
RESEARCH ARTICLE

Journal of Healthcare Informatics Research (2024) 8:121–139
https://doi.org/10.1007/s41666-023-00153-2

Abstract
Electronic Health Records (EHR) are increasingly being perceived as a unique 
source of data for clinical research as they provide unprecedentedly large volumes 
of real-time data from real-world settings. In this review of the secondary uses of 
EHR, we identify the anticipated breadth of opportunities, pointing out the data 
deficiencies and potential biases that are likely to limit the search for true causal 
relationships. This paper provides a comprehensive overview of the types of biases 
that arise along the pathways that generate real-world evidence and the sources 
of these biases. We distinguish between two levels in the production of EHR data 
where biases are likely to arise: (i) at the healthcare system level, where the prin-
cipal source of bias resides in access to, and provision of, medical care, and in the 
acquisition and documentation of medical and administrative data; and (ii) at the 
research level, where biases arise from the processes of extracting, analyzing, and 
interpreting these data. Due to the plethora of biases, mainly in the form of selec-
tion and information bias, we conclude with advising extreme caution about making 
causal inferences based on secondary uses of EHRs.
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Bias · Study Validity

1  Introduction

Fueled by evolving federal regulation [1–3] and the Covid-19 pandemic [3–5], real-
world data (RWD), largely in the form of Electronic Health Records (EHRs) [6], 
are increasingly being used to generate real-world evidence (RWE). While primar-
ily intended for clinical and administrative use, EHRs contain massive amounts of 
information about patients’ “medical history including, diagnoses, treatment plans, 
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immunization dates, allergies, radiology images, pharmacy records, and laboratory 
and test results” [7] that are available for secondary use in research [1]. Unlike ran-
domized clinical trials (RCT) which are largely conducted in specialized research 
environments with highly selected participants, EHRs reflect health and disease in 
the general population and the realities of clinical practice [8–10]. EHRs can also 
provide RWE more quickly and at a lower cost than RCTs [8].

We acknowledge that collections of EHRs can identify trends, [11–15] assist in 
creating clinical decision supports, [14, 16] and provide valuable drug-post-market-
ing information, [10, 17–21] associations, [11–13] and opportunities for improve-
ment [14–16]. On the other hand, we advise against their use for making decisions 
about causation, unless unusual circumstances apply, such as having uncovered very 
large relative risks in settings where bias and confounding are minimal. We are most 
concerned with how faulty or incomplete data in the EHR might result in errors made 
in drawing inferences about the relationship between characteristics of the patient or 
treatment and the occurrence, severity, and course of the patient’s disease or response 
to a treatment. We specifically focus in this paper on the challenges that limit the 
usefulness of RWE generated from observational studies that are based on EHR data. 
We provide a comprehensive overview of the sources and types of biases in EHRs 
research, offer words of caution to readers, and outline potential remedies.

In this paper we identify two sets of processes that are likely to be sources of 
biases that arise along the pathway of generating RWE from EHRs. The first pro-
cess is at the healthcare system level, where the selection of patients and healthcare 
interventions, and imperfect data collection create biases. Specifically, in this setting, 
EHR data might poorly reflect the actual experiences of patients with the conditions 
studied. The second process is at the research level including the design of the study, 
the extraction, analysis, and interpretation of the data, which can distort inferences 
derived from RWD. Figure 1 illustrates these two sets of processes with a breakdown 
of potential sources of bias associated with each one. These sources of bias also 
represent the flow of RWD from its initial creation to its transformation into RWE, a 
concept first identified by Verheij et al. 2018 [17].

Fig. 1  Pathway of generating RWE from EHR data
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2  Biases Arising at the Healthcare System Level

Research based on EHR data is subject to selection and information biases, that are 
inherent in the healthcare system’s patient population and its EHR format. Selec-
tion bias, defined as “systematic differences in characteristics between those who are 
selected and those who are not” [18], mainly arises from a lack of representativeness 
because the population captured in the EHR rarely fully represents the population 
that is the source of the EHR population. Further, selection bias arises from data 
missingness, either from missing visits or from missing information within visits. 
Information bias, on the other hand, which is “a flaw in measuring exposure or out-
come that results in differential quality of information between compared groups” 
[18], mainly arises due to misclassification of the clinical picture (EHR discontinuity, 
missing/incomplete data, and inability of the EHR system to capture the patient’s true 
health status), measurement errors, and variability in data collection methods.

3  Access to Medical Care

3.1  EHR Representativeness

Unlike the general population, all individuals represented in the EHR system have 
sought and obtained medical care from a specific set of providers [19]. Healthy indi-
viduals and patients with milder diseases, without medical coverage, or who use 
other practitioners are unlikely to be represented in a specified EHR system [20, 21]. 
The geographic “catchment” area of the EHR is the first restriction of the population, 
but social, demographic, and economic factors further determine the patient’s enroll-
ment in any given EHR [5]. Additional constraints include distance to the healthcare 
provider, number of available healthcare systems, type of healthcare system [22, 23], 
and health insurance plan [22, 24]. EHR systems will preferentially include women, 
elderly, whites, the more educated, and others more likely to seek medical care, espe-
cially primary care [21].

Lack of representativeness is one of the major challenges of EHR data [5, 19], 
introducing selection bias when study inferences are generalized to broader target 
populations [19, 24–26]. Unlike population-based studies, which also include non-
recipients of medical care, and where participant selection is determined by the study 
sampling plan, enrollment in EHR is largely driven by the individual patient [19]. 
Because the mechanisms that drive patients to interact with the healthcare system 
are incompletely known, analytic mechanisms cannot fully address and control for 
them [19, 27].

3.2  EHR Discontinuity

Patients whose medical information is captured in EHRs are considered members 
of “open cohorts,” where they enter and leave the record system during the period 
of observation [28, 29]. Patients can drop in or out of an EHR system to seek spe-
cialty care elsewhere, to return to a primary healthcare provider [19], or drop out of 
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the system entirely because of changes in their disease characteristics or insurance 
coverage [29].

Patients are referred to as “censored” for the time when they are not being fol-
lowed. The absence of patient information prior to their entry into the EHR is referred 
to as left censoring. Absence after their departure from the EHR is referred to as right 
censoring [5, 29]. Absence of information for a period of time with information avail-
able both before and after that period is referred to as interval censoring. The move-
ment of patients across provider systems can result in all three forms of censoring in 
EHR research.

Censoring can cause structural missingness in EHRs [30], leading to an incom-
plete picture of the history of disease in a given patient. Components of the diagno-
sis, progression, management, and treatment of disease, as well as the time of their 
occurrence, are often missing. These absences can lead to information bias and/or 
selection bias depending on how the researcher deals with the missingness. Remov-
ing patients with censoring is one solution but may increase the problem of selection 
bias [31], even with use of advanced statistical techniques to address biases [19, 22, 
27, 32]. Information bias, on the other hand, arises when these patients are included 
but outcomes are misclassified due to the EHR’s inability to capture the true history 
of the disease [19].

4  Provision of Care

Whether a clinical event is recorded in the EHR is dependent on policies, practices, 
referral and reimbursement systems, and professional guidelines that differ across 
healthcare systems, creating “healthcare system bias” [17]. These factors affect the 
initiation, frequency, content, and documentation of clinical encounters recorded in 
the EHR [17]. For example, professional guidelines and reimbursement systems pro-
mote blood pressure readings at most in-person visits in some countries, but only if 
required by clinical conditions in others, creating selection bias for this measure [17].

Patient encounters can take place in inpatient or outpatient settings and can rep-
resent primary, specialty, or emergent care, depending on the services and settings 
provided by the healthcare system. These settings, as well as the practice workload, 
shape the nature and intensity of data recorded in the EHR [22]. Provision of medical 
services might also be influenced by the patient’s type of insurance [4]. Understand-
ing the coding processes in the EHR system is essential to minimize information bias 
[17], since insurance type often dictates billing codes used to establish diagnoses and 
treatments in EHRs [4, 5, 23].

Moreover, the 21st Century Cures Act [33] requires all medical-care providers to 
offer patients access to their EHR information, which may influence the recording of 
data thought to carry a stigma or might stimulate medical litigation [17, 34].
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5  Acquisition and Documentation of Medical and Administrative 
Data

5.1  Data Collection and Measurement

EHR data are composed of structured fields (smart forms and clinical templates), 
unstructured data (clinical notes, free text), and peripheral documents (imaging data, 
pathology reports) [10]. Clinical information is often obtained by examination all of 
these EHR sections [35]. Due to the variability in data collection methods, EHR data 
are subject to misclassification bias and/or measurement errors. Recent papers have 
recommended statistical techniques for minimizing such biases in EHR research [19, 
27, 36–38].

5.1.1  Structured Data

The International Classification of Diseases (ICD) is the main diagnostic coding 
scheme used across the US healthcare system [4, 39], and researchers need to con-
sider any changes to the coding system or provider’s terminology over the years, as 
occurred in 2015 when the US healthcare system transitioned from ICD-9 to ICD-10 
[4, 5]. The presence of an ICD code in the EHR indicates the existence of a disease, 
but its absence does not assure the absence of the disease. ICD codes in the EHR thus 
have high specificity but low sensitivity [28]. When the diagnosis is not obvious, 
a patient can also have a series of “rule-out” ICD codes for testing and follow-up 
until the final correct diagnosis is made, and these rule out codes can be mistaken for 
actual diagnoses [39].

Disease status may be incompletely estimated from diagnostic and billing codes, 
while information on other structured data may provide a fuller picture of disease 
status [35]. Although a structured item, recording medication, is also not straight-
forward. The same chemical formulation of a medication can be described under the 
rubric of several brands or generic names [39], and in extended or immediate release 
variations. While information on ordered drugs is usually recorded in the EHR, infor-
mation on whether the patient actually obtained and took the prescribed medication 
at the required dosage and timing is rarely available in the EHR. Many EHRs are not 
linked to pharmacy dispensing information systems [39].

Laboratory measures and vital signs are also some of the readily available struc-
tured data in EHR but its use in research has its own challenges [39]. The main 
standard coding systems for laboratory tests and results are the Logical Observation 
Identifiers Names and Codes (LOINC), the Systematized Nomenclature of Medicine 
(SNOMED), and the Current Procedural Terminology (CPT) [40]. Unfortunately, 
implementation is still not universal [1] and many clinical laboratories use local cod-
ing systems [40]. Similarly, the coding of vital signs is generally made without stan-
dardized approaches, resulting in inconsistency. According to the working group of 
the National Heart, Lung, and Blood Institute, blood pressure measurement is still 
sub-optimal in clinical practice and deviates from the recommended guidelines [41]. 
Measures that are self-reported can also differ from those obtained by medical profes-
sionals resulting in additional sources of variance [40, 42].
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Substantial variability in the quality of data recorded in EHR has also been attrib-
uted to the software packages [17, 43]. The fields are at times flawed either because 
they are too broad or require a level of unnecessary details or demand a response/
value for an inapplicable field [4]. EHR software can also change over time to reflect 
new emerging technologies or new changes in coding or billing practices [4, 44].

5.1.2  Unstructured Data

Unstructured or semi-structured data are any form of data available at EHR that does 
not conform to a pre-designed organized structure [39]. Clinician notes, for example, 
can provide important information not present in structured fields, such as changes 
in symptom severity and side effects of medication [5, 7, 9]. Artificial intelligence 
approaches, including natural language processing (NLP) and machine learning 
(ML) may be able to transform unstructured notes into useful data [7].

In addition, patients now have electronic opportunities to record self-reported 
events (e.g. asthma attacks, seizures), episodes of pain, and periodic assessments 
of “quality of life” [45]. Recording of these patient-reported outcome measures 
(PROMs) in the EHR is highly variable. New technologies, such as wearable devices 
and health-related apps are increasingly being transferred to EHRs [46, 47], often 
with limited or little attention to the quality, accuracy, and reliability of these data 
[8, 48].

Finally, some of the unstructured information in the EHR is based on the clini-
cian’s discretion and might be subject to implicit bias [5]. Clinicians’ unintentional 
judgments and evaluations about patients’ attributes such as race or gender may affect 
what is documented or omitted [49]. Patients and their families have identified errors 
[50–52] and found offense in EHRs [34].

5.1.3  Peripheral Documents

Peripheral documents are mainly composed of imaging (x-rays, computerized tomog-
raphy [CT] scans, magnetic resonance imaging [MRI] scans, ultrasounds, etc.) and 
non-numerical test results (electrocardiograms [ECGs], pathology results, etc.) as 
well as other portable document files or PDF files (scanned documents from sources 
outside the EHR). Extracting this information through NLP can provide a better 
understanding of the disease status of the patient than reliance on structured diagnos-
tic codes [39]. However, these documents are not easily extractable [10].

5.2  Data Missingness

Structured data elements in EHRs may also be incompletely recorded [30, 53]. Struc-
tured data elements are likely to be most complete for health status and clinical infor-
mation [10], but elements such as substance use and family history of illness, for 
example, are often missing; and absence of the entry cannot be assumed to represent 
absence of the behavior or condition [35]. Missingness can be at random, but can also 
arise due to the absence of data not intended to be collected (missing not at random) 
[7]. For example, some health information does not get recorded in EHR since it is 
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not relevant to some patients. This is known as “informative missingness,” when the 
absence of data conveys information about why it is missing [20]. Laboratory testing 
requested for some patients, for instance, suggests an underlying health condition 
and hence provides information about the health status of the patient. Not only do the 
actual values of the laboratory measurement carry information, but so do the number 
of measurements, the indications for the multiple measurements, and the dates of the 
measurements [23, 54].

Missing data in EHR can often lead to selection bias (by using complete data only) 
and misclassification bias [37]. Statistical techniques for missing data exist [30, 32, 
37, 55, 56], but adjustments, such as imputation, cannot fully compensate for the bias 
in all circumstances [57–59].

Variables used to address confounding, such as sociodemographic status, health 
risk behaviors (diet, physical activity, substance use), and psychological stress are 
sometimes infrequently recorded [20, 60] and, when recorded, are usually of lower 
quality than data collected for research, which presents a challenge in accounting for 
confounders in EHR research. The FDA recommends linking EHR data to other data 
sources or attempting to collect additional data to capture information about impor-
tant unmeasured or improperly measured confounders [7]. There are also several sta-
tistical techniques that attempt to address this problem, including inverse probability 
weighting [61], instrumental variable analysis [62–65], difference-in-differences [62, 
66], interrupted time series [67], perturbation variable adjustment [63, 68], propen-
sity scores calibration [63, 69–72], and sensitivity analysis [73].

6  Biases Arising at the Research Level

Biases can start from the very step of extracting the research database all the way to 
interpreting and reporting research findings.

7  Extraction and Acquisition of Research Data

Although Epic, Cerner, and Meditech are the most common EHR software in the 
US, hundreds of vendors develop EHR software, all of which have no common or 
uniform format [39, 47]. The structure of the EHRs is mainly vendor-specific [4] and 
differences in user interface can affect what data can be recorded and extracted from 
the database [17, 35]. Since the data extraction software is usually proprietary, the 
limitations and biases inherent in the software are nearly impossible to determine. 
Confidentiality agreements with EHR vendors make it difficult to evaluate the qual-
ity of the data extracted and the accuracy of the extraction tool [17, 35], and different 
extraction procedures may produce different results [74]. The challenges are further 
exacerbated by integrating different EHR software that lack interoperability or “the 
ability of two or more products, technologies, or systems to exchange information 
and to use the information that has been exchanged without special effort on the part 
of the user” [75] which also makes it difficult to track patients and identify duplica-
tion of patient records across multiple EHR systems. This is especially true because, 
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unlike the situation in some European countries, no single identification number is 
available to be used across the healthcare systems in the United States [9].

Further, raw EHR data can be transformed to research-grade variables through 
operational phenotyping algorithms [39, 76]. Two types of algorithms help define the 
study variables. The first involves the creation of a rule-based algorithm and sequen-
tial flow chart that identifies codes and clinical information in structured and unstruc-
tured fields. This method can be lengthy, might not use all the information available 
in EHR, and can be biased by the judgments of the team creating these algorithms 
[76]. The other type involves using machine learning algorithms [77], which has its 
own challenges and biases [4, 6, 39].

8  Research Design and Analysis

We list here several specific biases that can arise because of design and/or analysis 
issues in EHR research [78–80]. The list is not exhaustive but covers the most com-
mon biases affecting validity in EHR-derived research. Solutions to address these 
biases are suggested in the references cited for each one.

8.1  Berkson Bias

Berkson bias, or admission rate bias, is a type of selection bias resulting from the fact 
that patients with more than one condition are more likely to be hospitalized than 
patients with just one condition, creating a spurious correlation between diseases that 
are independent in the general population [81–83].

8.2  Informed Presence Bias

Analogous to Berkson’s bias [84, 85], informed presence bias is a consequence of 
the nonrandom presence of patients and their details in the EHR system. People 
who have health challenges are more likely than others to seek care and have more 
medical encounters [24, 84]. When using data from these visits [86], a researcher 
unintentionally conditions on presence in the study sample [24, 84]. A prevalent but 
under-reported disease in the population will be more commonly documented in the 
sick because they are monitored more closely [87].

8.3  Prevalent-User Bias

Prevalent-user bias is a form of selection bias that is mainly present in drug effect 
studies. The bias arises when prevalent-users are compared to non-users especially 
when the treatment effects or the hazard of developing the outcomes vary with time 
[25, 88]. Prevalent-users are usually considered to be more tolerant of the treatment; 
i.e. they have “survived” early use [25, 88]. Therefore, if the risk of treatment-related 
outcomes is highest at the beginning of the treatment, the prevalent-user sample will 
consist of less susceptible patients and will consequently favor treatment [25, 80, 88].
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8.4  Immortal Time Bias

Immortal time bias arises when a time interval exists between the assigned time of 
entry to the study and the time of exposure assignment, and tends to be found often 
among real-world cohort studies assessing treatment/drug effects [89]. This wait-
ing time requires exposed participants to stay “immortal” and outcome-free until 
treatment assignment. Participants who experience the outcome before they have the 
chance to receive the treatment will be classified as unexposed [79, 89–91]. Conse-
quently, the exposed group has a built-in survival advantage compared to the unex-
posed group and will appear to be protected, but the protection is artificial [89].

8.5  Lag-Time Bias

Lag-time bias is also a time-dependent bias, but one that relates to follow-up time 
after exposure assignment [88, 92]. The principal idea of the lag-time bias is that 
the risk of manifesting the outcome might not start immediately after the onset of 
exposure. Similarly, the risk might not end immediately after termination of the post-
exposure observation interval.

8.6  Verification Bias

Verification bias occurs “when there is a difference in testing strategy between groups 
of individuals, leading to differing ways of verifying the disease of interest” [93]. It 
arises either when all patients receive an index test but only a proportion of them 
continue to receive the reference test for disease verification, or when patients are 
allocated to one of two reference tests based on the results of their index test [94].

In essence, verification bias occurs when the patients are not randomly selected to 
receive the reference test. In real-world clinical practice, factors like cost, invasive-
ness, individual patient susceptibility to risks as well as their preferences, and other 
healthcare system factors can all play a role in the nonrandom assignment of patients 
to subsequent diagnostic testing [95, 96].

8.7  Protopathic Bias

Protopathic bias occurs when a treatment/drug is prescribed to treat early signs and 
symptoms of a disease that has not yet been diagnosed [97–101]. It is the erroneous 
assumption that the drug caused the outcome when in fact the outcome gave rise to 
the treatment, a form of “reverse causation” [102, 103].

8.8  Confounding by Indication

Although not a bias per se [88, 104, 105], confounding by indication is the misin-
terpretation of an association between a drug/treatment and an outcome when the 
indication for selecting the drug/treatment contributes to the outcome [25, 106, 107]. 
The “indications” or reasons for treatment, such as the severity of the disease [88, 
104–107], the frailty of the patient [88, 107], the physician’s preference for this drug 
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for this patient [104, 105], are considered confounders since they are associated with 
both the treatment and the outcome [105, 106].

9  Research Results and Interpretation

Since most EHR data are collected without a-priori research questions, their validity, 
relevance, and fitness for the specific research question need to be assessed [108]. 
Some analyses, however, go beyond this exploratory step, leading to modifications 
of pre-established study elements (i.e. inclusion/exclusion criteria, variable selection, 
variable definition, and analysis plan) that yield only favorable results [9, 109]. Up-
front transparency about the research protocol, therefore, is instrumental in evaluat-
ing the quality and validity of the study. Using reporting guidelines like RECORD 
(Reporting of Studies Conducted using Observational Routinely Collected Health 
Data), MINORS (Methodological index for non-randomized studies), GRACE (The 
Good Research for Comparative Effectiveness), HARPER (HARmonized Protocol 
Template to Enhance Reproducibility), and STaRT-RWE (Structured Template for 
planning and Reporting on the implementation of Real World Evidence studies) are 
recommended for better transparency [2, 108–113]. Also, registration of RWE stud-
ies in publicly available databases prior to the execution of the study is likely to 
maximize transparency [109].

The Newcastle-Ottawa Quality Assessment Scale [114] provides a composite 
score of assessments of the representativeness of non-randomized studies, the quality 
of the exposure and outcome, avoidance of biases, and adjustments in the analyses. 
As a composite score it has the potential to avoid information overload [115], and 
to intensify the signal of interest [116]. With these advantages comes the potential 
for weighing components in less than-desirable ways [117, 118]. Consequently, we 
advise paying attention to the components, as well as the score.

10  Challenges of Pooling Multi-Institutional EHRs

While pooling EHR databases is recommended for validating of study variables [24, 
25], minimizing information bias due to EHR discontinuity [25], and increasing 
power [1], doing so adds another level of complexity to the above-mentioned chal-
lenges encountered within an individual EHR system. Integrating multi-institutional 
EHRs data requires careful evaluation of the heterogeneity in medical practices, 
reimbursement systems, organizational policies, and demographic characteristics of 
the catchment areas that can impact the type and quality of data captured [5, 9, 35]. 
For example, the patient profiles in academic healthcare systems, suburban practices, 
and federally-qualified health centers are likely to differ [5]. Such heterogeneity can 
impact the type and quality of data captured, which can, in turn, complicate the inte-
gration process for these EHR databases.

Pooling multiple EHR systems is probably best achieved by a multidisciplinary 
team of clinicians, scientists, informaticians, ML experts, ethical experts who know 
about the practices of their healthcare system and how data are captured and recorded 
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at their own institutions [35]. Adjusting for clustering or center effects can reduce 
bias, but is unlikely to eliminate it [119]. Finally, even when data precision, com-
pleteness, interoperability, and harmonization are addressed, security and patient pri-
vacy remain a concern [44, 78].

In lieu of the challenges of pooling multiple EHR databases, several initiatives 
have created a network of RWD that aim to collect and map information to a common 
data model (CDM) that has a consistent format and content [9]. It aims to standard-
ize data collection across several EHR systems and facilitate system interoperability 
and data sharing [39]. Some of the main initiatives are the Observational Health 
Data Sciences and Informatics (OHDSI) [120], the National Patient-Centered Clini-
cal Research Network (PCORnet) [121], and, most recently the National COVID 
Cohort Collaborative (N3C) consortium that emerged as a response to the COVID19 
pandemic [122]. Although these initiatives are promising for establishing standard-
ized RWD, they are still under development [4].

11  The Future

More recently, the Office of the National Coordinator for Health, in the US Depart-
ment of Health and Human Services, released the Trusted Exchange Framework 
and Common Agreement (TEFCA) which enables the creation of nationwide data-
sharing networks, known as Qualified Health Information Networks (QHIN). These 
QHINs are expected to connect to one another to support a “network of networks,“ 
resulting in national health information exchange. The TEFCA also aims to create a 
common set of practices to promote homogeneity of data collected in EHRs [123, 
124]. Among these is federated learning [125, 126], which enables multiple contribu-
tors “to build a common, robust machine learning model without sharing data, thus 
addressing critical issues such as data privacy, data security, data access rights and 
access to heterogeneous data” [127]. With the implementation of the TEFCA, we 
can probably expect a prominent increase in the use of RWE for research and post-
marketing surveillance.

12  Conclusion

Now, more than ever, EHRs are being perceived as unique sources of data for clinical 
research, providing unprecedentedly large volumes of real-time data from real-world 
settings. Solely having access to big data, however, does not minimize or eliminate 
bias. Because having a large sample size increases statistical precision, flawed big 
data increases the chances of significantly biased inferences; this is a phenomenon 
known as the “big data paradox” [19, 20]. Large datasets, therefore, do not necessar-
ily lead to quality research and valid RWE.

In summary, EHRs might not provide a complete reflection of the patient and his/
her health status. Instead, they are a reflection of the utilization of healthcare services 
and EHR recording processes [76]. Limited data quality and the plethora of biases 
in EHR data prompt us to conclude with words of caution. As appealing as EHR 
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data might appear, we recommend investigators carefully design their study with the 
above-mentioned challenges in mind. Even after what might be considered extreme 
efforts to maximize data quality and minimize bias, humility is encouraged.
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