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Abstract
There is growing interest in the way exposure to neighborhood risk and protective
factors affects the health of residents. Although multiple approaches have been report-
ed, empirical methods for contrasting the spatial uncertainty of exposure estimates are
not well established. The objective of this paper was to contrast real-time versus
neighborhood approximated exposure to the landscape of tobacco outlets across the
contiguous US. A nationwide density surface of tobacco retail outlet locations was
generated using kernel density estimation (KDE). This surface was linked to partici-
pants’ (Np = 363) inferred residential location, as well as to their real-time geographic
locations, recorded every 10 min over 180 days. Real-time exposure was estimated as
the hourly product of radius of gyration and average tobacco outlet density (Nhour = 304,
164 h). Ordinal logit modeling was used to assess the distribution of real-time exposure
estimates as a function of each participant’s residential exposure. Overall, 61.3% of
real-time, hourly exposures were of relatively low intensity, and after controlling for
temporal and seasonal variation, 72.8% of the variance among these low-level expo-
sures was accounted for by residence in one of the two lowest residential exposure
quintiles. Most moderate to high intensity exposures (38.7% of all real-time, hourly
exposures) were no more likely to have been contributed by subjects from any single
residential exposure cluster than another. Altogether, 55.2% of the variance in real-time
exposures was not explained by participants’ residential exposure cluster. Calculating
hourly exposure estimates made it possible to directly contrast real-time observations
with static residential exposure estimates. Results document the substantial degree that
real-time exposures can be misclassified by residential approximations, especially in
residential areas characterized by moderate to high retail density levels.
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1 Introduction

Geographic location provides a relational connection between individuals, their health
behaviors, and a rapidly expanding array of data on neighborhood structure and
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composition [1–3]. Once hierarchically integrated, it becomes possible to systemati-
cally investigate the impact of a wide range of neighborhood socio-ecological covar-
iates on indicators of individual health and well-being [4–7]. The geographic landscape
of retail tobacco products provides an excellent example [8–19]. A considerable body
of empirical evidence demonstrates the ways point-of-sale tobacco marketing influence
tobacco users’ product preferences as well as decisions to initiate or refrain from use [8,
9, 11, 20–26], and that targeted point-of-sale tobacco (POST) marketing tactics sustain
tobacco-related health disparities [12, 27–32]. Studies have also focused on the lowest
displayed pack price, promotions, placement for leading brands, and flavor descriptors.
More recent work has found that cigarette packs cost less at retailers located near public
schools than those near private schools [11], and that outlet proximity to schools and
parks is linked to advertising practices and illicit youth sales [12].

Despite a proliferation of studies that seek to identify and study mechanisms linking
neighborhood environments to the health-related decision-making and behavior of
residents, [2, 33–36] a number of unresolved conceptual issues persist, not least the
definition of the ecological units of analysis themselves. Because there are no naturally
occurring units of neighborhood, the neighborhood areal units employed by researchers
are often arbitrary or linked to confounding geographic circumstances, [37]
undermining their utility for geographically-explicit health research. [2] The ideal
neighborhood unit would represent the “true causally relevant spatial context,” [1]
however, so long as the true spatial context remains undefined, we are left with what
Kwan has termed the ‘uncertain geographic context problem’ (UGCoP). [38] Inferen-
tial errors brought about by the use of arbitrary methods for delineating neighborhoods
likely contribute to the misclassification of effects and inconsistent evidence for socio-
ecological relationships and health behavior across the research literature. [38–41]

Residential location remains the most readily available geographic linkage for
integrating individual and neighborhood data. Conventionally, researchers join residen-
tial addresses directly to the administrative zones they fall within (e.g., US Census
polygons) or draw new ‘ego-centric’ buffer zones around those addresses [4]. These
residential areal units act as spatially and temporally invariant containers for various
neighborhood risk and protective factors, each of which can then be linked to residents
themselves. Data on individual mobility patterns improve upon the assumptions that
administrative zones or ego-centric buffers make about the propensity for individuals to
come into contact with environmental risk factors. Mobility data capture actual travel
patterns, including each person’s ever-accumulating set of origins and destinations,
allowing for precise estimation of exposure to environmental risk factors over time.
Dynamic conceptualizations of neighborhood exposures may enrich our understanding
of health and place by better reflecting the true causally relevant spatial context of
exposures to environmental risk in the population [6, 7, 42–44].

This paper presents a direct comparison of real time versus neighborhood approx-
imated (residential address; [4]) exposure to a well-known environmental risk factor,
the spatial distribution of tobacco outlets across the contiguous United States [19,
45–47]. This comparison provides an empirical framework for contrasting relative
uncertainty in spatial exposures and estimating the likelihood of their misclassification.
Residential and real-time exposures were computed for a sample of 363 people, each of
whom voluntarily recorded their location every 10 min for 180 days using their cellular
phone. Analyses use a common density-based exposure metric to examine the extent to
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which variation in exposure levels observed in real-time could be explained by
exposure estimates approximated solely from residential location. By partitioning
variation in exposure due to routine patterns of mobility, we specifically tackle the
first of Chen and Kwan’s (2015) three key dimensions for research on retail access:
contextual uncertainty due to real-time mobility patterns.

2 Methods

For clarity of presentation the Methods are organized into three sections: 2.1 Data
Preparation, 2.2 Tobacco Outlet Exposure Estimation, and 2.3 Statistical Modeling.
Section 2.2 describes the calculation of home and real-time (hourly) exposure esti-
mates, and Section 2.3 describes the statistical analysis framework, which is a special
case of multinomial logistic regression, providing a framework for interpretation of the
model estimation process. Agresti [48] shows the direct correspondence between the
log-linear and logit modeling frameworks, both in mathematical and inferential terms,
and we present an application of this approach here.

2.1 Data Preparation

2.1.1 Longitudinal Human Mobility Data

Longitudinal human mobility data was continuously recorded via the OpenPaths
(https://openpaths.cc) platform, launched by the New York Times Company Research
and Development Lab in May 2011 [49]. Participants who provided consent to
participate in this research and downloaded the OpenPaths application for either iOS
or Android were then able to use the application to continuously capture their current
geographic location—i.e., latitude and longitude, wirelessly uploaded according to a
10-min sampling rate. When participants remained stationary (less than 5 m location
change between successive coordinates), the OpenPaths application suspended data
collection to save battery, ensuring that OpenPaths data represents periods of at least
minimal mobile activity rather than extended periods of rest, such as while people sleep
at night or sit for long periods at their desks. While stationary, the application continued
to “listen” for a greater than 5-m location change and reinitiated continuous tracking
whenever such a change was detected.

The raw longitudinal mobility dataset used for the present analysis contained
8,458,902 observations collected from 859 individuals worldwide from 01/01/2012
to 06/06/2015. Each observation included a unique user ID, date, time, latitude, and
longitude. The raw mobility data were initially clipped to the United States using state
outline polygons published by United States Census Bureau, yielding a US cohort of
744 individuals with 4,647,152 observations. Data from the lower 48 states and
Washington, DC were then clipped to correspond with the tobacco density layer
(Section 2.2), yielding 729 individuals with 4,556,619 observations. Participants
tracked their location over a mean of 267 days (Median = 178; SD = 278), recording
an average of 6251 location coordinates (Median = 3192; SD = 10,289). To standardize
the amount of data contributed by each individual while maximizing the amount
available for analysis, each participant’s daily data records were left-truncated, retaining
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their most recent 180 days of tracking data. Individuals with fewer than 180 days of
data were not included in the present analyses, ensuring all between-person contrasts
were based on an equivalent 180-day sampling frame. The final longitudinal mobility
dataset thus included Np = 363 individuals and 1,418,151 real-time observations over
the 180-day study period.

2.1.2 Estimating Tobacco Outlet Density

A nationwide density surface of tobacco retail outlet locations was generated using
kernel density estimation (KDE). This non-parametric method extrapolates from spa-
tially distributed point data by estimating their continuous density using spatial density
functions known as kernels, each of which has a specified circular radius size known as
the bandwidth [50]. Gaussian kernels with a fixed 8047 m (5 mile) bandwidth were
used to generate the final density surface, from which density estimates could be
extracted with a resolution of 250 m.

The empirical basis for this probability density surface was a national dataset of
tobacco retail outlets, identified by North American Industry Classification Systems
(NAICS) codes. Developed by the Office of Management and Budget, NAICS is the
standard used by Federal statistical agencies to classify businesses based on their
primary activity [51]. In 2012, geocoded data was obtained from D&B Hoovers. The
following retail categories and corresponding NAICS codes were included: beer, wine,
and liquor stores (NAICS: 445310); supermarkets and other grocery stores (NAICS:
44511); convenience stores (NAICS: 44512); pharmacies and drug stores (NAICS:
446110); gasoline stations with convenience stores (NAICS: 44711); other gasoline
stations (NAICS: 44719); department stores (NAICS: 452111); discount department
stores (NAICS: 452112); and tobacco stores (NAICS: 453991). For pharmacies and
department stores, we individually reviewed all chains with 50 or more locations to
determine if they sold tobacco and excluded them accordingly [52]. Based on this
analysis, we also excluded all other department stores and pharmacies as they likely do
not sell tobacco. In addition, we excluded major department chains and grocery stores
that, based on their store’s policy, do not sell tobacco products (i.e., Target, Whole
Foods, Trader Joe’s, Wegmans). We also excluded pharmacies and drug stores in the 55
Massachusetts and 2 California municipalities that have banned the sale of tobacco
products within these establishments. The final dataset comprised N = 269,781 retail
outlets.

2.2 Tobacco Outlet Exposure Estimation

2.2.1 Residential Exposure

Residential locations were extracted from participants’ OpenPaths mobility data using a
two-step procedure based on Toole et al. [53], and originally given by Zheng and Xie
[54]. In the first step, meaningful locations—stay events—were extracted frommobility
data for each participant for each nighttime period (8 pm–7 am). A second step then
combines each participant’s set of nighttime stay events covering the entire 180 day
analysis period to a set of aggregate stay points. The aggregate stay point that comprises
the most nighttime stay events for each participant was selected as the maximally
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unbiased estimator of residential location. Residential retail exposures were then
generated by spatial joining each participant’s inferred residential location to the density
surface of tobacco retail outlet locations (Mean = 9.50, Median = 3.81, SD = 12.25).
Exposures were square root transformed owing to right skew, and classified into five
groups based on exposure intensity.

2.2.2 Real-Time Exposure

Participants’ OpenPaths mobility data was used to compute hourly radius of gyration
(Rg), measured in meters [28]. Rg estimates the size and spread of a participant’s
personal activity space for a given hour. Rg is defined by the standard deviation between
locations and their center of mass:

Rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

k¼1
rk−rmeanð Þ2

s

where N is the total number of location coordinates collected from each individual per
hour, and rmean is the individual center of mass, or the mean longitude and latitude of all
N locations. The great circle distance in meters between a specific location and the
center of mass (rk − rmean) was calculated using Vincenty’s formulae [55]. The dataset
was then aggregated over 465,279 hourly observations of Rg. Given the present focus
on routine day-to-day mobility patterns, long-range travel was excluded by dropping
observations with Rg larger than 160 km (Ndrop = 945), the maximum distance a car can
travel in 1 h. Hours with zero movement (Rg = 0) were then excluded, yielding 363
individuals with a total 304,164 hourly observations (65.4% of the hourly data).

Real-time exposure was conceptualized as the product of a participant’s hourly
movement (Rg) and their hourly aggregate exposure to retail outlets (Mean = 22,620,
Median = 7.01, SD = 144,191). Each real-time mobility coordinate contributed by the
participants was joined to a tobacco outlet density value extracted from the KDE
surface. Hourly exposure levels are, thus, the product of each participant’s Rg within
each hour under observation and the average tobacco outlet density value across the set
of mobility coordinates recorded within the same hour. This exposure variable approx-
imates the number of tobacco outlets that surrounded each participant within each hour
of the study and, as expected from a count variable of this kind, the observed
distribution of exposure values was heavily skewed to the right. To improve corre-
spondence with the standard assumptions of a categorical count-based data analysis
framework, both residential and hourly exposure values were square root transformed
and determined to closely follow a negative binomial distribution. This produced real
valued outputs in the range 0–27, which were divided into 27 clusters by binning with a
one unit spacing. Each cluster effectively labels all participant hours within a particular
range of exposure intensity, with subsequent clusters representing the increasing
intensity of participants’ hourly exposures in this sample.

To model temporal patterns of exposure, time-related variables based on social
convention were derived for each observation. These were time-of-day (24-h clock),
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day-of-week (weekday versus weekend), and season. Time of day was defined by four
6-h windows: 3:00–9:00 as “early,” 9:00–15:00 as “day,” 15:00–21:00 as “evening,”
and 21:00–3:00 as “late,” treating observations recorded between midnight and 3 AM
as part of the preceding day [56]. Day-of-week was coded binary, indicating whether
each observation fell on a weekend, defined as falling after 17:00 Friday through 17:00
Sunday. Season was also defined as categorical, with December–February as winter,
March–May as spring, June–August as summer, and September–November as fall.

2.3 Statistical Analyses

2.3.1 Log-Linear Model Selection

The interactive association between real-time exposures (27 clusters) and residential (5
clusters) exposures was stratified across time-of-day (4 categories), day-of-week (2
categories), and season (4 categories), using a set of multivariate contingency tables
that populated a 5-dimensional matrix with a total of 27×5×4×2×4 = 4320 cells.
Patterns of association within this large multivariate contingency table were analyzed
with generalized categorical data analysis techniques [48]. Specifically, we employed
an exponential, log-linear modeling framework. Log-linear models convert the multi-
plicative relations among joint and marginal counts in a contingency table to additive,
linear associations by transforming the counts to logarithms [48]. Hierarchically nested
model comparison techniques were used to iteratively identify the most parsimonious
combination of factors required to explain the observed data. Systematic comparison of
hierarchically nested log-linear models produced a likelihood ratio test statistic pre-
sented in the text. The saturated model represents the log frequencies for the cell index
(h,w,t,s,e) of all non-ordinal combinations of both real-time exposure and residential retail
exposure (home), time-of-day, weekend, and season:

ln μhwtse� � ¼ λþ λH
h þ λW

w þ λT
t þ λS

s þ λE
e þ λHW

hw þ⋯þ λHWT
hwt þ⋯þ λHWTE

hwte

þ⋯þ λHWTSE
hwtse ; h

¼ 1;…; 5;w ¼ 1; 2; t ¼ 1;…; 4; s ¼ 1;…; 4; e ¼ 1;…; 27:

Where H is home exposure, T is time-of-day, W is weekend, S is season, and E is real-
time exposure. h, t, w, s, and e are categories within H, T, W, S, and E. μhwtse represents
the expected cell frequencies in the five-dimensional contingency table. λ is the
constant. λH

h denotes the row effect of λH
i ; i∈h. λ

W
w , λ

T
t , λ

S
s , and λE

e also represent

row effects. λHW
hw is the interaction term λHW

ij between H and W, where i ∈ h, j ∈w.
λHWT
hwt ,…, λHWTE

hwte ,…, λHWTSE
hwtse are higher dimensional interaction terms. For easier read,

letter symbols are used in Table 1 to represent the highest interaction model terms.

2.3.2 Log-linear Model Interpretation: Ordinal Logit Modeling

Ordinal logit models were used to interpret observed associations within a log-linear
framework, utilizing well-established logistic model reporting and interpretation
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standards [48]. In this paper, log-linear estimation and selection was used to identify the
most parsimonious model, best fitting the observed data, and then ordinal logit
modeling was used to examine our primary aim: examining the extent to which
variation in exposure to tobacco retail outlets observed in real-time could be explained
by exposure estimates approximated as a function of residential location and time
(time-of-day, day-of-week, season-of-year). Following Agresti (2012), this was accom-
plished by setting the residential exposure variable (home) from within the log-linear
model as an ordinal dependent variable. Within this framework, each ordinal residential
exposure level represented a “cluster” of participants, and model results estimate the
probability—i.e., the log-odds ratio or logit—that each real-time exposure observation
was contributed by a participant from each of the residential density clusters.

3 Results

Overall, mean hourly Rg was 0.55 km with a standard deviation of 2.66 km. Minimum
and maximum were 0 and 152.94 km. Within each day, Rg was the lowest in the middle
of the night and higher across the remainder of the day. Two spikes were observed in Rg

in early morning and late afternoon on weekdays, which is likely related to commuting
between home and work—while there was generally more variation on weekends.
Figure 1 illustrates the daily drop in mobility across the late-night hours, followed by a
steep rise across the early morning, and then divergence on Saturday and Sunday, with
early Sunday afternoon revealed as the window of greatest mobility on average.

Table 1 Step-down contrasts of “best-in-class” models

Model (Model Terms) Deviance df p value G2 Δ df p(Δdf;
0.01)a

1.1 (W, T, H, S, E) 321,168.90 302,853 0.00*** 1057.6 54 < 0.001b

1.2 (WT, WH, WS, WE, TH, TS,
TE, HS, HE, SE)

320,111.30 302,907 0.00*** −108,897.9 495 < 0.001b

1.3 (HTE, WTE, HWT, HWE, HES,
HTS, TSE, WSE, WTS,
HWS)

429,009.20 303,402 0.00*** 169,139.32 286 < 0.001b

1.4 (WTSE, TSHE) 259,869.88 303,688 1.00 −12,713.60 16 < 0.001b

1.5 (WTHE, TSHE) 272,583.48 303,704 1.00 158,014.6 127 < 0.001b

1.6 (WTHE, WSHE, TSHE) 114,568.88 303,831 1.00 50,677.26 77 < 0.001b

1.7 (WTHE, WTSE, WSHE, TSHE) 64,396.25 303,902 1.00 15,677.26 36 < 0.001b

1.8 (WTHE,WTSE, WTSH, WSHE,
TSHE)

48,718.99 303,938 1.00 48,718.99 303,938 1.00

1.9 (WTSHE) 0.00 0 1.00 – – –

W weekend, T time of day, S season, H residential exposure cluster, E real-time exposure level

***Significant lack of fit at 99% confidence level
a p value of G2 comparing to the model below
bHierarchically nested models are significantly different at 99.9% confidence level
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Figure 2 presents generalized additive model smoothed real-time exposure intensity
by time of day for each residential exposure cluster. On weekdays, real-time exposure
spikes in the early morning and late afternoon across all residential exposure clusters,
probably due to increased movement and exposure to retail outlets during the commute
to and from work. However, this relationship becomes more prominent as residential
exposure cluster increases from low to high. In contrast, weekend exposure was
elevated at noon and then remained high until early evening, and was broadly consis-
tent across residential exposure clusters, except in the high exposure cluster which
deviates from the patterns observed.

3.1 Model Fitting: Best-in-class Log-linear Model Selection

Table 1 presents an overview of the best-in-class model selection process used to identify
themostparsimoniousmodel,definedas theminimal setofparameters required toprovide
an adequate fit to the observed data. Following hierarchically nested model comparison
techniques,Modelperformance isevaluatedbybothdegreeoffreedom(df)and likelihood
ratio test statistic (G2). p value represents lack of fit of the models, which means models
withpvalueof1fit at99%confidencelevelandpvalueof0 indicatesmodelnot fitting.The
initial basis for comparison is Model 1.9, which is the saturated model that corresponds
perfectly to the raw data, having zero degrees of freedom, as the number of parameters is
equivalent to the total number of cells generated byall interactive combinations of the five
factors under study: retail exposure (the conceptual dependent variable), residential
exposure (home), weekend, time-of-day (time), and season. Model 1.4 fits while using
only 829 cells to model the total 1325 cells under study. It also accurately predicts a five-
dimensional contingency table with lower level four-way interactions. This is the most

Fig. 1 Radius of Gyration Measured Mobility Patterns by Time of Day across Day of Week
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parsimonious model, effectively isolating an informative pattern in the data that then
becomes the basis for inference.

To measure the separate strength and significance of each interaction in Model 1.4,
models excluding one of the two interaction terms were evaluated. Table 2 shows the
likelihood ratio evaluation of the influence of the excluded term compared to Model 1.4
with all two-term four-way interactions. This method provides a specific test of
conditional independence between seasonal effects and real-time exposure levels.
These model fits indicate that while the interactions between weekend effects and other
factors are important, their associations do not contribute in Model 1.5 as much as the
interactions between residential (home) exposure, time, season, and real-time exposure.

3.2 Model Inference: Ordinal Logit Modeling of Residential Density Clusters

To examine real-time tobacco retail outlet exposures among clusters of residential
exposure, an ordinal logit model was constructed to be mathematically equivalent to
the most parsimonious log-linear model (see Section 2.3.2 Table 1 Model 1.4), itself
identified through the model selection process described in Section 3.1:

logit P H ¼ hjT ¼ t; S ¼ s;E ¼ eð Þ½ � ¼ αþ βT
t þ βS

s þ βE
e þ βTS

ts þ βTE
te þ βSE

se

þ βTSE
tse þ ε; h

¼ 1;…; 5; t ¼ 1;…; 4; s ¼ 1;…; 4; e ¼ 1;…; 27:

Fig. 2 Weekday and Weekend Real-time Exposure by Time of Day for Each Residential Exposure Cluster
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where the log-odds ratio (i.e., logit) of residential exposure cluster membership (home)
for each hour is modeled as a function of the real-time exposure level (H), time-of-day
(T), and season (S) associated with each hour. α is a constant. h, t, s, and e are
categories within H, T, S, and E, and ε is the error term. βT

t , β
S
s , and βE

e represent the

effects of parameter T, S, and E respectively. βTS
ts , …, βTSE

tse represent the effects of
interactions between parameters. For easier read, letter symbols are used in Table 2 to
represent the highest interaction model terms. Model predicted residential exposure
cluster membership and associated confidence intervals were generated via
bootstrapping with 500 random samples of 10,000 observations, drawn with replace-
ment from the empirical data distribution, effectively capturing the uncertainty associ-
ated with each parameter estimated by the model. This simulation-based resampling
approach allowed for precise discrimination between the different residential exposure
clusters (Fig. 3).

Figure 3 presents the model predicted results of this process, illustrating the
predicted probability that each of the 304,164 h under study was contributed by a
participant from each of the residential exposure clusters. Separation between the
bootstrapped 95% confidence intervals corresponds to regions of the distribution of
real-time hourly exposures that were significantly explained by one or more of the
density clusters. Overall, 61.3% of real-time, hourly exposures were of relatively low
intensity, and after controlling for temporal and seasonal variation, 72.8% of the
variance among these low-level exposures was accounted for by residence in one of
the two lowest residential density quintiles. Residence in one of the two highest
residential density quintiles accounted for approximately 50% of the variance among
extreme exposure levels, but extreme levels of exposure were rare, constituting about
1% of the data. Altogether 55.2% of the variance in real-time exposures was not
explained by participants’ residential exposure cluster, and most moderate to high
intensity real-time exposures (38.7% of all hourly exposures) were no more likely to
have been contributed by subjects from any single residential density cluster than
another. In sum, OpenPaths participants experienced a heterogeneity in hourly
tobacco retail outlet exposures that is only partially explained by their static residen-
tial exposures.

Table 2 Likelihood ratio evaluation: removal of four-way terms from maximally parsimonious model

Model Hypothesis Log-likelihood df G2 Δ df p(Δdf; 0.01)a

Maximally parsimonious model

1.4 (WTSE, TSHE)ψ −1,363,431.41 303,688 – – –

Conditional independence

2.1 WTSE = 0 −2,116,700.547 303,123 1,506,538.272 565 < 0.001b

2.2 TSHE = 0 −2,037,315.705 303,532 1,347,768.588 156 < 0.001b

W: weekend, T time-of-day, S season, H residential exposure cluster, E real-time exposure level
ψModel 1.4 from Table 1
a p value of G2 comparing to the Model 1.4
b Significantly different at 99.9% confidence level compared with Model 1.4
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4 Discussion

While environmental “exposures” are most commonly thought of as biological –
“internal” contact with toxic particles in the environment (e.g., air pollution and
infectious pathogens) – there is growing recognition that monitoring of exposures to
the broader ecosphere or “eco-exposome” is also important [57–59]. Individual-level
geographic location data provide a spatial linkage that makes it possible to estimate the
multivariate impact of countervailing societal and environmental systems on individual
decision-making and behavior. This gives rise to the possibility of using such infor-
mation for disease prevention and intervention delivery. It is our position, however, that
continuous, real-time location data need not and should not be limited to use within
real-time, “just-in-time adaptive” interventions. In fact, we believe the present paper
provides an example of the way such micro real-time data can be better understood
when it is aggregated, because it is only then that we can properly account for the
relative significance of the various locations each participant frequents, at least as they
pertain to the tobacco point-of-sale landscape.

Traditional estimates of exposure to risk and protective factors in neighborhoods are
founded on the idea that the relative concentration of health-related factors around
people’s homes sufficiently captures and thus can be used to characterize aggregated
patterns of environmental exposure within and between neighborhood areas. This paper
evaluated the degree to which residential locations approximate actual exposures by
comparing empirical observations collected in real-time with static neighborhood
estimates that only used information about each participant’s residence. Results dem-
onstrate the utility of a continuous geolocation data smoother (i.e., Rg) that makes it
possible to generate dynamic, mobility weighted KDE exposure values that retain both

Fig. 3 Real-time Exposure for Each Residential Exposure Cluster
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spatial and temporal resolution. Findings suggest that real-time exposures are
misclassified by person-level residential exposure estimates to a substantial degree,
especially among people residing in areas characterized by moderate to high levels of
residential density.

Essentially, results of this work indicate that exposures to moderate and high levels
of tobacco outlet density were systematically less-likely than lower density exposures,
and that subjects who resided in moderate to high density areas were less likely to
experience real-time exposures that were as high as estimated by the observed density
around their residential location. This finding suggests that residence-based neighbor-
hood approximations exhibited a tendency to over-estimate exposure levels experi-
enced by residents in the real-world, and somewhat counter-intuitively, that this may
have been particularly true within dense urban areas, where despite high-levels of
density overall, shorter travel distances among a smaller set of stores dampened
observed hourly exposure levels.

This paper advances the literature in a number of ways. Focusing on a reliable,
national source of tobacco outlet data allowed us to identify variation in urban
dynamics and behavior across different regions of the US. The use of continuous
real-time geo-location tracking provides excellent temporal and spatial resolution,
which improved sensitivity to detect dynamic patterns in the data. The analysis
framework developed here can be used to assess mobility patterns, exposure to points
of interest, and associated effects on health behavior. Nevertheless, this study also had
methodological limitations that should be considered. This sample is not nationally
representative, as participation in the mobility tracking was based on self-selection, and
required access to the Internet and a smartphone. Additionally, because no participant
demographic information was available, other factors that could potentially affect
participants’ mobility, such as occupation or income level, could not be measured.

5 Conclusions

Results of this work shed light on the nature of real-time exposures to a spatially
distributed environmental risk factor, as compared to a commonly used neighborhood
exposure estimate. Future work should leverage methods of this kind to advance our
understanding of individual decision-making and behavior change dynamics as a
function of environmental conditions. Natural extensions would incorporate other
policy and health-relevant risk and protective factors, such as the distribution of food,
alcohol, and cannabis products. Research that involves clinical populations attempting
to modify habitual health behaviors would be useful, including work with patients
working to adhere to dietary restrictions or quit cigarette smoking. It will also be
interesting to investigate the basic mechanisms underlying these associations, such as
memory and other cognitive processes affected by regular product exposures and
associated preferences. Variations across geographic areas and over time may provide
insight and identify targets of intervention for public health practitioners, urban plan-
ners, and policy makers.
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