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Abstract
The well-being of human and wildlife health involves many challenges, such as mon-
itoring the movement of pathogens; expanding health surveillance; collecting data
and extracting information to identify and predict risks; integrating specialists from
different areas to handle data, species and distinct social and environmental con-
texts; and the commitment to bringing relevant information to society. In Brazil,
there is still the difficulty of building a system that is not impaired by its large ter-
ritorial extension and its poorly integrated sectoral policies. The Brazilian Wildlife
Health Information System, SISS-Geo (SISS-Geo is the abbreviation of “Sistema
de Informação em Saúde Silvestre Georreferenciado” (which translates to “Georef-
erenced Wildlife Health Information System”) and can be accessed at http://www.
biodiversidade.ciss.fiocruz.br or http://sissgeo.lncc.br (in Portuguese)), is a platform
for collaborative monitoring that intends to overcome the challenges in wildlife
health. It aims at the integration and participation of various segments of soci-
ety, encompassing the registration of animals occurrences by citizen scientists; the
reliable diagnosis of pathogens from the laboratory and expert networks; and com-
putational and mathematical challenges in analytical and predictive systems, model
interpretation, data integration and visualization, and geographic information sys-
tems. It has been successfully applied to support decision-making on recent wildlife
health events, such as a Yellow Fever epizootic.
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1 Introduction

Environmental change, including climate change and biodiversity loss, are determin-
ing factors for the emergence of diseases originating from wildlife [14] and can be
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the source of the selective forces of new genetic variations that allow the disrup-
tion of biological barriers by pathogens and the increase in the potential for spread
of diseases to humans. Although not considered appropriately in health surveillance
policies, the situation is relevant, since the majority (60.3%) of infectious diseases
circulate between humans and animals (zoonoses), of which 71.8% are caused by
pathogens originating from wildlife [22]. Not to mention the alarming data from a
recent study [52], which shows that the number of pathogens infecting humans and
animals is vast and, more worryingly, they are growing over time.

These emergences are widely associated with areas most affected by natural and
anthropogenic impacts, also composing the range of parameters that make social
inequalities even more severe and unfair, with substantial repercussions and costs to
health and quality of life [4, 43]. Over the past decade, several studies have shown
that biodiversity can affect both the dilution and dispersion of pathogens, as well as
modulate their transmission rate [23, 38, 54].

However, studies and actions in the last century, despite the expansion of epidemi-
ological knowledge, responded to specific disease emergence events in the human
population, with some mitigation attempts. Considering the low ability to reverse
climate change and the environmental impacts determined by human population
growth, and the rate of production and consumption of natural resources, it seems
reasonable to expect that the emergence of these diseases cannot be held back. This
scenario is paradoxical in megadiverse countries, such as Brazil. While species rich-
ness results in richness of parasites that are associated to them, and therefore a
potential risk, it is this complexity of species and their relationships that protect and
stabilize the dynamics of transmission, reducing the outbreaks of diseases, one of the
essential ecosystem services [2, 8, 24, 26, 32, 44, 50]. In this scenario, more than
seeking effective responses to crises, there is a reason to pursue actions that antici-
pate problems so that one can mitigate them where possible, and quickly respond to
them when prevention or mitigation fail.

This approach has been strengthened with international programs, such as “One
world, one health” from the WHO/OIE and the 2011-2020 Strategic Plan of the
Convention on Biological Diversity (CBD) [10] and strategically in governmen-
tal programs of developed countries. These already dedicate considerable resources
and efforts to tracking pathogens, whether to prevent pandemics, such as the recent
occurrences with influenza and Ebola viruses, the development of new drugs or
even biological warfare concerns. There are programs and systems of surveillance
of zoonoses in wild animals that have been acting essentially for the identification
of new and old diseases, especially those of economic and conservationist interest
and in the approach of One Health [12]. Most of these programs are: structured and
maintained by governmental services, with professional personnel, collection pro-
tocols and standardized diagnostic capacity (e.g., US Wildlife Disease Surveillance
and Emergency Response), implemented by groups with scientific or conservation
interest in one or a few species (e.g., World Conservation Society Health Program)
or are based on the participation of trained farmers and hunters who are the first to
come into contact with slaughtered animals, such as in Europe [46]. Except for stud-
ies of scientific interest and conservation of species, the other characteristics are not
applicable in Brazil. In Brazil, systematized strategies for monitoring and predicting
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occurrences of diseases resulting from biodiversity are incipient. They follow a noti-
fication model about diseases that already occurred in humans or in a few species,
which is insufficient for preventive action [6]. Firstly, there is no government sys-
tem in place to monitor wildlife health consistently. Secondly, in Brazil, hunting is
prohibited by law throughout the territory, except in particular places where vulner-
able and traditional populations have the right to subsistence hunting. It should also
be emphasized that the act of collecting biological samples for diagnosis imposes
risks to the health of the person and therefore requires specific training and personal
protection equipment. However, this is not consistent with the reality at the national
level as well as with the vulnerability and low level of education of the majority of
the population that lives in the forest of natural and anthropized environments.

The relationships that link biodiversity to health are complex because they are
often indirect, scattered in space and time, and dependent on many forces [38]. The
problem is not restricted to identifying species and their geographical distribution.
In the context of the emergence of zoonoses, there are various species of pathogens,
vectors, and hosts that modulate evolutionarily each other, their populational dynam-
ics and composition, which collectively also undergo and react to environmental
changes [23].

Therefore, a multi-dimensional challenge is faced:

1. Sensitizing decision-makers about the need to monitor the movement of
pathogens in wildlife before they impact humans, expanding health surveillance
actions.

2. Building a mechanism that is not limited by the territorial extension of Brazil,
the poorly integrated sectoral policies, and by other outbreaks or emergencies
that absorb all the health staff.

3. How to integrate multiple skills, since this mechanism should contain specialists
to handle data, species, and distinct social and environmental contexts.

4. How to effectively obtain, store, and manage data properly.
5. Modeling the risks from data to identify and predict them, as well as to extract

the relevant information to convey it to society ultimately.

The first challenge is arguably the hardest one because it is mostly non-technical
and involves dealing with politics. The ongoing strategy to sensitize decision-makers
stands on two continuous actions: (i) getting in touch with decision-makers and,
backed up by scientific studies, educating them about the benefits in terms of health,
sustainability, economics, and politics from taking preventive and predictive mea-
sures; (ii) presenting to decision-makers regularly how the SISS-Geo platform has
been helping in disease prevention moreover, how the monitoring can be made both
effective and inexpensive thanks to the network of volunteers and machine-learning
based workflows. How the remaining challenges were dealt with in designing
SISS-Geo will be explained further in the following sections.

As evidenced, data collection, monitoring, and extraction of knowledge and infor-
mation about wildlife health and its relationship to human health arise as challenging
tasks involving several areas of knowledge, characterized as interdisciplinary activ-
ities aimed at modeling a dynamic and complex system. It is also clear that major
areas of computing are mostly applicable in the context presented, such as computer
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modeling, machine learning, and parallel programming. However, their application
is not apparent given the need to integrate information in different ways, the com-
plexity and dimensionality of the data to be manipulated and the sensitivity involved
in the use and dissemination of these data [40].

In this article, the Information System onWildlife Health (SISS-Geo) is presented,
a joint effort between the Oswaldo Cruz Foundation (Fiocruz) and the National Lab-
oratory for Scientific Computing (LNCC), as an essential step for moving forward
on the challenges posed. Its conception aimed at the integration and participation of
various segments of society and encompasses: the registration of primary data by any
person interested; the application of the concept of citizen science; the reliable diag-
nosis of pathogens circulating in wildlife that may potentially impact humans with
the participation of laboratory and expert networks; the computational and mathemat-
ical challenges that include analytical and predictive systems, data mining, intensive
processes, parallel programming, system integration, data (unstructured and hetero-
geneous) and information, geographic information systems (GIS), machine learning,
meta-heuristics, and data visualization.

SISS-Geo is mainly characterized by managing its data in a spatially referenced
environment. It aims to:

– provide, quickly and efficiently, the flow of information between (i) the Infor-
mation Center for Wildlife at Fiocruz and the national system of health surveil-
lance, with special contribution to the Strategic Information Center on Health
Surveillance (CIEVS, Ministry of Health); (ii) the participatory networks in
wildlife health and laboratories; (iii) the general population that wants to par-
ticipate in the process; and (iv) the different biodiversity monitoring centers, as
the MCTI (Ministry of Science, Technology and Innovation), ICMBio (Chico
Mendes Institute for Biodiversity), MAPA (Ministry of Agriculture, Livestock
and Supply), and Embrapa (Brazilian Agricultural Research Corporation).

– create, from the data and georeferenced information, warning and forecasting
models on human and wildlife diseases in order to act as a sentinel system
for emerging and reemerging diseases as well as provide the results of spatial
modeling to scientific community and decision-makers.

– allow for adequate means to integrate the georeferenced system with spatial
databases partners from governmental and non-governmental partners.

– adapt to the metadata standard of the National Spatial Data Infrastructure (INDE)
(http://www.inde.gov.br), aiming to provide, efficiently and with full compati-
bility, data related to wildlife health to the scientific community and the general
population.

2 Design and Implementation of SISS-Geo

SISS-Geo is built upon four high-level modules, as illustrated in Fig. 1.
The first one systematizes photographs and the capture of georeferenced field

and observation records of animals, their physical conditions, and their surrounding
environment, which are stored in a database (Sections 2.1 and 2.2 ). Collaborators
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Fig. 1 Four modules of SISS-Geo, consisting of (1) data collection and storage, (2) alert prediction and
confirmation, (3) forecast of ecological opportunities, and (4) model interpretation

compile these observations through mobile applications, for Android (Fig. 2), iOS,
and in a Web interface (Fig. 3). The second module analyzes the data to generate
automated alert models that take into account territorial distances, time interval, simi-
larity between taxonomic groups involved (notably for primates, Chiroptera, rodents,
and carnivores, but not limited to them), the observed physical conditions of the ani-
mals in the field according to pre-categorized clinical patterns, and the environmental
characteristics of the site where the animal was observed (Section 2.3.1 ). A georefer-
enced data explorer is available as well, allowing for multiple layers of information to

Fig. 2 Screenshots of the SISS-Geo mobile application displaying the initial screen, main screen action
buttons for taking photos and adding records, record description, and record map
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Fig. 3 Screenshots of the SISS-GeoWeb application. Record details in the map (left), corresponding photo
with a dead marmoset (right)

be overlayed. Figure 4 illustrates a visualization where records (green), alerts (red),
and biomes are overlayed in a map of Brazil.

From the indication of importance and emergency generated by the alert model,
the participatory and laboratory networks in wildlife and human health and environ-
mental services established in the country are requested to collaborate on collecting
biological samples from animals in the field and on providing reliable diagnoses. The
reliable diagnosis feeds and validates the alert models which in turn, from the initial

Fig. 4 Screenshots of the SISS-Geo georeferenced data explorer with options for displaying records,
environmental, and socioeconomic layers in the right panel
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correlation of the environmental conditions of the occurrence, allows for the gener-
ation of forecast models of ecological opportunities for disease occurrence that may
result from biodiversity loss, thus opening up a different research viewpoint. These
actions comprise the third module (Section 2.3.2 ).

Finally, the fourth module approaches the challenge of understanding the rela-
tionships that govern the phenomenon in question, from the trained models. In
this context, the model interpretation serves as the main hypotheses mechanism for
further investigation and validation by experts (Section 2.3.3 ). The main compo-
nents found in SISS-Geo can be categorized into four classes: wildlife health data
management, GIS, machine learning, and wildlife health, in the next section.

It should be clear by now that in designing a platform whose (i) the primary source
of data comes from citizens, i.e., it does not necessarily rely on the typically over-
burden health staff moreover, it is also not affected by sectoral policies at different
administrative levels; also, (ii) has many components automated by smart workflows
and machine learning, the platform is capable of covering the whole territorial exten-
sion of Brazil. Therefore, it overcomes the second challenge referred to in Section 1.
In respect to the third challenge, SISS-Geo has been designed since the beginning to
accommodate and integrate multiple use cases according to the role of each collab-
orator class, such as citizen scientists, specialists, laboratories, and decision-makers
(Figs. 1 and 5). The strength of SISS-Geo comes from the collaboration among these
different users, with some providing the data (citizen scientists and specialists), oth-
ers validating/processing it (specialists and laboratories) moreover, finally, a third
group conveying the processed information to the academy (specialists) and society
(decision-makers).

Fig. 5 Use cases of SISS-Geo displaying various possible interactions between users and functions of
SISS-Geo
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The components that had their implementations concluded correspond to the func-
tionality that allows for gathering occurrence data from volunteers through the mobile
or the Web application, storing the occurrences in the database, allowing special-
ists and laboratories to manipulate the occurrences, and allowing for the data to be
geographically explored. These components are fully functional and are deployed
as mobile applications (for Android and iOS), Web applications (for manipulat-
ing occurrences and for geographic exploration), and a database. They correspond
to the wildlife health data management and GIS classes and are described in Sec-
tions 2.1 and 2.2. In Section 2.3, a methodology is presented for generating alerts
using machine learning techniques; this functionality is still under implementation.

2.1 Data Management inWildlife Health

Tomonitor changes in biodiversity, one needs to collect, document, store, and analyze
indicators of the spatial and temporal distribution of species, as well as information
on how they interact with each other and with the environment they live in [28]. The
development and implementation of mechanisms to produce these indicators [35]
depend on access to reliable data from field surveys, automated sensors, biological
collections, and from the academic literature. This data is usually available in various
institutions that use different formats and identifiers, which makes it a challenging
data integration task. The methods and techniques used to manage and analyze this
data define a research area often called Biodiversity Informatics [19, 37]. Some ini-
tiatives for establishing metadata and data publishing standards, such as EML [15]
and Darwin Core [53], were able to present standard vocabularies used to describe
concepts of biodiversity. Although these vocabularies cover only a fraction of the pos-
sible concepts, they allow institutions to publish their data about biodiversity using
the same format, and for their automatic collection and processing by aggregator
systems.

Through the use of these standards, SISS-Geo can collect species occurrence data
provided by various contributors, as well as providing data stored in its database to
the community at large in an easy to use format. Darwin Core has been extended to
include concepts on specific topics, such as information about interactions and pol-
linators (Darwin Core Extension for Interactions) and on species profiles (Plinian
Core) [34]. It would be essential to evaluate and propose an extension of the standard
to include information about wildlife health on species observation records, which
is typically carried out in the context of the Biodiversity Information Standards1

(TDWG) organization.
SISS-Geo is a biodiversity informatics platform and, as such, it allows for users

to upload species occurrence records. In SISS-Geo, these records are enriched with
additional attributes, provided by the user, to describe the health condition of the
respective individuals. The term occurrence is used in this work to refer to the obser-
vation of an individual that apparently carries a disease, which is a particular case of
a species occurrence as commonly defined in the biodiversity informatics literature.

1http://www.tdwg.org
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Its geographical scope is limited to Brazil, and the users are given by citizen scientists
and specialists. A relational database was conceptually modeled and implemented for
SISS-Geo comprising occurrences of organisms along with associated information
about their health condition. Standard operations for creating, reading, updating and
deleting information are enabled by mobile and Web applications that allow for both
citizen scientists and system managers to interact with the system (Fig. 5 describes
SISS-Geo use cases).

As can be observed in its database schema in Fig. 6, SISS-Geo stores information
about wildlife health occurrences (Occurrence). These occurrences usually have an
animal (Animal), a collaborator (Collaborator) and a location (Location) associated
with them. Specialists can require samples (Sample) related to the occurrence to be
collected, which are going to be analyzed (Analysis) in the laboratory (Laboratory)
network. Data stored in this database is consumed by mathematical models that can
produce and confirm wildlife health alerts (Alert).

The architecture of SISS-Geo is described in Fig. 7. It is comprised of the follow-
ing components: a mobile application, a Web application server, a database server,
and high-performance computing (HPC) resources. As described in the use cases dia-
gram in Fig. 5, citizen scientists use the mobile application to request, for instance,
the upload of their observations or queries to be executed. These requests are for-
warded to the Web application server which connects to the database server to answer

Fig. 6 Overview of the various entities and relationships that comprise the database schema of SISS-Geo
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Fig. 7 Architectural view of SISS-Geo displaying components of the system and their interactions with
citizen scientists, specialists, and system administrators

these requests. Administrative users and specialists can access the Web application
server directly also to send requests to SISS-Geo. Finally, the Web application server
can invoke the execution of computationally-intensive analyzes on high-performance
computing resources. A complete list of use cases is described in Fig. 5.

The approach used to tackle the fourth challenge mentioned in Section 1, of effec-
tively obtaining, storing, and managing data is based on following the best practices
for scientific data management, especially from the biodiversity informatics commu-
nity. The conceptual model of SISS-Geo’s database follows established standards,
such as Darwin Core [53], and the Ecological Metadata Language (EML) [15].
Following the example of citizen science initiatives, such as eBird [49], SISS-Geo
can obtain massive valuable data from volunteers that use its mobile application in
Android and iOS platforms. As described in the next subsection, this data is com-
bined with other datasets, and it is used in the alert prediction model proposed in
Section 2.3.

2.2 Geoprocessing

Spatial and geographical visualization are fundamental conditions for the manage-
ment of information today. It is often difficult due to the need for normalization,
update, and access to qualified data. In studies of infectious diseases, the spatial-
ization of data needs additionally to consider populational pulses and fluctuations
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determined by several factors such as seasonality, reproductive periods, migrations,
among others [33].

SISS-Geo aims to generate relevant and reliable information that can support deci-
sion processes of the Brazilian Ministries of Health, Environment, Agriculture, Live-
stock, and Supply providing subsidies for more agile and timely decision-making.

Because it is an innovative project, the functionality developed is not straightfor-
ward, and it was often not available in similar initiatives. The construction of new
methodologies and the use of different types of geographic technologies that can meet
the expectations and objectives of SISS-Geo is therefore necessary. The GIS Infras-
tructure (GI) of SISS-Geo has strategic importance in this process, in which there is a
need to overcome challenges related to quality control of spatial data, modeling spa-
tialization based on machine learning and the dissemination of models in the form of
dynamic maps on the Internet.

The data-driven modeling of diseases occurrence based on socio-environmental
variables in SISS-Geo uses a broad diversity of spatial data, such as land use and
vegetation cover (Mapbiomas collection 2.32); temperature and precipitation (Global
Precipitation Mission - GPM3 and Worldclim4); geomorphology, soil types, cli-
matic zones, degree of urbanization, highways, mineral exploration areas, biomes,
and conservation units (Brazilian Institute of Geography and Statistics - IBGE5);
demographic density (NASA’s Socioeconomic Data and Applications Center6); and
altimetry (NASA’s Aster GDEM7). Since these data come from different sources
(Brazilian and other national and global sources), they have different scales, refer-
ence systems, and mapping methodologies. Therefore, they were pre-processed and
structured for integration into a geographic database. It is used both to consume
information/data and to store the modeling results in the form of geographically
distributed models. The data used as input for modeling are obtained from the over-
lapping of wildlife occurrence records and environmental, social, and human impact
databases. Depending on the location of the records, spatial relationships of the types
intersect, within, close, crosses, and the like can be established.

All pre-processing tasks, performed on over one hundred gigabytes of data,
were carried out in QGIS [39]. At this stage, it was necessary to standardize the
cartographic characteristics of geographic data, correct topological errors, clean
duplication of information, and standardize the structure of the attribute table. In
general, the data were divided into two groups: vector data and raster data. All data
in raster format was converted to vector format in order to be compatible with the
internal software package which expects this format as input.

Knowing that part of the thematic data used was produced in small and medium
scale (1:1,000,000, 1:500,000, 1:250,000), which provide a limited level of detail and
accuracy, the verification methodology of spatial relations adopted areas of influence

2http://mapbiomas.org
3https://pmm.nasa.gov/data-access/downloads/gpm
4http://www.worldclim.org
5https://www.ibge.gov.br
6http://sedac.ciesin.columbia.edu
7https://asterweb.jpl.nasa.gov/gdem.asp
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(buffers) on the occurrence points of the animal species. It brought flexibility for
spatial queries, allowing to identify the context of socio-environmental features on
which the animal was observed.

Other spatial and temporal information is requested to the user and added to the
database as observation site (“local scale”) attributes to enhance species observation
records used for data-driven modeling.

The geoprocessing infrastructure also needs to make available the results, alerts,
and prediction models produced by SISS-Geo to the public domain according to the
Brazilian Information Access Act, except for sensitive information. Therefore, ade-
quating the geographic information system for the Web environment, which provides
SISS-Geo’s results in the form of dynamic/interactive maps and graphical statistics8,
is an ongoing development. An advantage of this technology is the ease of handling,
analysis, and interpretation of models by the end user, as well as operating sys-
tem independence and interaction with desktop systems and other Internet systems
(interoperability).

2.3 Machine Learning

SISS-Geo embraces machine learning techniques to fulfill the fifth challenge men-
tioned in Section 1, leading to risk mapping and the understanding of factors related
to the emergence of diseases. These products are vital for the genuine purpose of
SISS-Geo because they account for the main avenue of conveying information to
decision-makers and society. The first component (Section 2.3.1) deals with real-
time alert prediction, which intends to target health authorities for further verification
and diagnostic of alerts. The second and third components (Sections 2.3.2 and 2.3.3)
aim, respectively, at building models and extracting knowledge from them in order
to advance the understanding of associations between socio-environmental factors
and suitability for disease occurrence, which are of vital importance for specialists,
decision-makers, and society.

2.3.1 Grouping of Observation Records and Alert Prediction

When a wild animal is observed, its physical condition and surrounding environment
are recorded in SISS-Geo, either by experts or volunteers. These records are grouped
with other related records (previously reported) resulting in a collection of events
characterizing a phenomenon. This is the grouping stage and, although it may sound
trivial, it involves the challenge of conceiving/training models with the discrimina-
tive capacity to recognize similarities and dissimilarities between events, based on
criteria such as spatial and temporal distance between records, the similarity between
species and the reported physical conditions, among others. This flow of learning is
summarized in Fig. 8.

8http://morcego.siss.lncc.br/i3geo/interface/black ol.htm
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Fig. 8 Machine learning flow of SISS-Geo, starting with a new occurrence, going through decision and
analysis steps, and finishing in either a database update to record the occurrence or in an alert confirmation
followed by the creation of a new model

The second part consists of modeling the characteristics of observation records
that make them more or less relevant, i.e., training the alert model. It means pre-
dicting the severity of records according to information brought by events and the
geographic/environmental context. For example, a record involving an animal in iso-
lation exhibiting symptoms is less severe, in general, than occurrences containing
similar events but covering groups of animals. Of course, in real situations, the char-
acterization of an alert situation is usually much less noticeable, commonly taking
into consideration many factors for decision-making. In some cases, a single record is
sufficient to generate an alert, such as the registration of a wild canid with symptoms
of rabies and non-human primates with Yellow Fever symptoms.

It can be seen that the activities mentioned above refer to the grouping and data
classification task, typical of machine learning, and well known for the wide variety
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of approaches and methodologies. They are therefore complex tasks, both by nature
as well as by the large volume of data expected for the system9.

However, the challenges of grouping and classification that are present in SISS-
Geo go beyond the classic challenges of these tasks.

Phenomenon characterization The characterization of what defines a group of
events (phenomenon) lies in the problem of non-conventional similarity measure-
ment formulation (e.g., not necessarily Euclidean). Grouping rules based on expert
experience are a reasonable alternative but has as shortcoming the limited formaliza-
tion of knowledge and, consequently, the potential for the introduction of unwanted
biases. Another approach is to treat this problem as a machine learning process, aim-
ing at the training of similarity models: given a new record and the existing ones,
determine to which group it belongs—or whether it characterizes a new group. The
process is characterized as supervised learning, since it is possible to determine reli-
ably, a priori or a posteriori, which records belong to which phenomenon, either by
empirical tests or by expert confidence.

Feature extraction Once constituted the phenomena, it is necessary to evaluate them
as to the potential threat to wildlife health and its possible outbreak in humans, as
phenomena alone do not necessarily constitute alert situations. In this sense, infor-
mation characterizing a group of events needs to be extracted and provided to the
alert prediction model. The difficulty is thus to derive statistics which better repre-
sent the phenomenon described by the group in order to maximize the performance
of the prediction model; in other words, raise the necessary information to facilitate
the learning process. Experts recommend the use of certain statistics, such as the type
and quantity of affected animals, number and frequency of occurrences, among oth-
ers; however, the space of possible features goes well beyond that and could be used
to improve predictive performance. Thus, an open question is how to exploit this vast
space automatically? An interesting line of research and a potential solution to this
challenge is the investigation of automatic feature extraction methods [17, 18]. In a
nutshell, the task can be cast as a supervised machine-learning problem by taking as
independent variables the union of the information of all events in a group and, as the
corresponding dependent variable, whether or not an alert was issued at the time—
of course, this requires the existence of pre-labeled alerts. Then, a machine-learning
algorithm can be applied to learn a function (or set of functions) that maximizes the
correlation between groups’ content and alert prediction; this optimized function can
be understood as the extracted feature.

Alert predictionmodel Although its use in the system is similar to sufficiently known
methods described in the literature, the alert prediction model is probably the most
strategic component of SISS-Geo’s intelligence. The viability of the system is fun-
damentally based on the accuracy of the prediction model, both in detecting true

9After all, it is an ambitious system that aims to aggregate and store records on wildlife health of a vast
country.
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positives (alerts) as true negatives (non-alerts). The failure to detect an alert con-
dition (false negative) can result in severe consequences to wildlife, environmental,
and human health. On the other hand, false positives would overwhelm the relatively
small network of laboratories and experts responsible for confirming or denying
alerts (more details below). In this sense, methods that combine multiple models
(ensemble methods) usually produce more accurate and robust solutions. Therefore,
they are promising candidates as training algorithms for prediction models [42]. Still,
since the large portion of the system’s data has no associated class, that is, phenomena
whose alert predictions have not yet been confirmed, the semi-supervised learning is
an interesting approach due to its ability also to leverage unlabeled instances in the
training process [7].

Alert confirmation Another key component of SISS-Geo—on which all others
depend—is the process of alert confirmation. This step is the second (and last) time a
human interacts in the process, the other being the upload of the observation record.
As expected, a great challenge and bottleneck result from the need for direct human
participation in the confirmation procedure, either in the field or laboratory; it is an
expensive and slow process, even considering the extensive network of qualified col-
laborations linked to SISS-Geo. When there are more alerts issued by the prediction
model than the capacity of experts and the laboratory network to confirm them, the
phenomena need to be prioritized. In this situation, one can think of prioritizing the
phenomena associated with alerts (1) by alert severity weighted by the confidence of
prediction, or (2) by relevance to regions of great interest, be it social, environmental
or economic. However, a strategy focused on the medium and long term is the pri-
oritization of confirmation (or denial) of alerts with greater potential for improving
the accuracy of the prediction model. This line of research is recent, and it is called
active learning [47]. The same method can also be used in possible cases of false
negatives, thus avoiding the possibility of degeneration of the prediction model10: the
phenomena predicted as non-alerts but that are promising from the learning point of
view would be subject to confirmation (of the non-alert condition) by an expert.

2.3.2 Prediction of Ecological Opportunities for Disease Occurrence

Another line of fundamental importance in SISS-Geo is the prediction of scenarios
and environments that favor ecological opportunities for disease occurrence arising
from wildlife or, put differently, raising scenarios conducive to the occurrence of a
particular event, such as an outbreak of a disease.

In short, trained alert models can be used to evaluate different scenarios and char-
acterize those potentially susceptible. From these, environmental, social, and human
and animal health variables are taken (see Section 2.2), leading to a set of instances
that share the status of “abnormality,” according to the alert model predictions. Then,

10Consider the extreme situation where all the predictions are non-alerts, including both true as false
negatives. Since, in principle, only the cases of alerts are of interest and subject to confirmation, in this
scenario, the model would be doomed to degeneration.
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data-driven models are built over this set in order to estimate a distribution of socio-
environmental variables related to alerts. Finally, the resulting models can be applied
for predictive or descriptive purposes. While in the former the goal is to assign a
degree of suitability for disease occurrence in the geographic space (regions), the lat-
ter aims at the understanding of the factors associated with the disease occurrence,
akin to the discussion in Section 2.3.3.

In order to construct these predictive/descriptive models, methods for linking of
the mentioned variables, such as the ones applied to ecological niche modeling [48]
or, preferably, the less specific traditional machine learning methods can be applied
in this context. Since the alert models are trained based on confirmed/denied events
(Fig. 8), what the disease occurrence models will be reconstructing is not only the
(realized) niche of the observed animals but hopefully the environmental and climatic
parameters that favor the realized niche of the pathogen, which potentially include
portions of the niche of its components including vectors and hosts (since non-human
primates coexist with other species) [36]. Take, for instance, the Sylvatic Yellow
Fever disease. When an alert is issued (due perhaps to an observed high number of
non-human primate deaths), specialists will confirm or deny the alert. In this case, it
is the same as confirming (or not) the circulation of the YF virus among non-human
primates, which in turn is connected with the circulation of YF mosquitoes.

It is worth observing that this kind of modeling outputs the suitability for disease
occurrence, not the actual probability of occurrence. In other words, the model mea-
sures how close a given region’s socio-environmental variables are to the distribution
of the corresponding variables of regions that had confirmed alerts [36].

2.3.3 Gaining Insights ThroughModel Interpretation

An essential feature of symbolic modeling methods, such as decision trees, rule
extraction algorithms, and meta-heuristic genetic programming [25], is that they
reveal in human-readable form the existing relationships between the input and
output data.

The potential of this class of models to aid experts is remarkable in the analysis
and understanding of the phenomenon investigated, leading to a man-machine inter-
action: the model suggests hypotheses that best fit the data while the expert validates
them.

In order to gain meaningful insights from the model, it is necessary to accurately
define its structure/language or, in other words, to incorporate expert knowledge
properly. While doing that, care should be taken to find the ideal balance between
bias, usually resulting from structural simplicity of the model, and variance, an issue
usually associated with structurally more complex models.

3 Evaluation

As of February 2018, SISS-Geo was downloaded more than a thousand times from
the Google Play store and had an average rating of 4.8 out of 5 stars. Even though the
potential number of observations related to wildlife health usually being a fraction
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Table 1 Ten most recorded taxonomic group in SISS-Geo—data until March 2018

Common name Number of records %

Not identified 540 18.3

Birds (Other) 417 14.1

Birds (Penelopes, Seriemas, Toucans) 112 8.6

Amphibians 242 8.2

Snakes 189 6.4

Marmosets and Tamarins 177 6.0

Turtles 101 5.9

Lizards 75 3.4

Birds of prey 72 2.5

Capybaras 64 2.2

of the population of a species, SISS-Geo has 3014 records in its database performed
by 1881 citizen scientists. Its Web interface has been accessed 4,463 times. These
records correspond to 764 mammals, 815 birds, 383 reptiles, 227 amphibians, 47
fish, and 540 not identified. Table 1 lists the ten most recorded taxonomic groups
in SISS-Geo. It is important to emphasize that the records were uploaded by vol-
unteer collaborators that often do not have taxonomic knowledge, which can have
adverse effects on data quality. To tackle this issue and improve wild animal mon-
itoring, which can lead to better assertive models for the emergence of zoonoses,
SISS-Geo has developed a tool for expert-supported record validation. Figure 9
shows the geographic distribution of the observations recorded by SISS-Geo that are
georeferenced.

SISS-Geo integrates data-based computational modeling, development, and high-
performance computing. It was selected in 2014 as the best project [5] in the “Health”
category of the Grand Challenges of Computing event of the Brazilian Computer

Fig. 9 Geographic distribution
of records (red dots) in Brazil
until March 2018
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Table 2 Recorded conditions in SISS-Geo until March 2018

Condition Number of records %

Normal behavior 2,168 71.2

Dead animal 697 22.9

Strange behavior 112 3.7

Sick animal 67 2.2

Society. In 2017, SISS-Geo received the National Biodiversity Prize from the Brazil-
ian Ministry of the Environment.11 It allows the monitoring of wildlife and can
support the identification of zoonoses, such as the Yellow Fever outbreaks, which
in its sylvatic cycle circulates among non-human primates. The fact that monkeys
become ill or die before there are human cases of Yellow Fever causes the surveil-
lance of outbreaks, such as the recent one [11, 31], in these animals to be of vital
importance in the control and prevention of the disease. The collaboration of the
population is critical because prevention actions can be improved and streamlined,
and everyone will benefit. With the participation of ordinary people, the application
makes available, in real time, the occurrences of dead or diseased animals for public
health and biodiversity conservation, assisting the Epizootics Surveillance System in
Nonhuman Primates (PNH), of the Brazilian Ministry of Health, and records of dead
monkeys are reported to the responsible bodies investigating the cases. The informa-
tion recorded in SISS-Geo serves to generate computational models for predicting
zoonoses and for the adoption of preventive measures. Tables 2 and 3 list the recorded
conditions and the most recorded abnormalities in SISS-Geo, respectively.

Some of the observations performed with SISS-Geo triggered alerts and con-
tributed to biodiversity conservation actions, such as (i) 59 dead turtles were recorded
in the south of the Brazilian state of Bahia in November 2017, generating a notifica-
tion to the responsible environmental agency and a legal notice to those involved in
predatory fishing in the area; (ii) observations of dead foxes with rabies in the North-
east were able to support decision-making by health surveillance agencies; (iii) 73
dead monkeys were recorded in 2016 during the recent Yellow Fever epizooty, which
directed health surveillance actions in the field.

The outbreak of yellow fever, which occurred in 2016 and spread throughout
southeastern Brazil [31, 51], was evidenced by SISS-Geo from the recording of non-
human primates in Minas Gerais and other states. Among the various prevention and
control actions, the Health Surveillance Secretariat of the Ministry of Health of Brazil
carried out five training courses with all the agents and stakeholders involved in the
surveillance of Yellow Fever in all the states of the country. In these training sessions,
SISS-Geo was presented and offered to agents and managers as a monitoring tool for
zoonoses epizootics [1]. Other training activities were carried out with community
health agents, park guards and civil defense agents directly involved in the actions
of human vaccination and collection of biological samples of non-human primates to

11http://www.mma.gov.br/component/k2/item/10443-pr& (In Portuguese)
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Table 3 Recorded abnormalities in SISS-Geo until March 2018

Abnormality Number of records %

None 2,377 81.3

Wound 103 3.5

Other 101 3.5

Fracture 75 2.6

Blindness 74 2.5

Bleed 58 2.0

Skin problems 36 1.2

Swell 32 1.1

Myiasis 25 0.9

Secretion 18 0.6

Drool 16 0.5

Lump or Tumor 6 0.2

Diarrhea 3 0.1

confirm cases, in addition to the capture of animals. The use of SISS-Geo, although
unofficial so far, since it is necessary to restructure the national flow of information,
has been adopted as an additional tool in surveillance, especially for the ability to
generate georeferencing, photographs, and real-time information. As a result of this
work, working groups, municipal agents, and collaborators from 25 Brazilian states
record animals, which has already helped to inform about 200 deaths of non-human
primates throughout the country.

SISS-Geo also contributed to the monitoring of species on the IUCN Red List
of Threatened Species, with the availability of the location and information of
some species already registered as Panthera onca, Puma concolor, Tapirus ter-
restris, Myrmecophaga tridactyla, Bradypus torquatus, Chrysocyon brachyurus,
Chelonia mydas, Leontopithecus chrysomelas, Alouatta guariba guariba, and Crax
blumenbachii.

As seen, the SISS-Geo platform, including its data and methodologies, allows
analyses that can go beyond the initial planning: from the monitoring of specific
groups of animals to its complete adaptation to new contexts. Thus, examples of
the expansion of SISS-Geo to new scenarios can be seen by the use of data already
collected, its tools, or even all its computational framework.

In this sense, projects that rely on the records of the platform to support biodi-
versity monitoring, such as in Serra dos Órgãos National Park (PARNASO - Parque
Nacional da Serra dos Órgãos in Rio de Janeiro State), are already in progress.
Besides that, the collected records can also be used in many other scenarios, for
instance: estimating species distribution along with their health status and training
models of automatic species identification from SISS-Geo’s images.

Besides, the SISS-Geo computing framework, designed to integrate locality infor-
mation, photographic and animal records, is easily replicated, taking advantage of all
the tools and methodologies developed and applied in its design. An example of this
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reuse is the project under development as a partnership between Fiocruz, the National
Center for Flora Conservation of the Rio de Janeiro Botanical Garden Research Insti-
tute (CNCFlora/JBRJ), and the Rio de Janeiro State Secretary of the Environment
(SEA-RJ). It aims to adapt SISS-Geo to a citizen-scientist platform for searching for
rare plants, within the context of the project “Campanha Procura-se12.” By simply
adapting the information from the module “Animal” to a “Plant” one, it was possible
to replicate most of the previously described concepts and flows.

4 RelatedWork

He et al. [20] present the eMammal framework for wildlife monitoring supported by
citizen scientists. Animal images collected with camera traps are sent to its database
where visual animal recognition techniques are applied. The species identification
recommendations generated are reviewed by citizen scientists and, subsequently, by
experts. The resulting validated records are made available to wildlife and ecologi-
cal researchers. eBird [49] also leverages the capability of citizen scientists to gather
bird observation records. Automated data quality filters are used to support species
identifications performed by citizen scientists. iNaturalist [21] is another biodiversity
citizen-science initiative available as both a mobile and Web application. Volunteers
can record and identify species observations that can be validated by other users
and biologists. After an observation is validated, it is annotated as “research grade”
and uploaded to GBIF. The World Organization for Animal Health (OIE), which
maintains the World Animal Health Information Database (WAHIS) Interface13, is
accessible online and contains updated information on disease outbreaks. However,
most of OIE’s pertinent and relevant information relates to infectious agents that
have an impact on livestock production and human health, when the two situations
are interlinked. As an example, there is no notification of Yellow Fever epizootics in
humans and non-human primates, and this information was only requested to Brazil
in 2017 after thousands of deaths of people and non-human primates. In WAHIS,
space for “other diseases” of irrelevant paper to the economy was added only in
recent years. It is important to note that the information provided by the OIE comes
from member countries in half-yearly reports. Brazil has the National Animal Health
Information System (SIZ)14; however, the database refers to the mandatory notifi-
cation diseases described in Normative Instruction No. 50, 23rd of September 2013.
The national list does not include pathogens that have no interest for animal produc-
tion, although there is also a field where any notification can be made. Therefore, in
Brazil, there is no system for collecting and systematizing wildlife diseases, one of
the main reasons for the development of SISS-Geo, created by a project in partnership
with government agencies of livestock production and the environment.

12http://dspace.jbrj.gov.br/jspui/handle/doc/95
13http://www.oie.int/wahis 2/public/wahid.php/Wahidhome/Home
14http://www.agricultura.gov.br/assuntos/sanidade-animal-e-vegetal/animal-animal/epidemiologia/
ingles/animal-health-information-system
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More general biodiversity databases exist at the global, national, and ecosystem
levels. GBIF [13] gathers species observation data on a global scale. In February
2018, it had 54 national nodes. Along with other types of participants, GBIF gathers
data from 1152 institutions, totaling approximately a billion records. SiBBr [16] is
the Brazilian GBIF node, publishing species occurrence records and providing an
ecological niche modeling portal [45]. BaMBa [27] is a biodiversity database that
focuses on marine ecosystems that is also integrated with GBIF. These systems use
the IPT tool [41] to extract observation records from local databases, export them to
Darwin Core [53], and publish them on GBIF.

SISS-Geo is both a citizen science application and a biodiversity database. eBird,
eMammal, and iNaturalist while being citizen science applications as well, do not
provide tools for data analysis as SISS-Geo plans to do with the application of
machine learning techniques to generate wildlife health alerts following the method-
ology proposed in Section 2.3. GBIF, SiBBr, and BaMBa focus on data mobilization
and publication and do not directly provide tools for enabling the participation of
citizen scientists.

5 Conclusion

The proposal was inspired by the desire to make public and seek reinforcements for
a long walk that brings together researchers, experts from multiple areas and society
so that, through computing, information and disease prevention actions reach the
most remote regions of the country. It emerges from many years of practice of field
research in the Brazilian semi-arid region, where relevant information on diseases
in wild animals have been lost or dispersed, and the lack of systematization turned
necessary actions impossible both for the containment of diseases in humans, as for
conservation of species.

SISS-Geo was born out of efforts to create innovative and integrated actions for
the mainstreaming of biodiversity in the sectors of the country. It integrates the
actions of the Oswaldo Cruz Foundation (Fiocruz) in “Public-Private Actions for
Biodiversity Project” – PROBIO II15, coordinated by the Brazilian Ministry of the
Environment, and developed by FUNBIO, Embrapa, the Brazilian Ministries of Agri-
culture and Livestock, Health, and Science Technology and Innovation, the Botanical
Garden of Rio de Janeiro, ICMBio, and Fiocruz. The National Laboratory for Scien-
tific Computing joined the Fiocruz project and ensured its execution in a long-term
knowledge-building partnership.

By automating the search for occurrence patterns, the information reaches more
efficiently citizens nationwide, from the general population through experts, as well
as provides the opportunity for the acquisition of knowledge about the possible pat-
terns and parameters that contribute to the occurrence of diseases. In the medium and
long term, it also builds the capacity of researchers to develop complex modeling in
the ecology of diseases that can exploit geographic information in order to improve

15http://www.funbio.org.br/probioii
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accuracy. Moreover, occurrence patterns yield data that can assist national policy on
health and biodiversity conservation.

It should be pointed out that all the described design decisions and techniques
embodied in SISS-Geo could also be readily adapted to other similar settings. Besides
the increasingly popular concept of leveraging citizen scientists to propel a collab-
orative monitoring tool, which would fit countless different scenarios provided they
can either tolerate some inaccuracy or have a mechanism to validate user input,
the proposed machine-learning flow is sufficiently generic to cover a wide range
of related contexts. For instance, it is rather common the case in which a phe-
nomenon cannot be recorded all at once, but incrementally in time and space, possibly
by different collaborators, as in the jigsaw puzzle; here, everything discussed in
Section 2.3.1 would be potentially useful. Another potential contribution to other
settings is the discussion about feature extraction from groups followed by the alert
prediction/confirmation, which could play a central role in situations—especially in
those related to unattended monitoring—where certain events should trigger alerts.

In the context of SISS-Geo, the incorporation provenance information is planned
to allow the alert generation process to be traceable, meaning that one can recover
the data, configuration parameters, people and computational activities involved.
This enables many applications, such as assessing the quality of the alerts gener-
ated, verifying compliance with governmental regulations, and the reproducibility
[3, 9] of the alert generation process. Provenance information [29, 30], which con-
tains details about the planning and execution of computational processes, such as
scientific workflows, describing the processes and data involved in the generation of
its results may be used to facilitate this task. They allow an accurate description of
how a computational process was planned, which is called prospective provenance,
and what occurred during execution, which is called retrospective provenance. Some
applications of provenance include reproducibility of computational processes for
validation, sharing and reuse of knowledge, data quality evaluation, and attribution of
scientific results. One of the concepts commonly captured in provenance is causal-
ity, which is given by the existing dependency relationships between computational
activities and data sets. These dependencies can derive, by transitivity, dependencies
between data sets and between processes.

An application programming interface (API) is being implemented and will serve
the data stored in SISS-Geo to other systems. The installation of an instance of IPT
[41] is also planned and will allow this same data to be exposed in the Darwin Core
[53] standard along with EML [15] metadata . This will enable global and national
biodiversity databases, such as GBIF and SiBBr [16], to collect the species occur-
rence records stored in SISS-Geo. As a result of the need to integrate information on
wildlife, human and livestock health, several conversations have been made with the
OIE’s Brazilian focal point in the government’s Ministry for Agriculture, Livestock
and Food Supply of Brazil. The plan is for information from SISS-Geo to feed the SIZ
(Brazilian National Animal Health Information System) database, which will subse-
quently power the WAHIS database. Since 2017 the transfer of information has been
done informally, with the reporting of notifications of dead and sick animals. Sys-
tematic integration in the various national information systems, both human health
and livestock production, also depends on many political and legal advances and, in
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particular, on the strengthening of the structure that supports the laboratory diag-
nosis of pathogens that do not appear in the notifiable diseases nor for humans, or
livestock. The integration data from additional data providers that are relevant to the
application area of SISS-Geo is planned, following the rules and national legislation.

In one way or another, the authors believe that the SISS-Geo platform addresses
the five challenges mentioned in Section 1:

1. Decision-makers can be sensitized to the importance of wildlife monitoring
through multiple avenues, such as (i) scientific communication (as this document
itself) and (ii) models of diseases occurrence that are capable of anticipat-
ing outbreaks. SISS-Geo is being used in ongoing collaborative work with the
Secretariat of Health Surveillance (Brazilian Ministry of Health) to generate
data-driven Yellow Fever models.

2. Regarding the second challenge, being an easy-to-use GIS-based tool that lever-
ages citizen scientists as the primary source of data collection from wildlife
health, SISS-Geo is not impaired by large territorial extension neither is it depen-
dent on sectoral policies and government health staff. The independent network
of experts and laboratories takes care of alert confirmation; concomitantly, the
active-learning approach proposed in Section 2.3.1 would hopefully minimize
the human resource involved in this task.

3. SISS-Geo has been designed since the beginning as a platform aimed at inte-
grating seamlessly multiple agents and skills. Each agent, whether it is a citizen
scientist, specialist, laboratory, or decision-maker, has a well-defined role in
SISS-Geo. Citizen scientists and specialists can both upload records of observa-
tions to SISS-Geo; the difference is that records provided by experts tend to be
more comprehensive and reliable. After that, they are validated and, if alerts are
predicted, the network of experts and laboratories are asked to confirm or deny
them. From the confirmed/denied data, models that correlate factors and occur-
rence are built via machine-learning techniques with the aid of experts. Then,
occurrence cases, alerts, and models are communicated to decision-makers,
enabling them to make informed decisions on possibly imminent outbreaks.

4. For obtaining, storing, and managing data properly, this is effectively accom-
plished in SISS-Geo thanks to its architecture with a dedicated Web server,
database server, and HPC resources (Fig. 7). There are ongoing efforts into mak-
ing the SISS-Geo mobile application capable of operating flawlessly in offline
mode, which is very common in remote areas of the country.

5. Finally, the fifth challenge concerning the identification and prediction of risks
from data, as well as the extraction and communication of relevant informa-
tion, are also part of the SISS-Geo workflow, tackled respectively by the tasks
of modeling of disease occurrence (Section 2.3.2) and model interpretation
(Section 2.3.3).
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