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Abstract
Sensitivity analysis is an important aspect of model development as it can be used 
to assess the level of confidence that is associated with the outcomes of a study. 
In many practical problems, sensitivity analysis involves evaluating a large num-
ber of parameter combinations which may require an extensive amount of time 
and resources. However, such a computational burden can be avoided by identify-
ing smaller subsets of parameter combinations that can be later used to generate the 
desired outcomes for other parameter combinations. In this study, we investigate 
machine learning-based approaches for speeding up the sensitivity analysis. Fur-
thermore, we apply feature selection methods to identify the relative importance of 
quantitative model parameters in terms of their predictive ability on the outcomes. 
Finally, we highlight the effectiveness of active learning strategies in improving the 
sensitivity analysis processes by reducing the total number of quantitative model 
runs required to construct a high-performance prediction model. Our experiments 
on two datasets obtained from the sensitivity analysis performed for two disease 
screening modeling studies indicate that ensemble methods such as Random For-
ests and XGBoost consistently outperform other machine learning algorithms in 
the prediction task of the associated sensitivity analysis. In addition, we note that 
active learning can lead to significant speed-ups in sensitivity analysis by enabling 
the selection of more useful parameter combinations (i.e., instances) to be used for 
prediction models.
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1  Introduction

Mathematical models are constructed in many fields of science and technology 
to simulate real-world phenomena. These models tend to be complicated and are 
usually implemented in a powerful computing environment. As such, it is often 
not clear how the model reacts to modifications on its inputs. Sensitivity analysis 
is a vital stage in the process of model construction that can be considered as a 
systematic way to study how the uncertainty in the model’s input will affect the 
outputs. It provides crucial insights into the structure and robustness of the out-
comes as model parameters change.

There is a wide range of analytical/simulation-based quantitative models that 
are used to study various practical problems. We refer to all such models as 
“quantitative models” for the sake of generalization. Sensitivity analysis strate-
gies are usually tailored to different quantitative model specifications such as the 
existence of a correlation between inputs, multiple outputs and a lack of freedom 
in the choice of data [1]. These strategies are mainly divided into two categories: 
local (or deterministic) and global (or probabilistic).

In general, the easiest approach to challenge a quantitative model is to analyze 
its performance when only one part of the model varies, which is the basic strat-
egy employed in the one-way sensitivity analysis. Such methods (i.e., one-factor-
at-a-time) fall under the category of local sensitivity analysis. While the one-way 
strategy is easy to use, it does not fully explore the input space. Therefore, it often 
fails to identify the existence of interactions between different input variables [2].

It is possible to extend the theory of one-way sensitivity analysis to multi-way 
sensitivity analysis, which aims to explain the quantitative model output based on 
the changes in more than one of its parameters. In practice, the number of pos-
sible combinations of input parameters in multi-way sensitivity analysis might 
be excessively large. Therefore, this method is usually restricted to exploring the 
effects of changing fairly few parameters at the same time [3].

Global (or probabilistic) methods are a collection of mathematical methods to 
explore whether a quantitative model’s output variation (i.e., uncertainty) can be 
linked to the variations in the input parameters. This strategy might be used to 
associate the output uncertainty to various aspects of quantitative model uncer-
tainty. The basic hypothesis of a probabilistic sensitivity analysis is the existence 
of sufficient knowledge about the probability distribution and correlation among 
the quantitative model inputs [4].

Sophisticated quantitative models usually include complicated simulations. 
Accordingly, it is not always feasible to solely rely on the intuition for the rec-
ognition of the model output’s reaction to variations in the model inputs. In such 
cases, a full sensitivity analysis may not always be achieved regardless of whether 
all the parameter combinations are taken into account or a sampling method is 
used to reduce the dimensionality of the problem. Specifically, in a problem 
with two distinct values for each quantitative model input, a complete sensitiv-
ity analysis for all parameter combinations requires performing a complete facto-
rial design with two levels. Hence, the associated number of simulation runs for 
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a quantitative model with N inputs would be 2N, which may render such a cal-
culation infeasible [5]. Such computational difficulties may force researchers to 
explore only a subset of available parameters and their interactions. For instance, 
while there can be thousands of parameters in a typical earth and environmental 
systems modeling, many studies consider 20 or fewer parameters/factors in their 
sensitivity analysis [6]. Gupta and Razavi [7] discuss the challenges of conduct-
ing sensitivity analysis in such settings.

By identifying smaller subsets of combinations that can be used to generate 
the required outputs for the others, the need to evaluate a large number of param-
eter combinations could be avoided. Accordingly, identifying such subsets might 
have critical importance for the success of sensitivity analysis. A prediction 
model (e.g., a machine learning model) that is built on a small number of evalu-
ated input parameter combinations can be used to estimate the outcomes for the 
remaining (unlabeled) parameter combinations [8]. This way, the entire process 
of sensitivity analysis can be considerably accelerated.

A general concern with using a machine learning model for predicting the 
quantitative model outputs in the process of sensitivity analysis is the formation 
of the training and test sets. This can be alleviated by evaluating a random subset 
of all parameter combinations and using this subset to train/test the prediction 
model. However, the performance of the resulting prediction model can be arbi-
trarily poor due to random subset selection and the existence of a large number of 
unlabeled (unevaluated) parameter combinations. Active learning strategies can 
be employed to guide the formation of the training set, and improve the perfor-
mance of the prediction model. Such active learning approaches are frequently 
used for similar learning tasks where the unlabeled instances are abundant and 
labeling these instances are costly [8].

In this study, we consider machine learning approaches for speeding up the 
sensitivity analysis. We specifically focus on multi-way sensitivity analysis pro-
cesses where the impact of interactions between various input parameters on the 
quantitative model outcomes are examined. In these types of settings, usually a 
range of values for each input is determined and then the combinations of the 
parameters are evaluated through quantitative model simulations. Considering 
that the number of such parameter combinations can be excessively large, we pro-
pose employing supervised learning and active learning-based approaches to pre-
dict the outcomes associated with each parameter combination. Main contribu-
tions of our study can be summarized as follows:

•	 We show how machine learning methods can be employed to conduct sensitiv-
ity analysis more effectively. Our analysis include showing the performances 
of various machine learning models in predicting the quantitative model out-
comes as well as illustrating how feature selection methods can be used to bet-
ter understand the most important parameters to conduct sensitivity analysis 
for.

•	 We propose using active learning to speed up the sensitivity analysis processes. 
We note that the prediction problem involving the sensitivity analysis is particu-
larly suited for active learning as the unlabeled instances (i.e., parameter combi-
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nations) are abundant, and labeling those require costly quantitative model (i.e., 
oracle) runs.

•	 We conduct an extensive numerical study with various machine learning and 
active learning methods using two datasets obtained from previously performed 
sensitivity analysis. Our results show that active learning can be considerably 
more effective than random (passive) sampling in improving the prediction 
model performances, and, therefore, has potential to speed up the sensitivity 
analysis processes significantly.

The remainder of the paper is organized as follows. In Section  2, the related 
works are summarized. In Section  3, different machine learning methods for the 
sensitivity analysis problem, which is considered as a regression task, are discussed 
along with the proposed active learning algorithm. In Section 4, results on the per-
formance of the proposed approaches under different scenarios are reported, and 
the impact of the training set size on prediction model performance is examined. 
Finally, in Section 5, threats to validity are explored, which is followed by discus-
sion and conclusions.

2 � Related Work

Due to the broad applicability of sensitivity analysis in various domains, there is 
an extensive literature on different aspects of sensitivity analysis methodologies. 
Therefore, we only summarize the most relevant studies and refer readers to a recent 
review paper by [9].

Considering its relative simplicity, there are not many methodological studies on 
the local sensitivity analysis. A closely related problem to the local sensitivity analy-
sis is the identification of unknown quantitative model parameters through calibra-
tion. Pfingsten [10] argued that while Monte Carlo methods are commonly used for 
determining the model parameters in micro electro-mechanical device design, it 
would be infeasible to perform such analysis if the underlying quantitative models 
are computationally expensive. Accordingly, the author empirically illustrated how 
to reduce the number of associated simulation runs by using an active learning strat-
egy for the sensitivity analysis derived directly from the expected loss of Bayes-
ian quadrature. Using a similar strategy for simulation calibration, [8] developed an 
active learning algorithm that was able to increase the accuracy of the prediction 
model for their simulation calibration problem. They empirically demonstrated how 
active learning was able to speed up the calibration procedure of a previously vali-
dated breast cancer simulation model.

Several studies in the literature investigated the probabilistic sensitivity analysis. 
Oakley and O’Hagan [1] provided a Bayesian methodology that aims to provide 
a complete and in-depth assessment of a quantitative model’s sensitivity to varia-
tions in its input features. Their model accounts for the uncertainties related to bias 
terms and allows the user to specify a variety of probability distributions for the bias 
parameters associated with the inputs. Chen et al. [11] argued that typical sensitivity 
analysis approaches could rarely be directly applied to sequential decision-making 
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problems in healthcare, considering that such problems would involve evaluation of 
all probable sequences of decisions that usually fall in the order of trillions. Accord-
ingly, they provided a probabilistic univariate method for recognizing the most 
sensitive parameters in Markov decision processes along with a probabilistic mul-
tivariate strategy that considers common uncertainty in model parameters to assess 
general trust in the suggested optimal strategy.

In a recent study, [12] investigated probabilistic sensitivity analysis on Markov 
models with uncertain transition probabilities. Their study outlined two sampling 
methods. In the first method, each row of the transition probability matrix was inde-
pendently selected from a uniform distribution, whereas in the second method, a 
random sampling from a multivariate normal distribution was employed.

3 � Methodology

We employ various machine learning approaches for predicting the quantitative 
model outcomes. We note that the associated outcomes are typically continuous-
valued and can be predicted via regression models. Accordingly, we first review 
the machine learning-based regression models, and then provide an active learning 
algorithm tailored for multi-way sensitivity analysis.

3.1 � Review of Machine Learning Models

We consider the most commonly used algorithms in the literature to train a regres-
sion-based prediction model on the given problem data. Specifically, we experiment 
with linear models such as linear regression (LR) and ridge regression, which can be 
preferable over other models due to their simplicity and interpretability. Distance-
based learning methods such as k-nearest neighbor (KNN) can be considered as a 
suitable baseline for the sensitivity analysis problem because the similar param-
eter combinations (i.e., instances) can be considered to have similar outputs (i.e., 
labels). Decision trees (DT) and tree-based ensembles such as Random Forests (RF), 
XGBoost and Light Gradient Boosting Machines (LGBM) can be used to learn the 
nonlinear relations between input features. Alongside these methods, we also con-
sider other popular machine learning models such as Support Vector Regressor, 
Multi-Layer Perceptron Regressor, Gradient Boosting Regressor and Extra Trees 
Regressor. However, we only provide results for a subset of these methods either 
because they do not perform well or their performance is very similar to that of 
another model.

3.2 � Active Learning

Active learning (AL) is an iterative supervised learning method that actively 
selects the most useful training data points to learn from. In theory, if the pre-
diction model is able to strategically pick/query the data points, the prediction 
model could perform better with a smaller training set [13]. Accordingly, in an 
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AL scheme, model training usually starts with a small training set, and the pre-
diction model is re-trained by including more training instances that are carefully 
selected based on a predetermined query strategy. Previous studies show that 
AL is an effective query-based method that performs well for problems with few 
available data points and is less prone to overfitting [13, 14].

In the literature, there are many applications of active learning that use differ-
ent settings and query strategies. Burbidge et al. [14] used QBC for active learn-
ing in real-valued functions and found that the QBC approach works well when 
the learner’s bias is small. In natural language processing problems, there are 
usually a large number of unlabeled samples, and labeling these samples can be 
time consuming and costly. Figueroa et  al. [15] used active learning techniques 
to classify the clinical texts, and performed a comparative analysis with distance-
based, diversity-based, and combination-based active learning algorithms. AL 
has also been used in software analytics, especially for software defect prediction. 
For example, [16] used active learning with uncertainty sampling to automate 
the development of models which improve the performance of defect prediction 
between successive product releases.

In the case of sensitivity analysis, evaluating the entire combinations of dif-
ferent parameters using the quantitative model could be infeasible because of the 
required total computation/run time. AL could thus be used to avoid having to 
evaluate the entire set of parameter combinations while giving comparable, if not 
better, results.

The most important aspect of an AL scheme is determination of the query strat-
egy that is able to identify the most useful instances to be included in the training 
set. According to [17], three main factors can be considered in identifying the query 
instances: informativeness (based on different criteria such as entropy and expected 
model change), representativeness (e.g., ignoring the outliers) and diversity. Based 
on these factors, we employ a query-by-committee (QBC) approach as our query 
strategy, which is enhanced by a filtering function that leaves out less informative 
instances and a clustering approach which promotes diversity of the instances that 
are added to the training set.

QBC is one of the most popular AL approaches for regression and classifica-
tion problems [14]. Earlier work in the field of active learning established the the-
ory behind the effectiveness of QBC in identifying the most useful instances to 
query [18–20]. On the other hand, providing a rigorous proof on the effectiveness 
of QBC enhancements is a non-trivial task. Accordingly, many subsequent stud-
ies relied on empirical analysis to show the effectiveness of various active learn-
ing strategies. In a recent study, [21] conducted a detailed numerical study and 
showed that incorporating diversity in the queried instances improves QBC-only 
strategy through prevention of redundant instances in the queries. Similar empiri-
cal approach to verifying the effectiveness of the query strategies were adopted in 
other studies as well [8, 22].

In QBC, a committee of learners, Q = {�1, �2,… , �n} , where a committee mem-
ber 𝜃i can be taken as a machine learning model, are employed to predict the out-
comes for the unlabeled instances ( U ). Each committee member, �i ∈ Q , is trained 
over the labeled instances ( X  ) and predicts a label for each unlabeled instance. Let 
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the i th committee member’s prediction for the unlabeled instance � ∈ U be Pi
�
 . 

Then, we calculate the variance of the predictions over the committee Q as

where P̄
�
= (1∕n)

∑n

i=1
Pi
�
 . Unlabeled instances with the highest variances are 

regarded as the most informative ones (i.e., the committee members have the highest 
disagreements over these instances), and constitute the set of candidate instances, S , 
to be evaluated through the quantitative model and added to the training set X .

We consider further refinements of the candidate set S , to be able to add more 
informative instances to the training set. Specifically, we consider a second filter, 
which takes one committee member to be the base learner (f ), and compares the 
predictions of the base learner with the actual labels of the instances in S . The 
instances with highest absolute differences between their actual labels and predicted 
labels are included in a filtered set of candidate instances SF , which can then be 
added to the training set X .

Finally, we employ a clustering approach in order to promote the diversity 
and representativeness of the instances that are added to the training set in 
each iteration of the AL algorithm. That is, over the remaining set of unlabeled 
instances (i.e., U ⧵ SF ), we perform clustering to group the unlabeled instances, 
and randomly pick one instance from each cluster to construct a set ( R ), which 
can then be added to the training set (after their actual labels are obtained). 
This way, we aim to ensure that relatively different instances are added to the 
training set.

Algorithm  1 summarizes our comprehensive AL approach. In the initiali-
zation part of the algorithm, we divide all available instances ( D ) into three 
distinct sets as the training set ( X  ) and the test set ( Z ) with known labels 
and the set of unlabeled instances ( U  ). The other AL algorithm parameters 
such as query batch size (b), second filter ratio (ρ)—specifying ratio of b to be 
included in the training set– and number of clusters (k)—specifying number of 
randomly selected instances to be included in the training set—are also set in 
the initialization step of the algorithm.

Algorithm  1 iterates until a stopping criterion is satisfied. At each step, a 
set of instances S is determined by QueryByCommittee(Q,X,U, b ) (see Algo-
rithm 2) which, trains the members of Q over the training set X  , and returns b 
instances ( U[I] , I  specifying indices of such instances) with the highest vari-
ance in their predicted labels using a generic function named “ Get Max Value 
Indices”.

SecondFilter(S, f ,X, � ) algorithm (see Algorithm  3) filters the provided set 
of instances, S , in order to identify those with the largest prediction errors. These 
instances are represented by SF . Specifically, for each instance in S , the predicted 
label is obtained using a base learner (f ) and a generic function (Predict(⋅,⋅)), and 
is represented by P. The predicted values are compared to the actual label, repre-
sented by A, which is obtained using a generic function named EvaluateQuantita-
tiveModel(⋅). Next, GetMaxValueIndices(⋅,⋅) function returns the indices ( I  ) of 

Var
�
= (1∕n)

n∑
i=1

(Pi

�
− P̄

�
)2, � ∈ U,
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� × |S| instances with highest prediction errors, which are calculated by taking the 
difference between the predicted and actual labels. Then, these values are used to 
obtain the associated instances (e.g., using S[I]).

Remaining unlabeled instances are clustered using the generic function Cluster-
Instances(⋅,⋅) and one instance is picked from each of the resulting clusters (using 
the generic RandomChoice(⋅) function) to be added to the training set. We assume 
that the RandomChoice(⋅) function calls the EvaluateQuantitativeModel(⋅) func-
tion to retrieve the actual label for each randomly selected instance. After updating 
the training set and the set of unlabeled instances, the base learner is trained over 
the new training set and its performance over the test set is reported using another 
generic function named ReportPerformance(⋅).

4 � Numerical Study

We next discuss the experimental setup and our findings with various machine 
learning methods. We consider R-squared (R2), Mean Absolute Error (MAE) 
and Root Mean Square Error (RMSE) as the performance metrics for assessing 
the performances of different approaches. R2, also known as coefficient of deter-
mination, is a measure of goodness-of-fit for regression models, defined as the 
proportion of the variance in the dependent variable that is predictable by the 
independent variables [23]. The ideal value for R2 is 1.0; however, it can also 
have negative values when the prediction model is arbitrarily bad. RMSE is more 
sensitive to the outliers compared to MAE, and it can be the preferred approach 
in the case model robustness towards outliers is highly valued. While R2 is a 
generic metric (i.e., always ≤ 1.0), MAE and RMSE values depend on the scale 
of the predicted values.

4.1 � Dataset

We consider two distinct datasets to illustrate the effectiveness of our 
approaches. The first dataset, referred to as “POMDP dataset”, is based on 
the sensitivity analysis conducted by [24]. Specifically, [24] propose Partially 
Observable Markov Decision Process (POMDP) models to investigate the 
impact of the supplemental screening tests such as ultrasound and Magnetic 
Resonance Imaging (MRI) for timely detection of breast cancer for women with 
different breast densities. As several inputs for their models are subject to vari-
ability, they conduct a multi-way sensitivity analysis to assess the robustness of 
their models. As it is the case in [24]’s study, we only consider the sensitivity 
analysis task performed over the patients with extreme breast densities. The 
second dataset, which we refer to as “DES dataset”, is adopted from [8]’s study, 
and shows how the discrete-event simulation (DES) model outcomes change 
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based on various model parameters. The DES model is originally developed 
for replicating historical observations for breast cancer, evaluating breast can-
cer screening and treatment strategies, and understanding the cancer outcomes 
[25]. Note that the DES model performance is measured by total deviations 
from historical observations (i.e., using a numerical “score” value), and each 
parameter combination (i.e., instance) has an associated (single) score value 
(i.e., label).
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Table  1 summarizes the values for the input parameters that are considered in 
the sensitivity analysis associated with POMDP and DES datasets. “Baseline value” 
column includes the parameter values used in the main experiments, whereas “Sen-
sitivity levels” column list the values used for the corresponding parameter during 

Table 1   Input parameter values for the sensitivity analysis (baseline values refer to the parameter val-
ues that are originally used in the quantitative model, and sensitivity levels refer to the values a specific 
parameter can take during the sensitivity analysis)

Parameter Baseline value Sensitivity levels

(a) POMDP dataset
Sensitivity (%), ultrasound 55 50, 70, 90, 100
Sensitivity (%), MRI 90 90, 95, 100
Specificity (%), ultrasound 94 90, 95, 100
Specificity (%), MRI 72 70, 80, 90, 100
Disutility (days), mammography 0.5 0, 0.5
Disutility (days), ultrasound 0.5 0, 0.5
Disutility (days), MRI 2 0, 0.5, 2
Disutility (days), positive test 14 0, 7, 14
(b) DES dataset
Fraction of LMP tumors 0.42 0.00, 0.30, 0.60
LMP dwell time 0.5 1, 2, 3
Onset proportion 0.90 0.80, 0.90, 1.00
APC lag 3 1, 3, 7
Percentage of aggressive tumors 0.01 0.01, 0.10, 0.20
Percentage of highly aggressive tumors 0.02 0.006, 0.04, 0.10
Mean tumor growth 0.12 0.01, 0.02, 0.03, 0.04, 0.05
Variance tumor growth 0.012 0.00, 0.03, 0.05
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the sensitivity analysis. For instance, [24] took the ultrasound sensitivity as 55% in 
their original experiments; however, they used four distinct values ranging from 50% 
to 100% for the same parameter during the sensitivity analysis. Sandikci et al. [24] 
focus on five different model outcomes in the sensitivity analysis, namely, Quality-
Adjusted Life year Estimate (QALE), the ratio of mammography screenings fol-
lowed by MRI/ultrasound, average sojourn time, and detection rate. Note that we 
have eight different input parameters and each of them has two to four levels, which 
results in a total of 5,184 parameter combinations to be evaluated with two POMDP 
models proposed in the paper (i.e., a total number of quantitative model runs is 
10,368). Assuming that each quantitative model run and the associated discrete-
event simulation model, which is used for policy analysis, take 10 minutes, com-
pleting 10,368 runs would take 72 days if the simulation model runs are not done 
in parallel. Accordingly, it is necessary to employ a more clever approach to con-
duct such a sensitivity analysis. Table 1b demonstrates the input parameter values in 
DES dataset. The original dataset used by [8] has 378,000 parameter combinations; 
however, we downsampled some of the parameter combinations to make the dataset 
more inline with standard sensitivity analysis process as well as to have a more uni-
form experimental setup. The resulting DES dataset has 10,935 parameter combina-
tions to be evaluated by the quantitative model.

4.2 � Exploratory Data Analysis

Figures 1 and 2 summarize some of the input parameters and their interactions with 
the outcome measures in the POMDP and DES datasets, respectively. First of all, 
we observe that, while there is low variability in some outcomes (e.g., QALE and 
Average Sojourn Time in the POMDP dataset), there is high variability in the others 
(e.g., MRI and Ultrasound follow-up ratios in the POMDP dataset). Accordingly, 
we expect the prediction models to perform better for predicting the outcomes with 
low variability. Besides, we note that conducting a multi-way sensitivity analysis is 

Fig. 1   Distribution of data points for different class labels in POMDP dataset
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justified for both datasets as the interaction between input parameters might have a 
significant impact on the outcomes. For instance, in the POMDP dataset, MRI fol-
low-up ratio approaches 100% only when the disutility of receiving MRI is not too 
high (e.g., 2 days). Lastly, complex interactions between different input parameters 
indicate the necessity to use nonlinear regression models (e.g., DTs, and ensemble 
models) for the prediction task.

4.3 � Experimental Setup

We conduct our analysis using the machine learning models that are readily availa-
ble in scikit-learn python library [26]. Our preliminary analysis did not show signifi-
cant performance improvement attributed to various hyperparameters (e.g., those of 
machine learning models and active learning algorithm). Therefore, we do not per-
form extensive parameter tuning in our experiments with different machine learning 
methods.

In the active learning algorithm, there is a large number of possibilities to con-
struct the committee, Q , in the QBC step. We consider the committee members to 
be from a diverse family of machine learning models. In addition, through our pre-
liminary analysis for committee selection, we identify the models that show a rela-
tively large degree of disagreement in predictions. There are different choices for the 
stopping criterion in AL strategies such as getting a desired performance level by 
using the test set and running the algorithm for a specific number of iterations. In 
our implementations, since we are considering a fixed number of instances, and our 
aim is to compare AL with standard supervised learning approaches, AL algorithm 
is set to run until U = � . In addition, we consider k-means clustering as the cluster-
ing approach. As different parameters (i.e., features) tend to be on different scales, 
we standardize the features before performing the k-means clustering. The remain-
ing AL algorithm parameters and their values are presented in Table 2.

4.4 � Comparison of Regression Models

We first experiment with various machine learning models to assess the effective-
ness of these models for predicting the quantitative model outcomes, and their 

Fig. 2   Distribution of data points according to the class label in DES dataset
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potential in facilitating sensitivity analysis processes. We employ 5-fold cross 
validation in these experiments, which divides the dataset to five folds, and in 
each step, one fold is used as the testing set and the remaining four folds are 
used as the training set. In order to eliminate the impact of randomization, this 
experiment is repeated ten times and the average of the outcomes is reported for 
each model. Table 3 shows the results of these experiments for various machine 
learning models over the POMDP and DES datasets based on three performance 
metrics: MAE, RMSE, and R2.

Table 2   AL algorithm 
parameter values

Parameter Notation Value

Set of all instances  D  |D| = 5184
Initial training set  X   |X| = 1% × |D| 
Unlabeled instance set  U  |U| = 79% × |D|
Test set  Z  |Z| = 20% × |D|
QBC query batch size b  1% × |D|
Second filter ratio ρ 0.5
Number of clusters k  0.5% × |D|

Table 3   Performances of different prediction models based on MAE, R2, and RMSE values (the best 
performance in terms of R2 value is bold-faced)

Output Measure LR KNN RF DT LGBM XGBoost

(a) POMDP dataset
QALE MAE 0.019 0.005 0.001 0.001 0.002 0.002

R2 0.925 0.993 0.999 0.999 0.999 0.999
RMSE 0.023 0.007 0.002 0.002 0.003 0.003

MRI MAE 0.192 0.045 0.018 0.017 0.034 0.031
Count R2 0.662 0.953 0.989 0.989 0.978 0.982

RMSE 0.229 0.083 0.042 0.041 0.057 0.052
Ultrasound MAE 0.190 0.063 0.014 0.012 0.039 0.035
Count R2 0.562 0.907 0.987 0.988 0.965 0.973

RMSE 0.234 0.107 0.039 0.038 0.065 0.057
Detection MAE 0.001 0.001 0.001 0.001 0.001 0.001
Rate R2 0.554 0.929 0.983 0.982 0.986 0.967

RMSE 0.002 0.001 0.001 0.001 0.001 0.001
Sojourn MAE 0.025 0.009 0.002 0.002 0.003 0.004
Time R2 0.514 0.917 0.994 0.994 0.986 0.986

RMSE 0.032 0.013 0.003 0.003 0.005 0.005
(b) DES dataset
Score MAE 7.397 3.760 1.781 1.802 2.663 1.987

R2 0.635 0.881 0.960 0.934 0.942 0.965
RMSE 9.963 5.692 3.310 4.221 3.958 3.063
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We only present results with a representative machine learning models, namely, 
LR, KNN, RF, DT, LGBM, and XGBoost. Some other machine learning models 
with similar structures to the ones presented in Table 3 also provide good perfor-
mance for predicting the quantitative model outcomes. For instance, GBR (a boost-
ing ensemble similar to XGBoost and LGBM) and Extra Trees Regressor (a bagging 
ensemble similar to RF) show somewhat similar performance to their counterparts 
presented in this table. On the other hand, we note that machine learning models 
such as Naive Bayes, Support Vector Machines and Multi-layer Perceptrons, do not 
provide consistently good performance across different datasets and target labels, 
and therefore omitted from our analysis.

[24] developed linear regression meta-models on the (POMDP) dataset obtained 
through multi-way sensitivity analysis with the aim of guiding the reader to better 
evaluate the impact of input parameters. [8] considered a limited number of machine 
learning models, namely, LR, artificial neural networks (ANN), bagging ensembles 
with ANN (bagANN) for the simulation calibration dataset (which is a variant of 
our DES dataset), and concluded that bagANN is the best performing supervised 
learning approach. Different from these two studies, we observe that DT and the tree 
ensembles (e.g., RF, LGBM and XGBoost) provide the best performance in terms of 
predicting the quantitative model outcomes.

For the POMDP dataset, which contains five different target outputs (labels), we 
observe that DT and RF provide the best overall performance, as evidenced by all 
three performance metrics. Superior performances of these two models are more 
evident in predicting outcomes with higher variability such as MRI and ultrasound 
counts. On the other hand, the majority of the prediction models perform well for an 
outcome with low variability such as QALE, which only varies between 38.10 and 
38.40 years over all the instances in the dataset (see Fig. 1). For the DES dataset, 
we note that XGBoost performs the best in terms of R2 and RMSE, whereas RF 
performs the best in terms of MAE, indicating that XGBoost is more robust towards 
outliers.

4.5 � Assessing Feature Importances

Assessing the relative importance of each input parameter on the prediction model 
outcomes through feature selection (FS) strategies can be useful, as it provides an 
extra tool for selecting the most important parameters to focus on during the sen-
sitivity analysis, with respect to the output variable(s). Feature selection can also 
be used for dimensionality reduction and fine-tuning the performances of some 
machine learning models. We employ alternative FS strategies, namely, feature 
importances (ImpScore) from tree-based learners (e.g., see feature_importances_ 
method in scikit-learn), F-statistic (F-stat), and Spearman correlation. DTs and 
DT-based ensembles (e.g., RF and XGB) provide a method for feature importance 
calculation. Specifically, in a DT, these values can be computed by going over all 
the splits that involve the target feature, and measuring how much variance (or 
Gini index) is reduced compared to the parent node due to the split on the target 
feature. On the other hand, F-statistic and Spearman correlation values provide a 

330 Journal of Healthcare Informatics Research (2022) 6:317–343



1 3

more indirect method to calculate the feature importances, as they only consider 
the statistical relation between a given feature and the class label. Additionally, all 
three methods commonly do not take into account feature interactions while calcu-
lating the importance values, that is, each feature is considered in isolation. There 
exist other strategies to calculate the feature importances (e.g., mutual information 
and chi-squared statistic); however, they are omitted in our analysis for the sake of 
brevity.

Table 4 summarizes the feature selection results for each input parameter and pre-
diction model outcome. We observe that, while there might be disagreements among 
feature selection methods in terms of the orderings of the input parameters for a 
given outcome, their agreements might be considered as a strong indicator for the 
impact of certain inputs on the outcome measures. For instance, for the POMDP 
dataset, all three FS strategies indicate that the disutility of MRI is the most domi-
nant factor for the MRI and ultrasound ratios, which is reasonable considering that 
high disutility values for MRI prevents MRI recommendations, and only one of MRI 
and ultrasound is recommended to a patient at any given period. Similarly, for the 
DES dataset, we observe that Mean tumor growth parameter is significantly more 
important than others to predict the score (i.e., label) value. This observation can be 
taken as an indicator that more values should be sampled from this particular param-
eter to assess the robustness of the quantitative model through sensitivity analysis.

4.6 � Impact of Training Set Size

As discussed earlier, one of the main issues with using standard supervised learn-
ing approaches for sensitivity analysis is the fact that there is no systematic way of 
determining a sufficient training set size that potentially leads to a well performing 
prediction model. In order to assess the impact of the training set size on the predic-
tive performance, we trained machine learning models using different training set 
sizes starting with employing 1% of the available data as the initial training set and 
20% as the test set. We repeated the experiments 30 times by shuffling the data to 
eliminate the randomization effects. Figure 3 shows the performance of the machine 
learning models in terms of R2 values relative to the training set size. These results 
demonstrate that tree-based ensembles (RF, LGBM and XGBoost) converge faster 
than other machine learning models in all five regression tasks associated with the 
POMDP dataset as well as that of DES dataset. Overall, we observe that XGBoost 
and LGBM have a slight edge over RF in terms of convergence performance, which 
is especially evident for the DES dataset. On the other hand, LR performs the worst 
consistently in all cases. KNN and DT performances improve more slowly with 
increasing training set size.

4.7 � Active Learning Results

We experiment with different active learning algorithm settings. Our preliminary 
analysis include examining different query strategies and batch size parameter (i.e., 
number of instances to be added to training set at each iteration). We observe that 
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these parameters can contribute to minor differences in the active learning algorithm 
performance. Due to its relatively fast convergence (i.e., as observed in training set 
size experiments), we consider LGBM as the base learner. Through our preliminary 
experiments, we identify the committee members in QBC approach as LGBM, DT, 
RF and XGBoost.

Figure 4 demonstrates the change in the R2 values using AL (QBC + SF + Clus-
tering) and supervised learning (No AL) approaches with respect to increasing train-
ing set size. Note that, in No AL case (which is performed using LGBM), instances 
that are added to the training set are randomly sampled, whereas in AL case, 
instances are queried based on AL strategies. We repeat the experiments 30 times 

Fig. 3   Training size effect on the performance of different regressors using standard supervised learn-
ing approaches. (a) POMDP — QALE. (b) POMDP — MRI follow-up ratio. (c) POMDP — ultrasound 
follow-up ratio. (d) POMDP — detection rate. (e) POMDP — sojourn time. (f) DES — score
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by shuffling the dataset to prevent bias in the outcomes. These results show that AL 
is performing equivalently or better than the supervised learning for all the learning 
tasks. In particular, for the POMDP dataset, in predicting the MRI and ultrasound 
follow-up ratios, AL performs significantly better, and prediction model perfor-
mance reaches a steady state by using 30% of the instances. Similarly, for the DES 
dataset, AL consistently outperforms random sampling. We note that, best achiev-
able prediction performance, as indicated by R2 values, is lower for the DES dataset, 
which shows that predicting the quantitative model outcomes is a more challenging 
task in this case. It is also important to note that, in certain cases (e.g., see Fig. 4b 

Fig. 4   Impact of active learning (base learner: LGBM, QBC committee: {DT, RF, XGB, LGBM}). (a) 
POMDP — QALE. (b) POMDP — MRI follow-up ratio. (c) POMDP — ultrasound follow-up ratio. (d) 
POMDP — detection rate. (e) POMDP — sojourn time. (f) DES — score

334 Journal of Healthcare Informatics Research (2022) 6:317–343



1 3

and c, AL trails random sampling for small training set sizes (e.g., when training set 
size is smaller than 10% of the dataset), and then achieves better performance once 
the training set size reaches a certain level.

Overall, these results indicate a significant improvement over the standard super-
vised learning approach (i.e., random sampling) in terms of the number of quantita-
tive model runs required, and highlights the potential of AL in improving sensitivity 
analysis processes. Also note that, while we do not provide results on the other per-
formance metrics (e.g., RMSE and MAE) for the sake of brevity of the discussion, 
our analyses point to similar conclusions for such metrics as well. We provide a 
detailed empirical analysis with various AL settings (e.g., with different base learn-
ers and QBC committee compositions), and compare the results from different AL 
query strategies in the appendix (see Appendix ??).

5 � Discussion and Conclusions

Any quantitative model’s input values and assumptions might be subject to changes. 
The sensitivity analysis examines such changes and investigates their impact on the 
model conclusions. In many practical cases, complex quantitative models are used 
to analyze the system behavior, and a detailed sensitivity analysis based on repeated 
quantitative model simulations might not always be feasible. In this study, we aim 
to improve the sensitivity analysis processes by reducing the number of parameter 
combinations required to be evaluated during sensitivity analysis. We train dif-
ferent supervised regression models, such as LR, KNN, RF, and LGBM, for two 
distinct datasets: POMDP dataset [24] and DES dataset [8]. Both datasets contain 
eight input parameters; however, the POMDP dataset has five main model outcomes 
and DES dataset has a single model outcome. We examine the relations of the input 
parameters with the model outcomes through various feature selection strategies. 
Our numerical analysis indicates that it is possible to obtain highly accurate predic-
tion models for the underlying regression task for both datasets.

Our detailed numerical study shows that AL strategies can be employed to further 
improve the sensitivity analysis processes. We find that AL leads to a faster predic-
tion model performance convergence compared to random sampling, indicating that 
fewer instances are required to train the prediction models if AL-based query strate-
gies are employed. In most cases, less than 20% of the all parameter combinations 
are sufficient to train a highly accurate prediction model. Accordingly, the sensitivity 
analysis procedure that would require 72 days of run times (on a standalone com-
puter without parallelization) in [24]’s study can be completed in less than 18 days. 
We can expect run time savings to be higher for more detailed sensitivity analysis 
procedures that would involve significantly higher number of parameter combina-
tions than the ones considered in our study.

While our results show that machine learning approaches can be effectively used 
for predicting quantitative model outcomes, and help easing computational burden 
of multi-way sensitivity analysis, there are certain challenges for direct employment 
and generalization of machine learning methods for this task. For instance, most 
feature selection strategies are designed for univariate feature selection, and do not 
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account for feature couplings. Therefore, examining the individual features and their 
impacts on the quantitative model outcomes might not be straightforward. Further-
more, the best performing machine learning model might change from one quanti-
tative model to another. For example, our 5-fold cross validation results show that 
while RF and DT are the best performing models for the POMDP dataset, XGBoost 
is the best performing model for the DES dataset. Both datasets used in our analysis 
contain approximately 10,000 instances with eight features (i.e., input parameters 
for the quantitative model). As such, our findings with regards to the best perform-
ing machine learning and active learning strategies might not apply for the problems 
with significantly larger number of input parameter combinations (i.e., instances) 
[6]. For active learning, much larger batch sizes might be needed in this case to 
avoid excessive algorithm run times due to repeated prediction model training (e.g., 
for the base learner and for those in the committee).

We note that some quantitative models have multiple outputs (as in the case of 
POMDP dataset). Therefore, different machine learning models might be needed to 
be trained for predicting different outputs, which can be computationally burden-
some. In active learning, the algorithm run time is significantly impacted by the 
selection of the base learner and the QBC members. We note that certain machine 
learning models (e.g., LGBM and Extra Trees Regressor) can be favored over others 
in the active learning algorithm based on their faster training times. More impor-
tantly, a suitable training set size is difficult to determine, and while having too few 
of quantitative model runs would lead to a small training set and a low performing 
prediction model, too many quantitative model runs would cause wasted computa-
tional resources. AL can be used to efficiently identify the set of training instances 
that would lead to a highly accurate prediction model. Note that most quantitative 
model outcomes are numeric valued, which require regression models for predic-
tion. While active learning is well studied for classification tasks, there are relatively 
few well-established strategies for the regression tasks, which makes identifying 
the best performing active learning strategy challenging. In our analysis, we mainly 
relied on QBC, and conducted extensive preliminary analysis to identify the best 
performing committee for the quantitative model outcome prediction task.

Although we experimented with various base learner and committee member 
configurations, we did not test every possible combination of committee members 
for active learning. We demonstrated the results for KNN, DT, RF and LGBM as 
QBC committee members, and LGBM as the base learner in our baseline results 
with the AL algorithm. A different combination of machine learning models for the 
committee members and base learners may have given better results, but we chose 
these models based on the QBC method logic that the committee should be a diverse 
set of machine learning models which have large disagreements in predictions [14]. 
We note that new machine learning models are developed continuously, and these 
models could have given better results than the ones obtained in this study. In future 
research, we aim to investigate more complex machine learning models (e.g., differ-
ent deep neural network configurations or custom ensemble methods) in the regres-
sion analysis in order to determine if they should be used as a committee member 
or base learner. Furthermore, our computational experiments are limited to two 
datasets, and depending on the underlying research problem and the structure of the 
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model outcomes, performances of the proposed approaches might vary significantly. 
That is, it might not always be possible to obtain a prediction model with a high 
R2 value (i.e., close to one). Besides, because the typical quantitative model output 
is numeric, we focused on regression models in our analysis. In case the quantita-
tive model output dictates a classification task, classification models can be used 
as prediction models, both for standard supervised learning and active learning. In 
this regard, a comparative analysis with different datasets obtained from different 
sensitivity analysis processes can be used to understand the factors affecting the suc-
cess of using machine learning for sensitivity analysis. In addition, investigating the 
relative performance of a detailed deterministic sensitivity analysis enabled through 
our proposed methodology with respect to the probabilistic sensitivity analysis is a 
subject of future research.

Appendix : A. Active Learning Query Strategies

The performance of the AL algorithm is highly dependent on the employed query 
strategy to identify parameter combinations (i.e. instances) to be evaluated by the 
quantitative model. Accordingly, we first review various AL query strategies [27] 
and compare their results with our proposed AL approach.

A.1. Expected Model Change Maximization

Expected model change maximization (EMCM) aims to add samples that create the 
maximum change in the current model. In this method, the model change is defined 
as the gradient of the loss for an unlabeled sample. Different EMCM approaches are 
proposed for linear and nonlinear regression tasks. For the case of linear regression, 
EMCM constructs n linear regression models by using bootstrap. Let the i th mod-
el’s prediction for the j th unlabeled instance ( �j ∈ U ) be Pi

j
 . For each unlabeled 

instance �j ∈ U , EMCM calculates

where P̂j =
1

n

∑n

i=1
Pi
j
 . The instance with the maximum g(ℓj) value is then selected to 

be labeled.
In the case of nonlinear regression, Gradient Boosting Decision Tree regression 

model is approximated as a linear regression model using feature mapping and an 
AL algorithm is derived from the resulting linear regression model. In our analysis, 
we implemented the EMCM that is based on the nonlinear regression.

A.2 Enhanced Batch‑Mode Active Learning

Enhanced Batch-Mode Active Learning (EBMAL) method focuses on representa-
tiveness and diversity. As such, it first applies k-means clustering to select the 

g(�j) =
1

n

n∑

i=1

‖‖‖(P
i
j
− P̂j)�j

‖‖‖,
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Fig. 5   Comparison of different AL query strategies (base learner: LGBM, QBC committee: {DT, RF, 
XGB, LGBM}). (a) POMDP — QALE. (b) POMDP — MRI follow-up ratio. (c) POMDP — ultrasound 
follow-up ratio. (d) POMDP — detection rate. (e) POMDP — sojourn time. (f) DES — score
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instances to construct an initial training set. Next, by considering a baseline AL 
regression approach, such as QBC or EMCM, it chooses new instances for labeling. 
Accordingly, EBMAL approach can be considered as a preprocessing algorithm, 
where the focus is on the identification of the instances that are likely to be outliers, 
and hence would not significantly contribute to the learning task.

We also considered other query strategies such as Greedy Sampling (or Passive 
Sampling) which focuses on geometric characteristics of the instances and selects 
the instances that are far away from the previously selected and labeled samples. 
However, these approaches did not yield better results, which thus are disregarded in 
our comparative analysis for the sake of clarity and brevity.

Fig. 6   Performance of the most_error query strategy (i.e., querying instances with most prediction error) 
in comparison to random sampling and QBC (Dataset: DES, QBC committee: {DT, RF, XGB, LGBM}). 
(a) DT. (b) RF. (c) LGBM. (d) XGB
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Appendix : B. Comparison of Different Active Learning Approaches

Figure  5 shows the comparison of supervised learning (No AL) and various AL 
approaches namely, QBC, QBC with clustering, QBC with Second Filter and clus-
tering, EMCM and EBMAL. We note that QBC alone typically does not perform 
well and the query strategies integrated into QBC improve the performance consid-
erably. Among these query strategies, we observe that our proposed approach (QBC 
+ SF + Clustering) performs consistently well, and the performance gains over other 
strategies are more apparent in predicting the outcomes with high variability (MRI 
and ultrasound follow-up ratios). The performance gains for active learning is more 
pronounced for DES dataset, and several QBC and QBC enhancements contribute to 
substantial improvements in convergence.

We next investigate the best achievable performance through careful selection of 
the instances to be queried. Specifically, we compare random sampling (No AL) and 
QBC with the case where the instances that lead to highest amount of prediction 
error are queried (most_error) at each iteration. Figure 6 shows that, except for DT, 
prediction models can converge significantly faster if the instances that the model 
makes the most error in predicting can be successfully identified and queried. How-
ever, it is important to note that most_error query strategy is purely hypothetical 
and, in practice, it is not possible to perfectly identify the instances with the most 
prediction error (because this would imply knowing the labels of the instances 
without actually querying them). These results also show that QBC can be used to 
approximate the most_error query strategy to some extend (especially for DT); how-
ever, QBC enhancements are needed for querying the instances more efficiently.

We also perform additional experiments to show how active learning algorithm is 
impacted by various parameter choices including base learner and QBC committee. 
Figure 7 shows how different machine learning models benefit from active learning. 
Figure 7b is generated from Fig. 7a by scaling the performance values to the interval 

Fig. 7   Impact of base learner on active learning (Dataset: DES, QBC committee: {DT, KNN, RF, 
LGBM}, query strategy: QBC + SF + Clustering). (a) AL performance. (b) Scaled AL performance
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[0.75, 1.00]. As demonstrated by the scaled performance (R2) values, LGBM model 
requires the fewest amount of training instances to converge among the tested mod-
els that also include DT and RF. These results show that different algorithms benefit 
differently from active learning.

Figure 8 shows how active learning performance is impacted by the QBC com-
mittee. We perform this analysis for two different base learners (DT and LGBM), 
and two different committee settings (committee 1: {DT, LR, KNN, LGBM}, 
committee 2: {DT, RF, XGB, LGBM}). Note that two models in committee 1 
(LR and KNN) has relatively poor performance than others (see Fig. 3). First, we 
observe that active learning is more useful for DT as “No AL” leads to a slower 
convergence in this case. We also note that a better committee (i.e., committee 1) 

Fig. 8   Impact of QBC committee on active learning (Dataset: DES, QBC committee 1: {DT, LR, KNN, 
LGBM}, QBC committee 2: {DT, RF, XGB, LGBM}). (a) DT — committee 1. (b) DT — committee 2. 
(c) LGBM — committee 1. (d) LGBM — committee 2
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leads to a better active learning performance which can be seen by the differences 
between “No AL” and “QBC SF + Clustering” in Fig.  8d. Lastly, comparison 
between Fig.  8c and d show that a better committee implies a less pronounced 
effect of QBC enhancements such as SF and Clustering.

Funding  This research is funded in part by NSERC Discovery Grant.

Declarations 

Conflict of Interest  The authors declare no competing interests.

References

	 1.	 Oakley JE, O’Hagan A (2004) Probabilistic sensitivity analysis of complex models: a Bayesian 
approach. J R Stat Soc Series B (Stat Methodol) 66 (3):751–769

	 2.	 Czitrom V (1999) One-factor-at-a-time versus designed experiments. The American Statistician 
53(2):126–131

	 3.	 Claxton K, Sculpher M, McCabe C, Briggs A, Akehurst R, Buxton M, Brazier J, O’Hagan T (2005) 
Probabilistic sensitivity analysis for NICE technology assessment: not an optional extra. Health 
Econ 14(4):339–347

	 4.	 Saltelli A, Tarantola S (2002) On the relative importance of input factors in mathematical models: 
safety assessment for nuclear waste disposal. J Am Stat Assoc 97(459):702–709

	 5.	 Borgonovo E (2010) Sensitivity analysis with finite changes: An application to modified EOQ mod-
els. Eur J Oper Res 200(1):127–138

	 6.	 Razavi S, Jakeman A, Saltelli A, Prieur C, Iooss B, Borgonovo E, Plischke E, Piano SL, Iwanaga T, 
Becker W et al (2021) The Future of Sensitivity Analysis: An essential discipline for systems mod-
eling and policy support. Environmental Modelling & Software 137:104954

	 7.	 Gupta H, Razavi S (2017) Challenges and future outlook of sensitivity analysis. Sensitivity Analysis 
in Earth Observation Modelling 397–415

	 8.	 Cevik M, Ergun MA, Stout NK, Trentham-Dietz A, Craven M, Alagoz O (2016) Using active learn-
ing for speeding up calibration in simulation models. Med Dec Making 36(5):581–593

	 9.	 Borgonovo E, Plischke E (2016) Sensitivity analysis: A review of recent advances. Eur J Oper Res 
248(3):869–887

	10.	 Pfingsten T (2006) Bayesian active learning for sensitivity analysis. In: European conference on 
machine learning. Springer, 353–364

	11.	 Chen Q, Ayer T, Chhatwal J (2017) Sensitivity analysis in sequential decision models: a probabilis-
tic approach. Med Dec Making 37(2):243–252

	12.	 Zhang Y, Wu H, Denton BT, Wilson JR, Lobo JM (2019) Probabilistic sensitivity analysis on 
Markov models with uncertain transition probabilities: An application in evaluating treatment deci-
sions for type 2 diabetes. Health Care Management Science 22(1):34–52

	13.	 Settles B (2009a) Active Learning Literature Survey: Computer sciences technical report 1648 
university of Wisconsin–Madison

	14.	 Burbidge R, Rowland JJ, King RD (2007) Active learning for regression based on query by com-
mittee. In: Yin H., Tino P., Corchado E., Byrne W., Yao X. (eds) Intelligent data engineering and 
automated learning - IDEAL 2007. ISBN 978-3-540-77226-2. Springer, Berlin, pp 209–218

	15.	 Figueroa RL, Zeng-Treitler Q, Ngo LH, Goryachev S, Wiechmann EP (2012) Active learn-
ing for clinical text classification: is it better than random sampling?. J Am Med Inform Assoc 
19(5):809–816

	16.	 Lu H, Kocaguneli E, Cukic B (2014) Defect prediction between software versions with active 
learning and dimensionality reduction. In: 2014 IEEE 25Th international symposium on soft-
ware reliability engineering. IEEE, 312–322

342 Journal of Healthcare Informatics Research (2022) 6:317–343



1 3

	17.	 Settles B (2009b) Active learning literature survey, Tech. Rep. University of Wisconsin-Madison 
Department of Computer Sciences

	18.	 Seung HS, Opper M, Sompolinsky H (1992) Query by committee. In: Proceedings of the fifth 
annual workshop on computational learning theory, COLT ’92. ISBN 0-89791-497-X. https://​doi.​
org/​10.​1145/​130385.​130417. ACM, New York, pp 287–294

	19.	 Freund Y, Seung HS, Shamir E, Tishby N (1997) Selective sampling using the query by committee 
algorithm. Mach Learn 28(2):133–168

	20.	 Settles B (2012) Active learning. Synthesis Lectures on Artificial Intelligence and Machine Learn-
ing 6(1):1–114

	21.	 Kee S, del Castillo E, Runger G (2018) Query-by-committee improvement with diversity and den-
sity in batch active learning. Inf Sci 454:401–418

	22.	 Wang M, Min F, Zhang Z-H, Wu Y-X (2017) Active learning through density clustering. Expert 
Syst Appl 85:305–317

	23.	 C Cameron A, Windmeijer FAG (1996) R-squared measures for count data regression models with 
applications to health-care utilization. Journal of Business & Economic Statistics 14(2):209–220. 
ISSN 07350015. http://​www.​jstor.​org/​stable/​13924​33

	24.	 Sandikci B., Cevik M., Schacht D. (2020) Screening for Breast Cancer: The Role of Supplemental 
Tests and Breast Density Information, Chicago Booth Research Paper (18-03)

	25.	 Fryback DG, Stout NK, Rosenberg MA, Trentham-Dietz A, Kuruchittham V, Remington PL 
(2006) Chapter 7: The Wisconsin breast cancer epidemiology simulation model. JNCI Monographs 
2006(36):37–47

	26.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer 
P, Weiss R, Dubourg V et al (2011) Scikit-learn: Machine learning in Python. J Mach Learn Res 
12(Oct):2825–2830

	27.	 Wu D (2018) Pool-based sequential active learning for regression. IEEE Transactions on Neural 
Networks and Learning Systems 30 (5):1348–1359

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

343Journal of Healthcare Informatics Research (2022) 6:317–343

https://doi.org/10.1145/130385.130417
https://doi.org/10.1145/130385.130417
http://www.jstor.org/stable/1392433

	Active Learning for Multi-way Sensitivity Analysis with Application to Disease Screening Modeling
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Review of Machine Learning Models
	3.2 Active Learning

	4 Numerical Study
	4.1 Dataset
	4.2 Exploratory Data Analysis
	4.3 Experimental Setup
	4.4 Comparison of Regression Models
	4.5 Assessing Feature Importances
	4.6 Impact of Training Set Size
	4.7 Active Learning Results

	5 Discussion and Conclusions
	References




