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Abstract

Purpose Phenotyping is critical for informing rare disease diagnosis and treatment, but
disease phenotypes are often embedded in unstructured text. While natural language
processing (NLP) can automate extraction, a major bottleneck is developing annotated
corpora. Recently, prompt learning with large language models (LLMs) has been
shown to lead to generalizable results without any (zero-shot) or few annotated samples
(few-shot), but none have explored this for rare diseases. Our work is the first to study
prompt learning for identifying and extracting rare disease phenotypes in the zero-
and few-shot settings.

Methods We compared the performance of prompt learning with ChatGPT and fine-
tuning with BioClinicalBERT. We engineered novel prompts for ChatGPT to identify
and extract rare diseases and their phenotypes (e.g., diseases, symptoms, and signs),
established a benchmark for evaluating its performance, and conducted an in-depth
error analysis.

Results Overall, fine-tuning BioClinical BERT resulted in higher performance (F1 of
0.689) than ChatGPT (F1 of 0.472 and 0.610 in the zero- and few-shot settings, respec-
tively). However, ChatGPT achieved higher accuracy for rare diseases and signs in
the one-shot setting (F1 of 0.778 and 0.725). Conversational, sentence-based prompts
generally achieved higher accuracy than structured lists.

Conclusion Prompt learning using ChatGPT has the potential to match or outperform
fine-tuning BioClinical BERT at extracting rare diseases and signs with just one anno-
tated sample. Given its accessibility, ChatGPT could be leveraged to extract these
entities without relying on a large, annotated corpus. While LLMs can support rare
disease phenotyping, researchers should critically evaluate model outputs to ensure
phenotyping accuracy.

B Paul Harris
paul.a.harris @vumc.org

B< Hua Xu
hua.xu@yale.edu

Extended author information available on the last page of the article

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s41666-023-00155-0&domain=pdf

Journal of Healthcare Informatics Research (2024) 8:438-461 439

Keywords Natural language processing - ChatGPT - Rare disease -
Artificial intelligence - Prompt learning - Large language model

1 Introduction

Rare diseases are chronically debilitating, often life-limiting conditions that affect 300
million individuals worldwide [1]. Though individually rare (defined as affecting fewer
than 200,000 individuals in the United States), rare diseases are collectively common
and represent a serious public health concern [2]. Because of the lack of knowledge and
effective treatment options for rare diseases, patients undergo diagnostic and therapeu-
tic odysseys that have devastating medical, psychosocial, and economic consequences
for patients and families, resulting in irreversible disease progression, physical suf-
fering, emotional turmoil, and ongoing high medical costs [3-5]. Thus, there is an
urgent need to shorten rare disease odysseys, and reaching this goal requires effective
diagnostic and treatment strategies.

Phenotyping is crucial for informing both strategies and is a cornerstone of the study
on rare diseases. Ongoing initiatives like the National Institutes of Health’s Undiag-
nosed Diseases Network rely on deep phenotyping to generate candidate diseases for
diagnosis, identify additional patients with similar clinical manifestations, and person-
alize treatment or disease management strategies [6, 7]. In addition, phenotyping can
facilitate cohort identification and recruitment for clinical trials critical to the develop-
ment of novel treatment regimes [8, 9]. Rare disease phenotypes are often embedded
in unstructured text and require manual extraction by highly trained experts, which
is laborious, costly, and susceptible to bias depending on the clinician’s background
and training. An alternative is to leverage natural language processing (NLP) models,
which have the potential to automatically identify and extract rare disease entities,
reduce manual workload, and improve phenotyping efficiency.

Automatic recognition of disease entities, or named entity recognition (NER), is
an NLP task that involves the identification and categorization of disease information
from unstructured text. This task is especially challenging due to the diversity, com-
plexity, and specificity of rare diseases and their phenotypes, which can have different
synonyms (e.g., neurofibromatosis type I and Von Recklinghausen’s Disease), abbre-
viations (e.g., NF1 for neurofibromatosis type I), and modifiers such as body location
(e.g., small holes in front of the ear) and severity (e.g., extreme nearsightedness).
Descriptions of rare disease phenotypes that are discontinuous, nested, or overlapping
present additional challenges; moreover, those that range from short phrases in lay-
man’s terms (e.g., distention of the kidney) to medical jargon (e.g., hydronephrosis)
may further complicate NER.

While early approaches for NER relied on rules derived from extensive manual
analysis, advancements in technology led to the emergence of large language mod-
els (LLMs), artificial intelligence systems built using deep learning techniques [10].
Specifically, LLMs use a deep neural network architecture called transformers that
enable models to learn complex language patterns, capture long-range dependen-
cies, and generate coherent responses [11]. LLMs are the bedrock of two major NER
paradigms: 1) pre-train and fine-tuning and 2) pre-train and prompt learning. We
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henceforth refer to these paradigms as fine-tuning and prompt learning, respectively.
The former involves a two-step process where a language model is first trained on a
massive amount of unlabeled text data and then fine-tuned on specific downstream
NER tasks with labeled data. In contrast, prompt learning is a more recent paradigm
that reformulates the NER task as textual prompts so that the model itself learns to
predict the desired output in the second step.

While fine-tuning LLMs has been shown to achieve strong performance on bench-
mark datasets [12], a major bottleneck is the development of large, annotated corpora.
Recently, OpenAl released ChatGPT, a revolutionary LLM capable of following
complex prompts and generating high-quality responses without any annotated data
(zero-shot) or with just a few examples (few-shot) [13—16]. This capability, which
provides opportunities to significantly reduce the manual burden of annotation with-
out sacrificing model performance, is especially attractive for NER in the context of
rare diseases. While some explored the potential of ChatGPT for diagnosing rare dis-
eases with human-provided suggestions [17, 18], none have studied its performance
for NER in the zero- or few-shot settings.

To this end, our study makes the following contributions. 1) This work is the
first to explore prompt learning for biomedical NER in the context of rare diseases.
Specifically, we designed new prompts for ChatGPT to extract rare diseases and their
phenotypes (i.e., diseases, symptoms, and signs) in the zero- and few-shot settings.
2) We established a benchmark for evaluating ChatGPT’s NER performance on a
high-quality corpus of annotated descriptions on rare diseases [19]. In addition, we
compared prompt learning to fine-tuning by training and evaluating BioClinical BERT,
a domain-specific Bidirectional Encoder Representations from Transformers (BERT)
model, on the annotated corpus [20]. 3) We conducted an in-depth error analysis to
elucidate ChatGPT’s performance and 4) provided suggestions to help guide future
work on prompt learning for rare diseases.

2 Literature Review

Despite the proliferation of studies on NLP over the past decade, the task of NER
is relatively under-explored for rare diseases. In this section, we provide a summary
of prior contributions specific to extracting rare diseases and their phenotypes from
unstructured text. These contributions can be broadly divided into two categories based
on the NLP approach: 1) rule-based and 2) deep learning. Among those in the second
category, only one explored fine-tuning [21]; to the best of our knowledge, none have
explored prompt learning for rare disease NER to date.

Using rule-based algorithms, Davis et al. [22] identified individuals with multiple
sclerosis from clinical notes in electronic health records (EHR). The authors manually
reviewed patient notes to determine relevant keywords on disease progression and
type, which were then used to build rule-based algorithms. For example, the algo-
rithm for identifying the year of initial neurological symptom selected 100 characters
around phrases referencing the beginning of the disease course, i.e., “dating back" and
“began". Lo et al. [23] extracted phenotypes related to Dravet syndrome from clinical
notes using the Unified Medical Language System Metathesaurus’ subset of 20,000

@ Springer



Journal of Healthcare Informatics Research (2024) 8:438-461 441

phenotypic words or expressions. Deisseroth et al. [24] developed ClinPhen, a rule-
based phenotype extractor for genetic diseases that automatically converts clinical
notes into a prioritized list of patient phenotypes using Human Phenotype Ontology
terms. Nigwekar et al. [25] used an unnamed NLP software to identify patients with
the terms “calciphylaxis" or “calcific uremic arteriolopathy" in their medical records.

Recently, Fabregat et al. [26] and Segura-Bedmar et al. [21] leveraged deep learning
techniques, including bidirectional long short term memory (BiLSTM) networks and
BERT-based models, to recognize rare diseases and their clinical manifestations from
biomedical texts. Fabregat et al.’s BILSTM model is a recurrent neural network that
sequentially processes the input text from both forward and backward directions,
allowing the model to learn contextual information on both sides. In their work, Segura-
Bedmar et al. explored a similar model architecture and found that using a conditional
random field (CRF) as the output layer led to improved performance. In addition, the
authors trained domain-specific BERT models by fine-tuning them on the downstream
NER task. Overall, fine-tuning BERT models had the highest accuracy, outperforming
both BiLSTM and BiLSTM with a CRF layer.

3 Methods
3.1 Problem Definition

Our objective is to identify and extract rare disease-related named entities, which
are words or phrases that belong to the pre-defined categories: rare disease, disease,
symptom, or sign. As such, we seek to build an NER model that classifies each input
token into a pre-defined category. Formally, given a sequence of n input tokens X =
{x1,x2, ..., x,}, the true label (i.e., gold-standard annotation) is the vector ¥ :=
{»,y2, ..., ym} where

yj = {xstartj :xendjvtj}y 0<j<m=<n
is the tuple for the jth entity. Here, start; € [1,7n] and end; € [I, n] denote the
starting and ending indices of the jth entity, respectively, where start; < end; and
t; € {rare disease, disease, symptom, sign} is the entity type. We let

Xstart; * Xend; = [xstartjxstarth . 'xendj,lxendj]

denote the textual span from Xgar; t0 Xend; and let Y= {31, 2, ..., ¥} denote the
model-predicted label vector where

Ik = X, * Xepayo ik} Ok <m<n
is the tuple for the kth predicted entity. Figure 1 shows an example where an NER
model recognizes one of two named entities from the input, “Keratomalacia is a cause

of corneal scarring." Here, the model correctly identified the rare disease, “keratoma-
lacia," but missed “corneal scarring" as a sign.
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AElEDe Y = {$;} = {{Keratomalacia, rare disease}}
label
[ Named Entity Recognition Model }
Input Keratomalacia is a cause of corneal scarring
tokens X1 X2 X3 X4 X5 X6 X7
True _ _ laci di 1 . .
label Y = {y1,y,} = {{Keratomalacia, rare disease}, {corneal scarring, sign}}

Fig. 1 Example of the rare disease named entity recognition task. {xi},-7= | denotes the sequence of input

tokens, Y = {y1, y»} the true labels with m = 2 entities, and Y = {91} the predicted label with m = 1
entity

3.2 Dataset

To study the NER performance of LLMs for rare diseases, we used the RareDis cor-
pus, which consists of n = 832 texts containing descriptions of rare diseases from the
National Organization for Rare Disorders database [19]. This corpus was annotated
with four entities (rare disease, disease, symptom, and sign) by biomedical experts who
had an inter-annotator agreement (IAA) Fl-score of 83.5% under exact match, indi-
cating a high level of annotation consistency and reliability. Specifically, the F1-score
measures the [AA accounting for precision (proportion of correctly annotated entities)
and recall (proportion of gold-standard entities that were annotated). Table 1 provides
the entity definitions and summary statistics. Unlike corpora with distinct entity types,
e.g., {person, location, organization} or {problem, test, treatment}, RareDis consists
of entities with considerable semantic overlap. Specifically, rare diseases are a subset
of diseases. Diseases can cause or be associated with other diseases as a symptom
or sign. The distinction between symptoms and signs is very subtle; while both are
abnormalities that may indicate a disease, the former are subjective to the patient and
cannot be measured by tests or observed by physicians (e.g., pain or loss of appetite).
On the other hand, a sign can be measured or observed (e.g., high blood pressure,
poor lung function). Across n = 832 texts, there were a total 4,065 rare diseases,
1,814 diseases, 316 symptoms, and 3,317 signs. Rare diseases and signs were more
common than diseases and symptoms, accounting for 77% of all entities in the corpus
(Table 1). A subset of the RareDis corpus (832 out of 1041 texts) is publicly available
and distributed in the Brat standoff format [27].

3.3 NER Paradigms

In this section, we describe our approach to performing NER with LLMs under two
paradigms: 1) fine-tuning and 2) prompt learning.
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3.3.1 Fine-tuning BERT-Based Model

For fine-tuning, we chose BERT as our LLM for two reasons. First, BERT is one
of the most widely-used deep contextualized language models, achieving state-of-
the-art performance on benchmark NER datasets [12]. Specifically, its transformer
architecture captures long-range dependencies in the input text and supports parallel
processing, thereby enabling contextualized learning and reducing computational bur-
den. Second, Segura-Bedmar et al. [21] found that fine-tuning BERT models resulted
in the best NER performance on the RareDis corpus. Therefore, we adopted the same
approach for a consistent comparison.

Figure 2 illustrates the architecture of the BERT model. To fine-tune this model
on the RareDis corpus, we performed a series of pre-processing tasks. First, we split
the texts into tokens with the BERT tokenizer and added special tokens (i.e., CL.S and
SEP) to the beginning and end of each tokenized sequence, respectively. Next, we
converted the tokens to their respective IDs and padded (or truncated) text sequences
based on the maximum number of tokens (i.e., 512) that a BERT-based model can
handle, and created an attention mask to distinguish between actual and padding
tokens. Last, we mapped the entity labels, {rare disease, disease, symptom, sign}, to
corresponding numerical values. We partitioned the data into a training, validation,
and test set based on an 8:1:1 ratio. For the base architecture, we selected BioClin-
icalBERT [20], a variant of BERT that was pre-trained on large-scale biomedical
(PubMed, ClinicalTrials.gov) and clinical corpora (MIMIC-III [28]). The model fine-
tuning parameters were learning rate = 2e-5, weight decay rate = 0.1, batch size =
32, and dropout = 0.1. BioCinicalBERT takes as input the sequence of tokens and
produces context-based embeddings. These embeddings are then passed through a
stack of transformer encoder layers that capture bidirectional, contextual informa-
tion from each token. The layers output contextualized representations of the tokens,
which are used to produce a probability distribution over output labels. Specifically,
we used BIO (beginning, inside, outside) tags to represent the output labels, where

(a) (b)
Output B-RAREDISEASE ... I-SIGN Output  Keratomalacia corneal necrosis
EqS @ 21Y
Encod:
ncoder X R[CLS] Ri e Rn R[SEP] rDecoder. Rl RZ Rn’ . n,
BERT
Embedding [E[CLS] ‘ ‘ E; ‘ T l ED I IE[SEP] I " Eprompt E1 . EPrompt
[
Tokenized Tok, -+ | Tok, Tokenized TOkPmmp! ITok1 ‘ ITok -rokm,..,,,

il il

Input

Keratomalacia .. . scarring Extract ... from: Keratolmalacla S scarlrlng Output ...a list
L
I
Keratomalacia, or corneal necrosis, Extract rare Keratomalacia, or corneal necrosis, ~ Output them
. . . diseases from: s a major cause of corneal scarring ina list
IS @ major cause of corneal scarring

Fig.2 Architecture of (a) BERT and (b) GPT. {x; }?:l denotes the sequence of input tokens. CL.S and SEP
are special tokens that represent classification and separation, respectively. £ and R denote embeddings
and representations, respectively
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B-t and I-¢ correspond to the first token and continuation of an entity mention of type
t € {rare disease, disease, symptom, sign}, respectively, and O for other tokens. Fig-
ure 2a shows an example where “Keratomalacia" and “scarring" were labeled B-rare
disease and I-sign, respectively.

The BIO tags directly correspond to the model-predicted label vector defined in
Section 3.1. For predicted entity k < 7 with type f, the predicted starting token
Xotart, corresponds to the input token with a B-7; tag, and the predicted ending token
Xend, corresponds to the last input token with an I-7; tag before the next token with
a B-fy41 tag, where #; may or may not be the same as 7. For example, the kth
predicted entity has type #; = rare disease, whereas the k + 1st has type #;1 = sign.
If k = m, i.e., the kth predicted entity is the last mention in the input sequence, then
the predicted ending token x_, a4 is the last input token with an I-7; tag.

3.3.2 Prompt Learning Using GPT-Based Model

In this section, we describe our approach to reformulating NER as a text generation
task in the zero- and few-shot settings using OpenAI’s ChatGPT (GPT-3.5 turbo).
The former refers to instructing the model to extract entities directly from an input
text in the test set, and the latter is similar except we also provide an example of
extracted entities from a training text. All experiments were performed using OpenAl’s
application programming interface with the model gpt-3.5-turbo on June 19th
and 20th, 2023. We used a temperature of 0 so that ChatGPT always selected the most
likely token in its response to ensure reproducibility.

Prompt design. Table 2 provides a summary of prompts in the zero- and few-shot
settings. The five main building blocks of our prompt designs were 1) task instruction,
2) task guidance, 3) output specification, 4) output retrieval, and, in the few-shot setting,
5) a specific example. Task instruction conveys the overall set of directions for NER
in a specific but concise manner. To prevent ChatGPT from rephrasing entities, we
instructed it to extract their exact names from the input text. Task guidance provides
entity definitions from the original RareDis annotation guidelines. The objective is to
help ChatGPT differentiate between entity types within the context of the input text,
as all four entities overlap semantically. Output specification instructs ChatGPT to
output the extracted entities in a specific format to reduce post-processing workload.
Output retrieval prompts the model to generate a response. In the few-shot setting, we
also provided an example with an input text from the training set and its gold standard
labels (i.e., entities labeled by the annotators).

Prompt format. In each setting, we experimented with two prompt formats: simple
and structured (Table 2). The former presents the prompt as a simple sentence, and
the latter a structured list. The simple sentence is shorter in length and resembles
human instructions provided in a conversational setting where different building blocks
(i.e., task instruction, task guidance, and output specification) are woven together
as a single unit. Agrawal et al. [14] and Hu et al. [15] used a similar approach to
extract medications and clinical entities, respectively. In contrast, the structured list
resembles a recipe or outline that consists of multiple sub-prompts in a specific order.
Chen et al. [16] used a similar format for evaluating ChatGPT’s NER performance
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on benchmark biomedical datasets. To provide additional guidance for ChatGPT, we
also incorporated distinguishing characteristics about each entity in their prompts
supplemented with examples (Table 3).

Few-shot example selection. We explored two strategies for selecting an example
text in the few-shot setting. The first strategy involved randomly selecting a text from
the training set, and the second selecting the training text that was most similar to
the test text. The motivation for the second strategy was that different rare diseases
may have similar etiology, course of progression, and symptoms/signs. For example,
Creutzfeldt-Jakob disease and CARASIL (cerebral autosomal recessive arteriopathy
with subcortical infarcts and leukoencephalopathy) are rare, neurological diseases
that share similar signs, including progressive deterioration of cognitive processes
and memory. Thus, providing a training text most similar to the test text may improve
ChatGPT’s performance. To implement this strategy, we selected the training text
with the highest similarity score based on spaCy’s pre-trained word embeddings and
incorporated it as an example in the few-shot prompt [29]. We repeated this process
for each text in the test set.

Figure 2b illustrates the architecture of the GPT model. In contrast to BERT, GPT
uses a stack of transformer decoder layers aimed at autoregressive (left to right) text
generation, i.e., predicting the next token based on preceding context. GPT takes
as input a sequence of tokens for the prompt in addition to texts from the RareDis
corpus and produces embeddings, which are then passed through decoder layers
to produce contextualized representations. Unlike BERT, GPT does not use spe-
cial tokens like CLS or SEP. Based on our prompts, the model directly outputs
the predicted entities in a list separated by commas. Figure 2b shows an exam-
ple where “Keratomalacia" and “corneal necrosis" were identified as rare disease
entities. We performed post-processing to remove separating commas and, using
the notation defined in Section 3.1, the predicted output vector in this example is
Y = {91, y2} = {{Keratomalacia, rare disease}, {corneal necrosis, rare disease}}.

3.4 Evaluation
3.4.1 Metrics

To evaluate model performance on the test set, we computed the following evalu-
Number correctly predicted is

ation metrics: precision, recall, and F1-score. Precision =
the proportion of predicted entities found by the model that were correct and recall

— Number Correaly predicted 1o proportion of gold standard entities identified by the

2 x Precision x Recall
model. F1 = =5 ==r 2o o accounts for both precision and recall by taking the

harmonic mean. We calculated these metrics under two evaluation settings: exact and
relaxed. For an exact match on the jth entity, the true and predicted entities must share
the same boundaries and entity type, i.e., Xstart; = X+ Xend; = Xep 4 and t; = i;.

For a relaxed match, the predicted and true entity must overlap in thelr textual spans
and have the same entity type, i.e., {Xsuart; : ; * Xend j} N {xstanj T X end/_} #QPandt; = =f; -
To ensure that stop words did not influence the evaluation, we removed them from
both the gold standard and model-predicted entities.
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3.4.2 Error Analysis

In our error analysis, we considered five types of errors: 1) incorrect boundary, 2)
incorrect entity type, 3) incorrect boundary and entity type, 4) spurious, and 5) missed.
The first refers to a predicted entity where one or both of its boundaries do not match
that of the gold standard label, i.e., for entity j, Xstar¢ : * Xstart;» Xend; *X ehd;’ or both.
The second refers to a predicted entity with incorrect type, i.e., t; # f j- The third
refers to the case where neither the predicted entity’s boundaries nor type matches
those of the gold standard label. Spurious entities are predicted entities that do not
correspond to any gold standard labels (false positive). In other words, predicted entity
k is spurious if {xst;mk D Xeh dk} N {xstanj : xendj} = @ for all j < n. Missed entities are
true entities that the model failed to identify (false negative), i.e., entity j is missed if
{xst;mk : xeﬁdk} N {xstm_/ : xend_,.} =@ forall k < n.

4 Results
4.1 Overall Results

Fine-tuning vs. Prompt learning. Table 4 provides a summary of the model perfor-
mance by entity type. Under exact match, fine-tuning BioClinical BERT resulted in
F1-scores that ranged from 0.491 to 0.704, outperforming ChatGPT across all entity
types. Under relaxed match, BioClinical BERT achieved an overall F1-score of 0.689
and outperformed ChatGPT on all entities except rare diseases and signs. For these
entities, prompt learning using ChatGPT in the few-shot setting resulted in higher
F1-scores of 0.778 (vs. 0.755) and 0.725 (vs. 0.704) for rare diseases and signs, respec-
tively. In the few-shot setting, ChatGPT outperformed BioClinicalBERT in terms of
recall under relaxed match across all entity types.

Comparison across prompts. Overall, incorporating an example in the few-shot
setting led to improved performance over the zero-shot setting. Under relaxed match,
ChatGPT in the zero-shot setting achieved Fl-scores of 0.472 and 0.407 with the
simple sentence and structured list prompts, respectively. Its performance improved
in the few-shot setting, resulting in F1-scores of 0.591 and 0.469. Selecting a similar
training text led to additional improvement, resulting in F1-scores of 0.610 and 0.544.
Compared to prompts written as a structured list, simple sentences generally achieved
similar or better performance; this trend was consistent across both zero- and few-shot
settings. Incorporating distinguishing characteristics in the prompt led to an increase
in the overall F1-score in the zero-shot (structured list) and few shot (structured list
+ random training text) settings. Moreover, this approach resulted in the highest F1-
score for rare diseases (F1 = 0.778) in the few shot (structured list + similar training
text) setting, outperforming BioClinicalBERT (F1 = 0.755).

Comparison across entities. Among the four entities, rare diseases were associated
with the highest accuracy for both models across all settings. In contrast, diseases
were challenging for both models. While BioClinicalBERT performed similarly at
extracting signs and symptoms, ChatGPT achieved substantially better performance
for signs. This trend was consistent across both zero- and few-shot settings.
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4.2 Detailed Error Analysis

We conducted an in-depth error analysis to elucidate ChatGPT’s performance. This
analysis was crucial for gaining additional insight, as unlike other biomedical corpora,
RareDis contains entities with overlapping semantics. Specifically, rare diseases are
similar to diseases, and symptoms to signs. Depending on the context of the input text,
diseases can also be symptoms or signs.

Table 5 shows the distribution of errors in the few-shot setting (simple sentence +
random example) under exact match. The most common error type for rare diseases
is false negative (45%) followed by incorrect entity type (31%). In the case of entity
type errors, ChatGPT tended to label rare diseases as diseases. For diseases, signs,
and symptoms, false positives and false negatives were the most common error types.
Based on manual review, many of these errors can be attributed to the challenge of
differentiating among these entities. Specifically, ChatGPT’s under-performance may
be attributed to the challenge of inferring contextual meaning. For example, in the
sentence, “a large percentage of primary antiphospholipid syndrome (APS) patients
are women with recurrent pregnancy loss," the entity “recurrent pregnancy loss" was
used to describe a population of women who have APS. However, ChatGPT mis-
takenly identified it as a sign of APS. Another challenge is differentiating between
signs (observable and/or measurable) and symptoms (subjective to the patient/non-
measurable). For example, ChatGPT mistakenly identified “weight loss" and “fever"
as symptoms. In another example, it labeled “fatigue" as both a symptom and a sign,
suggesting that it was challenging to for the model to understand the subtle difference
between the two entities. In other cases, gold standard labels deviated from the def-
initions provided in the annotation guidelines, as the lack of abnormalities was also
labeled as an entity (i.e., “asymptomatic during infancy or childhood" was labeled as
a symptom by the annotators). As such, a portion of false negatives could be attributed
to these edge cases.

5 Discussion

In this work, we reformulated NER as a text generation task and established a bench-
mark for ChatGPT’s performance on extracting rare disease phenotypes. Overall,
while fine-tuning BioClinical BERT led to better performance, prompt learning using
ChatGPT achieved similar or higher accuracy for some entities (i.e., rare diseases and
signs) with a single example, demonstrating its potential for out-of-the-box NER in
the few-shot setting. Given its accessibility, ChatGPT may be leveraged to extract
rare diseases or signs without relying on a large, annotated corpus, which is a major
bottleneck for training natural language processing models. Overall, prompts written
as simple sentences generally achieved similar or better performance than structured
lists, suggesting that ChatGPT may be more receptive to conversational prompts. To
this end, we recommend using these prompts to identify and extract rare diseases and
their phenotypes.

Our error analysis revealed that ChatGPT tended to label rare diseases as diseases.
These errors may be attributed to the fact that there is no single definition of rare
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diseases; rather, the definition can vary by country or location (i.e., a disease is a rare
disease if it affects < 200, 000 people in the United States or no more than 1 in 2,000
in the European Union). Moreover, this definition is subject to change over time, as a
disease that used to be rare at the time of annotation may have become more prevalent,
or vice versa. Because annotations are contextual, it’s possible that what the domain
experts deemed as rare diseases may not be reflected in information on the Internet
before September 2021, ChatGPT’s knowledge cut-off date.

While other studies explored supervised deep learning techniques for extracting
rare disease phenotypes, ours is the first to study ChatGPT in the zero- and few-shot
settings. Segura-Bedmar et al. [21] compared the NER performance of base BERT,
BioBERT, and Clinical BERT, and found that ClinicalBERT had the highest overall F1-
score (0.695). This was comparable to BioClinicalBERT’s performance in the current
study (0.689). Fabregat et al. [26] used support vector machines and neural networks
with a long short-term memory architecture to extract disabilities associated with rare
diseases and obtained an F1-score of 0.81. While this was much higher than the overall
F1-scores in the current study, the authors focused on extracting a single entity, i.e.,
disabilities, whereas our goal was to recognize and differentiate among four entities
with overlapping semantics. Hu et al. [15] and Chen et al. [16] evaluated ChatGPT’s
clinical and biomedical NER performance and found that it had lower accuracy than
fine-tuning pre-trained LLMs. While our overall results aligned with this finding,
we discovered that ChatGPT had similar or better performance on specific entities,
suggesting that with appropriate prompt engineering, the model has the potential to
match or outperform fine-tuned language models for certain entity types.

Our work has several potential limitations and extensions. First, we only had access
to a subset of the RareDis corpus (832 out of 1041 texts), so our results may not fully
reflect ChatGPT’s performance across the entire spectrum of rare diseases. Second,
the current work focuses on ChatGPT and does not include GPT-4 or other variants
(e.g., LLaMA, Alpaca, etc.), so broadening the current set of experiments to include
other LLMs is a natural extension. Third, though manually-created prompts are highly
intuitive and interpretable, evidence suggests that small changes can lead to variations
in performance [30]. A promising alternative is to automate the prompt engineer-
ing process. To this end, Gutiérrez et al. [31] employed a semi-automated approach
combining manually-created prompts with an automatic procedure to choose the best
prompt combination with cross validation. In addition, fully-automated prompt learn-
ing approaches, where the prompt is described directly in the embedding space of
the underlying language model, are also interesting extensions of the current work
[32, 33]. Last, while the current study did not involve clinical data, prompt-learning
strategies proposed herein are transferrable to clinical applications that leverage secure
instances of ChatGPT. Specifically, these instances are governed by appropriate legal
and business agreements ensuring privacy of protected health information. Given the
ease of interacting with ChatGPT through textual prompts, our work has the potential
to inform clinical applications on rare disease phenotyping in practice.

The advent of LLMs is creating unprecedented opportunities for rare disease phe-
notyping by automatically identifying and extracting disease-related concepts. While
these models provide valuable insight and assistance, researchers and clinicians should
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critically evaluate model outputs and be well-informed of their limitations when con-
sidering them as tools for supporting rare disease diagnosis and treatment.
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