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Abstract
Most process mining techniques are primarily automated, meaning that process ana-
lysts input information and receive output. As a result, process mining techniques
function like black boxes with limited interaction options for analysts, such as sim-
ple sliders for filtering infrequent behavior. Recent research tries to break these black
boxes by allowing process analysts to provide domain knowledge and guidance to
processmining techniques, i.e., hybrid intelligence. Especially, in process discovery—
a critical type of process mining—interactive approaches emerged. However, little
research has investigated the practical application of such interactive approaches. This
paper presents a case study focusing on using incremental and interactive process
discovery techniques in the healthcare domain. Though healthcare presents unique
challenges, such as high process execution variability and poor data quality, our case
study demonstrates that an interactive processmining approach can effectively address
these challenges.
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Highlights

• A case study on the application of novel incremental/interactive process discovery
techniques to analyze the treatment process of lung cancer patients

• A novel technique to integrate domain knowledge in the form of ordering con-
straints into concurrency-aware process execution variants

• Practical implications, open challenges, and lessons learned for analyzing
knowledge-intensive processes with interactive/incremental process discovery
techniques

1 Introduction

Healthcare organizations need to improve care quality and effectiveness while man-
aging costs [1]. Streamlining operational processes reduces waiting times, minimizes
delays, optimizes resource allocations, and provides timely care for better patient
outcomes. In short, process improvements in healthcare organizations are of great
importance, as shown by studies [2–4].

The ongoing digitalization in the healthcare sector allows organizations to analyze
their processes in a data-driven fashion [5, 6]. Technologies, such as electronic health
records [7], blockchain [8], IoT [9], eHealth [10], and telemedicine [11], are increas-
ingly being integrated into healthcare processes, enabling organizations to collect
an ever-increasing volume and variety of patient and process data [12]. The growing
availability of such data opens up new opportunities for analyzing healthcare processes
through data-driven approaches, i.e., process mining [1, 13]. Process mining provides
valuable insights for healthcare organizations regarding their processes to eventually
optimize them regarding performance, anomalies, and resource allocations [14].

Despite the significant potential of process mining for analyzing healthcare pro-
cesses [14], the unique characteristics of the healthcare sector and its processes impose
specific challenges that require attention when applying process mining [15, 16].
Munoz et al. [14] emphasize two significant challenges: (1) high variability of indi-
vidual process executions of the same process and (2) poor quality of data generated by
hospital information systems. First, healthcare processes are inherently complex, i.e.,
knowledge-intensive [17]. Further, they exhibit significant variability due to variations
in patient characteristics, response to treatments, and the experience of physicians and
other healthcare professionals involved [15]. Consequently, almost all patient cases
are unique, and several possible treatment pathways exist for a given medical condi-
tion [14]. Second, data quality is a significant concern in the healthcare sector. Studies
have found that healthcare data sets frequently havemissing or incorrect timestamps or
events, often caused by data entry or collection errors [1, 14, 18–20]. These issues can
arise due to excessive workload, inadequate training, and extensive manual recording
of performed activites [21–23]. These two challenges, i.e., high variability of individ-
ual process executions and poor data quality with regard to temporal information, can
negatively impact the reliability and effectiveness of process mining techniques in the
healthcare sector if not appropriately managed [14].
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The inclusion of domain experts in process mining analysis is an expansive issue
that has been progressively captivating the interest of researchers [22, 24]. This paper
focuses on incorporating domain experts and their knowledge in process discovery—a
key type of process mining. Traditional automated process mining techniques [25–
27], predominant in industry and academia, are poorly prepared to handle low-quality
event logs from highly variable processes. In addition, these approaches do not provide
ways to leverage domain knowledge or use it interactively. Indeed, these approaches
often produce so-called spaghetti models [13] that are incomprehensible, challenging
to interpret for healthcare managers, and of little informative value. Therefore, new
interactive process discovery approaches emerged, which allow the incorporation of
domain knowledge into the discovery of process models [22, 24, 28]. Combining
domain knowledge from process stakeholders and event data, i.e., hybrid intelligence,
can improve the results’ quality and enable better process modeling [29]. In the health-
care context, where physicians possess profound domain knowledge, integrating this
knowledge within the process discovery phase can provide critical advances compared
to traditional automated discovery techniques [25, 26]. However, the development and
use of these interactive approaches are still limited, and their suitability in supporting
the discovery of healthcare processes is mainly unexplored.1

Given the limited evidence on the effectiveness and suitability of interactive pro-
cessmining techniques, especially incremental process discovery, further investigation
is required. This case study contributes to the literature by analyzing a real-world
healthcare process, i.e., the treatment of lung cancer patients, using an interactive open-
source process discovery tool and identifying best practices and challenges based on
it. Further, this study addresses state-of-the-art process mining and business process
management challenges. In [30], the authors list various central problems in busi-
ness process management. One of the challenges identified is determining a suitable
detail level for process activities. To overcome this, we utilize the domain knowl-
edge of physicians, establish hierarchies of activities, and carefully choose the level
of abstraction in consultation with the doctors and analysis objectives. Through this
and our general approach, we address another problem: “augmenting process mining
with common sense and expertise” [30].

This study investigates the use of incremental process discovery for the analysis of
knowledge-intensive healthcare processes. To achieve this, we conducted a study that
analyzes a real event log documenting the treatment of lung cancer patients. Figure1
outlines the general approach of this study. Besides event data extraction and initial
preparation, the primary approach is represented by the outlined blue box, wherein a
process model is gradually discovered from the available event data. In each cycle,
domain experts or process analysts selectively choose individual process execution
variants to be added to the evolving process model. Through this gradual approach,
the process model is incrementally discovered so that users can better understand and
comprehend how process models are learned from data.

To analyze the event data, we utilize the open-source process mining tool Cor-
tado [31] for the whole central part of the study; see the blue outlined box in
Fig. 1. Combining interactive data preparation techniques with incremental process

1 Also, outside of the healthcare domain, little evidence exists.
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Fig. 1 Overview of the case study conducted. Starting from an event protocol describing the treatments
of lung cancer patients, we interactively and incrementally discover a process model that summarizes the
complex and highly individual sequence of the different treatment steps

discovery [32], Cortado offers comprehensive features to address healthcare issues.
In addition to the real study, we propose a novel technique for integrating domain
knowledge into process execution variants essential for interactive process discovery.
We created this technique within the scope of the study, and it is considered an addi-
tional contribution. Nevertheless, the proposed technique can be universally applied
also in other domains when analyzing event data. Therefore, we implemented the
proposed technique in Cortado [31] In short, this study is one of the first to use such
an innovative interactive process discovery approach in a complex healthcare setting.
Incorporating domain knowledge can mitigate the variability and complexity inherent
in knowledge-intensive and unstructured processes.

The remainder of this paper is structured as follows. Section2 presents relatedwork,
while Sect. 3 introduces general terms and concepts. In Sect. 4, we provide an overview
of the Cortado tool and its functionality. Section 5 presents the research design of the
conducted case study, while Sec. 6 presents the corresponding results. In Sect. 7, we
discuss the study’s results and derive practical implications. Finally, Sect. 8 concludes
this paper.

2 RelatedWork

In recent years, process mining has been widely used in healthcare, as evidenced by
several literature reviews on the topic [14, 33–35]. These applications of process
mining within the healthcare domain include identifying correct patient flows [3],
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analyzing process performance [4], evaluating adherence to clinical guidelines [36],
and predicting patient outcomes based on process execution [37]. In the following,
we focus on interactive process mining techniques.

Healthcare literature has recently explored interactive techniques that utilize event
log data and domain expertise [22]. However, despite the potential advantages, this
research is still in its early stages. To the best of our knowledge, only a few examples
have proven the practicality and benefits of interactivemethods in a complex real-world
scenario like healthcare.

Martin et al. [38] propose an interactive data cleaning approach consisting of three
steps, i.e., data-based data quality assessment, discovery-based data quality assess-
ment, and data cleaning heuristics. The authors tested their approach with a case study
of an outpatient clinic’s appointment system. In this approach, users can guide the
cleaning of the event log by exploiting their domain knowledge. However, the focus
of the approach is only on data cleaning. In addition, the proposed approach requires
an analyst with sufficient experience in the control of interactive data cleaning.

On the contrary, only two approaches focus on the interactive discovery of the
process model. In [19], a methodology for using process mining technologies over
an interactive pattern recognition framework for supporting the iterative design of
clinical pathways [39] for chronic diseases is presented. However, while the experts
cannot be directly involved in discovering the process model, they can still iteratively
use the developed approach to visualize it and selectively make informed decisions.
In [21], the authors demonstrate the effectiveness of the interactive process discovery
tool developed by [29] in modeling real-life healthcare processes from noisy event
logs. This approach allows the experts to actively discover the process model using
their domain knowledge and the information recorded in the event log. Although the
interactive tool is practical, it only allows one activity to be added at a time during the
construction of the model. In addition, it requires prior knowledge of Petri nets as a
modeling formalism and thus can take longer to learn. The critical difference to incre-
mental process discovery is that in [29], individual activities are interactively placed
in a process model considered under construction. In contrast, incremental process
discovery, subject to his case study, gradually adds user-selected process execution
variants, which consist of various activities, to a model under construction. From the
user’s point of view, there is a big difference between dealing with individual activities
gradually and dealing with execution variants that describe complete process execu-
tions from start to end. As pointed out in [40], domain experts often think of single,
specific process executions. Indeed, when considering process execution variants, the
analysis shifts towards a broader view. Instead of examining individual activities in
isolation, the emphasis is on capturing complete process executions. Therefore, the
incremental approach taken in this case study is not directly comparable to existing
interactive approaches (cf. [21, 29, 41]).

3 Background

This section introduces central process mining concepts used throughout this paper.
First, we introduce event data in Sect. 3.1. Second, we introduce concurrency-aware
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process execution variants and related concepts in Sect. 3.2. Finally, we briefly intro-
duce process models in Sect. 3.3.

3.1 Event Data

Event data are the primary input for many process mining techniques as they describe
the execution of processes. Table 1 shows an example of the event log subject to this
case study. Each row represents an event. For example, the first event describes that
the activity “General Physical Examination (GPE)” was executed on 15/05/2017 for
the process execution with case ID 25480. Note that in this specific example, the case
ID corresponds to the patient ID. Thus, each patient represents an individual process
execution.

We refer to all events having an identical case ID as process execution or trace. For
example, consider the events with case ID 47777. The first recorded event states that
a general physical examination (GPE) was performed on the patient on 17/07/2017.
Eight days later, on 25/07/2017, various examinations were performed: CT scan of the
patient’s chest (CTC), Liver Biopsy (LiB), and various lab tests, i.e., Calcium (Cre),
Glucose (Glu), Magnesium (Mag), and Creatinine (Cre).

The example trace above exhibits partially ordered event data, i.e., various events
have identical timestamps within a trace. Note that most process mining techniques
assume that events of a trace are totally ordered [13, 42], i.e., the events can be sequen-
tially aligned according to their timestamps. However, partially ordered event data is
a regular phenomenon in healthcare, as discussed in Sect. 1.2 Often, the timestamps
of events are coarse; for example, only the day but not the exact time is recorded due
to manual entry later, for instance, a nurse entering an X-ray execution at the end of
a shift in an information system. Thus, we assume partially ordered event data in this
case study. Thereupon, we propose in Sect. 4.2 a novel method, similar to [45], to
integrate order relations derived from domain knowledge into partially ordered event
data to improve the poor informative value of coarse timestamps.

3.2 Trace Variants

Trace variants (hereinafter referred to simply as variants) are an essential concept in
process mining. Variants group traces with identical order relationships among their
activities. Therefore, variants are crucial in various process mining tasks that focus on
control flow aspects of activities. In general, variants facilitate handling vast amounts
of traces in event logs.

Since we focus in this use case study on partially ordered event data, we use
concurrency-aware variants, which were recently introduced [46]. In the remainder
of this paper, we refer to concurrency-aware variants as variants. Figure2 illustrates a
variant that describes the trace with case ID 47777.

2 Other publicly available event logs outside the healthcare domain that capture actual processes likewise
comprise partially ordered event data, for instance, cf. [43, 44]
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Table 1 Excerpt of the event log covering the treatment of lung cancer patients; each row represents a
unique event

Case ID Activity label Activity category Timestamp . . .

25480 General Physical Examination (GPE) – 15/05/2017 . . .

25480 Creatinine (Cre) Examination 15/05/2017 . . .

25480 Calcium (Cal) Examination 15/05/2017 . . .

25480 Glucose (Glu) Examination 15/05/2017 . . .

25480 Magnesium (Mag) Examination 15/05/2017 . . .

25480 Chest X-ray (ChX) Examination 15/05/2017 . . .

25480 Spirometry (Spi) Examination 25/05/2017 . . .

25480 General Physical Examination (GPE) – 01/06/2017 . . .

47777 General Physical Examination (GPE) – 17/07/2017 . . .

47777 CT Chest (CTC) Examination 25/07/2017 . . .

47777 Calcium (Cal) Examination 25/07/2017 . . .

47777 Glucose (Glu) Examination 25/07/2017 . . .

47777 Magnesium (Mag) Examination 25/07/2017 . . .

47777 Creatinine (Cre) Examination 25/07/2017 . . .

47777 Liver Biopsy (LiB) Examination 25/07/2017 . . .

47777 Electrocardiogram (Elc) Examination 18/08/2017 . . .

47777 Spirometry (Spi) Examination 18/08/2017 . . .

47777 Excision of lung and bronchus (ELB) Surgery 01/09/2017 . . .

47777 Computer aided surgery (CAS) Surgery 01/09/2017 . . .

47777 Other non-operative procedure (ONOP) Treatment 10/09/2017 . . .

47777 Other non-operative procedure (ONOP) Treatment 10/09/2017 . . .

47777 General Physical Examination (GPE) – 15/09/2017 . . .

47777 Calcium (Cal) Examination 15/09/2017 . . .

47777 Glucose (Glu) Examination 15/09/2017 . . .

47777 Magnesium (Mag) Examination 15/09/2017 . . .

47777 Creatinine (Cre) Examination 15/09/2017 . . .

40036 General Physical Examination (GPE) – 01/07/2017 . . .

40036 Calcium (Cal) Examination 01/07/2017 . . .

. . . . . . . . . . . . . . .

In general, vertically aligned activities indicate that they were performed simul-
taneously or overlapped, while horizontally aligned activities represent consecutive
execution. Thus, for the given example in Fig. 2, all activities aligned vertically are
executed on the same day. Moreover, since days are the bottom granularity of the
provided timestamps, i.e., there is no information about the exact time, all vertically
aligned activities do not have an execution order; they are considered to be executed
in parallel. Using different colors in the variant visualization facilitates distinguishing
and identifying various activities.

First, the activity General Physical Examination (GPE) is executed. Next, the activ-
ities LiB, CTC, Cal, Glu, Mag, and Cre are executed in parallel since all have identical
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Fig. 2 Concurrency-aware variant describing trace 47777 (cf. Table 1)

timestamps in trace 47777. After these six activities, Elc and Spi are executed in paral-
lel, followed by ELB and CAS being executed in parallel and two parallel executions
of activity ONOP. Eventually, the activities GPE, Cal, Glu, Mag, and Cre are executed
in parallel.

In short, variants are essential and allow for clustering various traces with identical
order relationships among their activities. Since partially ordered event data are a reg-
ular phenomenon in the healthcare domain, we consider concurrency-aware variants
in this paper. For a detailed introduction into concurrency-aware variants and their
computation, we refer to [46, 47].

3.3 Process Models

Process models allow us to formalize processes. Various formalisms exist, for exam-
ple, BPMN models [48], Petri nets/workflow nets [49, 50], and process trees [13].
Most process model formalisms focus on modeling the control flow of the involved
activities.3 These models show optional activities, repetition of activities, decision
points, and parallel execution branches in processes.

Figure3a provides an example process tree that models a lung cancer treatment
process. The root node represents a sequence operator (→); thus, its subtrees are thus
executed according to their order. Hence, activity Biopsy is executed first. Next, a
subtree with a parallel operator (∧) is executed. Thus, all its subtrees/activities are
executed parallel respectively in any order, i.e., Spirometry, General physical exam-
ination and Lab Test. Note that Lab Test is located under a loop operator (�); thus,
Lab test can be executed multiple times but at least once. Next, Operation on chest
wall and X-ray are executed in parallel. Finally, the activity Removal of Therapeutic
Appliances is executed. Figure3b shows the described process as a BPMN model.

We refer to [13] for an extensive introduction to process trees and [48, 51] for an
introduction to BPMN. We focus on process trees in this paper because the interac-
tive/incremental process discovery techniques used, produce process trees. However,
as exemplified in Fig. 3b, such process trees can also be easily transformed into other
model formalisms, e.g., BPMN models or Petri nets. In conclusion, process models
such as process trees allow us to model the control flow of the activities within a pro-

3 For example, BPMN contains graphical elements to model data flows and organizational aspects such as
resources [51].
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Fig. 3 Example process model once specified as a process tree and once as a BPMN model

cess and are an essential artifact in process mining that are used for many subsequent
analysis tasks.

4 Interactive Process Discovery Tool Cortado

This section presents the process mining software tool Cortado, which we use
to analyze the event log that is the subject of this case study. Cortado is an
open-source software [31], featuring domain-knowledge-utilizing process discovery
approaches [24]. Further, it features event data processing and exploration techniques.
Thus, Cortado combines all the required techniques to analyze event data interactively.
In the remainder of this section, we briefly overview its functionalities in Sect. 4.1. Fur-
ther, Sect. 4.2 introduces a novel function for manipulating variants based on domain
knowledge that we developed explicitly in the context of this case study.

4.1 Overview Existing Functionalities

Cortado features techniques covering the full interactive process discovery cycle as
illustrated in Fig. 1. Subsequently, we provide a brief overviewof existing functionality
relevant to this case study. For a complete overview of Cortado’s functionality, we refer
to [31].

Central to event data exploration are variants as introduced in Sect. 3.2 and exem-
plified in Fig. 2. Cortado visualizes all variants from a given event log in a variant
explorer allowing manual exploration by users. Figure4 shows a screenshot of Cor-
tado. In the lower part of the screenshot, the variant explorer is visible. To handle vast
amounts of variants, a query language [52] allows targeting variants to be found using
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specified activity patterns. In addition, Cortado features frequent pattern mining tech-
niques for variants and variant clustering algorithms. Regarding event data filtering,
Cortado offers various approaches that are combined with the techniques described
above; for example, users can utilize the query language or frequent variant pattern
mining to filter event data respectively variants.

From selected variants, users can discover an initial model. Cortado offers a process
model editor supporting BPMNmodels and process trees, as shown in Fig. 4. Such an
initial model can be incrementally extended by non-supported process behavior, i.e.,
variants the process model does not yet describe. To compare process models with
the provided event data, Cortado offers conformance checking [53] functionality. For
instance, variants can be filtered according to their conformance level with the current
process model.

4.2 Integrating Domain Knowledge into Variants

This section presents the new functionality variant sequentialization in Cortado that
we implemented in the context of this case study. Recall the event log shown in
Table 1. As discussed, we consider partially ordered event data, i.e., multiple events of
a tracemay have identical timestamps and are thus executed in parallel. Reconsider the
variant shown in Fig. 2 that indicates various activities being executed concurrently.

Fig. 4 Screenshot of the open-source process mining tool Cortado, which is used for analyzing the event
data subject to this case study
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However, since the events’ timestamps have a coarse temporal granularity, i.e., the
bottom granularity is days and no time is recorded, their temporal information is
rather inaccurate.

The partially ordered event data indicates that various activities from a trace happen
simultaneously (cf. Fig. 2), i.e., on the sameday.However, certain activities that happen
on the same day have some order relations if considering medical domain knowledge.
For instance, the variant visualized in Fig. 2 indicates that activities Liver Biopsy (LiB)
and CT Chest (CTC) are executed in parallel, i.e., in this specific case on the same day.
Thus, when discovering a process model using this variant, the model would indicate
that these activities happen in parallel respectively in any order. From a practical
view, however, we know that the CT Chest (CTC) activity happens always before
Liver Biopsy (LiB). Thus, we would like to integrate such domain knowledge into the
variants.

To this end, we implemented the variant sequentializer, allowing to integrate
domain knowledge into variants. We allow to specify source and target patterns that
specify fragments of variants. Figure5a depicts an example source pattern for the given
example. The exemplified source pattern matches any variant where activity CTC is
in parallel to LiB; more activities can happen in parallel as indicated by the white-
colored chevron labeled “· · · .” The target pattern, depicted in Fig. 5b, specifies that
activity CTC is executed before LiB; all other activities (i.e., white-colored chevron
labeled “· · · ”) are executed in parallel to this sequential execution of CTC and LiB.
Reconsider the variant depicted in Fig. 2. The source pattern depicted in Fig. 5a is
present in this variant. Thus, when applying the sequentialization rule, consisting of

Fig. 5 Example of the sequentialization feature allowing to sequentialize parallel execution of activities as
indicated by variants based on domain knowledge, i.e., source and target patterns are defined by users
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the source (cf. Fig. 5a) and target pattern (cf. Fig. 5b), to the variant, we obtain the
modified variant as visualized in Fig. 5c.

The described variant sequentialization functionality allows users to integrate
domain knowledge into variants, which are central for incremental process discov-
ery. This is particularly valuable as the integration of such domain knowledge allows
for the establishment of ordering relationships prior to the inclusion of this process
behavior in a model. Further, reasoning on individual variants (representing patients
with identical treatments in this case study) is often easier with non-process-mining
experts than fixing such order relations within a process model. Since process models
typically describe a large number of variants, the cognitive effort required to change
such order relationships in process models is significantly higher, because more vari-
ants have to be taken into account at the same time in order to avoid entering incorrect
orders thatmay not be applicable in all variants.Another aspect thatmust be considered
when using variant sequentialization is the conformity of a discovered process model
with the original event log. Suppose a process model discovered from sequentialized
variants is compared with the original event log. In that case, deviations between the
model and the event data might be detected as the original event log includes traces
containing sequentialized activities with the same timestamp.

5 Research Design

This section provides a comprehensive overview of the study conducted within the
healthcare domain. Section5.1 outlines the overarching research goal and introduces
the specific process under analysis, while Sect. 5.2 details the methodology employed
in the study.

5.1 Research Goal and Setting

The primary aim of this research was to evaluate the suitability and effectiveness of
incremental process discovery techniques in analyzing complex healthcare processes
characterized by a high level of knowledge intensity. Our goal was to leverage these
innovative techniques to develop a robust and reliable normative process model tai-
lored to the intricate nature of healthcare procedures. In pursuit of this objective, we
aimed to integrate the expertise of healthcare professionals with detailed event data
documenting patient treatments. By combining these two sources of information, our
aim was to create a comprehensive process model that accurately reflects procedural
insights while capturing the dynamic nature of patient care as evidenced by real-world
treatment data.

The study was conducted within a medium-sized public hospital in Italy. The
dataset used in the study encompassed detailed information on the primary treatments
administered to hospitalized patients diagnosed with lung cancer over the course of a
year. Lung cancer treatment is inherently complex and necessitates a multidisciplinary
approach, involving collaboration among professionals with diverse specialties. The
Italian Association of Medical Oncology guidelines [54] assist clinicians in treating
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such diseases. More in detail, each lung cancer patient undergoes a set of activities
that include diagnostic activities (e.g., X-ray, CT scan, spirometry, bronchoscopy) to
confirm the diagnosis and assess the extent of the disease, as well as surgery and
follow-up activities. However, given the complexity of the disease and the variety of
treatments, many special and ad hoc care pathways may exist.

The study was conducted in close collaboration with a multidisciplinary medical
team comprising the head of the thoracic surgery department, an oncologist, and a
doctor and nurse from the pneumology department, all of whom specialize in pro-
viding specialized care to patients with lung cancer. The head of thoracic surgery
holds expertise in performing surgical interventions for lung cancer and conditions
affecting the mediastinum, chest wall, and esophagus. The oncologist, on the other
hand, specializes in diagnosing and treating various forms of cancer, playing a crucial
role in the comprehensive care of patients. Additionally, the doctor and nurse in the
pneumology department play an active role in delivering attentive care to individuals
with respiratory diseases, ensuring holistic patient management.

5.2 ResearchMethodology

Themethodology applied for the study consists of twomain phases: event data extrac-
tion and initial preparation and interactive process discovery, as shown in Fig. 1. In
the following, we provide insights and details into these phases.

1. The first phase, Event Data Extraction and Initial Preparation, aimed to collect
data from various hospital information systems and create an event log suitable
for the analysis. This phase involved merging datasets, removing redundant or
inconsistent information, and producing a single, coherent dataset that can be
readily interpreted during the process discovery stage. For this phase, established
techniques and approaches [15, 42, 55, 56].

2. The second phase, Interactive Process Discovery, played a pivotal role in pro-
cess analysis. Utilizing Cortado [31] and its functionalities, this phase facilitated
interactive exploration of variants, incremental process discovery, and analysis.
The integration of domain knowledge from the medical team alongside event data
was essential for ensuring the credibility of the findings. This phase, executed
cyclically as needed, comprised three sub-phases (cf. Fig. 1).

(a) The Event Data Processing and Exploration phase aimed to explore, orga-
nize, sort, and select variants for the subsequent incremental process discovery
phase—as described before, variants are central to incremental process discov-
ery. Cortado’s capabilities like variant visualizations (cf. Sect. 3.2) and variant
querying [52] supported the research team in this phase, along with variant
filtering and editing based on domain knowledge. For example, consider the
variant sequentialization feature introduced in Sect. 4.2.

(b) The Incremental Process Discovery phase aimed to discover the model of
the patient treatment process gradually, integrating selected variants into the
model using corresponding algorithms [31]. During this phase, the research
team guided the algorithm, for example, by freezing certain parts of the process
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model [57].4 Further, the research team manually edited parts of the process
model based on the domain knowledge from the medical team.

(c) In theEvaluation andAnalysis phase, the research team assessed the incremen-
tally extended process model from the previous phase. Conformance checking
techniques [53] were employed to evaluate how well the model aligned with
provided andmodified event data and domain knowledge, identifying potential
gaps or inconsistencies that required further iterations of the interactive pro-
cess discovery phase. This iterative process ensured continuous refinement and
improvement of the process model. At the end, the model underwent further
validation with the medical team.

Throughout the study, the medical team played an integral role. Particularly, we orga-
nized two meetings: one prior to commencing the Event Data Extraction and Initial
Preparation phase, and another following the Evaluation and Analysis phase. The
pre-study meeting aimed to contextualize the research by obtaining pertinent infor-
mation about the process, the organization, and clinical guidelines. Conversely, the
follow-up meeting sought feedback on the innovative interactive process discovery
approach enabled by Cortado and its resulting output. Additionally, during the follow-
up session, we prompted the team to qualitatively compare Cortado’s output with
that of Inductive Miner (IM) [58], a widely used automated technique, especially
in healthcare [1]. Both meetings, each lasting 2 h, were conducted online via video
conference, involving two researchers and the medical team. One researcher directed
the discussion with general questions, while the other moderated. Transcriptions of
the discussions were collected and analyzed alongside hospital procedures and clinical
guidelines documents to ensure triangulation of information. In addition, during the
Interactive Process Discovery phase, the medical team provided ongoing support and
feedback.

This study uses a different approach to process mining compared to traditional
sequentialmethods like PM2 [55] and the healthcare-specificmethod presented in [15].
Rather than following a strictly sequential process of data preparation, process discov-
ery, and evaluation, our approach utilizes a cyclic procedure that allows for revisiting
and re-executing previous phases or sub-phases as needed. Refer to Fig. 1 for a visual
representation.

6 Implementation and Results

In this section, we outline the actions we took during each stage of the methodology
for the lung cancer study. Section6.1 covers the outcomes of the initial phase, where
we extracted and prepared event data. Meanwhile, Sect. 6.2 explains the subsequent
interactive process discovery phase approach and performed actions.

4 For a detailed and technical introduction into this feature, we refer to [57]
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6.1 Event Data Extraction and Initial Preparation

We gathered event data from two hospital information systems: the electronic medical
record (EMR) and the radiology information system (RIS). The EMR is a compre-
hensive repository that stores information about all inpatient episodes that take place
within the hospital. It provides a detailed account of the patient’s medical history, diag-
noses, treatments, and other relevant data. Similarly, the RIS is a dedicated platform for
managing and organizing information related to radiology activities performed within
the hospital. It includes details about imaging orders, results, reports, and scheduling.
These systems store valuable information, which we combined into a single event log.

The initial event log consists of 998 cases corresponding to 998 different patients, 45
different activities, andmore than 40,000 events. Note that the timestampwas recorded
at the date level for each event; no time information is available, as exemplified in
Table 1.

We initially performed a preliminary cleaning to resolve obvious data quality prob-
lems, including the following actions.

• Outliers and incomplete cases removal: We removed eight cases with incorrect
activity time records and missing relevant attribute values.

• Event abstraction: The event log contains various activities categorized into dif-
ferent levels of detail. An overview of the activity hierarchy is shown in Fig. 6.
To achieve our analysis goals, we relabel low-level activities, i.e., we generalize
activities. For instance, we relabeled lab test-related activities, such as glucose,
potassium, and creatinine, into one macro-activity named “Lab Test.” Similarly,
we combined radiological activities, like CT abdomen, CT brain, wrist X-ray,
and knee X-ray, into representative activities named “X-ray” and “CT scan.” The
described approach reduced the number of activity labels from 45 to 19, as shown
in Fig. 6, i.e., the activities outlined in red were selected as the optimal level of
abstraction.

• Elimination of lesser activities:We removed less significant activities not directly
related to treating lung cancer disease, for instance, eye lens operation, bone exci-
sion, and ovariectomy. These activities are due to the onset of comorbidity in the
patient, i.e., another diagnostically definable syndrome that occurs in addition to
an underlying disease. Therefore, for our analysis, we decided to abstract them.

The refined event log consists of more than 14,000 events, 990 patient cases, and 19
types of activities. The remaining activities are outlined in red in Fig. 6. As expected,
the process heterogeneity is very high with 934 different variants out of 990 cases
that makes process modeling and analysis extremely complex as almost each patient
treatment is unique regarding the ordering of performed activities.

6.2 Interactive Process Discovery

In this section, we explain the actions performed during three main sub-phases of the
Interactive Process Discovery phase (cf. Fig. 1) and report the corresponding results.
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6.2.1 Event Data Processing and Exploration

By using the query language [52] implemented in Cortado, we initially explored in
detail the numerous variants in the event log to investigate theirmain characteristics and
remove any outliers that could not be detected in the previous step, i.e., the Event Data
Extraction and Initial Preparation phase. It should be noted that in this stage, outliers
are not anomalies within the process or infrequent behaviors; rather, they manifest as
truncated or incomplete traces resulting from errors in data entry or extraction. This
allowed us to partially reduce the complexity of the event data and improve the quality
of the resulting process model.

Specifically, we investigated the frequency and the number of activities of which
each variant is composed. For example, we noted that the most frequent variants (with
an occurrence of 11 and 9 cases, respectively) consist of only one activity, sometimes
repeated multiple times. In addition, 0.4% of variants consist of a maximum of three
activities, while 0.2% of variants comprise up to six activities of only two types.
As confirmed by the medical team, these are problematic variants that do not reflect
the actual execution of the process but result from poor data quality. Indeed, it is
implausible for a patient to behospitalized for only oneor twoexaminations. In general,
hospitalization involves a series of tests, treatments, visits, and sometimes surgery,
while single examinations are performed in an outpatient setting. These outliers may
be due to registration errors or non-registration by hospital staff. Therefore, we decided
to remove such variants.

Furthermore, we identified and removed incorrect variants, i.e., those with a
sequence of activities that did not comply with the clinical guidelines and physi-
cians’ expertise and could lead to inappropriate behaviors. For example, the medical
staff suggests that at the beginning of the lung cancer treatment (diagnostic phase),
invasive diagnostic procedures (for example, bronchoscopy or biopsy) must be
executed after non-invasive diagnostic exams (for instance, X-ray and CT scan) to
confirm thediagnosis and evaluate the extent of the disease.However, the event log con-
tained variants in which this relationship is not respected. Figure7 shows an example
of the variants mentioned above, where a biopsy was performed before a non-invasive
diagnostic procedure, i.e., a CT scan. The corresponding query that we use to identify
and eliminate such inaccurate variants is shown in Listing 1. These incorrect variants
may be due to registration errors or delayed registration that introduce noise in the
dataset. As the presence of these behaviors may be undesirable as they may affect the
reliability of the results and the subsequent process analysis, we decided to remove
such variants.

Following this exploration and filtering phase, we removed 4% of the variants.

ANY {’Bronchoscopy ’, ’Biopsy ’} isDirectlyFollowed
ANY{’X-ray ’,’CT -Scan ’,’Ultrasound Scan ’,’Nuclear Medicine

’};

Listing 1 Example query in Cortado to identify variants in which an invasive diagnostic examination is
immediately followed by a radiological examination.

Subsequently, by using the variant sequentialization function (cf. Sect. 4.2), we
integrated domain knowledge into imprecise variants that are those variants consist-
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Fig. 7 Screenshot of Cortado showing a variant that indicates an inconsistent ordering of activities, i.e.,
“Biopsy” (i.e., thefirst activity of the visualizedvariant) is executedbefore “CTscan,” i.e., yellowhighlighted
activities

ing of several activities that occur in parallel but should follow a specific execution
order, according to the guidelines and understanding of the medical staff. For exam-
ple, in the surgery phase of lung cancer treatment, the patient generally undergoes the
following activities: instrumental examinations to assess their operability, surgery, an
X-ray, and, if present, removing the therapeutic device. These activities should occur
sequentially; however, even if they are performed on the same day, we only observe the
identical timestamps in the event log due to the coarse bottom granularity of days. For
instance, consider the variant depicted in Fig. 8c as an example. The variant indicates

Fig. 8 Example of an actual source target pattern pair for sequentializing variants and its application to a
variant from the analyzed event log
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that removing the therapy device could be performed before its installation during
the surgery, as both activities are modeled in parallel. Thus, using this variant for
process discovery results in an imprecise process model allowing for wrong behavior.
By exploiting the variant sequentialization functionality in Cortado (cf. Sect. 4.2) and
the knowledge of the medical staff, we manipulate these variants. Figure8a depicts
the described source pattern, while Fig. 8b depicts the corresponding target pattern.
When applying this sequentialization rule to the variant shown in Fig. 8c, we obtain the
sequentialized variant depicted in Fig. 8d. We implemented approximately 20 sequen-
tialization rules, although we do not detail each one here.

6.2.2 Incremental Process Discovery

In this phase, after eliminating or refining variants plagued by data incompleteness and
noise stemming from poor quality, we incrementally shaped the process to establish
a benchmark regulatory model for lung cancer patient treatment. The incremental
discovery process was conducted by using Cortado, wherein additional variants were
gradually incorporated into the initialmodel.Any inaccuracieswere resolvedmanually
during each iteration by editing the model directly. When necessary, we re-performed
the Event Data Processing and Exploration phase to eliminate inconsistencies further.

We started with an initial model that comprised only the variants devoid of diagnos-
tic activities in the initial phase, accounting for about 0.15% of the variants, as shown
in Fig. 9. It is worth noting that these particular variants represent the most common
occurrences. This strategic approach was adopted to map the journey of hospitalized
patients undergoing diagnostic procedures outside the hospital, either in outpatient
settings or within private healthcare facilities. The initial process model contains three
stages that make up the process.

1. The diagnosis stage comprises just the activity general physical examination
describing the first visit with the physician.

2. The surgery stage contains the activities Excision of Lung and Bronchus, Opera-
tions onLymphatic System,ComputerAided Surgery,LabTest,X-ray, andRemoval
of Therapeutic Appliances.

3. The last stage denoted follow-up comprises the activities Other Non-Operative
Procedures, Non-Operative Intubation, or further Lab Tests.

Fig. 9 BPMN model describing the 15 most frequent variants
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Building upon the initial model, we decided to incorporate shorter-length variants
that encompassed diagnostic activities and, involved one surgical procedure per case
into the model, constituting 20% of the overall variants. This helped us understand
how the process changes once diagnostic tests are introduced and in which phase of
the process these changes occur.

At this point, we implemented twomainmanual adjustments to enhance themodel’s
clarity and reliability. First, we introduced a loop structure to handle diagnostic and
follow-up activities as the number and type of examinations vary from patient to
patient. Then, we restructured the model to include the general physical examination
and lab test activities in parallel with the diagnostic and surgical activities because
they are key activities that may be repeated frequently during the treatment process.
Next, we added the remaining intricate variants (about 40% of the variants), encom-
passing diagnostic activities as well as various types of surgical procedures, as shown
in Fig. 10. The model shows a sequentiality between the activities of the diagnostic
phase and those of the surgical phase. In contrast, the follow-up phase involves a wide
variety of activities that can be repeated multiple times based on the health condi-
tion and each patient’s reaction to the surgery. Furthermore, it can be noted that for
more complex cases, additional radiological examinations and interventions were also
required during the surgical phase.

As a final step, before adding the remaining variants related to non-surgical hospi-
talized patients (about 40% of the overall variants), we froze all activities concerning
the surgical phase in the model (roughly a third of the activities), so that there were no
changes in this part of the process when continuing with incremental process discov-
ery. To do so, we made use of the freezing functionality [57] implemented in Cortado.
Figure11 depicts the final discovered process model based on the event data and the
provided domain knowledge. The resulting model describes all suitable variants of the
event log and shows the following:

• The diagnostic and surgical phases have a more structured and defined sequence,
as suggested by the guidelines.

• The follow-up phase is dependent on the physician’s experience and the patient’s
condition.

• There are different types of treatments that can be performed multiple times for a
single patient or for different patients.

6.2.3 Evaluation and Analysis

During the previous phase, it was possible to track in Cortado the accuracy of the
discovered model with respect to the event log. The fitness value, which started at 30%
during the initial iterations, gradually increased as more variants were included in the
model.Withmodifications to themodel, the indicatorwas raised to 70%and eventually
reached 100% by the end of the phase, indicating a high level of conformance w.r.t.
to the event log that was incrementally processed.

After completing multiple iterations of the interactive process discovery phase (cf.
Fig. 1), we engaged in discussions with the medical team regarding the functionalities
of Cortado. Furthermore, we requested all team members to provide qualitative eval-
uations (high, medium, low) for the models generated by Cortado (cf. Fig. 11) and IM
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Fig. 12 Process model discovered by the conventional process discovery algorithm Inductive Miner [58],
with default parameters. The model places the main activities in parallel, which results in a loss of sequen-
tiality between the macro phases of diagnostic, surgery, and follow-up. This lack of proper sequencing
leads to improper behaviors, including the incorrect positioning of non-invasive and invasive diagnostic
examinations

(cf. Fig. 12), as outlined in Sect. 5.2. The evaluation focused on three aspects: model
comprehensibility, adherence to guidelines, and simplicity in terms of represented
elements. In employing IM, we used as input the event log obtained downstream of
the Event Data Processing and Exploration phase, to make the qualitative/manual
comparison of models fairer.

The medical team appreciated Cortado’s functionality related to interactive data
exploration/manipulation. Specifically, two members highlighted the challenge of
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working with large amounts of patient data that are often dirty and unreliable, making
it difficult to extract useful insights without dedicated tools. Therefore, they found
it valuable to explore data and decide what to manipulate or filter out as deemed
incorrect to obtain reliable and practical information. In addition, the interactivity of
process discovery and the incremental approach was also seen as positive aspects.
Indeed, a team member said that “[...] what is even more value-added is to be able
to incrementally model the process and decide what to include, freeze or modify in
the map [...], exploiting our knowledge.” To summarize, the active participation of the
expert was reported by all team members as essential, as it helped to fill in the data
gaps and provided valuable insights to enhance the quality of the model. However,
during the follow-up meeting, a critical point was raised regarding using interactive
data exploration and incremental process modeling features. It was highlighted that
prior knowledge of fundamental process mining concepts and modeling languages is
necessary to leverage these features entirely. Alternatively, the support of an experi-
enced analyst would be beneficial in ensuring that these capabilities are utilized to
their full potential. For example, a team member pointed out that “[...] I know neither
petri nets nor decision trees, and I would not be able to conduct the analysis alone
[...].”

Regarding the process models, the medical team found the process model created
interactively with Cortado to be more comprehensible and consistent with the guide-
lines, although quite complex in terms of the number of elements. The process structure
is clearly visible, and any non-compliances, due to low data quality, were removed
during the modeling phase. On the other hand, the model produced by IM was con-
sidered confusing (e.g., one team member even expressed uncertainty regarding the
interpretation of the IM model, saying “Is this the process for lung cancer patients?”)
and presented improper behaviors that would require manual modifications, such as
the position of non-invasive diagnostic examinations and invasive diagnostic exam-
inations. Overall, the follow-up meeting provided valuable insights into the medical
team’s perspectives on the new interactive approach enabled by Cortado and the pro-
cess model produced.

7 Discussion

This section discusses the presented case study. We will highlight the lessons learned,
practical implications, and limitations and outline potential future work. In short, our
findings indicate that interactive process discovery methods can effectively tackle the
common challenges faced in the healthcare domain, such as complex and variable
processes and low-quality data.

7.1 Lessons Learned

Contained within this section, we have identified three crucial lessons gleaned from
the presented case study.
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7.1.1 Domain Experts

One lesson learned is that domain experts’ involvement is crucial for the success of
any data-driven process modeling project. For example, domain experts improve the
process model’s accuracy by adding tacit details not present in event logs. Further-
more, the involvement of domain experts plays a pivotal role in rectifying significant
shortcomings or errors within a dataset. Take, for instance, a scenario highlighted in
our case study where clinical guidelines prescribe a specific sequence for examina-
tions. If this chronological order is not readily discernible within the dataset due to the
absence of temporal information, domain experts can step in to address this issue. It’s
important to note that this is not a process anomaly, but rather underscores a challenge
related to data quality. In such situations, domain expertise becomes indispensable,
seamlessly integrating itself into the process by identifying errors stemming from data
quality issues that go beyond mere process anomalies or occasional irregularities.

The importance of domain experts was evident in both the Event Data Processing
and Exploration phase, where experts provided input on what to filter out and manip-
ulate, and in the Incremental Process Discovery phase, where they suggested which
variants to add to the model and which changes to make to ensure compliance with
guidelines. Establishing a guidelines-conformance model is indispensable for guar-
anteeing that physicians’ care practices are firmly grounded in scientific evidence. In
summary, this case study contributes to the open problem of utilizing domain knowl-
edge [30] in processmining by showcasing a concrete approach using the tool Cortado,
allowing the utilization of domain expertise.

7.1.2 Blending of Event Data Processing and Process Discovery

Another lesson learned is that data exploration and especially manipulation must be
integral to the process discovery phase and cannot be entirely automated. In our case
study, many issues in the event log emerged during the Event Data Processing and
Exploration phase, despite a preliminary data preparation. Some of these issues were
easily recognizable (e.g., partial traces of a single activity), while others required
domain knowledge (e.g., traces with activity sequences that did not comply with
guidelines). In this context, the strong focus on variants in Cortado is also beneficial
to help domain experts better understand the behavior in the event data. Also in [40],
the authors report that “domain experts typically think of processes on a case level.”
Therefore, the use of variant visualizations that summarize similar process executions
is of great benefit in communicating with domain experts and fosters them to apply
their domain knowledge, for instance, by the variant sequentialization functionality
introduced in Sect. 4.2.

Further, we learned that data exploration, process discovery, and analysis could not
be performed sequentially, as often happens in traditional process mining methodolo-
gies [15, 55]. Sometimes, it may be necessary to go back and repeat intermediate steps
to improve/correct any inconsistencies. In our case study, we encountered additional
data issues during the incremental discovery of the process model, which necessitated
revisiting the previous phase to carry out the variant sequentialization task.
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7.1.3 Incremental Process Discovery

Incremental process discovery has shown to be more effective in producing accurate
models that comply with guidelines, particularly when faced with data quality issues
compared to automated process discovery. This incremental approach allows the anal-
ysis and selection of suitable variants to include in the final model, identifies and
resolves any inconsistencies, and builds confidence in the model. Conversely, wholly
automated discovery techniques often produce confusing and unreliable process mod-
els, as revealed in the follow-up meeting with the medical team. In addition, these
models require further manual modifications, making the task laborious.

A challenge encountered during the case study was that using interactive and incre-
mental discovery techniques requires knowledge of process mining and modeling
languages. This challenge confirms the findings by [59], where the authors identify
poor analytical skills from people as a critical challenge in applying process mining
in organizations. Further, also in [40], the authors identify the lack of process model
formalism skills of domain experts as a challenge. The team involved in the study, and
more generally, medical teams, do not have this knowledge. Therefore, the support of
an experienced process mining analyst was essential, along with brief training. How-
ever, the incremental approach adopted in this case study partially addresses this issue
as process models evolve when more variants are added. Therefore, the incremental
changes are more accessible for domain experts in the process model and provide a
basis for discussion, as often only a few parts of a process model change per iteration.

7.2 Practical Implications

From a practical point of view, our study provides evidence of how an incremental and
interactive approach can help managers model healthcare processes while effectively
addressing the challenges posed by high process variability and poor data quality.
By utilizing their knowledge and the capabilities of Cortado, healthcare organiza-
tions can gain valuable insights into their business processes, even when faced with
poor data quality. Specifically, they can quickly identify the correct process variants,
eliminate wrong sequences, and obtain comprehensible and compliant process mod-
els, to make informed decisions and optimize process performance. In particular,
easy-to-understand visualizations such as the variant visualization [46] implemented in
Cortadomake a significant contribution to this. Thesefindings are of significant interest
to healthcare managers and practitioners seeking to leverage data-driven approaches
for process improvement in their organizations.

Establishing an accurate and guidelines-conformance model is indispensable for
ensuring a standardized approach to patient care, firmly rooted in the most current
evidence available at the time of its development. However, it is paramount to under-
score the need for ongoing updates to the model, in light of evolving clinical research
and trials, patient-centered research, and emerging technologies. Particularly, a model
that adheres to guidelines may be considered a reasonable starting point for decision-
making and care delivery. Clinical guidelines are meticulously crafted from the most
robust and up-to-date research findings, guaranteeing that physicians provide care
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rooted in scientific evidence. This foundation significantly enhances diagnostic preci-
sion, treatment efficacy, and patient outcomes. Standardizedmodels also play a pivotal
role in mitigating the risk of medical errors. Adhering to well-defined guidelines helps
avert errors like medication mishaps, inaccurate diagnoses, and unnecessary proce-
dures, thus fostering a safer environment for patients. Furthermore, it furnishes a
structured pathway that facilitates a systematic and informed approach to service (re-
)design. Embracing guidelines compliance streamlines the resource allocation process
during the planning phase, offering a clear roadmap for identifying and assigning the
necessary resources—be it personnel and equipment. These allocations are based on
the predetermined requirements outlined in the guidelines. This proactive approach
minimizes resource wastage and optimizes efficiency, a crucial aspect of service plan-
ning that substantially contributes to cost-effectiveness and operational excellence.

7.3 Limitations and FutureWork

Despite the promising results of this study, some limitations should be considered.
Firstly, the findings are context-specific and may not be easily generalizable to other
healthcare settings or business contexts. Moreover, the validation of the results was
limited to a single follow-upmeetingwith a small group of practitioners. Although this
meeting provided valuable feedback on the developed model, a more comprehensive
validation process would be necessary to ensure the robustness and reliability of the
approach. To address these limitations and further develop the approach, we plan to
conduct a structured user study involving a broader, more diverse group of health-
care professionals. This approach will enable us to evaluate the interactive approach
quantitatively, identify additional insights, and explore potential challenges.

8 Conclusion

This study demonstrated the effectiveness of interactive and incremental process
mining techniques, combined with domain knowledge, in modeling and discovering
knowledge-intensive processes in the healthcare sector. Our case study, which uti-
lized a real dataset from an Italian hospital documenting the treatment of lung cancer
patients, demonstrated the benefits of using Cortado in process discovery. Unlike other
interactive and traditional process discovery techniques [13, 21], Cortado combines
data exploration and processing with the modeling phase, leading to a more integrated
and efficient approach. This approach helped experts and analysts identify frequent
patterns and incorrect variants, reduce variability, and remove outliers, resulting in a
clinically guideline-compliant and accurate process model.

From a scientific perspective, this case study contributes to the field of process min-
ing and business process management by addressing two state-of-the-art challenges,
i.e., determining a suitable level of details for process activities and augmenting pro-
cess mining with common sense and expertise [30]. Further, we developed a novel
technique for integrating domain knowledge into variants by manipulating variants,
i.e., sequentializing parallel variant patterns. This feature is especially valuable when
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facing high process variability and data quality problems, where variants are often
incomplete or incorrect, negatively impacting results. Furthermore, the study answers
the need for more effective approaches to discovering/modeling healthcare processes
[14] by providing empirical evidence on the effectiveness of the interactive process dis-
covery approach in healthcare. Indeed, this study represents one of the first attempts to
apply an innovative interactive method in a complex context like healthcare, highlight-
ing the importance of such an approach in improving the efficiency and effectiveness of
the process discovery process. Finally, the cyclical methodology proposed to conduct
the case study enables analysts and experts to re-execute previous steps as needed,
allowing for continuous improvement and refinement of the process model. This
approach stands in contrast to traditional linear approaches to process mining, for
example, [55], which can be limiting in complex and dynamic settings like health-
care.
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