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Abstract
Biomedical relation extraction (RE) is critical in constructing high-quality knowl-
edge graphs and databases as well as supporting many downstream text mining 
applications. This paper explores prompt tuning on biomedical RE and its few-shot 
scenarios, aiming to propose a simple yet effective model for this specific task. 
Prompt tuning reformulates natural language processing (NLP) downstream tasks 
into masked language problems by embedding specific text prompts into the origi-
nal input, facilitating the adaption of pre-trained language models (PLMs) to better 
address these tasks. This study presents a customized prompt tuning model designed 
explicitly for biomedical RE, including its applicability in few-shot learning con-
texts. The model’s performance was rigorously assessed using the chemical-protein 
relation (CHEMPROT) dataset from BioCreative VI and the drug-drug interaction 
(DDI) dataset from SemEval-2013, showcasing its superior performance over con-
ventional fine-tuned PLMs across both datasets, encompassing few-shot scenarios. 
This observation underscores the effectiveness of prompt tuning in enhancing the 
capabilities of conventional PLMs, though the extent of enhancement may vary 
by specific model. Additionally, the model demonstrated a harmonious balance 
between simplicity and efficiency, matching state-of-the-art performance without 
needing external knowledge or extra computational resources. The pivotal contribu-
tion of our study is the development of a suitably designed prompt tuning model, 
highlighting prompt tuning’s effectiveness in biomedical RE. It offers a robust, effi-
cient approach to the field’s challenges and represents a significant advancement in 
extracting complex relations from biomedical texts.
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models · Few-shot learning
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1  Introduction

Relation extraction (RE) is essential for fully utilizing unstructured data for biomed-
ical research. Approximately 80% of biomedical data remains unstructured, mak-
ing analysis challenging [1]. Information extraction techniques play a critical role in 
extracting valuable knowledge from unstructured text, which is a necessary step in 
automatically constructing high-quality biomedical databases and knowledge graphs 
to support downstream applications [2]. RE, which refers to extracting the semantic 
relations between the entities from unstructured documents, is one of the vital infor-
mation extraction tasks in natural language processing (NLP) [3].

Although biomedical RE is an essential task, its current performance is not 
satisfactory due to the complexity of the task itself and lack of labeled data [4]. 
Error introduced from RE can affect downstream applications and hence reduce 
the reliability of the analysis. The emergence of machine learning methods sig-
nificantly improves the performance of RE systems as compared with previous 
rules-based approaches. High-quality labeled corpora, however, are necessary for 
supervised machine learning models to achieve better RE performance [5]. Data 
annotation to build high-quality corpora, however, is a human labor-intensive 
task [4, 5]. Therefore, making the RE system perform better in few-shot scenarios 
is an important task [5].

Fine-tuning pre-trained language models (PLMs) to downstream tasks became a 
paradigm in the NLP field after the emergence of Bidirectional Encoder Representa-
tions from Transformers (BERT) [6]. Pre-training in the context of BERT variants 
refers to the initial training of these models from scratch using a large corpus. Con-
ventionally, to harness the full potential of these pre-trained models, they should 
undergo fine-tuning with task-specific training data. This fine-tuned model is then 
deployed to address specific tasks. In this paper, we designate these models as “Con-
ventional fine-tuned PLMs.” This terminology is used because, in our research, we 
did not pre-train the models from scratch; instead, we utilized models already fine-
tuned and available on Hugging Face, and further fine-tuned them on our relation 
extraction training dataset. These models were then applied to our test sets. Hence, 
we refer to the baseline models in this study as conventional fine-tuned PLMs.

Recently, prompt tuning has tended to move conventional fine-tuned PLMs to 
a new paradigm in the NLP field [7]. Prompt tuning involves transforming NLP 
tasks into masked language problems by incorporating a specific text fragment, 
known as a prompt template, into the original input. This approach entails fine-
tuning the PLMs in the format of masked language problems using task-specific 
training data. The fine-tuned PLMs are then utilized to solve these masked lan-
guage problems by predicting the correct tokens from predefined label words that 
fit into the masked positions. This method of integrating a prompt template into 
the original input effectively adapts NLP tasks to be more amenable to solutions 
via PLMs [7]. Research has shown that prompt tuning can perform well in vari-
ous NLP tasks [8–11] and their few-shot scenarios [12, 13].

This paper introduces a streamlined prompt tuning model, tailored for biomed-
ical RE, including its application in few-shot scenarios. Additionally, this paper 
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thoroughly evaluates the proposed model’s efficacy in this domain. To this end, 
the study conducts an extensive appraisal of models including BioBERT [14], 
BlueBERT [15], BioClinicalBERT [16], and PubMedBERT [17]. The chemical-
protein relation (CHEMPROT) dataset of BioCreative VI [18] and the drug-drug 
interaction (DDI) dataset of SemEval-2013 [19] are utilized as evaluation bench-
marks. Our results demonstrate that the proposed prompt tuning model outper-
formed the baseline, conventional fine-tuned PLMs across two datasets, encom-
passing few-shot scenarios. Moreover, the model demonstrated a harmonious 
balance between simplicity and efficiency, attaining comparable performance to 
the state-of-the-art models without the reliance on external knowledge resources 
and additional computational overhead.

2 � Related Work

2.1 � Biomedical RE

The methods used for biomedical RE have encompassed several stages, including 
rule-based methods, traditional machine learning methods, conventional deep learn-
ing methods, and fine-tuned PLMs. Starting from BERT [6], fine-tuned PLMs, in 
general, outperform the previous rule-based methods, traditional machine learning 
methods, and conventional deep learning methods in different NLP downstream 
tasks, including RE [20].

In terms of traditional machine learning methods, Warikoo et al. [21] integrated 
the linguistic patterns into the kernel methods and applied this model to the CHEM-
PROT dataset. Abacha et  al. [22] integrated feature engineering into the kernel 
approaches and used this model on the DDI dataset. Overall, the traditional machine 
learning methods achieved reasonable performance (F1 score ~ 60%) on both 
datasets.

Considerable research has explored conventional deep learning methods to tackle 
biomedical RE, especially using the CHEMPROT dataset. Lim and Kang [2] pro-
posed three recurrent neural networks (RNNs)—a tree-Long Short-Term Memory 
network (tree-LSTM) using additional features, a tree-LSTM with an extra preproc-
essing step, and a Stack-augmented Parser Interpreter Neural Network (SPINN). 
Corbett and Boyle [23] used an unlabeled corpus to pre-train the word embedding 
and multiple LSTM layers in the RE system. Peng et al. [24] ensembled a support 
vector machine (SVM), a convolutional neural network (CNN), and an RNN. Liu 
et al. [25] demonstrated that attention-based (ATT-) RNNs could outperform identi-
cal models without an attention mechanism. Mehryary et  al. [26] proposed three 
systems—an SVM classifier; a shared task artificial neural network (ST-ANN) sys-
tem, which consists of three LSTM chains; and an improved ANN (I-ANN) system, 
which adds a bidirectional LSTM layer. Zhang et  al. [27] integrated deep context 
representation and multi-head attention with a bidirectional LSTM layer, which can 
extract more comprehensive features from a sentence and determine the important 
information. Antunes and Matos [28] integrated a relatively narrow representation 
of the relations into LSTM/CNN. Wang et al. [29] applied a Graph Convolutional 
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Neural Network in biomedical RE. Notably, however, the performance of each of 
these methods is not optimal. The F1 score of all methods mentioned above is less 
than 70%.

The emerging transformer-based PLMs [30] have been used for many NLP tasks, 
including biomedical RE, and the studies obtained good performance [20]. For 
example, Sun et  al. [31] proposed BERT-based attention-guided capsule (BERT-
Att-Capsule) networks, which showed promising performance on the CHEMPROT 
dataset (F1 = 74.80%). They then integrated Gaussian probability into their model 
and achieved better performance (F1 = 76.56%) [32]. In addition, they applied 
the improved model to the DDI dataset and achieved promising performance 
(F1 = 82.04%) [32].

In terms of the joint model that can be used for extracting the entities and rela-
tions simultaneously, Zuo and Zhang [33] proposed a model on top of BERT, in 
which all spans are considered as candidate entities (F1 = 64.6% on BB—rel 2019 
dataset [34]). Sun et  al. [35] proposed a joint model based on BERT, which inte-
grated a tagging strategy to address the overlapping triples in the dataset (F1 = 66.0% 
on CHEMPROT, F1 = 75.7% on DDI).

2.2 � Prompt Tuning

Conventional fine-tuned PLMs contain BERT and BERT variants such as BioBERT 
[14], BlueBERT [15], BioClinicalBERT [16], and PubMedBERT [17] in the bio-
medical field. The model architectures are constructed by assembling transformer 
encoders. The models’ weights are initially initialized and subsequently pre-trained 
on a large text corpus. During the pre-training stage, two tasks are conducted: the 
masked language problem and the next sentence prediction [36]. The masked lan-
guage problem task involves masking a portion of the input words, prompting the 
model to predict the masked tokens. Additionally, the next sentence prediction task 
entails determining whether a sentence logically follows another within a given con-
text. The pre-training process involves iterative weight adjustments via backpropa-
gation. The distinctiveness of each PLM predominantly arises from the specificities 
of the text corpora used for pre-training.

Prior to deploying PLMs for various NLP downstream tasks, such as sentiment 
analysis and named entity recognition, an additional step of fine-tuning is required. 
Fine-tuning entails the adaptation of PLMs to specific NLP tasks by training them 
on a task-specific corpus. This process refines the weights within the PLMs, ren-
dering them more suitable for the intended downstream applications. Subsequently, 
these fine-tuned PLMs are employed to address the respective NLP downstream 
tasks.

Prompt tuning converts NLP downstream tasks into masked language problems 
through insertion of a prompt template, which refers to a piece of text that contains 
mask tokens, into the original input [7]. In this way, the format of the downstream 
tasks can become identical to the pre-training task, which can be better addressed by 
PLMs [7].
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Emerging studies have yielded encouraging outcomes concerning the efficacy of 
prompt tuning across a spectrum of NLP tasks. This technique has been initially vali-
dated through its successful application in areas such as sentiment classification [8], 
dialog generation [9], factual probing [10], and text generation [37]. Furthermore, 
prompt tuning has demonstrated notable performance in RE within the general domain, 
as evidenced by multiple studies [38–41]. The utility of prompt tuning extends into 
few-shot scenarios, with research exploring its application in text classification [12, 
13], natural language inference [12], dialog generation [9], and named entity recogni-
tion [42]. In the context of few-shot learning in RE, Sainz et al. [41] have implemented 
prompt tuning within the general field and substantiated its effectiveness in concurrent 
RE tasks and few-shot scenarios.

2.3 � Prompt Tuning in Biomedical RE

Our previous work was one of the first attempts that presented a novel application of 
prompt tuning for biomedical RE utilizing the CHEMPROT dataset [43], showcasing 
its efficacy with BlueBERT [15] and PubMedBERT [17]. In a later study, Yeh et al. 
[44] furthered this exploration by applying prompt tuning to the same dataset using the 
RoBERTa-base and BioMed-RoBERTa-base models. However, these studies relied on 
a limited selection of benchmark datasets and models, which led to circumscribed per-
formance outcomes. Specifically, our seminal research [43] yielded a macro-F1 score 
of 73.44, while Yeh et al. [44] recorded a score of 76.31. To enhance these outcomes, 
the current study introduces a refined methodology. This comprises a more suitable 
prompt template, informed by expert knowledge and the specific definitions of relation 
types. We also augment the tokenizers of PLMs with tokens absent from their native 
vocabularies. Furthermore, our approach encompasses a broader spectrum of bench-
mark datasets, specifically CHEMPROT and DDI, and a diverse array of PLMs includ-
ing BioBERT, BlueBERT, BioClinicalBERT, and PubMedBERT.

Following these initial forays into the realm of prompt tuning for biomedical RE, 
Li et  al. [45] introduced the BioKnowPrompt model. This innovative model merges 
knowledge injection with prompt tuning, manifesting noteworthy performance on both 
the CHEMPROT and DDI datasets. However, it’s pertinent to note that in real-world 
applications, expansive knowledge repositories and extensive computational resources 
might not always be accessible. Therefore, the introduction of a streamlined and effi-
cient prompt tuning model, equipped with a well-designed prompt template, is essen-
tial. This approach aims to strike an optimal balance between simplicity and effective-
ness, enabling comparable performance without the necessity for extensive knowledge 
resources and computational power.

3 � Methods and Materials

As noted, this paper introduces a novel model, characterized by its simplicity and 
efficacy, for biomedical RE. It employs the CHEMPROT dataset of BioCreative 
VI [18] and the DDI dataset of SemEval-2013 [19] as the evaluation benchmark 
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datasets. Detailed descriptions of these two datasets are provided in Sect.  3.1. 
Furthermore, the specifics of the proposed prompt tuning model are elucidated in 
Sect. 3.2.

3.1 � Materials

3.1.1 � CHEMPROT Dataset

One dataset used in this study is from the BioCreative VI Track 5—Text Mining 
Chemical-Protein Interactions (CHEMPROT) [18]. There are ten types of relations 
in this dataset (CPR:1 to CPR:10). As instructed by the BioCreative VI Track 5, 
five types of relations were used for evaluation purposes, including CPR:3, CPR:4, 
CPR:5, CPR:6, and CPR:9 (Table 1). Therefore, we focused only on these five types 
of relations to develop and evaluate our models. The dataset comprises a training 
set, development set, and test set, with 1020, 621, and 800 abstracts from the Pub-
Med database, respectively.

3.1.2 � DDI Dataset

The second dataset used in this study is from SemEval-2013 Track 9—Extraction 
of Drug-Drug Interactions from Biomedical Texts (DDI) [19]. As shown in Table 2, 
the relation classifications include DDI-advise, DDI-effect, DDI-int, and DDI-mech-
anism. This dataset consists of 792 narratives from the DrugBank database and 233 
abstracts from Medline. The training set contains 624 files, and the test set contains 
191 files. It should be noted that the development set needs to be separated from the 
training set.

Table 1   Definitions of relations in the CHEMPROT dataset [18]

Relation Definition

CPR:3 UPREGULATOR|ACTIVATOR|INDIRECT_UPREGULATOR
CPR:4 DOWNREGULATOR|INHIBITOR|INDIRECT_DOWNREGULATOR
CPR:5 AGONIST|AGONIST-ACTIVATOR|AGONIST-INHIBITOR
CPR:6 ANTAGONIST
CPR:9 SUBSTRATE|PRODUCT_OF|SUBSTRATE_PRODUCT_OF

Table 2   Definitions of relations in the DDI dataset [19]

Relation Definition

DDI-advise A recommendation or advice regarding a drug interaction is given
DDI-effect DDIs describe an effect or a pharmacodynamic mechanism
DDI-int A DDI appears in the text without providing any additional information
DDI-mechanism Drug-drug interactions are described by their pharmacokinetic mechanism
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3.2 � Methods

3.2.1 � Proposed Prompt Tuning Model

As explained in Sect.  2.2, conventional fine-tuned PLMs in our study specifically 
refer to BERT variants without prompt engineering. These models undergo pre-
training on a large corpus and subsequent fine-tuning on specific NLP tasks. The 
primary difference between the proposed prompt tuning model and conventional 
fine-tuned PLMs lies in the prompt engineering, which consists of two components: 
a prompt template and label words, as depicted in Fig. 1. A prompt template is a 
piece of text inserted into the original input (illustrated as “w1 w2 w3 … wm.” in 
Fig.  1.), which has [MASK] tokens and can convert the initial NLP downstream 
tasks into masked language problems. The label words refer to the potential values 
inserted into the [MASK] tokens and should be pre-defined.

Han et al. [11] developed a prompt template and label words for RE in a general 
context, and our model was built upon the foundations of Han’s study. In this paper, 
we customized the prompt template and label words, guided by expert knowledge, 
to specifically match the unique features of our dataset and the definitions of the dif-
ferent relation types. For CHEMPROT, the prompt template was “@CHEMICAL$ 
[MASK] [MASK] [MASK] [MASK] @PROTEIN$.”; the label words were {is the 
upregulator of, is the downregulator of, is the modulator of, is the antagonist of, is 
the participant of, is not associated with}, each of which could be mapped to the 
corresponding relation classification in BioCreative VI Track 5 (i.e., CPR:3, CPR:4, 
CPR:5, CPR:6, CPR:9, and no_relation). Regarding DDI, the prompt template was 
“This describes [MASK] [MASK] [MASK] regarding drug-drug interactions.”; the 

Fig. 1   Overall framework of the proposed prompt tuning model
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label words were {a significant recommendation, a pharmacodynamic mechanism, 
a basic notification, a pharmacokinetic detail, an irrelevant subject}, which corre-
sponded to the relation type {DDI-advise, DDI-effect, DDI-int, DDI-mechanism, 
no_relation}.

After prompt engineering, the fine-tuned PLMs can be utilized to pick the correct 
ones from the pre-defined label words and map them into the final relation clas-
sification to conduct the biomedical RE task. We utilized four PLMs, BioBERT 
(dmis-lab/biobert-large-cased-v1.1) [14], BlueBERT (bionlp/bluebert_pubmed_
mimic_uncased_L-12_H-768_A-12) [15], BioClinicalBERT (emilyalsentzer/Bio_
ClinicalBERT) [16], and PubMedBERT (microsoft/BiomedNLP-PubMedBERT-
base-uncased-abstract-fulltext) [17], as the fine-tuned PLMs. These four PLMs have 
undergone pretraining on a biomedical corpus; consequently, they are well-suited 
for tasks within the domain of biomedical NLP. The corpus used for each of the four 
models varies slightly. Diverse PLMs employ tokenizers that operate with unique 
vocabulary lists. These tokenizers are utilized to convert sequences of characters 
into sequences of tokens. To guarantee that specific tokens in the label words remain 
intact and are not further split by the tokenizer, it is vital to add them directly to the 
tokenizer’s vocabulary list. This inclusion ensures that these tokens are acknowl-
edged as discrete entities, thus preserving their intended meaning and representa-
tion. Table 3 provides details about the special tokens that have been appended to 
the vocabularies of various models.

The first step of the pipeline is pre-processing, which consists of splitting sen-
tences in the corpus, identifying candidate entity pairs, and replacing the target enti-
ties with placeholders. First, each unit in the corpus was split into individual sen-
tences. The sentences with more than one entity were assumed to potentially have 
candidate relations and, thus, were retained. We focused on intra-sentence relations 
due to limited coverage of cross-sentence relations from the datasets. Each pair of 
entities within a sentence was regarded as a relation-instance candidate. The origi-
nal sentence that contained at least one chemical entity and one protein entity (for 
CHEMPROT) or two drug entities (for DDI) was included as one record in our data-
set. The candidate relations that appeared in gold standard relations were labeled as 
positive relation instances, and the remaining ones were labeled as negative relation 
instances. In addition, chemical entities, protein entities, and drug entities tend to 
have complex names, which adds ambiguity to the model in predicting the relation 
between the entities using the context information in the sentences. To address this 
challenge, we replaced the entities of interest in the sentences with unified place-
holder tags, such as @CHEMICAL$, @PROTEIN$, and @DRUG$. In the running 
example, the preprocessed text module shows one record in our dataset. The subject 
“15d-PGJ2” and the object “iNOS” between which candidate relations potentially 
existed were replaced by placeholders—“@CHEMICAL$” and “@PROTEIN$”.

The second step of the pipeline was prompt engineering. After inserting the 
prompt template into the preprocessed text, the RE task was converted into a 
masked language problem. As shown in the running example, the original input was 
converted into “In activated microglia, @CHEMICAL$ suppressed iNOS promoter 

Figure  2 presents the pipeline of the proposed prompt tuning model with a 
running example, which consists of pre-processing, prompt engineering, and RE.
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Fig. 2   Pipeline of the proposed prompt tuning model

activity, @PROTEIN$ mRNA, and protein levels. @ CHEMICAL$ [MASK] 
[MASK] [MASK] [MASK] @PROTEIN$.”, in which four [MASK] tokens 
represent the relation between the chemical and the protein. The corresponding label 
words that can be inserted into these four [MASK] tokens were pre-defined—{is the 
upregulator of, is the downregulator of, is the modulator of, is the antagonist of, is 
the participant of, is not associated with}.

The final step of the pipeline was relation classification—utilizing PLMs to 
predict the correct relation labels, which involve three sub-steps: fine-tuning, 
predicting, and label mapping. Fine-tuning refers to using the training set to adjust 
the weights in the PLMs to make them more appropriate for our task. Predicting 
refers to using fine-tuned PLMs to identify the correct label words that can fill in 
the [MASK] tokens from the pre-defined set, with an elaborate depiction provided 
in Fig. 3. The process retrieves the context vectors for the [MASK] tokens from the 
PLMs, the dimensions of which are the product of the number of [MASK] tokens 
and the hidden state dimension. Conversely, in accordance with the predefined 
label words, the possible insertions for each masked token varied: one for the first, 
two for the second, six for the third, and two for the fourth. These label words are 
converted into token IDs by the PLMs’ tokenizers and subsequently into embedding 
vectors by the word embedding layer of the PLMs. For each masked token within 
the framework, the dimensions of the resulting embedding vectors are computed 
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Fig. 3   An elaborate depiction of using PLMs to identify the correct label words

as the product of the number of feasible insertions and the hidden state dimension. 
This is followed by a transposition of these vector dimensions. The subsequent 
process involves performing matrix multiplication between the context vectors 
for the [MASK] tokens and the embedding vectors of the label words, leading to 
the generation of logits that represent the choices of label words for each masked 
token position. This methodology is instrumental in determining the most suitable 
label word choice for each position. In the running example, the label words “is 
the downregulator of” were chosen to fill into the [MASK] tokens. Label mapping 
refers to mapping the label words to the final relation classification. In the running 
example, the label words “is the downregulator of” were mapped to the relation 
classification “CPR:4”. We used micro-F1, weighted-F1, and macro-F1 to evaluate 
the performance of the models.

3.2.2  Few‑Shot Scenarios

In our paper, we examine four few-shot scenarios: 1-shot, 8-shot, and 16-shot. In a 
K-shot scenario, we sample “K” instances for each type of relation from the origi-
nal complete training and validation sets. These sampled datasets then serve as the 
training and validation sets for the respective K-shot scenarios. For example, in the 
1-shot scenario for the CHEMPROT dataset, we sample one instance from each cat-
egory in both the training and validation sets. The sampled data then form the train-
ing and validation sets for the 1-shot scenario. For evaluation purposes, we retain the 
entire test set in all few-shot scenarios.

3.2.3  Experimental Settings

To ensure a fair comparison, identical hardware configurations were maintained 
for both baseline and proposed prompt tuning models. Furthermore, a standard-
ized optimization process was adhered to across all models. The learning rate was 
selected from a predefined set: [1e-1, 5e-2, 1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5, 
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5e-6, 1e-6, 5e-7]. The number of warmup steps was set to either 0 or 300, and the 
weight decay parameter was consistently maintained at zero. A fixed random seed of 
42 was employed for reproducibility. For BlueBERT, BioClinicalBERT, and Pub-
MedBERT, the training batch size was set at either 32 or 36, whereas for BioBERT, 
a smaller batch size of 8 or 12 was utilized. In the context of fully supervised learn-
ing, each model underwent training for 15 epochs. Conversely, in the few-shot learn-
ing scenarios, the number of training epochs for the models was extended to 20. 
The optimal epoch, as determined by the performance on the development set, was 
selected and used to evaluate the final performance on the test set. More detailed 
information regarding hyperparameters can be found in the supplementary_hyper-
parameter file.

4  Results

4.1  Data Preprocessing

For data preprocessing and partitioning, we adopted the methodology delineated in 
Peng’s study [46]. After preprocessing, one record in the dataset refers to an instance 
(either positive or negative) that contains at least one chemical entity and one pro-
tein entity, or two drug entities. For CHEMPROT, the training set consists of 19,460 
relation instances, in which 4154 were positive and 15,306 were negative; the vali-
dation dataset consists of 11,820 relation instances, in which 2416 were positive and 
9404 were negative; the test dataset consists of 16,943 relation instances, in which 
3458 were positive and 13,485 were negative. For DDI, the training set consists of 
18,779 relation instances, in which 2937 were positive and 15,842 were negative; 
the validation dataset consists of 7244 relation instances, in which 1004 were posi-
tive and 6240 were negative; the test dataset consists of 5761 relation instances, in 
which 979 were positive and 4782 were negative. Table  4 presents the statistical 
summarization of the CHEMPROT and DDI datasets for model development.

4.2  Performance of the Proposed Prompt Tuning Model in the Fully Supervised 
Setting

Table  5 presents a comparative analysis of various PLMs and their performance 
improvements when using proposed prompt tuning methodologies, specifically in 
the absence of external knowledge resources. Our evaluation spanned two distinct 
biomedical text mining tasks, namely CHEMPORT and DDI. We assessed the effi-
cacy of each model using three established metrics: Micro-F1, Weighted F1, and 
Macro-F1 scores.

In the scope of previous research, Yeh et al.’s model is showcased, exhibiting a 
Micro-F1 score of 90.09 and a Macro-F1 score of 76.31 on the CHEMPORT task, 
with no reported scores for the DDI task [44]. The performance of conventional 
PLMs as reported in other studies is listed next, where only the Macro-F1 
scores are provided. Among the models compared—BioBERT, BlueBERT, and 
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Table 4   Summary of the CHEMPROT and DDI datasets

Dataset Relation Training set Validation set Test set Total

CHEMPROT CPR:3 768 550 665 1983
CPR:4 2251 1094 1661 5006
CPR:5 173 116 195 484
CPR:6 235 199 293 727
CPR:9 727 457 644 1828
No relation 15,306 9404 13,485 38,195
Total 19,460 11,820 16,943 48,223

DDI DDI-advise 633 193 221 1047
DDI-effect 1212 396 360 1968
DDI-int 146 42 96 284
DDI-mechanism 946 373 302 1621
No relation 15,842 6240 4782 26,864
Total 18,779 7244 5761 31,784

Table 5   A comparative analysis of various PLMs and their respective performance enhancements via 
proposed prompt tuning methodologies

Note. The best result is in bold type. The symbol “*” indicates that the reported results of conventional 
PLMs are sourced from other studies. The symbol “#” denotes that the results were obtained through our 
experiments

CHEMPORT DDI

Micro-F1 Weighted F1 Macro-F1 Micro F1 Weighted-F1 Macro F1

Previous research
Yeh et al 90.09 \ 76.31 \ \ \
Conventional PLMs*

BioBERT [47] \ \ 76.14 \ \ 80.88
BlueBERT [46] \ \ 71.46 \ \ 77.78
PubMedBERT [48] \ \ 77.24 \ \ 82.36
Conventional PLMs#

BioBERT 90.79 90.73 77.46 95.37 95.24 81.36
BlueBERT 88.29 88.13 71.47 94.55 94.43 79.81
BioClinicalBERT 88.65 88.63 73.32 94.22 94.10 79.61
PubMedBERT 89.88 89.96 77.22 95.52 95.39 82.26
Proposed prompt tuning models
BioBERT 90.74 90.70 77.55 95.28 95.19 81.64
BlueBERT 88.30 87.95 71.19 94.31 94.19 79.20
BioClinicalBERT 88.73 88.70 73.53 93.73 93.69 79.71
PubMedBERT 90.53 90.53 78.02 95.42 95.29 82.54
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PubMedBERT, PubMedBERT achieves the highest Macro-F1 score of 77.24 in 
the CHEMPROT task and 82.36 in the DDI task. To ensure a fair comparison, 
we conducted experiments with both the conventional PLMs and the proposed 
prompt tuning models. For our experimental results regarding conventional PLMs, 
a full spectrum of scores is presented. BioBERT displays strong performance with 
Macro-F1 score of 77.46 in the CHEMPORT task, and notably higher scores in 
the DDI task. BlueBERT and BioClinicalBERT show moderate performance, with 
BlueBERT achieving a Macro-F1 score of 71.47 and BioClinicalBERT a Macro-F1 
score of 73.32 in the CHEMPORT task. PubMedBERT demonstrates robust 
performance with a Macro-F1 score of 77.22 in CHEMPORT and 82.26 in DDI, 
indicating a consistent high-level efficacy across both tasks.

The focus then shifts to our proposed prompt tuning models. These models apply 
a novel prompt tuning methodology without the use of external knowledge resources 
and exhibit enhancements in performance. For instance, the prompt-tuned BioBERT 
model demonstrates improvement by achieving a Macro-F1 score of 77.55 in 
CHEMPORT and a Macro-F1 score of 81.64 in DDI, thereby surpassing the scores 
of its conventional counterpart. Similarly, the prompt-tuned BlueBERT and Bio-
ClinicalBERT models demonstrate slight performance gains in certain metrics. The 
prompt-tuned PubMedBERT model not only surpasses its conventional version but 
also attains the highest Macro-F1 score of 78.02 in the CHEMPROT task and the 
highest Macro-F1 score of 82.54 in the DDI task among all the models presented.

4.3  Performance of the Proposed Prompt Tuning Model in the Few‑Shot 
Scenarios

Table 6 illustrates the performance of our proposed prompt tuning models for few-
shot scenarios. We observed notable variations in performance across different 
PLMs and the number of shots (K). Our results show that prompt tuning gener-
ally led to better performance compared to conventional PLMs. For instance, with 
BioBERT on the CHEMPORT task, the prompt tuning model exhibited a perfor-
mance increase from 16.08 to 21.88 at K = 1, from 28.13 to 30.41 at K = 8, and from 
34.91 to 39.77 at K = 16. These results affirm the potential of prompt tuning mod-
els in few-shot learning, highlighting their capacity to adapt and learn in data-con-
strained situations. For a detailed performance evaluation, please refer to the supple-
mentary_hyperparameters file.

5  Discussion

The results demonstrate that the prompt tuned PubMedBERT model significantly 
outperforms conventional PLMs in both the CHEMPROT and DDI tasks, achieving 
the best results in these two tasks. Furthermore, in few-shot scenarios, the prompt-
tuned BioBERT models emerged as the top performers. Collectively, these findings 
underscore the effectiveness of prompt tuning. This improvement may be attributed 
to the application of prompt engineering, which restructures the downstream 
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Table 6   The performance of our proposed prompt tuning models for few-shot scenarios

K = 1 K = 8 K = 16

CHEMPORT DDI CHEMPORT DDI CHEMPORT DDI

Conventional PLMs
BioBERT 16.08 15.22 28.13 28.82 34.91 35.68
BlueBERT 14.77 18.14 23.46 31.02 32.98 34.81
BioClinicalBERT 15.21 19.33 20.30 28.39 32.42 42.42
PubMedBERT 17.97 19.06 20.80 32.40 34.06 37.47
Proposed prompt tuning models
BioBERT 21.88 5.14 30.41 32.85 39.77 35.81
BlueBERT 7.48 11.71 20.32 25.18 24.26 27.60
BioClinicalBERT 13.58 15.82 26.19 27.99 29.11 34.38
PubMedBERT 16.48 11.64 28.02 25.29 37.15 36.46

biomedical RE task into a masked language problem format akin to the pre-
training phase, thereby bridging the gap between the pre-training and fine-tuning 
stages. This alignment potentially explains the enhanced efficacy of PLMs when 
employing prompts for biomedical RE/classification. Notably, in most of the cases, 
as evidenced in Table  5 and 6, the proposed prompt tuning models demonstrate 
enhanced performance compared to their conventional fine-tuned PLM counterparts. 
This trend underlines the value of prompt tuning in augmenting the capabilities of 
conventional PLMs, though it’s important to acknowledge that its efficacy may vary 
depending on the specific model.

Our proposed prompt tuning models demonstrate exceptional efficiency, striking 
an optimal balance between simplicity and effectiveness, which is crucial in making 
our model both practical and accessible for a wider range of applications in bio-
medical RE. In contrast to rule-based methods, which demand substantial expert 
involvement and human resources, and traditional machine learning or conven-
tional deep learning methods, which require extensive annotated corpora and thus 
significant expert input, our models achieve promising performance without neces-
sitating expert-driven rule creation or corpus annotation. Furthermore, this study 
marks a significant advancement in the field of biomedical RE, achieving state-of-
the-art results within prompt tuning models that do not rely on external knowledge 
resources. This positions our work at the forefront of current research employing 
prompt tuning in biomedical RE. Notably, our results remain competitive even when 
compared to the BioKnowPrompt model [45], which integrates prompt tuning with 
knowledge injection and incurs higher GPU costs for model development. This is 
a noteworthy achievement, considering the different data splitting methods and 
the larger training set used by BioKnowPrompt, in addition to their use of external 
resources.

This study underscores the efficiency and effectiveness of our streamlined 
model in biomedical RE, suggesting that prompt tuning is a viable strategy 
for optimizing performance in biomedical text mining applications. Such 
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improvements have important implications for the rapid development of large-
scale biomedical databases and knowledge graphs, enhancing their precision. 
Additionally, prompt tuning offers a practical alternative for NLP tasks, especially 
in situations where labeled datasets are limited.

Nonetheless, our study is not without its limitations. Our approach centered on 
four BERT model variants; future research will aim to integrate prompt tuning 
with more sophisticated RE models. For instance, Sun et  al. [32] incorporated 
Gaussian probability distribution with BERT, resulting in substantial perfor-
mance gains. Exploring such advanced models in conjunction with prompt tun-
ing could potentially lead to further improvements. Our focus was also confined 
to CHEMPROT and DDI RE tasks, but we anticipate applying the model to a 
broader spectrum of biomedical RE benchmarks.

6  Conclusion

In our exploration of prompt tuning within biomedical RE, we utilized the 
CHEMPROT and DDI datasets as benchmarks for evaluation. Our findings sug-
gest that prompt tuning can surpass the performance of baseline, conventionally 
fine-tuned PLMs in both full dataset and few-shot scenarios. We deduce that 
prompt engineering significantly enhances the efficacy of PLMs in biomedical 
RE tasks though this enhancement may vary depending on the specific model 
employed. This leads to the conclusion that with a well-designed prompt tem-
plate, prompt tuning stands as an exceptionally effective approach for biomedi-
cal RE. Looking ahead, we plan to expand the application of our prompt tuning 
model to a broader range of biomedical RE tasks, thereby facilitating advance-
ments in text mining, knowledge graph construction, and other related down-
stream applications.
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