transfer learning from one multi-label classification task to another.
Let:

• � be the pre-trained model on the source task.
• Ls = {0, 1, ...,Z−1} be the source label set of size |Ls | = Z .
• Lt = {0, 1, ...,Y− 1} be the target label set of size |Lt | = Y .
• D = {(x1, y1), ..., (xn, yn)} be the target dataset of size n. yi is a label vector of
size Y .

• (y, z) ∈ Lt × Ls be a pair of target-source labels taken from the two sets.
• (t, s) be the values of (y, z). In the ECG classification context, the label values are
binary, so (t, s) ∈ {0, 1} × {0, 1}.
Then, MELEP is computed as follows:

1. Step 1: Compute the dummy label distributions of the target data over the source
label set, denoted by a vector ŷi = �(xi ) of size Z , by forward passing each data
point to the pre-trained model.

2. Step 2: Consider each pair of target-source labels (y, z). Let θi z denote the value
of ŷi at the zth column, i.e., the predicted probability that the sample xi belongs to
label z.
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(a) Compute its 2 × 2 empirical joint distribution matrix P̂yz(t, s), with value at
row t column s is as follows:

P̂yz(t, s) = 1

n

∑

i :yiz=t

(θi z)s (1)

where
∑

i :yiz=t means we select all samples xi with the zth ground-truth label
yiz equal to t .With corresponding values of s, (θi z)1 and (θi z)0 are the probabil-
ities that the label z can and cannot be assigned to the sample xi , respectively.

(b) Compute the empirical marginal distribution vector (of size 2) with respect to
the source label z:

P̂z(s) = 1

n

n∑

i=1

(θi z)s

= P̂yz(0, s) + P̂yz(1, s) (2)

(c) Compute the 2 × 2 empirical conditional distribution matrix P̂y|z(t, s) of the
target label y given the source label z, with value at row t column s is as
follows:

P̂y|z(t |s) = P̂yz(t, s)

P̂z(s)
(3)

For any input xi , consider a binary classifier that predicts whether xi belongs to
label y by first randomly drawingZ dummy labels from�(xi ), then averaging the
likelihood of y based onZ empirical conditional distributions P̂y|z . This process is
repeated for all Y target labels. The set of binary classifiers is called the Empirical
Predictor (EP). MELEP is defined as the average negative log-likelihood of the
EP across all target labels, as follows:

3. Step 3: Compute the Expected Logarithm of Empirical Prediction with respect to
the label pair (y, z):

φ(�,D, y, z) = −1

n

n∑

i=1

log

(
1∑

s=0

P̂y|z(yiz |s)(θi z)s
)

(4)

4. Step 4: Compute MELEP by taking the weighted average of φ(θ,D, y, z) over all
target-source label pairs:

�(�,D) = 1

Y
∑

y

wy × 1

Z
∑

z

φ(�,D, y, z) (5)

where wy are the weights of the target label y in the target dataset, i.e., the ratio
of the number of positive samples to the number of negative samples of y. Note
that we do not take the source weights into consideration, because in practice, it
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makes sense to assume that we do not know the source label distribution prior to
fine-tuning.

From its definition, MELEP is always positive, and smaller values indicate superior
transferability. Intuitively,MELEPcanbe regarded as a distancemetric, indicating how
“close” the pre-trained model � and the target dataset D are. The closer the distance,
the better the transfer.

The measure is generic, meaning that it can be applied to all types of check-
points, and works without any prior knowledge of the pre-training process, such
as data distribution, hyperparameter settings, optimizer, and loss functions. Further-
more, the computation of MELEP is efficient, which renders it practically useful.
This lightweight property is inherited from the original LEEP [9], with the calculation
involving only a single forward pass through the target datasetD, requiring no training
on the downstream task.

2.2 Datasets

We used publicly available 12-lead ECG datasets in this work. The first source
was the public training dataset from the China Physiological Signal Challenge 2018
(CPSC2018) [19]. This dataset comprises 6877 ECG records, each associated with
at most nine diagnostic categories: NORM (representing normal ECG patterns), AF
(Atrial Fibrillation), I-AVB (First-degree atrioventricular block), LBBB (Left Bundle
Branch Block), RBBB (Right Bundle Branch Block), PAC (Premature Atrial Contrac-
tion), PVC (Premature ventricular contraction), STD (ST-segment Depression), and
STE (ST-segment Elevated).

The second dataset was PTB-XL [20], containing 21,837 records from 18,885
patients and a total of 44 diagnostics statements. The dataset’s authors organized
these diagnostic labels into a hierarchical structure [21], categorizing the 44 labels
into five broader superclasses: NORM (normal ECG), MI (Myocardial Infarction),
STTC (ST/T-Changes), HYP (Hypertrophy), and CD (Conduction Disturbance). We
followed this structure and focused on these five superclasses when conducting exper-
iments with the PTB-XL dataset.

Our third dataset, known as the Georgia dataset [22], consists of 10,344 ECGs that
reflect the demographic characteristics of the Southeastern United States. The data
covers a diverse range of 67 unique diagnoses. However, for our research, we focused
on a subset of ten specific labels, which had the most substantial number of samples:
NORM, AF, I-AVB, PAC, SB (Sinus Bradycardia), LAD (left axis deviation), STach
(Sinus Tachycardia), TAb (T-wave Abnormal), TInv (T-wave Inversion), and LQT
(Prolonged QT interval).

The last source was the Chapman University, Shaoxing People’s Hospital, and
Ningbo First Hospital database [23, 24], which we will refer to as the CSN dataset for
brevity. This dataset contains 45,152 12-lead ECG records, each lasting for 10 s and
sampled at 500 Hz. There are a total of 94 unique labels, among which we focused
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on 20 labels with more than 1000 records for our experiments. These 20 labels are
SB, NORM, STach, TAb, TInv, AF, STD, LAD, PAC, I-AVB, PVC, AFL (Atrial
Flutter), LVH (Left Ventricular Hypertrophy), STC (S-T changes), SA (SinusArrhyth-
mia), LQRSV (Low QRS Voltages), PR (pacing rhythm), NSTTA (Nonspecific ST-T
Abnormality), CRBBB (complete Right Bundle Branch Block), and QAb (Q-wave
Abnormal).

Table 1 summarizes key statistics of the four data sources. In terms of data prepro-
cessing, we applied the following procedures:

• Downsampling: We reduced the sampling frequency of all ECG records from
500 to 100 Hz. This helps reduce computational load while retaining essential
information.

• Cropping: For ECG records longer than the desired duration (ten seconds), we
cropped them to meet this target by keeping only the first 10-s data points. This
step ensures that all records have consistent lengths for training.

It is worth noting that only a tiny fraction of records have durations shorter than 10
s: six out of 6877 in the CPSC2018 dataset, 52 out of 10,334 in theGeorgia dataset, and
none in the PTB-XL and CSN datasets. Therefore, instead of padding these records
to meet the desired duration, which could potentially introduce unwanted noise or
artifacts into the signals, they were simply omitted from our experiments.

We used the CSN and PTB-XL datasets for fine-tuning due to their relatively large
amount of records.When fine-tuning models on the former, we pre-trained our models
using three source datasets: CPSC2018, PTB-XL, and Georgia. When fine-tuning on
the latter, we only used two source datasets: CPSC2018 and Georgia.

For pre-training, we partitioned each of the source datasets into training and test
sets as follows. For PTB-XL, we followed the recommended split in [20], pre-training
our models on the first eight folds, and testing on the tenth fold. For the CPSC2018
and Georgia datasets, we kept 33% of the amount of data in the test set and allocated
the remaining for pre-training.

2.3 Deep LearningModels

We investigated two widely used deep learning architectures for time-series analysis:

• Convolutional neural network (CNN): We utilized ResNet1d101, which is a
1D variant of ResNet101 [25]. The architecture of the ResNet1d101 model is
illustrated in Fig. 1. The ResNet family was originally introduced to work with

Table 1 Statistics of datasets used in this work

Dataset Number of records Number of labels Sampling rate (Hz) Duration (sec)

CPSC2018 [19] 6877 9 500 6–60

PTB-XL [20] 21,837 44 500 & 1000 10

Georgia [22] 10,344 62 500 10

CSN [23, 24] 45,152 94 500 10
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Fig. 1 ResNet1d101 architecture

image data, performing well in healthcare applications such as medical imaging
[26–29]. Yet their power of capturing useful patterns in data still demonstrates
strong performance when applied to time-series ECG data [30, 31].

• Recurrent neural network (RNN): The bidirectional long short-term memory (Bi-
LSTM) architecture [32]was used. The structure of theBi-LSTMmodel is visually
presented in Fig. 2. LSTM is also a popular choice when dealing with ECG data,
as it is capable of capturing long-term dependencies within the sequences [33–36].

Since the source datasets have varying numbers of labels, the last fully connected
layer of the models was adjusted to align with the respective number of outputs.
During pre-training, each model was trained on a source training set for 50 epochs,
using Adam optimizer [37] with a learning rate of 0.01. At the end of each epoch,
we recorded the average F1 score on the test set, which served as an early stopping
criterion. We observed that Bi-LSTM experienced overfitting when training beyond
the early stopping point, whereas ResNet1d101 mostly converged.

Fig. 2 Bi-LSTM architecture
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2.4 PerformanceMetric

To evaluate the fine-tuning performance of a pre-trained model, we relied on the
weighted average F1 score across all labels in the target dataset. F1 score was chosen
as the evaluation metric due to its robustness in handling class imbalances [38], a
common feature of ECG data, compared to accuracy.

Suppose that each ECG record in the target dataset has N diagnostic labels. Let
denote:

• T Pi : true positives for the i th label
• FPi : false positives for the i th label
• FNi : false negatives for the i th label

Then, the precision (Pi ), recall (Ri ), andF1 score (F1i ) for the i
th label are computed

as follows:

Pi = T Pi
T Pi + FPi

Ri = T Pi
T Pi + FNi

F1i = 2 × Pi × Ri

Pi + Ri

The performance metric is computed as the weighted average F1 score across all
labels within the target dataset, given by the following:

Average F1 =
N∑

i=1

wi × F1i

where the weight wi represents the ratio of true instances of the i th label.

3 Experiments and Results

In this section, we show the potential of MELEP in predicting the performance of
fine-tuning a pre-trained model on a target dataset. In practice, transfer learning is
often used when dealing with limited human-annotated data. Therefore, we focused
on investigatingMELEP in the context of small target datasets. The code and resources
used for experiments can be found at github.com/cuongvng/melep-ecg.

3.1 Relation BetweenMELEP andModel Performance of CNN Fine-Tuned on CSN

We first experimented with the convolutional model ResNet1d101. This model was
pre-trained on three different source datasets: PTB-XL, CPSC2018, and Georgia, as
described in Section 2.2, resulting in three respective source checkpoints.

Each source checkpoint was then undergone an experiment with a wide range of
target tasks sampled from the CSN dataset. To construct these tasks, we started with
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the set of 20 labels in the CSN dataset with at least 1000 positive samples, as in
Section 2.2. N labels were then randomly sampled without replacement from the set,
where N varied from 2 to 10. This step ensured that the target tasks would cover a
diverse set of target labels. Records with no positive values for the N selected labels
were filtered out to avoid creating a sparse dataset and to guarantee that every sample
left contained at least one positive label. We then randomly select 1000 records among
the remaining to form a data fold. The process was repeated 100 times to generate a
total of 100 data folds for our experiment.

For each fold, we further split it into training and test subsets with a 7:3 ratio,
i.e., 700 training records and 300 test records. Subsequently, we compute MELEP
using the pre-trained checkpoint and the training subset only, following the algorithm
described in Section 2.1. Prior to fine-tuning the model, we replaced the top fully
connected layer of the checkpoint, adjusting the number of output neurons to match
the target number of labels N . The entire modified model was then fine-tuned on
the training subset for 50 epochs with early stopping, using Adam optimizer [37],
and then evaluated on the test subset using weighted average F1 score across the N
labels of the given fold. Ultimately, we gathered 100 points of (MELEP, average F1)
representing the correlation between MELEP and the fine-tuning performance of the
source checkpoint across a wide range of target tasks.

We then performed the Pearson correlation analysis between MELEP and the per-
formance, following a similar approach used in assessing transferability onmulti-class
computer vision tasks [9, 13]. The first three rows in Table 2 show the results of the
three ResNet1d101 checkpoints in this experiment, revealing strong negative correla-
tions betweenMELEPand average F1 scores, all ofwhich are below−0.6. To visualize
this relationship, Fig. 3 classifies the MELEP values into four distinct distance levels.
Within each level, we calculated the mean of average F1 scores from all the folds with

Table 2 Pearson correlation coefficients between MELEP and average of F1 scores in the experiments
described in Sections 3.1, 3.2 and 3.3

Model Source data Target data Details in Pearson Correlation
(r )

p-value

ResNet1d101 PTB-XL CSN Sec.3.1 −0.639 8.1 × 10−13

CPSC2018 CSN Sec.3.1 −0.631 2.0 × 10−12

Georgia CSN Sec.3.1 −0.608 1.9 × 10−11

CPSC2018 PTB-XL Sec. 3.3 −0.476 5.7 × 10−7

Georgia PTB-XL Sec. 3.3 −0.500 1.1 × 10−7

Bi-LSTM PTB-XL CSN Sec.3.2 −0.691 1.7 × 10−15

CPSC2018 CSN Sec.3.2 −0.670 2.6 × 10−14

Georgia CSN Sec.3.2 −0.665 4.2 × 10−14

CPSC2018 PTB-XL Sec. 3.3 −0.551 2.8 × 10−9

Georgia PTB-XL Sec. 3.3 −0.517 3.5 × 10−8

Strong negative correlations were observed for most cases, indicating MELEP’s potential to predict fine-
tuning performance with only a single forward pass required. All correlations are statistically significant
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Fig. 3 Relation ofMELEP (partitioned as four distance levels) and fine-tuning performance ofResNet1d101
on target tasks sampled from the CSN dataset. The lower the MELEP (the closer the distance), the better
transferability

MELEP falling into that level. The lower theMELEP, the closer the distance, implying
easier transferability.

3.2 Relation BetweenMELEP andModel Performance of RNN Fine-Tuned on CSN

To illustrate the applicability of MELEP to RNN, we repeated the experiment in
Section 3.1 with Bi-LSTM as the source model. Similar to ResNet1d101, the Bi-
LSTM model was pre-trained on three source datasets: PTB-XL, CPSC2018, and
Georgia. We leveraged the same set of 100 CSN data folds which were previously
constructed for the CNN experiment, and applied the identical fine-tuning procedure.

In Table 2 (specifically, the first three rows of the Bi-LSTM section), we observe
a robust correlation, even stronger than that observed with ResNet1d101, between
MELEP and average F1 scores. This correlation is visually depicted in Fig. 4, where
MELEP is categorized into the same distance levels as described in Section 3.1. The
trend remains consistent: the closer the distance, the better the transfer.

3.3 Relation BetweenMELEP and Performance of Models Fine-Tuned on PTB-XL

In this experiment, we explored the use ofMELEP on a different target dataset, specifi-
cally PTB-XL, chosen for its relatively large amount of records.We followed the same
procedure outlined in Section 3.1 to construct 100 target data folds, with the only dif-
ference being the number of labels N . These label sets ranged from two to five andwere

Fig. 4 Relation of MELEP (partitioned as four distance levels) and fine-tuning performance of Bi-LSTM
on target tasks sampled from the CSN dataset. The lower the MELEP (the closer the distance), the better
transferability
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derived from the five superclasses covering the whole PTB-XL dataset, as described
in Section 2.2.

We considered four different checkpoints: ResNet1d101 and Bi-LSTM models
pre-trained on the CPSC2018 and Georgia datasets. The results in Table 2 indicate a
moderate correlation betweenMELEPand transfer performance,withmost correlation
coefficients below−0.5. These correlations, while still significant, are slightly weaker
than what was observed in the experiment with the CSN dataset (Sections 3.1 and 3.2),
as shown in Fig. 5, where the predictive trend of MELEP is disrupted, with an increase
instead of a decrease at one distance level (the 2nd level for ResNet1d101 pre-trained
on CPSC2018 and the 3rd level for other checkpoints).

3.4 MELEP for Checkpoint Selection

This experiment demonstrates the use of MELEP in practice to effectively estimate
fine-tuning performance in a multi-label classification task before the actual fine-
tuning process takes place. Consider a checkpoint selection problem, where the goal
is to choose the best candidate from a set of given source checkpoints for a target task.

Fig. 5 Relation ofMELEP (partitioned as four distance levels) and fine-tuning performance ofResNet1d101
and Bi-LSTM on target tasks sampled from the PTB-XL dataset
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In this scenario, we had eight checkpoint candidates: ResNet1d101-PTBXL,
ResNet1d101-CPSC, ResNet1d101-Georgia, ResNet1d101-CSN, BiLSTM-PTBXL,
BiLSTM-CPSC, BiLSTM-Georgia, BiLSTM-CSN. These checkpoints were obtained
by pre-training two DNNs (ResNet1d101 and BiLSTM) on four datasets (PTBXL,
CPSC2018, Georgia, and CSN). To simulate the context of fine-tuning a small target
dataset, for each of the four datasets, we generated four target folds of 1000 records,
following the random process outlined in Section 3.1, with a full set of 5, 9, 10, and 20
labels, respectively. For a given target fold, two checkpoints pre-trained on the same
dataset were excluded to ensure fair comparison. For example, we did not consider the
ResNet1d101-PTBXL and BiLSTM-PTBXL for experiments with the target PTBXL
fold. Subsequently, we divided each fold into training and test subsets with a 7:3 ratio.
The training subset was used for computing MELEP and fine-tuning, while the test
set was reserved for performance evaluation.

In Fig. 6, we display the MELEP values and their corresponding average F1 scores
for all checkpoint candidates for each target task, alongwith the reference best-fit lines.
The four graphs illustrate the effectiveness of MELEP in predicting the performance

Fig. 6 MELEP for checkpoint selection problem with corresponding target dataset. The consistent trend
demonstratesMELEP’s effectiveness in predicting the fine-tuning performance, supporting the pre-selection
of the best pre-trained models
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of the given checkpoints on the target task: lower MELEP should indicate a better
average F1 score.

4 Discussions and Conclusion

We introduced MELEP, a novel transferability measure that is directly applicable
to multi-label ECG diagnosis. The measure is built upon the foundation of LEEP
[9], adapting from single-label multi-class problems in computer vision to multi-
label binary-class ones in the ECG domain. We conducted extensive experiments
to empirically illustrate the effectiveness of MELEP in predicting the performance
of transfer learning in various ECG classification tasks. In this section, we discuss
some notable properties, extensions, and applications of MELEP alongside promising
directions for future study.

SourceModel DependenceMELEP computation is based on a source checkpoint,
which is a source model pre-trained on a source task. This may imply that better
performance of the source model may result in better MELEP (thus better transfer-
ability). Empirically, in our experiments, pre-trained ResNet outperformed pre-trained
Bi-LSTM on all source tasks, indicated in Table 3. Finetuned ResNet mostly achieved
betterMELEP scores than and outperformed fine-tuned Bi-LSTMonmost target tasks
in the checkpoint selection experiment in Section 3.4. This implication had also been
discussed in [39], in which they theoretically showed that the source task hardness
could affect their transferability metric NCE score. However, the extent to which
better source models result in better MELEP requires further systematic investiga-
tion. In Table 2, despite underperforming ResNet, Bi-LSTM surprisingly achieved
better Pearson correlation coefficients between MELEP and fine-tuning performance.
This suggests that factors beyond model performance may influence MELEP. Korn-
blith et al. [4] might provide valuable insights into this question, as they pointed out
that regularization and training settings had an impact on their transferability metric,
ImageNet Top-1 Accuracy. Analyzing the impact of those dependence sources is an
interesting topic to explore in the future.

Table 3 Performance of
pre-trained models on the source
task (evaluated on the test
subset)

Model Source data Average F1

ResNet1d101 PTB-XL 0.744

CPSC2018 0.740

Georgia 0.593

CSN 0.603

Bi-LSTM PTB-XL 0.541

CPSC2018 0.412

Georgia 0.167

CSN 0.277
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Data Dependence In addition, MELEP is also dependent on the source dataset.
Equations (4) and (5) show that the cardinality of the source label set contributes to the
MELEP score. While MELEP can technically be applied even when the source and
target datasets havedifferent label sets, it is reasonable to expect that substantial overlap
between the two sets would facilitate transferability. Conversely, in cases of minimal
overlap, the source model would exhibit greater uncertainty regarding inputs from
the target dataset, resulting in a more balanced dummy probability distribution (like
random guesses) across non-overlapping diagnostic categories. For example, suppose
that AF (atrial fibrillation) is a new label in the target dataset and does not appear
in the source one, the uncertainty about AF would result in a dummy probability
of positive AF being reduced close to 0.5. Therefore, any negative log-likelihood
components related to AF will be larger, leading to a larger MELEP, indicating harder
transferability. This effect amplifies with an increased number of non-overlapping
categories. Note that here we assume that the source model is good enough, otherwise,
even with overlapping labels, the dummy probability distributions may be worse than
a random guess, leading to poor transferability predictions.

Considerable Extensions As mentioned in (5), we do not consider source label
weights in theMELEP formula. This exclusion is based on the assumption that we lack
prior knowledge of the source label distribution used in pre-training. However, in sit-
uations where this information is known, it is more sensible to take the source weights
into account. Additionally, there is another variant that deserves consideration for its
practical versatility. Instead of aggregating the weighted average of φ(θ,D, y, z) into
a single value as in (5), we can output a vector of size Y , indicating the transferability
measures for each target label. Such an approach is well suited in scenarios where the
performances on certain labels hold more significance than others.

PotentialApplicationsApart from the source checkpoint selection use case demon-
strated in Section 3.4, MELEP can be useful for continual learning algorithms that
are based on neural architecture changes or selection of data points in replay buffers
[40, 41], facilitating the decision-making process. Additionally, in federated learning,
where data is often allocated across multiple sources [29, 42] can utilize MELEP to
facilitate local model selection and fine-tuning. Furthermore, multi-task learning [43,
44], which often depends on the selection of deep parameter-sharing networks and a
combination of task labels, can also benefit from MELEP. Finally, MELEP holds the
potential to assist in the selection of hyperparameters for Bayesian optimization [45].
We leave these directions for future work.
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