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Abstract

The COVID-19 pandemic has affected people’s lives in many ways. Social media
data can reveal public perceptions and experience with respect to the pandemic, and
also reveal factors that hamper or support efforts to curb global spread of the dis-
ease. In this paper, we analyzed COVID-19-related comments collected from six
social media platforms using natural language processing (NLP) techniques. We
identified relevant opinionated keyphrases and their respective sentiment polarity
(negative or positive) from over 1 million randomly selected comments, and then
categorized them into broader themes using thematic analysis. Our results uncover
34 negative themes out of which 17 are economic, socio-political, educational,
and political issues. Twenty (20) positive themes were also identified. We discuss
the negative issues and suggest interventions to tackle them based on the positive
themes and research evidence.

Keywords COVID-19 - Coronavirus - Text mining - Keyphrase extraction - Natural
language processing - Social media - Thematic analysis - Health informatics

1 Introduction

Emerging infectious diseases are responsible for many deaths and disabili-

ties globally [1]. Evidence shows that at least 43 million people contracted the
HINT1 flu worldwide within 12 months of the pandemic which, in turn, resulted in
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over 200,000 deaths [2, 3]. In addition, 770,000 HIV/AIDS-related deaths were
reported in 2018 alone, with over 37 million people infected globally [4]. The
latest emerging infectious disease, COVID-19 [5, 6], has already infected over
89.5 million people worldwide, with a mortality of at least 1.9 million as of Jan-
uary 9, 2021 [7]. Emerging infectious diseases have also been shown to inflict
significant burden on economies and public health systems [8—10]. For example,
global health systems are struggling to cope with the COVID-19 pandemic, while
unemployment/job losses, reduced income/productivity, and business closures
are prevalent among individuals and organizations due to the lockdown measures
imposed by governments. To understand public perceptions toward the pandemic,
social media data can provide the required insights from a global perspective
[11].

Social media has been a major and rich data source for research in many
domains, including health, due to its 3.8 billion active users [12] from diverse
geographic locations across the globe. For instance, researchers analyzed user
comments extracted from social media platforms (such as Facebook, Twitter, Ins-
tagram, and discussion forums) to uncover insights about health-related issues
(e.g., mental health [13, 14], substance use [15, 16], and diseases [17-20]), politi-
cal issues (e.g., elections [21-24]), and business-related issues (e.g., customer
engagement [25, 26]). With respect to COVID-19, social media comments can
reveal public opinions about governments and health organizations’ response to
the pandemic, as well as economic, health, social, political, physical, and psycho-
logical impact of COVID-19 on global populations in line with the factors affect-
ing efforts to limit the spread of the disease either negatively or positively.

In this paper, we apply natural language processing (NLP) to analyze COVID-
19-related comments from six social media platforms (Twitter, Facebook, You-
Tube, and three online discussion forums) to uncover issues surrounding the pan-
demic based on public perceptions. NLP is a widely used method for extracting
insights from unstructured texts, such as social media data and clinical texts (e.g.,
electronic health records [27] and patient journals [28]). We aim to answer the
following research questions in this work:

RQ1: What are the negative issues (economic, socio-political, educational, and
political issues) shared by people on social media with respect to the COVID-
19 pandemic?

RQ2: What are the positive opinions or perceptions of people with respect to
COVID-19 and how it is being handled?

RQ3: How can the negative issues be addressed using insights from the posi-

tive opinions and other research evidence?

The methodological approach utilized in answering our research questions are
as follows:
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1) We applied NLP approach for detecting relevant and opinionated keyphrases from
social media comments related to the COVID-19 pandemic. To extract meaning-
ful keyphrases, our approach considers the context in which words appear in the
unstructured comments.

2) We identify negative and positive themes that capture public opinions about the
pandemic. Our results reveal 34 negative themes out of which 17 are economic,
socio-political, educational, and political issues. Twenty (20) positive themes
were also identified.

3) We suggest interventions to tackle the negative issues. The interventions which
are based on the positive themes and research evidence would inform and help
governments and relevant agencies, as well as individuals, to minimize the spread
and impact of COVID-19, and to respond effectively to future pandemics.

2 Related Work

Over the years, social media has been a rich source of data for health informatics
research [29]. Natural language processing (NLP) techniques have been widely used
for analyzing social media comments and clinical texts (such as identifying health-
related and psychosocial issues with respect to the COVID-19 pandemic [30]).

The lexicon-based NLP technique was used to detect the prevalence of keywords
indicating public interests in e-cigarette, marijuana, influenza, and Ebola using
social media data, while latent Dirichlet allocation (LDA) technique was used to
retrieve topics from the corpus [31]. LDA has also been utilized to extract latent
topics from COVID-19-related comments posted on social media [32]. Also, the
Natural Language Toolkit (NLTK) was used by Bekhuis et al. [33] to identify top
collocated n-grams (bigrams and trigrams) from clinical emails.

Furthermore, a custom topic modeling technique, called Ailment Topic Aspect
Model, was employed to generate latent topics from Twitter data with the aim of
identifying mentions of ailments of interest, including allergies, obesity, and insom-
nia [34]. The non-negative matrix factorization is another topic modeling technique
used in health informatics research to extract topics from social media data [35].
A third-party tool for text mining, called KH-Coder, has also been used to explore
potential topics related to HINI-related advice, vaccine, and antiviral uptake
in the UK based on Twitter data [36]. The machine learning-based NLP was uti-
lized to analyze unstructured clinical notes to predict hospital readmissions for
COPD patients [37] and perform sentiment analysis of user comments on mental
health apps [38]. None of the techniques above considered the context in which
words appear in unstructured texts which can yield more meaningful and relevant
keyphrases.

To demonstrate the significance of context-based text analysis, Dave and Varma
conducted experiments to compare N-Gram chunking technique and the part-of-
speech (POS) chunking technique [39]. Rather than just extracting n-grams, the
POS chunking method considers context of words by using regular grammars or
POS patterns that specify how sentences should be deconstructed into keyphrases
of interest. Their results show that systems using the POS chunking technique
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extracted relevant features (keyphrases) and outperformed systems adopting
N-Gram chunking for feature extraction. We extend this approach with enhanced
part-of-speech (POS) patterns tailored to our goal, chunking and CoNLL IOB
tagging, as well as keyphrase transformation and sentiment scoring. We further
categorized the extracted keyphrases into broader themes using the thematic anal-
ysis method.

3 Methodology

Based on our research questions, the goal of this paper is to investigate and reflect
on people’s personal experiences and opinions with respect to the COVID-19
pandemic using social media data. To achieve this, we utilize the following well-
established computational techniques:

1) We developed programs or scripts to mine user comments related to COVID-19
from six social media platforms.

2) We preprocessed the data using NLP techniques.

3) We applied a seven-stage context-aware NLP approach to identify opinionated
and meaningful keyphrases from the comments.

4) We applied thematic analysis to iteratively categorize related keyphrases identi-
fied in step 3 above into broader themes or categories.

COVID-19 comments Keyphrase Extraction
[ Sentence Splitting )
I
Preprocessing [ Tokenization )
Removal of Non-English ¢
Comments [ Part-of-Speech Tagging )
R | of Irrel ¢
emoval of Irrelevant -
Characters preprocessed [ Lemmatization ) opinionated
comments 1} keyphrases

Syntactic Parsing

Expanding Contractions

Regular

Grammar

lcandidate keyphrases

Slang Replacement

Removing Duplicates [ Keyphrase Filtering )

1

( Sentiment Analysis )

Fig.1 NLP pipeline for extracting opinionated keyphrases from COVID-19-related comments
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Figure 1 shows the NLP pipeline utilized in extracting opinionated keyphrases
from comments related to COVID-19 pandemic.

3.1 Data Collection

A total of 47,410,795 comments related to COVID-19 were collected across
six social media platforms (i.e., Twitter, YouTube, Facebook, PushSquare.com,
Archinect.com, and LiveScience.com), as described below:

1) Twitter: We built a console application to mine 47,249,973 tweets in real-time
using the Twitter Streaming API [40] and C# programming language. The
program targets tweets from the following hashtags: #COVID19, #COVID,
#ncov2019, #Covid_19, #StopTheSpread, #CoronaVirusUpdates, #StayAtH-
ome, #selfquarantine, #COVID-19, #COVID—19, #CoronaCrisis, #panicbuying,
#caronavirusoutbreak, #SocialDistancing, #cronovirus, #CoronaVirusUpdate,
#QuarantineLife, #Quarantined, #pandemic, #CoronavirusPandemic, #Coro-
navidl9, #coronapocalypse, #QuarantineAndChill, #CoronaVirus, #MyPandem-
icSurvivalPlan, and #CoronavirusQutbreak.

2) YouTube: We wrote a Python script to automatically extract 111,722 user com-
ments linked to 2,939 COVID-19-related videos using the YouTube Data API
[41]. The keywords used for the video search include covid-19, covidl9, and
coronavirus.

3) Facebook: We adopted a semi-automatic technique to extract comments due to
search restrictions imposed by Facebook. We first obtained 91 groups and 68
pages related to COVID-19 manually using the following keywords: COVID,
COVID-19, and Coronavirus. Afterwards, we developed a Python script to
retrieve 8,382 and 777 comments from the pages and groups, respectively.

4) Discussion forums: We collected 18,401, 20,747, and 793 user comments from
COVID-19-related threads on PushSquare.com [42], Archinect.com [43, 44], and
LiveScience.com [45], respectively, using Python scripts.

3.2 Data Preprocessing

To clean the data and prepare it for keyphrase extraction, we apply the following
preprocessing steps using NLP techniques implemented in Python:

1) Remove mentions, URLs, and hashtags

2) Expand contractions (such as replacing “couldn’t” with “could not”)

3) Replace HTML characters with Unicode equivalent (such as replacing “&” with
“&)

4) Remove HTML tags (such as “<div>"and “<p>")

5) Remove special characters that are not required for sentence boundary detection

6) Compress words with repeated characters (such as compressing “poooool” to
“pool”)
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7) Convert slangs to English words using relevant online slang dictionaries [46, 47]
8) Remove words that are numbers

After applying the above steps on the data, and removing non-English comments
(identified using the langdetect Python library [48]) and duplicate comments, the
total number of comments reduced to 8,021,341. We randomly selected about 13%
of these comments (n=1,051,616) to form the corpus used in this paper.

3.3 Keyphrase Extraction

To extract meaningful and opinionated keyphrases which are words or phrases rep-
resenting topical content of each document (or comment) in our corpus, we utilized
a context-aware NLP approach. This approach extends the version adopted by Dave
and Varma [39] with enhanced part-of-speech (POS) patterns tailored to our objec-
tive, chunking (in conjunction with CoNLL IOB tagging [49]), as well as transfor-
mation and sentiment scoring stages. In subsequent subsections, we describe the
keyphrase extraction component of the NLP pipeline in Fig. 1. In line with this, we
present an algorithm (see Fig. 2) that accepts a regular grammar and our corpus as
input parameters and returns opinionated keyphrases of interest as output. The algo-
rithm was implemented in Python using the Natural Language Toolkit (NLTK).

3.3.1 Grammar Definition

We defined a regular grammar (see below) which is a set of rules composed of POS
patterns that describe how the syntactic units of each document in our corpus are
deconstructed into their constituents or parts. The grammar captures the context of
each comment and the opinions/sentiments expressed using nouns, adjectives, and
verbs. Research revealed that nouns are crucial for detecting the context of a conver-
sation [50], while both adjectives and verbs are significant for sentiment classifica-
tion [51].

Grammar: { <DT>? <JJ.*>*% <NN.*>* <VB.*>? (<IN>? <DT>? <JJ.*>*
<NN.*>%)7 }

The regular grammar above is composed of patterns of POS tags from the
well-established Penn Treebank Tagset [52, 53]. For instance, the <INN.* > pat-
tern matches any type of noun (see Table 1),<JJ.*>matches any type of adjec-
tive, < VB.* > matches any type of verb, <IN >matches a preposition or subordinat-
ing conjunction, and < DT > matches a determiner. We considered determiners and
prepositions since they usually occur together with nouns and adjectives in sentences
(e.g., public concern about the virus). Also, the “*” symbol after a POS pattern
refers to “zero or more occurrences,” while “?” refers to “zero or one occurrence.”
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KeyphraseExtractor (grammar, corpus) {
for each document in corpus {
sentences <« extract sentences (document)
pos_tagged_tokens_all <« empty
for each sentence in sentences list {
tokens <« extract_ tokens(sentence)
tagged_tokens <« assign_pos_tag (tokens)
lemmatized tokens tagged <« lemmatize (tagged_ tokens)
append lemmatized tokens_ tagged to pos_tagged tokens all
}
chunker <« create_ syntactic_parser (grammar)
chunks < chunker.parse (pos_tagged tokens_all)
candidate_ keyphrases < generate_ keyphrases (chunks)

for each keyphrase in candidate keyphrases {
if keyphrase is a stopword then
remove keyphrase from candidate keyphrases
else {
keyphrase new <« strip selected stopwords (keyphrase)
if keyphrase new is empty then
remove keyphrase from candidate keyphrases
else if length(keyphrase new) > 10 then
remove keyphrase from candidate keyphrases
else {
sentiment score <« get sentiment score (keyphrase new)

sentiment polarity <« get polarity(sentiment score)

if sentiment polarity = “neutral” then
remove keyphrase from candidate keyphrases
else

set keyphrase to keyphrase new in candidate keyphrases

}
}

return candidate_keyphrases

Fig.2 The KeyphraseExtractor algorithm based on the context-aware NLP approach

3.3.2 Sentence Breaking and Tokenization

Next, each document is separated into unique sentences. To achieve this, we utilized
a robust unsupervised algorithm (within the Python NLTK’s fokenize library [54])
which considers collocations, punctuations, capitalizations, and abbreviations in
determining sentence boundaries within each document. Afterwards, each sentence
is further broken down into words or tokens in preparation for POS tagging.
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Table 1 Part-of-speech (POS)

tags and description POS tag Description
NN Noun (singular)
NNS Noun (plural)
NNP Proper noun (singular)
NNPS Proper noun (plural)
1 Adjective
JIR Adjective (comparative)
JIS Adjective (superlative)
IN Preposition or subordinating conjunction
VB Verb (base form)
VBD Verb (past tense)
VBG Verb (gerund or present participle)
VBN Verb (past participle)
VBP Verb (non-3rd person singular present)
VBZ Verb (3rd person singular present)
DT Determiner

3.3.3 POSTagging

Each token is assigned a POS tag (within the Penn Treebank Tagset) denoting its
part of speech in the English language. For example, tokens in the following sen-
tence “Stop panic buying and be sure to use face masks in public areas” are tagged
as follows: [(‘Stop’, ‘NNP’), (‘panic’, ‘NN’), (‘buying’, ‘NN’), (‘and’, ‘CC’), (‘be’,
‘VB’), (‘sure’, ‘JJ’), (‘to’, ‘TO’), (‘use’, ‘VB’), (‘face’, ‘NN’), (‘masks’, ‘NNS’), (‘in’,
‘IN’), (‘public’, ‘JJ’), (‘areas’, ‘NNS’)].

3.3.4 Lemmatization

Next, each tagged token is lemmatized or converted into its root word based on its
part of speech. Prior to lemmatization, we converted the tokens or words to lower-
case. Lemmatization is achieved by using the English vocabulary and conducting
morphological analysis of words [55]. Hence, a root word is the dictionary form of
the original word. By converting the tokens to their root form, we harmonized simi-
lar words while preserving their meaning. For instance, the following verb words
“seen” and “sees” are converted to their root form—*“see.” Referring to our previ-
ous sample tagged tokens, the output of the lemmatization stage is: [( ‘stop’, ‘NNP’),
(‘panic’, ‘NN’), (‘buying’, ‘NN’), (‘and’, ‘CC’), (‘be’, ‘VB’), (‘sure’, JJ’), (‘t0’,
‘TO’), (‘use’, ‘VB’), (‘face’, ‘NN’), (‘mask’, ‘NNS’), (‘in’, ‘IN’), (‘public’, ‘JJ’),
(‘area’, ‘NNS’)].
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KT and CC KT to TO KT KT

stop NNP panic NN buying NN beVB  sureJJ use VB face NN mask NNS iniN publicJJ  area NNS

Fig.3 A sample parse tree illustrating the output of the chunker

3.3.5 Chunking

Next, we created a chunker that uses the regular grammar defined above to match
phrases comprising an optional determiner, followed by zero or more of any type of
adjective, zero or more of any type of noun, zero or one of any type of verb, and an
optional component. This component consists of an optional preposition, followed
by an optional determiner, zero or more of any type of adjective, and zero or more of
any type of noun. Using our previous example, the chunker produces the parse tree
in Fig. 3, showing the key terms (KT) that match the grammar specified.

To generate the candidate keyphrases, we first converted the parse tree (or
chunks) generated by the chunker for each document into a CoNLL IOB format.
An IOB (Inside-Outside-Beginning) tag specifies how a key term functions in the
context of a phrase—whether the term begins (B-KT), is inside (I-KT), or outside
(O-KT or O) the phrase [49]. Next, we iteratively group terms that are part of a
keyphrase (i.e., B-KT and I-KT) and stops when a term that does not belong to the
keyphrase (i.e., O-KT or O) is encountered.

For example, the CoNLL IOB format of the parse tree in Fig. 3 gives [(‘stop’,
‘NNP’, ‘B-KT’), (‘panic’, ‘NN’, ‘I-KT’), (‘buying’, ‘NN’, ‘I-KT’), (‘and’, ‘CC’, ‘O’),
(‘be’, ‘VB’, ‘B-KT’), (‘sure’, ‘JJ’, ‘I-KT’), (‘to’, ‘TO’, ‘O’), (‘use’, ‘'VB’, ‘B-KT’),
(‘face’, ‘NN’, ‘I-KT’), (‘mask’, ‘NNS’, ‘I-KT’), (‘in’, ‘IN’, ‘B-KT’), (‘public’, ‘JJ’,
‘I-KT’), (‘area’, ‘NNS’, ‘I-KT’)]. By iteratively grouping the B-KT and I-KT terms,
the following keyphrases emerged: “stop panic buying,” “be sure,” and “use face
mask in public area.”

3.3.6 Transformation and Filtering

In this stage, we removed keyphrases that are stopwords (i.e., common words, such
as about, the, from, there, had, and can) from our list of candidate keyphrases. We
also removed selected stopwords from the start, end, and within keyphrases while
preserving their meaning. For example, “be sure” will be filtered out since “be” and
“sure” are included in our pre-defined list of stopwords that cannot start nor end a
keyphrase. Third, we removed keyphrases whose length exceeds ten. While previous

Table 2 Ceriteria for sentiment

- Condition Sentiment polarity
classification
§,>0.05 Positive
S,<—=0.05 Negative
S,> —0.05 and S,<0.05 Neutral
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research retained only keyphrases up to length six [39], we extended our threshold
to ten to avoid losing important keyphrases that would enrich insights from this
research.

3.3.7 Sentiment Scoring and Filtering

In line with our objective to keep only opinionated candidate keyphrases (i.e., key-
phrases with “negative” or “positive” sentiment polarity [56]), we assigned a senti-
ment score S, ranging from—1 to+1 to each keyphrase using the popular VADER
(Valence Aware Dictionary for sEntiment Reasoning) lexicon-based algorithm [57].
Afterwards, we filtered out non-opinionated or “neutral” keyphrases using the crite-
ria summarized in Table 2. For example, the S; for “stop panic buying” and “use face
mask in public area” are —0.6705 and 0.1027, respectively; hence, will be retained
since they are opinionated. The neutral score ranges from —0.05 and +0.05 based on
the outcome of the experiments conducted by Hutto and Gilbert [57].

3.4 Categorizing Keyphrases

Next, the final opinionated keyphrases were manually categorized into broader
themes (an approach also used by Bekhuis et al. [33] to categorize phrases) by four
reviewers. The reviewers were divided into two teams—T1 and T2. T1 consists of
two reviewers who were tasked with grouping the negative keyphrases, while T2
comprises the two other reviewers who grouped the positive keyphrases.

Each reviewer independently and iteratively examined the keyphrases and con-
tinued to categorize them until no new category emerged due to saturation. The
reviewers used coding sheets to record the category assigned to a keyphrase after
examining it. Each reviewer determined the appropriate category names; in addi-
tion, a new category was created if none of the existing categories matches the key-
phrase being examined. Moreover, a keyphrase was assigned to only one category
since keyphrases are more specific than comments. In other words, reviewers assign
a keyphrase to the most appropriate category or to a new category if none of exist-
ing categories fits. Next, the reviewers in each team validated each other’s work by
agreeing or disagreeing with the category mapped to each keyphrase and offered
suggestions for every disagreement. Finally, each team applied the suggestions and
ensured that all category names are unique while harmonizing similar categories. To
measure interrater reliability between reviewers in each team, we used the percent-
age agreement metric [58]. The percentage agreement score between reviewers in
T1 was 98%, while that of T2 was 99.3%.
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Fig.4 Sample negative keyphrases and their frequency of occurrence (a larger bubble size illustrates
higher dominance)

4 Results

In this section, we present our experimental results including keyphrase categoriza-

tion. From our large corpus, a total of 427,875 negative and 520,685 positive key-
phrases were autogenerated.

4.1 Negative Keyphrases

Our results showed that death is the most dominant keyphrase (n=10,187), fol-
lowed by die (n=17,240), fight (n=5,891), bad (n=3,808), kill (n=3,668), lose
(n=3,631), pay (n=3,486), leave (n=3,234), crisis (n=2,783), hard (n=2,720),
worry (n=2,476), sick (n=2,314), sad (n=2,129), etc. Other keyphrases include
self isolation, difficult time, life at risk, death toll rise, conspiracy theory, become

infected, spread misinformation, panic buy, lack of leadership, no social distancing,
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Fig.5 Sample positive keyphrases and their frequency of occurrence (a larger bubble size illustrates

higher dominance)

travel restriction, spread fake news, in time of uncertainty, public health emergency,
biological weapon, desperate time call for desperate measure, contagious disease,
hospital overwhelm, take advantage of crisis, suffer from underlie medical condi-

tion, and so on.

Figure 4 shows some of the negative keyphrases and their corresponding category
and dominance (as indicated by the bubble size). For example, under the “Economic
Crisis” category, recession is the most dominant keyphrase, followed by economic
crisis, destroy economy, and crash economy. On the other hand, hoax is the most
dominant keyphrase under the “Misinformation” category followed by fake news,
while unemployment is the most dominant keyphrase under the “Job & Business

issues” category followed by lose job.
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Fig.6 The chart shows negative themes and the corresponding number of subthemes

4.2 Positive Keyphrases

For positive keyphrases, our results showed that the most dominant keyphrase,
in decreasing order, is help (n=18,498), followed by hope (n=7,708), pro-
tect (n=7,130), love (n=6,895), support (n=6,198), good (n=5,740), share
(n=5,187), care (n=4,917), and stay safe (n=4,917). Other keyphrases include
stay healthy, gratitude, relief fund, help slow spread, solidarity, ask for friend,
encourage people, stay calm, great initiative, fresh air, use hand sanitizer, arti-
ficial intelligence, support business, keep safe distance, practice good hygiene,
pray at home, play video game, use defense production act, protect public health,
encourage social distancing, free webinar, and so on.

Figure 5 shows some of the positive keyphrases and their associated category
and dominance (as indicated by the bubble size). Under the “Public awareness”
category, stay safe is the most dominant keyphrase, followed by stay home stay
safe, wash hand, and ensure social distancing. On the other hand, relief fund is
the most dominant keyphrase under the “Charity” category, while gratitude is the
most dominant keyphrase under the “Gratitude” category followed by appreciate
effort, show appreciation, thank doctor, and thank healthcare worker.

4.3 Keyphrase Categories

Since majority of the keyphrases were similar, reviewers reached a saturation point
where no new categories were emerging. As a result, a total of 18,694 negative and
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Fig.7 The chart shows the total number of user comments associated with each negative theme

19,841 positive keyphrases were categorized. In terms of content coverage, the cat-
egorized keyphrases spanned 104,619 unique comments.

After grouping related keyphrases into categories or broader themes using the
thematic analysis method described in “Sect. 3.4,” 34 negative and 20 positive cat-
egories emerged. We refer to these categories as “themes,” and the keyphrases under
each category as “subthemes” in the remaining parts of this paper. The 34 negative
themes were further distributed into health-related issues, economic issues, psycho-
social issues, socio-political issues, social issues, educational issues, and political
issues. In this paper, we focused on 17 negative themes mapped to economic, socio-
political, educational, and political issues (see Table 3 and Fig. 6). Other issues (i.e.,
health-related, psychosocial, and social issues) have been discussed in our previous
work [30]. As shown in Fig. 7, the top 5 negative themes based on number of user
comments are Concerns about social distancing and isolation policies (n=28,872),
followed by Misinformation (n=2,223), Political influence (n=1,640), Financial
issues (n=1,622), and Poor governance (n=1,559). Figure 6 shows the number of
subthemes under each theme.

Furthermore, Table 4 shows the 20 positive themes and sample comment(s) for
each theme, while Fig. 8 and Fig. 9 show the positive themes and the corresponding
number of subthemes and comments, respectively. Based on number of comments,
Public awareness (n=22,749) emerged as the top theme, followed by Spiritual
support (n=12,130) and Encouragement (n=>5,244). Other themes include Char-
ity (n=942), Entertainment (n="798), Gratitude (n="758), Development of curative
solutions or treatments (n=653), Advocacy for increased testing (n=341), Physical
activity (n=285), Cleaner environment (n=278), etc.
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Fig. 8 The chart shows positive themes and the corresponding number of subthemes

By identifying both negative and positive themes, we have answered the first two
research questions—RQ1 and RQ2—respectively.

Finally, we randomly selected 100 comments from our original corpus to exam-
ine if they can be categorized into existing themes. Our results show that 82%
(n=282/100) of the comments were successfully mapped to appropriate themes. The
remaining 18 unmapped comments either contain keyphrases there are not opinion-
ated (i.e., neither positive nor negative) or unrelated to COVID-19 pandemic issues,
for example, “Update: Coronavirus news, at a glance” [C39], “Worship for the 5th
Sunday in Lent, from St. Martin’s...” [C79], “23:59 For more information, please
check MOH’s announcement...” [C31], and “Beef stew, bread, butter and a Red
Bull. Another day...” [C94].
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Fig.9 The chart shows the total number of user comments associated with each positive theme

5 Discussion

Our results revealed various negative and positive themes representing public opin-
ions about the pandemic, as well as impact of COVID-19 on people and institutions
in line with the factors affecting efforts to limit the spread of the disease either nega-
tively or positively. To answer our third research question (RQ3), we first discuss the
negative issues (see Table 3) and then suggest interventions based on the positive
themes (see Table 4) and research evidence.

5.1 Negative Issues Regarding COVID-19 Pandemic

5.1.1 Economic Issues

Based on our findings, the COVID-19 pandemic led to unemployment, low revenue
or losses for business, low supply of essential items, challenging living condition,
economic downturn, and financial crisis.

Job- and Business-Related Crisis In line with our findings (see sample comments

below), research shows that the pandemic triggered massive global unemploy-
ment crisis [59-61] where people are losing jobs or unable to get one. This is due
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to lockdowns and reduced consumer spending which led to businesses/companies
experiencing low income/revenue and losses as many near bankruptcy, shutdown
temporarily, or likely to go out of business [62—65].

“...job layoffs are soaring faster than any time in recorded history...This looks
bad and it is bad. The worst jobless claims in U.S. history means the economy
has fallen into the abyss.” [C9100]

“My job is shutdown; my husband job is shutdown...How am I supposed to
pull this off? There is NO income. We have 4 children including an 8-week-old
baby. I need help NOW.” [C7119]

Economic Downturn Based on our findings, the pandemic pushes global economies
toward recession as stock market indices crashes, as shown in the sample comment
below. Evidence shows that the COVID-19 pandemic negatively impacted stock
markets more forcefully than any other disease outbreak in history [66]. For exam-
ple, primary sectors (e.g., agriculture and petroleum and oil), secondary sectors
(e.g., manufacturing), and other sectors (e.g., finance, food, real estate, tourism, and
transportation sectors) driving stock market indices experienced various challenges
(such as supply chain disruption, revenue crash, and transaction halt) compounded
by lockdown and social isolation policies aimed to curb COVID-19 spread [67].

“Our 250 economists have updated our global forecasts. Coronavirus will
inflict a short, sharp global recession. We expect 2020 world growth to drop
to zero. In Q1, we see the global economy shrinking faster than in the finan-
cial crisis” [C10002]

Shortage of Essential Items People lamented shortage of food items, toiletries
including hand sanitizers, and personal protective equipment (e.g., face masks and
protective gear and garment) necessary to prevent contracting the disease. In addi-
tion, public health centres and hospitals experience shortage of testing kits and
ventilators which hampered efforts to identify COVID-19 cases and keep patients
alive. Also, blood shortages were reported in blood banks and lockdown measures
may prevent many people from donating blood. Our findings (see sample comments
below) align with research which confirms critical supply shortages of the items
highlighted above [68-72].

“U.S. cities have acute shortages of masks, test kits, ventilators as they face
coronavirus threat” [C11119]

“Acute shortage of blood in the blood banks...Blood donations needed during
& after coronavirus pandemic” [C7999]

“Is anybody else having a food shortage in their grocery stores? My home-
town stores are about completely empty.” [C4442)]

Challenging Living Condition and Financial Issues As shown in the comments below,
people experienced difficulty providing for their families or meeting their needs such
as paying bills (e.g., rent, mortgage installment, credit card payment, and phone bill)
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and buying sufficient food, as a result of job losses and the strict lockdowns which
impose financial hardship on people, including owners of small businesses (such as
restaurants and cosmetics shops) and hustlers. Many organizations are unable to pay
employees’ full salary due to financial constraints caused by the pandemic and resort
to half salaries or job cuts (see [C621]). Research has shown that households expe-
rienced food insecurity as a result of poor financial status caused by the COVID-19
pandemic [73].

“Please help us. Lost my job due to coronavirus shutting down my workplace.
I have no income...no rent.” [C9991]

“...there are a heartbreaking number of hungry Americans posting their Ven-
mo’s and asking for help in this thread...” [C12883]

“Today my company instituted across-the-board pay cuts of 10-30%, and
canceled merit increases, bonuses, and 401(k) matches...” [C621]

Flight Cancellations Based on our findings, people lamented sudden cancellation of
flights and difficulty in getting refunds from affected airlines, as shown in the sam-
ple comment below. These cancellations are due to border closures and travel bans
imposed by governments of many countries to curtail the importation of COVID-19;
however, such actions inflicted much pain and distress to stranded passengers, as
well as financial losses to the airlines [74].

“Very disappointed how Etihad is handling COVIDI19. Not only did they can-
cel all flights, but it is legally impossible for me to travel given the travel bans.
Instead of refunding my money, I am getting credit that has restrictions to
re-book by Sept. How is this fair?” [C144]

5.1.2 Socio-political Issues

Concerns About Social Distancing and Isolation Policies Our findings revealed pub-
lic concerns over lockdown, social distancing, and isolation policies irrespective
of their perceived benefits. Some of the concerns include (i) people disrespectfully
snubbing those who are not 6-feet away from them; (ii) social distancing/lockdown
without financial support; (iii) implementing isolation/quarantine policies that con-
tradict the World Health Organization’s advice; (iv) human rights violation; (v) weak
enforcement of lockdown policy; (vi) reliance on self-isolation without aggressive
testing; (vii) ineffectiveness of isolation/lockdown in slums; (viii) devastating effect
of social isolation on domestic violence victims; (ix) millions stranded due to lock-
down and struggling to get food and water; and (x) spike in anxiety and depression
cases after lockdown announcement. Sample comments are shown below:

“...but of societal norms; so much so that there are now actual social distanc-
ing snobs who look down on you if you’re less than 6 feet away. Will corona-
virus kill all our humanity too?” [C7116]
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“This is exactly what I am afraid of since lockdown...exploiting the crisis to
strip us of our rights.” [C909]

Controversy over Precautionary Measures Precautionary measures, such as wearing
face masks and gloves, generated controversies based on our findings. For example,
some people think N95 masks with a valve can aid the spread of the virus from
infected patients (see sample comment below), while some are concerned about the
stigma attached to wearing masks.

“They tell the infected to wear a N95 mask which is 95 effective with no oils...
half the masks have a one way valve for the exhale which is unfiltered. They
are trying to kill everyone.” [C193]

Lack of Preparedness and Protests Furthermore, people highlighted lack of prepar-
edness on the part of governments and health systems as a factor aiding the spread of
the disease. Evidence shows that many countries and health authorities failed to rap-
idly perceive the threat posed by COVID-19 [75, 76], thereby allowing it to degen-
erate into a pandemic level that imposes hardship on world population. Therefore,
it is unsurprising that there are protests in several countries, such as health work-
ers and some essential workers protesting about shortage of protective equipment,
citizens of developing countries protesting about lack of food and electricity dur-
ing the lockdown, essential workers requesting for hazard pay during the pandemic,
citizens protesting against their government’s inactions toward protecting them from
COVID-19, and so on. Below are sample comments:

“Another nurses protest calling attention to the shortage of protective equip-
ment, and rationing policies by hospitals.” [C299]

“This is what is happening in Chile. People protesting because President...is
not taking the correct responsibility on Covid_19. We need national quaran-
tine!!” [C10384]

“We are hungry, no food no light - you cannot tell us to stay indoors. Nigerians
in parts of Lagos already threatening to defy government lockdown direc-
tives with a protest in two days” [C8886]

Risk of Spread at Detention Centres Moreover, people raised concerns about risk of
spreading COVID-19 disease in prisons and the need for decongestion, as shown in
the sample comment below. Evidence already shows that incarcerated populations
are vulnerable to infectious diseases, including COVID-19, due to unavoidable close
contact (since prisons or detention centres are often overcrowded and poorly venti-
lated/sanitized) and poor healthcare access [77, 78].

“As cases increase in Texas, so do concerns about the well-being of people
in Texas prisons and jails.” [C1555]
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5.1.3 Educational Issues

Disruption in Education Our findings revealed the disruptive effect of the COVID-
19 pandemic on education globally, such as school closures. People are concerned
about their children or wards’ education including the cost implication of virtual
learning put in place by schools, as well as children in rural areas who would be
deprived of learning. This aligns with evidence highlighting the effect of school clo-
sures on 80% of children worldwide, and the worsened inequalities in educational
outcomes between children in lower- and higher-income countries [79].

“There is still NO date for schools to reopen in the Capital.” [C4440]

“You are putting the most disadvantaged students at a further educational
disadvantage...” [C91]

“What kind of education are we getting? We haven’t paid such high fees
for ZOOM kind of education. Our online education system is so sick and
badly affecting our grades and that’s totally unfair!! 90k for this kind of
education is way too worthy!” [C181]

Knowledge Gap Furthermore, knowledge gap (in form of ignorance and lack
of intelligence) on the part of leadership and society is another factor hampering
the containment of COVID-19, based on our findings. As shown in the comments
below, authorities are short of knowledge as regards what should be done, while
people are ill-informed due to limited access to accurate and coherent information
about the disease and preventive/control measures.

“Nursing, a primarily female profession, is under attack. The CDC in igno-
rance says wear a bandana. THIS IS NOT PROTECTION! Lives at stake!
Hospitals have their heads in the sand. Please! Can you hear us?” [C818]
“Some neighbors even want us out because they think they would breathe
this virus in the air and we’re inside our own hostel! This is dangerous
ignorance!” [C6000]

Misinformation The proliferation of misinformation is impeding access to accurate
information about COVID-19 that could have helped curb the spread of the disease
and save lives. Misinformation which refers to false information or information with
limited or without scientific evidence is one of the top 5 issues that emerged in our
findings, and also reported by previous research [80-85]. Sample comment below
reveals public concerns about misinformation regarding COVID-19:

“The amount of fake news on all the health concerns regarding COVID19 is
shocking. Only person I trust with info is my cousin who is a doctor. She has
Jjust told me it DOESN’T last in the air, as long as you are two metres away
and sneeze into a tissue you are fine!!” [C12010]
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5.1.4 Political Issues

Elected governments or political appointees are central to decision-making or
governance that should improve the standard of living of people and assure their
health and safety. However, people are concerned about widespread interference in
COVID-19-related matters for political gain, based on our findings. In addition, they
are concerned about the absence of strong leadership in the wake of the pandemic,
and the poor state (or lack) of key public infrastructure (e.g., electricity, water, inter-
net, and healthcare facilities/centres). Research has shown that political beliefs and
partisanship pose a significant limitation on the effectiveness of preventive measures
(such as social distancing) [86—88]. Sample comments below reveal public opinion
regarding these issues:

“Quite possibly the worst governor in the country. He’s hurting not only his
own citizens but all Americans, as all the people on spring break and theme
parks go home with covidl9.” [C5777]

“When authorities and armed forces asked you to self-quarantine with no
internet and no electricity (16 hours load shedding) in Hunza ...?!” [C108]

5.2 Interventions for Addressing the Negative Issues

In this section, we suggest interventions that can help address the negative issues
while drawing insights from the positive themes and relevant research evidence.
This answers our third research question (RQ3).

To cushion the effect of economic issues on people, “charity” and “grassroots
support” are important factors as revealed in our findings. Mobile technology can
play a significant role in ensuring effective distribution of relief items. For exam-
ple, GPS-enabled and multilingual mobile apps can help people to easily find
food banks nearest to them. Moreover, government-funded or non-governmen-
tal charity organizations responsible for distributing economic relief to people
can easily expand their reach or coverage and make delivery decisions based on
data collected through these apps. For instance, people can indicate their needs
through these apps and other information, such as location, age group, health
condition, and whether they are in self-isolation (due to exposure to COVID-19).
These apps can also be used to onboard volunteers who want to offer financial
and material assistance and connect them to those in need. Furthermore, the data
collected through these apps can further be analyzed using artificial intelligence
(AI) techniques (such as machine learning or deep learning) to predict the com-
munities that are in dire need of assistance. Besides technology usage, govern-
ments can budget for additional measures to protect the finances of people and
businesses such as keeping people employed through financial partnership with
employers, providing stimulus packages, and facilitating quick employment for
the jobless [89]. Evidence shows that governments of some countries are adopt-
ing these measures to varying degrees [90].

Regarding shortage of items to protect people from the pandemic (such as face
mask and hand sanitizers), a “homemade protective equipment” approach can be

@ Springer



Journal of Healthcare Informatics Research (2022) 6:174-207 201

employed as a viable alternative, as revealed in our findings. Evidence shows that
homemade masks, for example, can offer protection from COVID-19 transmission,
in the event where medical masks are not available [91]. To address supply chain
issues with respect to high demand and essential products, research suggests recov-
ery strategies (such as increase in production shifts, use of spare capacity, emer-
gency sourcing, bolstering capacity locally, and collaboration with supply chain
partners) [92, 93].

Regarding concerns about social distancing and isolation policies imposed by
governments, as well as controversies over precautionary measures suggested by
health professionals, “public awareness” is a major and useful tool to address these
issues, including misinformation, as revealed in our findings. Providing timely and
accurate COVID-19-related information to people, and also connecting them to evi-
dence-based resources and health professionals to resolve their questions or confu-
sions, can be lifesaving. To reach a wider audience on a personalized basis, mobile-
and voice-enabled chatbots equipped with real-time access to evidence-based and
validated resources (such as approved safety measures by World Health Organi-
zation, as well as government-approved policies or guidelines) can be developed
such that people can interact (in their own language) with the chatbots using their
smartphones anytime. Difficult questions can be automatically channeled to health
experts for responses within the same chat window. For those with traditional cel-
lular phones, governments and local health agencies can partner with telecom firms
to deliver COVID-19-related information directly to people’s phones as a short mes-
saging service (SMS) at regular intervals. In addition, official COVID-19-related
channels on social media (such as [94]) supervised by health experts and local/inter-
national health organizations can provide accurate and frequent updates.

Regarding educational disruptions due to COVID-19, evidence shows that digi-
tal technologies are pedagogical tools that can enhance diverse forms of learning
both within and outside the school environment [95]. Based on our findings, “online
learning” (also called e-learning, virtual learning, virtual classroom, digital class-
room, or distance learning) will help mitigate the impact of educational disruptions
caused by the COVID-19 pandemic. While it may not be as effective as in-class
learning in some cases, it will prevent potential brain drain that may result in the
absence of continuous learning. Mobile and web-based learning platforms, many of
which are available today, should be readily accessible in schools at all levels going
forward. Designers should ensure these tools provide personalized learning experi-
ence such that students can manage their own content and the tools offer tailored
suggestions that fit their interests or needs. The tools should also support collabora-
tive learning where students can work together on assignments, projects, or other
tasks similar to what they do in the real-world. Furthermore, governments across the
globe should ensure equitable access to these educational technologies irrespective
of economic, financial, racial, or cultural differences. Public infrastructure support-
ing these technologies (such as stable electricity, as well as affordable and reliable
internet) should be considered a top priority and made readily accessible to people.

Finally, governments at all levels should partner (rather than compete) with health
professionals and researchers to form a strong force against COVID-19. Our find-
ings revealed “advocacy for testing” which reflects public call for increased testing
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since some governments are still struggling in this area due to their political inter-
ests superseding public health. Research argues the significance and effectiveness of
adaptive evidence-making intervention (a fusion of scientific evidence and policy)
during public health emergencies (such as the COVID-19 pandemic) [96]. This can
only be possible if political leaders and health experts align and work harmoniously
to address current and future pandemics.

6 Conclusion and Future Work

We explored the impact of the COVID-19 pandemic on people globally using social
media data. We analyzed over 1 million comments obtained from six social media
platforms using a seven-stage context-aware natural language processing (NLP)
approach to extract relevant keyphrases which were further categorized into broader
themes. Our results revealed 34 negative themes and 20 positive themes surrounding
the COVID-19 pandemic. We discussed the economic, socio-political, educational,
and political issues and suggested interventions to tackle them based on the positive
themes and research evidence. These interventions would inform and help govern-
ments, organizations, and individuals to minimize the spread and impact of COVID-
19 and to respond effectively to future pandemics.

As part of future work, we would use the data generated from this work to train,
evaluate, and compare machine learning models that detect the themes and corre-
sponding sentiment of social media comments related to COVID-19 in real-time.
The best performing model(s) could be integrated with applications and visu-
alization tools to provide useful and personalized features/interventions, as well as
uncover real-time insights that could help to curb the spread of the virus and miti-
gate its impact on the society.
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