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Abstract
Abbreviations are unavoidable yet critical parts of the medical text. Using abbrevia-
tions, especially in clinical patient notes, can save time and space, protect sensitive
information, and help avoid repetitions. However, most abbreviations might have mul-
tiple senses, and the lack of a standardized mapping system makes disambiguating
abbreviations a difficult and time-consuming task. The main objective of this study
is to examine the feasibility of sequence labeling methods for medical abbreviation
disambiguation. Specifically, we explore the capability of sequence labeling meth-
ods to deal with multiple unique abbreviations in a single text. We use two public
datasets to compare and contrast the performance of several transformer models pre-
trained on different scientific and medical corpora. Our proposed sequence labeling
approach outperforms the more commonly used text classification models for the
abbreviation disambiguation task. In particular, the SciBERT model shows a strong
performance for both sequence labeling and text classification tasks over the two con-
sidered datasets. Furthermore, we find that abbreviation disambiguation performance
for the text classificationmodels becomes comparable to that of sequence labeling only
when postprocessing is applied to their predictions, which involves filtering possible
labels for an abbreviation based on the training data.
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1 Introduction

Word-sense disambiguation (WSD) is the task of identifying the correct sense of an
ambiguous word with several possible meanings given its context [1]. For example,
the term well can be associated with health, i.e., I am feeling well or a source of
water, i.e., You can drink from the well. Humans have the innate ability to do this and
often differentiate between word senses subconsciously. However, automated WSD
is considered to be one of the most challenging tasks in natural language processing
(NLP) [2]. Abbreviation disambiguation (AD) is a sub-task of WSD that focuses on
accurately expanding or decoding ambiguous abbreviations (ABV) in text data (e.g.,
ABI for Acquired Brain Injury). While humans are able to interpret common ABVs
to a degree, full-word WSD is a much more difficult task as they are usually domain-
specific and require prior knowledge. In this paper, we focus on AD in medical texts,
and in this case, disambiguation can be in the form of providing the actual long-form
version of the ABV or outputting key additional context words associated with it
so that any confusion about the sense is removed, assuming the reader is a medical
professional. Table 1 provides examples of these two forms of AD.

In the medical domain, especially in clinical notes, abbreviations are extremely
common due to their ability to increase efficiency and protect patients’ privacy [3,
4]. One study found that an estimated 30–50% of clinical notes were made up of
abbreviations [5]. However, while there are benefits to ABVs, they can sometimes be
obscure to their actual sense making them un-intuitive and more difficult to decipher
without additional information. Furthermore, ABVs can have multiple meanings (i.e.,
long-form versions), and the actual sense depends heavily on the context. Moreover,
new ABVs are regularly being created without a standardized mapping system. This
makes AD a difficult and time-consuming task that can delay the extremely important
flow of communication in medical operations. These challenges in AD point to the
necessity for building reliable alternatives using WSD techniques.

WSD is a heavily researched area inNLP, and themajority of proposedmethods can
be grouped into three categories: knowledge-based [6], unsupervised [7], and super-
vised [8]. Knowledge-based methods rely mainly on dictionaries, sense inventories,
and hand-crafted rules to predict the correct sense of an ambiguous word. Unsuper-
vised methods do not need sense inventories and, instead, mainly employ clustering
methods to differentiate between different senses and contexts. Finally, supervised
methods constitute the most commonly employed techniques for WSD; they typically
require annotated data, and classifiers trained over this data are used to detect the cor-
rect sense of the abbreviation. Common supervised WSD methods include decision
trees (DT) [9], support vector machines (SVM) [10, 11], naive Bayes (NB) [12], and
neural networks [13].

Table 1 Examples of AD outputs

Output type ABV Label for prediction task Actual ABV sense

Long form version MBF Myocardial blood flow Myocardial blood flow

Key context word IF Staining Immunofluorescence staining
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Most research in AD looks at the task through text classification, where, given
a piece of text with at least one ABV present, a label is assigned to the whole text
that decodes the ABV. Multiple ABVs in a text can complicate the text classification
approaches, as it is possible to confuse the labels that are associated with the ABVs.
Therefore, in this study, we propose to frame theWSD problem as a sequence labeling
task, which can automatically handle multiple ABVs occurring in the same text. We
employ recent state-of-the-art methods to find the most effective solution strategy.
Well-knownNERmethods include probabilistic conditional random fields (CRF) [14]
and transformer models such as BERT [8].

We conduct a detailed empirical analysis to investigate the feasibility of sequence
labeling methods for the WSD task with the objective of providing a more practical
means to automatically expand or disambiguate medical ABVs in text.We particularly
focus on pre-trainedBERTmodels to compare text classification and sequence labeling
for the WSD task. We compare these models against a CRF-based approach as well.
The main contributions of our study can be summarized as follows:

• We apply sequence labeling methods for medical AD tasks. Our work differs from
previous studies in that they assume the abbreviations are known as a predefined
list and they applyWSD to determine the correct senses. In contrast, our study has
two steps. In the first step, the model identifies the abbreviation since it is unknown
and then applies sequence labeling methods to determine the semantic category.
Our findings suggest that the sequence labeling methods can outperform the text
classification approaches for these AD tasks.

• We propose a postprocessing strategy for ABV prediction, which filters the candi-
date set of labels for any individual ABV based on the corresponding occurrences
in the training data. We find that text classification methods benefit significantly
frompostprocessing. On the other hand, sequence labelingmethods, thanks to their
ability to examine the data at a more granular level, do not require postprocessing
to achieve a high-performance level.

• Weconduct an extensive numerical studywith two uniquemedicalADdatasets and
several text classification and sequence labeling models. In this regard, our study
contributes to a better understanding of the capabilities of these state-of-the-art
methods for medical AD tasks.

The rest of the paper is structured as follows. Section2 explores previous literature
on NER as well as medical AD and WSD tasks. Section3 provides an exploratory
analysis of our datasets and details the proposed methodologies, experimental design,
and evaluation metrics. Section4 presents results from our detailed numerical study.
Finally, Sect. 5 concludes the paper with a summary of our main findings and a dis-
cussion on future research directions.

2 RelatedWork

We briefly review the previous works on medical AD and NER and discuss the per-
formance of different models and techniques in these tasks. AD and WSD research
has become fairly popular in recent years, and while they have been applied to several
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domains, we focus our review on WSD in the medical domain. A summary of the
most closely related studies to our work is provided in Table 2.

Pakhomov et al. [9] were among the first to investigate medical acronym disam-
biguation and looked at the feasibility of semi-supervised learning for this task. By
generating training data for each sense based on their context found across three large
external sources including the World Wide Web, they were able to show the utility of
leveraging massive publicly available data for medical AD. Xu et al. [7] built on this
work, and they not only included more external data sources for training data genera-
tion but also incorporated sense frequency information as an additional feature. While
semi-supervised learning methods have shown encouraging performance when there
is a lack of annotated corpora, supervised learning is a much more popular method
for AD. Joshi et al. [10] and Moon et al. [11] compared different supervised learning
approaches, including NB, SVM, and DT for the WSD task. Joshi et al. [10] extracted
several key features from the AD datasets and found that all three models (NB, SVM,
DT) performed fairly equally, but overall, performance was maximized when all fea-
tures were included in the training. Moon et al. [11] focused on minimizing training
time and used these models to examine the impact of different window sizes around
the target ABV as well as finding the minimum training samples required for each
label to achieve reasonable performance.

The use of word embeddings for model training has become increasingly common
in many NLP tasks, including text classification, information retrieval, and language
translation. Wu et al. [16] explored the impact of neural word embeddings trained on
an extremely large medical corpus in the medical WSD task. On top of the traditional
WSD feature set, by adding two unique embedding-based features to their SVM clas-
sifier, one that took the max score of each embedding dimension from all surrounding
words and another one that took the sum of the embedding vectors from the surround-
ing words, their model was able to achieve state-of-the-art results on their test datasets
[16]. Jaber and Martínez [12] conducted a similar study and compared different word
embedding strategies on two different models: SVM and NB. Their results showed
that SVM outperformed NB overall, and the best performance was achieved when
using word embeddings generated from both medical and general data sources.

Deep learning-based approaches have been popular for AD tasks in recent years. Li
et al. [17] proposed a neural topic attention model for the medical AD task where they
took a few-shot-learning approach that combined topic attention and contextualized
word embeddings learned from ELMo [24]. Applying the topic information and word
embeddings to a long-short-term-memory (LSTM) model yielded the best results in
their experiments. Jin et al. [19] proposed the DEep Contextualized Biomedical ABV
Expansion (DECBAE)model that utilizesBioELMo [25]word embeddings, a domain-
specific version of ELMo [24], and a fine-tuned Bidirectional-LSTM (BiLSTM)
model to achieve state-of-the-art performance. Similar to ELMo and its descendent
BioELMo, the pre-trained BERTbase [8] models offer complex word embeddings that
apply to a wide array of topics. However, minimal or no exposure to key biomedical
terms limits the benefits of transfer learning in this domain. Accordingly, Lee et al.
[13] proposed BioBERT, a pre-trained model for biomedical text mining. Jaber and
Martínez [4] explored different BERT variants for the medical AD task and found that
the variations pre-trained on medical text such as BioBERT outperformed BERTbase.
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While many studies on medical AD referenced above consider the same objective
as in our study, they mainly focus on single- or multi-label classification. We set out to
investigate the potential ofNERmethods for theWSD task.NER is a sequence labeling
technique that identifies and categorizes key information and entities in unstructured
text. There are three traditional approaches to address the NER problem: rule-based
[26, 27], unsupervised learning [28], and feature-based supervised learning [29, 30].
Themajority ofNER studies follow the supervised learning approach, and accordingly,
several classifiers have been explored forNERover the years.However, theCRFmodel
has been shown to be highly effective for NER tasks due to its ability to capture the
context around the target word or entity. McCallum [14] proposed a feature induction
method for CRF in NER. By iteratively adding features and only focusing on the
ones that maximize the log-likelihood, they were able to greatly improve the NER
performance over a fixed feature set approach, while also controlling the training
time. More recently, transfer learning has become popular for NER with the advent of
ELMo and BERT models [8, 24]. Souza et al. [31] proposed a BERT-CRF model in a
Portuguese NER task. Additionally, biomedical named entity recognition (BioNER)
was developed to identify entities such as genes, proteins, diseases, chemicals, and
species, in medical texts and clinical notes. For instance, Liu et al. [32] proposed
K-BERT, a BERT model that can be injected with domain-specific knowledge more
efficiently than pre-training. In several domain-specificNER tasks, including amedical
NER task, K-BERT was shown to outperform regular BERT.

The methods discussed above are highly relevant to our study, particularly the work
by Jaber and Martínez [4]. Therefore, these relevant techniques are implemented as
baselines in our numerical study. We note that the key difference between our work
and the previous literature is that we apply NER methods for a medical WSD task.
Not only does our model have to predict whether a token is an ABV, but it also needs
to output the correct label depending on the context. While this is similar to regular
BioNER, in BioNER, there are usually only a few (e.g., < 10) possible NER labels,
whereas, in AD/WSD tasks, we are required to deal with more than 1000 labels. We
also note that based on these works and our empirical observations, transformers-
based methods perform well in sequential labeling tasks such as NER and POS due
to their transfer learning capabilities and ease of fine-tuning. Since our task resembles
a sequential labeling problem, we mainly develop our solution strategy based on
transformer architectures. Particularly, for the classification problems, we consider
the BERT architecture.

3 Methodology

In this section, the sequence labeling methods employed in our analysis are explained,
and the structure of the classification models and datasets are reviewed. Furthermore,
the details of the experimental setup, hyperparameter tuning, and evaluation metrics
are provided.

Recent studies on WSD mainly focus on text classification where, given a piece
of text with an abbreviation present, the entire text is labeled with the correct sense
of the ABV. However, since datasets can have multiple unique abbreviations in each
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instance, we take an alternative approach to solving the WSD task. While multi-label
classification methods can also be considered for this task, the challenge would then
become to ensure that each predicted label is correctly assigned to its respective ABV.
Further complications might also arise when the number of labels predicted does not
match the number of target ABVs. Sequence labeling, on the other hand, allows us to
assign a single label to each token in the text, and therefore, it enables assigning each
abbreviation to its corresponding sense. As such, it allows easy interpretation of the
predictions and adoption of these methods beyond these experiments.

3.1 ClassificationModels

Weprovide the details of each of the sevenmodels used in our experiments below. CRF
and BiLSTM are considered baseline models, and we employ five BERT variants for
our main comparative analysis: DistilBERT, BioBERT, BlueBERT, MS-BERT, and
SciBERT.

3.1.1 CRF

CRF is a model that uses a probabilistic approach in modeling sequential data [33].
CRFs are popular in part-of-speech (POS) tagging, NER, and other token classifica-
tion tasks due to their ability to learn sequential contexts in text and utilize domain and
data-specific handcrafted features to predict the label for each token. For our experi-
ments, several features are designed for the CRF model including word components
such as prefix and suffix, capitalization, and a check flag to determine whether each
token is an abbreviation or not. We also capture contextual features that examine the
nearest neighbor on either side of the current word (i.e., with window size [−1, 1]).
While this model is commonly used for sequence labeling tasks, one drawback is
its computational complexity as training time drastically increases with the sequence
length and the number of labels. Accordingly, we consider the CRF model as a base-
line for our experiments on a reduced-label dataset, which contains only a subset of
all the available labels.

3.1.2 BiLSTM

An LSTMmodel is a recurrent neural network (RNN) that can find and maintain long-
range dependencies in data [34, 35]. Due to the problem of vanishing gradients, regular
RNNs are limited by how much important information can be stored in their memory.
However, with LSTMs, thanks to a complex gating system, key information, no matter
how far back in the sequence it is, can be maintained and accessed for the prediction
task. A popular extension to the LSTM model is the bidirectional LSTM (BiLSTM),
which has the ability to learn long-range dependencies in both directions—from left
to right and right to left. The BiLSTM model has become a common foundation for
several sequence tagging tasks [36], and it is considered a baseline in our analysis.

3.1.3 BERT

BERT is a pre-trained language model and stands for Bidirectional Encoder Represen-
tations from Transformers [8]. BERT’s model architecture is based on the transformer
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model proposed by Vaswani et al. [37], which is an attention mechanism that can be
used to learn relationships between words and sub-words. Similar to the BiLSTM,
the bidirectional nature of this model allows learning the context of a word based on
the words both from left and right. A notable challenge in pre-training is defining
a prediction task. As the main training strategy, BERT employs a masked language
model objective that randomly masks a proportion of tokens in the input. The task is
to predict the actual masked word based on its context. Additionally, BERT employs
a next-sentence prediction task which requires the model to predict whether the sec-
ond of two input sentences actually follows the first. In pre-training stage for these
tasks, the BooksCorpus of 800M words and English Wikipedia of 2500M words are
employed. BERT has achieved state-of-the-art performance on several NLP tasks.
Accordingly, five BERT variants are considered in our experiments. These include a
popular lighter BERT variant (DistillBERT), three models that are pre-trained on dif-
ferent medical corpora (BioBERT, BlueBERT, MS-BERT), and another model that is
pre-trained on scientific text with its custom domain-specific vocabulary (SciBERT).
Below, we briefly summarize each of these BERT variants.

• DistilBERT : This model is the faster, cheaper, and lighter version of the original
BERT [38]. While full-size transformers-based models offer outstanding perfor-
mance, their usage is limited by high computational complexity. DistilBERT is
based on the same architecture as BERT but in a condensed and more efficient
form. DistilBERT was shown to retain 97% of BERT’s performance while being
60% faster [38].

• BioBERT : BioBERT is a BERT variant that is additionally pre-trained on large-
scale biomedical corpora to excel in biomedical text-mining tasks. Specifically, it
is pre-trained on PubMed abstracts that contain 4.5 B words and PubMed Central
full-text articles with 13.5 B words.

• BlueBERT : Similar to BioBERT, BlueBERT (Biomedical Language Understand-
ingEvaluation)was pre-trained on biomedical data [39]. ThisBERTvariant trained
on a very large corpus of more than 4 B words from PubMed abstracts and over
500 million words from MIMIC-III clinical notes.

• MS-BERT : This model is an extension of BlueBERT that is further pre-trained on
over 35 million words extracted from multiple sclerosis clinical notes collected
between 2015 and 2019 in Toronto (hence the MS in MS-BERT) [40].

• SciBERT : Thismodel has two key differences fromBERTbase: its pre-training cor-
pus and vocabulary [41]. Similar to the other domain-specific variations, SciBERT
is pre-trained on scientific literature. The corpus consisted of 1.14 million articles
from Semantic Scholar both from the computer science and biomedical domains,
resulting in 3.17 B words. Unique only to SciBERT, however, is its vocabulary.
Generating its own vocabulary instead of reusing the one from BERTbase allowed
SciBERT to capture the most frequently occurring words and sub-words from its
specific domain.

123



Journal of Healthcare Informatics Research (2023) 7:501–526 509

3.2 Datasets

We use two distinct medical text datasets in our experiments: MeDAL [23] and UMN
[42]. The MeDAL dataset consists of medical abstracts where certain long-form
words have been manually swapped with their abbreviated form. A key feature of
this dataset is the occurrence of multiple unique ABVs in one abstract. The UMN
dataset, curated by the University of Minnesota’s Digital Conservancy, is a collection
of raw, anonymized clinical patient notes. There is only one target ABV with an asso-
ciated label that can occurmultiple times in this dataset. TheMeDAL dataset offers the
unique challenge of dealing with multiple unique ABVs in one instance, and hence, it
provides a strong motivation for the use of sequence labeling methods. On the other
hand, the UMN dataset potentially provides a more likely real-life application of AD,
since it is composed of raw clinical notes. The following section describes each dataset
in detail.

3.2.1 MeDAL Dataset

In our analysis, 2% of the full 14 million MeDAL abstract dataset was used. In this
subset, there are 288,080 rows, and each row contains an abstract, the location of
each ABV given by its index, and the corresponding long-form versions or senses. An
example of a MeDAL dataset instance can be found in Table 3.

There are 557,248 unique words, 4866 unique ABVs, and 16,299 unique labels
in the MeDAL dataset. However, to further reduce computational complexity and
training time in our experiments, only the 300 most frequent ABVs and their 1005
most frequent labels were selected. This restriction reduced total rows to 147,728 and
unique words to 320,168.

Figure1 illustrates ABV and word count distribution across abstracts. The mean
ABV count is 2.1 while the mean word count is 124. However, by removing the stop
words like the, at, or how, the average word count drops to 77. In this subset, there are
on average 3.35 unique senses associated with each abbreviation, with a minimum of
1 possible label (least ambiguous) to a maximum of 18 (most ambiguous). Figure2

Table 3 A sample MeDAL data instance

Text Locations Labels

The kinetic disposition and beta-adrenergic blocking
action in relation to the plasma level of a single oral
dose proportional to the extent of the histamine
release. It is concluded that the reduction in the in
vitro amine uptake after anaphylactic and
compound-induced histamine release is due to the fact
that there are fewer intact granules capable of storing
histamine and not primarily due to a damage to the
mechanisms by which mast cells take up BA in vitro
the observations further strengthen the view that
anaphylactic and compound-induced HR are
noncytolytic processes

(76, 90) (“Biogenic Amines,”
“Histamine Release”)
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(a) Word count distribution (b) Abbreviation count distribution

Fig. 1 Distribution of number of words and abbreviations for MeDAL dataset

shows the 20 ABVs with the greatest number of unique labels (see Fig. 2a), which are
considered the most ambiguous, as well as the label from each ABV with the greatest
number of occurrences in the dataset (see Fig. 2b).

These figures show that the dataset is imbalanced; specifically, the distribution of
the number of examples across all MeDAL labels span from a minimum of 14 up to
over 18,000. Figures3 a and b display the most frequent bi- and tri-grams. The n-gram
phrases and sample text in Table 3 show that most of the text is well structured and
most terms revolve around the themes of study, research, andmedical experimentation.

3.2.2 UMN Dataset

The UMN dataset consists of 36,996 rows, 74 unique ABVs, and 346 unique labels.
There are a total of 39,110 unique words in the text column. To reduce the complexity
of the dataset, any label with fewer than five examples is dropped from the dataset,
resulting in a final total of 203 labels and 72 ABVs. Only including these labels in
the dataset reduces the total rows to 35,518 and the total words to 37,283. As seen
in Fig. 4, the word count distribution is centered around its mean of 39 words, or 59,

(a) Most ambiguous ABVs (Greatest number
of unique labels)

(b) Most frequent label of ambiguous ABVs

Fig. 2 Most ambiguous ABVs and their most frequently occurring labels in the MeDAL dataset
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(a) Bi-grams distribution (b) Tri-grams distribution

Fig. 3 Top 20 most frequent bi- and tri-grams in the MeDAL dataset

including stop words. Table 4 presents a sample instance of the UMN dataset, which
has a very similar format to the MeDAL dataset. However, in each row, there can only
be one unique ABV present that can occur multiple times.

Looking deeper into the ABVs, there are on average 2.92 labels per ABV and
the dispersion between the minimum and maximum number of senses is 1 and 8,
respectively. Figure5 displays the most ambiguous ABVs in UMN along with each
of their top labels. Compared to the MeDAL, the dataset is less imbalanced with a
minimum of 5 and a maximum of 1774 examples for a label, respectively. Finally,
Figs. 6 a and b display the top bi- and tri-grams in the UMN dataset. We note that the
text is more unstructured than the MeDAL dataset and, as expected, the distribution
is centered around prescriptions and patient analysis.

3.2.3 Data Preprocessing

In our numerical analysis, to focus the models on more topic-specific terms and also
to reduce training time, punctuation and stop words were removed from the text, any
rows with ABVs beyond the 110th word index were dropped, and text columns were

Fig. 4 Word count distribution of the abstracts in the UMN dataset
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Table 4 A sample UMN data instance

Text Locations Labels

Her PA pressures were 44/26 with a wedge of 22 with a
CVP of 10 and her heart rate of 120 to 139. Her
cardiac index was 3. Nursing made aggressive
attempts to bring her PA pressures down, and on the
day 2 of admission, she was found to have her Nipride
running at 7 mcg/kg/min. This was quickly weaned,
and captopril was instituted with hydralazine as
needed.

(1, 35) (“Pulmonary Artery,”
“Pulmonary Artery”)

truncated to amaximum length of 115words.Additionally, to satisfy sequence labeling
model requirements, each token was mapped to its corresponding label; if the token
was a regular word, it was assigned NA_word, and if it was an ABV, it was mapped
to its corresponding sense.

TheMeDAL dataset has an abundance of labels with an excessive amount of exam-
ples. While this does not necessarily hinder prediction performance, using all training
examples can increase training time without significant performance improvements.
Accordingly, for the MeDAL dataset, we dropped any instance where all labels in the
row had at least 500 other rows to reference. These steps reduced the number of raws
in the dataset by half from 147,728 to 73,196.

Both datasets are further subsampled to ensure complete training, reduce the train-
ing time, and avoid resource limitations in certain experiments. Therefore, only a subset
of each dataset containing their respective top 12 most frequent ABVs and 40 most
frequent labels was used. After applying the same preprocessing steps as described
for MeDAL, 8472 rows remain in the UMN subset. We refer to the corresponding
datasets as MeDAL-40 and UMN-40, respectively, in the rest of the paper.

3.3 Experimental Setup

We evaluate our proposed sequence labeling method for AD using different mod-
els over MeDAL and UMN datasets. Five different BERT-based models including

(a) Most ambiguous ABVs (Greatest
number of unique labels)

(b) Most frequent label of ambiguous ABVs

Fig. 5 Most ambiguous ABVs and their most frequently occurring label in the UMN dataset
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(a) Bi-grams distribution (b) Tri-grams distribution

Fig. 6 Top 20 most frequent bi- and tri-grams in the UMN dataset (excluding any n-grams with digits)

DistilBERT, BioBERT, BlueBERT, MSBERT, and SciBERT are employed for the
comparative analysis. We select BiLSTM and CRF as two baseline models to test our
approach for the full-sized and limited 40-label versions of both datasets. Moreover,
we compare the performance of our sequence labeling approach with popular text
classification methods for AD.

Figure7a presents a visual representation of the proposed sequence labeling
pipeline. According to this flow, each token of a sentence receives either the “other”
(O) tag or the ABV sense tag as output labels. Within this context, our problem is
more similar to a POS (part-of-speech) task than a NER. This is because multiple
consecutive words can be associated with the same tag in NER, while in POS, each
word is evaluated separately. Therefore, our model does not utilize the BIO format,
which is a special structure developed for named entities. Rather, the proposed model
simply produces either O or sense of ABV.

The standard text classification approach for AD is illustrated in Fig. 7b. Text clas-
sification models select a window of m words around the target ABV and pass the
data to transformers-based models and the classifier. In this study, a window size of
40 is selected through extensive hyperparameter tuning experiments. Finally, a post-
processing approach is implemented on the results of text classification models. In
this approach, the predicted probability output is redistributed over the possible labels
of the target ABV, and the label with maximum probability is selected as the output.
Note that these possible labels are identified based on the corresponding labels of
the ABV in the training data. However, this method is not implemented on sequence
labeling raw outputs, since the methodology of the sequence labeling incorporates
the specific ABVs for each sample, rendering the postprocessing redundant. Hyper-
parameter tuning experiments are employed for all the models and datasets, and the
final hyperparameters are reported in Table 5.

The employed BiLSTM structure in our analysis is presented in Fig. 8. The model
consists of an embedding layer, two dropout layers, two LSTM layers, one of which is
Bidirectional, and a final TimeDistributed layer to output a label for every input token.
BiLSTMuses theAdam optimizer with a learning rate of 0.005, and sparse categorical
cross-entropy loss function to deal with the non-one-hot encoded labels. Additionally,
to decrease the impact of the imbalanced distribution of labels with the high majority
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(a) Sequence Labeling classification pipeline

(b) Text classification pipeline with window of size 2

Fig. 7 Flowchart of sequence labeling and text classification methods

Table 5 Selected model hyperparameters for each dataset

Model Dataset Hyperparameters

CRF MeDAL algorithm : lbfgs, c1 : 0.1, c2 : 0.1, max_iterations : 100

UMN algorithm : lbfgs, c1 : 0.1, c2 : 0.1, max_iterations : 100

BiLSTM MeDAL dropout_rate : 0.3, optimizer : Adam, learning_rate : 5e-3, activation
: softmax, loss_function : sparse_categorical_crossentropy,
num_epochs : 30, batch_size : 64

UMN dropout_rate : 0.3, optimizer : Adam, learning_rate : 5e-3, activation
: softmax, loss_function : sparse_categorical_crossentropy,
num_epochs : 30, batch_size : 64

DistilBERT
BioBERT
BlueBERT

MeDAL max_sequence_length : 512, num_epochs : 5, learning_rate : 2e-5,
weight_decay : 0.01, batch_size = 8

MS-BERT
SciBERT

UMN max_sequence_length : 512, num_epochs : 6, learning_rate : 2e-5,
weight_decay : 0.01, batch_size = 8
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Fig. 8 BiLSTM model architecture

of tokens being assigned to non-ABV label (NA_word), we set the weight of all labels
to 100 and keep NA_word at 1.

The training process for the pre-trainedBERTmodels is as follows.Wefirst tokenize
the datasets using the respective BERT Fast Tokenizer and then create training batches
using the DataCollatorForTokenClassification class which also dynamically pads the
sequences in each batch to be the same length. We then fine-tune the model using the
AutoModelForTokenClassification class from HuggingFace.1

The performance of the trained models is evaluated based on the 3-fold cross-
validation method. Macro- and weighted-F1 scores are the main performance metrics
reported in this study. The macro-averaged F1 score is computed by taking the arith-
metic mean of all per-sense F1 scores. This method treats all senses (classes) equally,
regardless of their support values. On the other hand, the weighted-average F1 score
takes into account the support for each sense when calculating the mean of all per-
sense F1 scores. The macro-F1 score calculation includes the NA_word label (the
label that should be assigned to non-ABV tokens), whereas, for weighted-F1 score,
it is excluded due to its abundantly large support and low importance. Macro- and
weighted-precision and recall values are also included to provide a more complete
performance analysis and compare the models on a deeper level.

1 https://huggingface.co/
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4 Numerical Results

In this section, we first compare the performance of different sequence labeling meth-
ods for the AD task. Next, we select the best-performing model from the first part and
compare its performancewith different text classificationmethods. Finally, we explore
the performances of the BERT-based sequence labeling methods in comparison to the
popular CRF approach over the limited-label MeDAL-40 and UMN-40 datasets.

4.1 Comparative Analysis of Sequence LabelingModels

In this experiment, we compare the performance of the BERT-based sequence labeling
methods against the BiLSTM model. Experiments are conducted over MeDAL and
UMN datasets with more than 1000 and 200 unique labels, respectively. We note that
the large size of these datasets closely resembles the computational complexity of real-
world scenarios. Table 6 presents the results of the experiments over both datasets,
and Fig. 9 shows the box plot of macro-F1 scores as obtained over 3 folds.

Weobserve that all theBERT-basedmodels outperform the baselineBiLSTMmodel
by a large margin. For the MeDAL dataset, SciBERT is the best-performing model
overall, with a macro-F1 score of 77.29%. On the other hand, the results show that
all BERT models perform similarly for the UMN dataset. The significant difference
between macro and weighted metrics highlights the imbalanced nature of the dataset.
In particular, limited samples of specific labels deteriorate the macro metrics of the
models. BioBERT and SciBERT for the MeDAL and BlueBERT for the UMN are
found to be the best-performing models. The strong performance by BioBERT is
expected as it was pre-trained on text data from a similar domain. BlueBERT was
pre-trained on similar text as well, though on a more limited basis, and hence achieved
much lowermacro scores for theMeDAL dataset. BlueBERT’s limitations onMeDAL
dataset could be explained by the class imbalance issue that affects its performance
particularly for macro average metrics.

4.2 Comparison Against Text ClassificationMethods

Table 7 presents the postprocessed performances of different text classificationmodels
against the best-performing sequence labeling model from the previous section. In
addition, the macro metrics are illustrated in Fig. 10. The impact of postprocessing
on the results of the text classification models is thoroughly explored and reported in
Sect. 1 of the Appendix.

Whenwe closely examine the performance of text classificationmodels, we observe
that the models produce similar results for both Medal and UMN data. However, we
still see that the BioBERT model gives slightly better results in terms of average
performance values. The DistilBERT model has shown a much weaker performance
compared to other models, and there may be two reasons for this. Firstly, the Distil-
BERT model has fewer parameters than other models. Secondly, since it was trained
on a general dataset rather than domain-specific data, its knowledge of the scientific
field is insufficient compared to other models.
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(a) Macro average metrics for MeDAL dataset

(b) Macro average metrics for UMN dataset

Fig. 9 Sequence labeling model performance comparison over full-label datasets

The results for theMeDAL dataset show that the SciBERT sequence labelingmodel
outperforms all the text classification models over macro metrics. However, for the
weighted metrics, SciBERT, BioBERT, and BlueBERT text classification models lead
to comparable performances. Similarly, for the UMNdataset, the BlueBERT sequence
labeling model outperforms all the other models in terms of macro metrics. On the
other hand, BioBERT shows higher performance in terms of weighted metrics.

Overall, closely examining the relative performance of both datasets reveals that
the best sequence labeling model was able to outperform the majority of the text
classification models. That is, that sequence labeling can provide similar or better
performance for medical AD tasks while also being able to manage text with multiple
unique ABVs. Another important advantage of this model is that it can provide better
results even for less-frequent abbreviations. We understand it from the difference
between macro and weighted metrics, which shows the impact of the class imbalance
for both MeDAL and UMN datasets. Lastly, the sequence labeling method does not
require any post-processing, making it easier to implement and adopt in practice.

4.3 Comparison Against Baseline CRFModel

Table 8 presents the performances of different sequence labeling models against the
CRF baseline model on a subsampled AD task with a total of 40 unique labels. Results
of macro-averaged metrics are also illustrated in Fig. 11.
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(a) Macro average metrics for MeDAL dataset

(b) Macro average metrics for UMN dataset

Fig. 10 Text classification model performance comparison over full-label datasets

We observe that themajority of BERT-basedmodels except DistilBERToutperform
the CRF approach for both datasets. Moreover, SciBERT outperforms all the models
for both datasets. Similar to full-size datasets, BioBERT and BlueBERT lead to a
similar performance for the UMN dataset. Although the labels are sub-sampled and
reduced to 40most frequent labels, the visible difference betweenmacro and weighted
metrics shows that the label distributions in these datasets remain imbalanced. On
the other hand, we note that reducing the number of labels in these datasets has led
to significant reductions in the training times with the average training time of the
models dropping from 40 to 6min and 16 to 2min for the MeDAL and UMN datasets,
respectively.

5 Discussion and Conclusions

In this study, we investigated the ability of transformers-based text classification and
sequence labeling models for the single-token medical AD task. While the majority of
recent studies explore text classification methods for the medical AD task, we adopted
a sequence labeling approach for this problem where each word (or ABV) is assigned
a label.
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(a) Macro average metrics for MeDAL-40 dataset

(b) Macro average metrics for UMN-40 dataset

Fig. 11 Sequence labeling model performance comparison over limited-label datasets

The results showed all BERT-basedmodels outperform the BiLSTMandCRF base-
line models. Across our two main experiments, we found that BioBERT consistently
performed well on both datasets and was notably resistant to data imbalance. Further-
more, its stronger relative performance on both MeDAL dataset variations could be
attributed to the fact that it was pre-trained on 18 B words from medical abstracts.
Similarly, MS-BERT was among the top performers on the UMN datasets which can
also be credited to its relevant pre-training corpora. However, the most notable out-
come from these experiments was found in SciBERT results. This model consistently
performed the best or close to the best in both experiments and datasets while not
being pre-trained on nearly as many medical abstract words as BioBERT, let alone
any pre-training on clinical notes like MS-BERT. This success can be attributed to
the use of a domain-specific vocabulary, instead of the one created by BERTbase,
playing a key role in the performance of SciBERT, and should be a consideration in
future works. Overall, through our detailed experiments, we were able to examine the
efficacy of sequence labeling methods on the medical AD task and demonstrate its
benefits over text classification-based approaches. Additionally, our results showed
the effect of transfer learning, the significance of relevant pre-training corpora, and
the importance of a model’s resistance to label imbalance.
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The datasets used in our study,while relevant, do not necessarily capture all possible
environments where medical ABVs could occur. Accordingly, repeating our experi-
ments with more datasets, ideally, clinical patient notes with multiple unique target
ABVs could be helpful in medical AD research; however, we note that suitable public
medical datasets are rarely made available. Regarding our chosen solution to this task,
using sequence labeling methods on this problem only enhances the class imbalance
issue due to the amount of non-ABV entities present in each text. Moreover, lim-
ited hyperparameter tuning can pose a threat to validity. Conducting more extensive
hyperparameter tuning experiments could help further improve the performance for
our medical AD tasks.

In our numerical analysis, we incorporated limited features for the CRF model,
which may deteriorate the models’ performance. Future work can benefit from a more
extensive feature selection procedure. Furthermore, the postprocessing was found to
have a significant impact for the text classification model performance. However,
exploring and comparing alternative postprocessing methods could prove to be bene-
ficial for this task. Finally, although the motivation of our study was to use sequence
labeling methods for the medical AD task, based on the results from the text classi-
fication baseline, another possible route could be to combine text classification and
sequence labeling methods into one comprehensive model, e.g., using a voting ensem-
ble.
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Appendix. Text classification postprocessing results

In this section, we have reported the detailed results for the text classification experi-
ments in Sect. 4.2. Table 9 presents the performance values before and after applying
postprocessing. Overall, we observe that almost all the models benefit from postpro-
cessing. In particular, DistilBERT, BlueBERT, andMS-BERT experience a significant
performance improvement for the MeDAL dataset. On the other hand, BioBERT and
SciBERT models’ performances do not benefit from the postprocessing approach on
the UMN dataset.
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