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Abstract Machine learning-based patient monitoring systems are generally deployed
on remote servers for analyzing heterogeneous data. While recent advances in mobile
technology provide new opportunities to deploy such systems directly on mobile
devices, the development and deployment challenges are not being extensively stud-
ied by the research community. In this paper, we systematically investigate challenges
associated with each stage of the development and deployment of a machine learning-
based patient monitoring system on a mobile device. For each class of challenges,
we provide a number of recommendations that can be used by the researchers, sys-
tem designers, and developers working on mobile-based predictive and monitoring
systems. The results of our investigation show that when developers are dealing with
mobile platforms, they must evaluate the predictive systems based on its classification
and computational performance. Accordingly, we propose a new machine learning
training and deployment methodology specifically tailored for mobile platforms that
incorporates metrics beyond traditional classifier performance.
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1 Introduction

Chronic diseases such as cardiovascular disease (CVD) are an increasing burden for
global health-care systems as the population ages [1]. As a result, there is grow-
ing interest in developing remote patient monitoring (RPM) systems to assist health
professionals in the management of chronic diseases by analyzing immense data
collected from wearable sensors and health record data. Generally, the analysis is
completed using machine learning algorithms (MLA) [2, 3] resided on remote servers
that can handle expensive computational operations. Advances in mobile technology
provide new opportunities to deploy MLAs locally on mobile devices lowering trans-
mission expenses and allowing the system to work without any interruption when the
network connection is poor or non-existent. However, transferring the data analysis
from a remote server to a mobile device introduces its own set of challenges. While
there is a wealth of research studies focusing on using machine learning algorithms
for remote patient monitoring systems (e.g., CVD [4], respiratory [5], diabetes [6]),
the characteristics of the implementation environment (such as required computa-
tional power, the network bandwidth and the power consumption to train and/or test
the algorithm) and its impact on classification performance is rarely investigated.

In this paper, we systematically study the impacts of the design decisions, made
during a mobile RPM system development, on the system’s classification and com-
putational performance. We adapt the Yin’s case study methodology [7] to investigate
the challenges we faced in the design, implementation and deployment of the multi-
source mobile analytic RPM system, M4CVD (Mobile Machine Learning Model for
Monitoring Cardiovascular Disease) [8]. Four classes of challenges for developing a
mobile monitoring system are investigated: data collection, data processing, machine
learning and system deployment. We also present our recommendations for address-
ing the main challenge for each development stage. As part of our recommendations,
we propose a novel training and deployment methodology for MLAs on mobile
platforms that incorporates additional metrics beyond classification performance.

The paper’s contributions and structure are as follows: Section 2 provides an
overview of the research model and case study methodology used in this paper. In
Section 3, we describe the implementation procedure and challenges we encoun-
tered during system development. In Section 4 we present our recommendations
for addressing the main challenges identified at each development stage. Section 5
describes the related research. We conclude in Section 6.

2 Research Method

Early remote patient monitoring systems were signal acquisition platforms that con-
tinuously transmitted physiological data from a single sensor to a remote server for
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Fig. 1 An overview of a current and b our proposed methodology for developing a MLA-based remote
monitoring system. New components are in bold. Stages in white are on a remote sever while stages in
gray are on a mobile device

analysis. Increasingly, monitoring systems are using machine learning algorithms to
automatically analyze the collected data which have been shown to increase pre-
diction accuracy with less strict assumptions compared to statistical methods [5].
Regardless of the algorithm, the most common approach used in the development of
a machine learning-based monitoring system is shown in Fig. 1a. First, the training
data is collected and manually labeled. Next, preprocessing, feature extraction and
data fusion techniques are selected to transform the input data into a set of features
suitable as inputs to the classifier. Finally, the machine learning algorithm is trained
and tested. Most monitoring systems data processing and analysis stages are devel-
oped and deployed on remote servers since both stages have a complexity order of
approximately O(n)3 [9].

In this research, we investigate how the complexity described above can be man-
aged when the mobile platform is considered as an additional dimension on a remote
monitoring system design. We group the challenges we encountered according to
Fig. 1a. As part of our methodology we are interested in extending the model
described in Fig. 1a to answer the following queries: (1) What are the challenges
of monitoring heterogeneous data sources? (2) What are the computational require-
ments of a monitoring system on a mobile device? (3) How can the computational
requirements of a mobile platform be incorporated into the training, testing, and
deployment of machine learning algorithms? (4) What are the trade-offs between
classifier accuracy and mobile computational performance?

Following the case study methodology [7], we systematically encoded our obser-
vation, challenges and design decisions made at every stage of system development
shown in Fig. 1a. Our objective was to investigate the main challenges for each
development stage. We identified four general decision milestones faced during the
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development of the mobile-based RPM system with cascading effects on system per-
formance: (1) training data labeling method, (2) data fusion technique, (3) classifier
selection, and (4) adapting classifier requirements based on current computational
environment. For each milestone a number of alternatives were studied by creating
a set of sister RPM systems and evaluating each system in terms of its classification
and computational performance.

In Section 3 we discuss the challenges we encountered grouped in terms of the
development stages shown in Fig. 1a. We also explore how the design decisions
made during system development impacts the model’s classification and mobile
computational performance. The challenges we identified are solely based on our
experience developing M4CVD. However, from related studies we identified that
challenges in model training [3, 10] and deployment [11] are generic to developing
any MLA-based mobile systems.

Based on our findings, in Section 4 we propose a series of recommendations
for addressing the four main decision milestones shown in Fig. 1a. As part of our
recommendations, we extend Fig. 1a by proposing a new training and deployment
methodology for MLAs on mobile platforms as shown in Fig. 1b. First, we investi-
gate two methods to label training data automatically. Next, we present a comparative
analysis of two data fusion techniques for combining heterogeneous data. Third, we
propose a novel training methodology for mobile-based MLAs. Currently, classifier
training and testing are completed on a remote server. We propose conducting the
classifier testing on a mobile device to create accuracy-computational profiles for
each candidate model. Our proposed method allows developers to study the trade-
offs between a candidate classifier’s accuracy and computational requirements to
improve system efficiency. Finally, we propose deploying multiple models with var-
ious accuracy-computational profiles to the mobile device. The system can then
dynamically select the best model to use based on real-time computational resource
availability.

3 RPM Development

In this section, we describe the system development process and identify the chal-
lenges we encountered for each stage in Fig. 1a. In Section 3.1 we discuss the data
collection stage. Next, we discuss the data processing stage in Section 3.2. Section 3.3
presents a comparative analysis of two machine learning algorithms: 1) Support vec-
tor machine (SVM) and 2) Multilayer perceptron (MLP). In Section 3.4 we describe
the deployment environment and evaluate the RPM system’s mobile computational
requirements.

3.1 Data Collection

The first step in data collection is to determine the monitoring system’s input sources.
Monitoring systems are increasingly analyzing data from a variety of heteroge-
neous sensors such as ECG and blood pressure (BP) devices to monitor a patient’s
physiological deterioration [12]; interested readers are referred to [9] for a review
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Table 1 Training data baseline characteristics

Clinical Labeling Low-risk (LR) class High-risk (HR) class p value between
features technique LR and HR

Age DRG 68.7 ± 16.0 (n = 267) 67.1 ± 14.0 (n = 251) 0.238

SAPS I 65.0 ± 15.6 (n = 273) 70.1 ± 15.6 (n = 229) 0.00001

Gender (Female) DRG 40.4% (n = 267) 32.3% (n = 251) 0.053

SAPS I 34.4 % (n = 229) 38.9% (n = 229) 0.304

Weight (kg) DRG 81.5 ± 21.5 (n = 267) 85.5 ± 18.3 (n − 251) 0.021

SAPS I 84.4 ± 21.2 (n = 273) 82.8 ± 18.9 (n − 229) 0.36

Systolic blood DRG 148.5 ± 30.8 (n = 267) 137.2 ± 32.1 (n = 251) 0.00005

pressure (mmHg) SAPS I 144.7 ± 30.0 (n = 273) 141.2 ± 33.9 (n = 229) 0.22

Diastolic blood DRG 92.2 ± 22.8 (n = 267) 81.7 ± 25.3 (n = 251) 0.000001

pressure (mmHg) SAPS I 89.3 ± 23.1 (n = 273) 84.1 ± 25.8 (n = 229) 0.02

DRG diagnosis-related group [15], SAPS I simplified acute physiology score I [16]

Italicized p values are clinically significant (α < 0.05)

on wearable technology. In addition, the growing accessibility of electronic health
records using mobile devices [4] provides new opportunities for monitoring systems
to analyze sensor physiological data within the context of a patient’s clinical data.
The next data collection step is to collect the training data. Currently, the data col-
lection step is conducted internally to give researchers full control over their training
dataset composition. However, creating a training set containing heterogeneous data
suitable for our study is a very challenging and time-consuming task. Instead, we
decided to share our experience using the Multiparameter Intelligent Monitoring in
Intensive Care II (MIMIC-II) database [13] to develop our system. We selected the
MIMIC-II database because it contains both a physiological and clinical database
of anonymized intensive care unit (ICU) patients [13]. Patients with heart disease
were identified in the MIMIC-II database as those with a primary International Clas-
sification of Diseases (ICD-9) code between 390 − 459 [14]. In total, 502 heart
disease patients with matched physiological and clinical records were identified in
the MIMIC-II database. The breakdown of low- and high-risk patients is shown in
Table 1. The techniques for labeling the data are presented in Section 4.1. A two-
sample t test was used to compare continuous variables (e.g., age) while a chi-square
test was to compare categorical variables (e.g., gender) between the low and high-
risk groups with a p value less than α = 0.05 deemed significant. Our results show
that age, weight, systolic and diastolic blood pressure were different between low and
high-risk groups. Subsequently, machine learning algorithms may be able to separate
the classes by constructing a hypersurface. Using an open source dataset decreases
system development and allows researcher access to larger and more diverse training
sets.

Working with wearable sensors, health records, and published datasets not cre-
ated specifically for our study have its own set of challenges which we summarize
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Table 2 Data collection challenges

Data collection stage Challenges

Wearable sensors 1. Quality of consumer devices remains too low

2. Difficult to get different devices communicating with each other

Health records 1. Data is unstructured

2. Technical, security, and privacy challenges

Training dataset 1. Most researchers currently publish only the final feature set

2. Storage standards are not sufficient for signal processing and

machine learning applications

3. Restricts the features that can be studied

in Table 2. First, the quality of both wearable sensors and health records remains a
challenge when developing monitoring systems. Despite recent advances, the qual-
ity of consumer devices remains too low for medical applications [17]. Similarly,
health record data is mostly unstructured and must be converted into a data for-
mat suitable for automated analysis [18]. For example, important clinical data (e.g.
patient habits) are currently stored as narrative notes that cannot be natively pro-
cessed by a computer, thus requiring the development of context-specific natural
language processing techniques. Next, there is a need to develop communication pro-
tocols to allow devices from multiple vendors to communicate with the monitoring
system [19]. There are also technical, security, and privacy challenges for integrat-
ing an external monitoring platform with a hospital health record system. Third,
most researchers currently only publish their studies final feature set (e.g., UCI [20])
which have limited use outside the scope of the original study. In addition, the data
quality of online repositories may prevent the analysis of the data using machine
learning or signal processing. For example, Physionet’s current guidelines [21] only
set the minimum requirements to ensure a physiological dataset’s compatibility with
the waveform viewers which is not suitable for all research applications. There is
a need to develop standards for online repositories to enable future signal process-
ing and machine learning applications. Overall, the biggest challenge in the data
collection stage was labeling the training examples so they can be analyzed using
supervised machine learning algorithms. Labeling the training set (e.g., low or high
disease severity) is usually completed manually by a medical expert which can be
very time consuming [22] and limits the size of the training set. In Section 4.1, we
investigate two methods for automatically labeling severity of a patient being at risk
of cardiovascular disease.

3.2 Data Processing

The heterogeneous data must be processed into a set of features suitable for
analysis using MLAs. Our data processing stage consists of: 1) Wearable sensor
preprocessing, 2) Health record imputation, and 3) Feature extraction. First, sensor
preprocessing is used to improve the quality of physiological signals which suffer
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Table 3 The 11 features from ECG and BP sensors and health records monitored by M4CVD. C
continuous features, D discrete feature

Clinical data Blood pressure sensor ECG sensor

1. Gender (D) 4. Systolic blood pressure (D) 6. Heart Rate (D)

2. Age (C) 5. Diastolic blood pressure (D) 7. Mean R-R interval (C)

3. BMI (D) 8. Heart rate variability (C)

9. Standard deviation of R-R (SDNN) (C)

10. Square root of mean difference of R-R
(rMSSD) (C)

11. Percentage of R-R interval greater than
50 ms (pNN50) (C)

from noise and motion artifact [23]. Specifically, the ECG signal undergoes four pre-
processing steps: filtering [24], detrending, ECG signal quality assessment [25] and
R peak detection [26]. Next, imputation methods are used to deal with the missing
and incomplete data in health records [27]. For example, in our training database 33%
of health records were missing data on patient height. We used regression imputa-
tion where patients with known age, weight, and height [28] were used to construct a
2nd order height imputation model. The final data processing stage is feature extrac-
tion for converting continuous physiological signals into discrete values. Our feature
extraction stage primarily focused on extracting time, heart rate variability [29], and
frequency features [30] from 5 minute ECG signals in the MIMIC-II physiological
database. No additional feature extraction for BP recordings and health records was
necessary because they already contain the features of interest. After reviewing the
literature, we identified twenty-four prospective features extracted from ECG, BP,
and health records that are used for monitoring CVD. Eleven features (Table 3) were
successfully implemented and validated for further study.

The process for selecting the final feature set is rarely discussed in the literature
beyond the use of feature selection algorithms [31]. However, in our experience the
primary feature selection criteria is not a feature’s contribution to model accuracy but
rather identifying features that can be successfully extracted and validated. While the
data processing challenges summarized in Table 4 are context-specific it is important
to discuss these challenges to serve as a guide for future developers of data process-
ing libraries and monitoring systems. First, proposed ECG preprocessing libraries are
mostly tested on gold standard datasets [32] which have less noise and motion arti-
facts compared to wearable sensor data. There is a need for a gold standard database
of ECG recordings from wearable sensors. Second, selecting the proper health record
imputation method is a challenge because each method introduces their own level
of uncertainty [33]. Third, the ECG recordings in the MIMIC-II database underwent
signal decimation destroying the ECG signal’s frequency component. As a result,
both the ECG detection libraries [21] and the frequency domain feature were not suc-
cessfully validated. It is outside the scope of this paper to improve the automatic peak
detection methods. Only features extracted from the R peak (heart rate, R-R interval
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Table 4 Data processing challenges

Data processing stage Challenges

Wearable sensor preprocessing 1. Existing libraries have been validated using gold standard

waveform datasets not data collected from wearable sensors

Health record preprocessing 1. Selecting the proper imputation method depends

on the type of health data being studied

Feature extraction 1. Few feature extractions were successfully validated

due to the poor quality of the training data

2. No guidelines for selecting the data fusion technique

for combining heterogeneous data

heart rate variability, SDNN, rMSSD and pNN50) [29] were included in the final fea-
ture set. The training dataset also rarely included information on patient habits (e.g.
smoking and exercise) which were excluded from study. Finally, a common challenge
working with heterogeneous data is selecting the data fusion technique to combine
the data for analysis using MLAs. In Section 4.2 we present a comparative analysis
of two data fusion techniques for combining data from wearable sensor and health
records.

3.3 Machine Learning

The third step as shown in Fig. 1a was the design and training of the SVM and MLP to
predict low or high disease severity. Both classification algorithms are popular in the
medical domain [23] due to their ability to map features to higher dimensional space:
the SVM using kernel functions while the MLP uses hidden layers [9]. Interested
readers are referred to [34] and [35] for a detailed explanation on the SVM and MLP
respectively. Both classifiers were trained and tested on the dataset of 502 patient
records containing 11 features extracted from wearable sensors and health records.
The LibSVM machine learning library [36] and MATLAB’s neural network toolbox
was used to implement the SVM and MLP respectively. The SVM was trained using
10-fold cross-validation (CV) training with 70% of the dataset for training and 30%
for testing. For MLP training the dataset was divided into 80% training and 20% test-
ing sets with 25% of the training data used as the validation set (The cross-validation
results are presented in Section 4.3). Then, the best SVM and MLP configurations
were tested using a Monte Carlo simulation where each algorithm was trained and
tested 1000 times on a random subset of training examples. No patient record was
used in both the training and testing set during the same simulation run. The Monte
Carlo results and mean receiver-operator curves (ROC) [37] for each classifier are
shown in Table 5 and Fig. 2 respectively. Both models achieved stable and reusable
parameter configurations. Our results show that the SVM had the best overall per-
formance. The SVM appears to generalize consistently across simulation runs as the
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Table 5 M4CVD Performance for SVM and MLP. The mean of 1000 experiments is shown

Classifier Accuracy

Max Min Mean

SVM 71.30% 49.00% 62.5 ± 3.64 %

MLP 77.50% 42.20% 60.7 ± 5.99 %

Classifier Area under the ROC Sensitivity Specificity

SVM 66.00 ± 3.00% 45.53 ± 7.04% 76.21 ± 6.01%

MLP 65.19 ± 7.53% 60.37 ± 8.18% 61.03 ± 7.88%

SVM always finds the global minima solution. On the other hand, the MLP update it’s
weights and bias individually so it is more sensitive to the variability within each fea-
ture. Based on classifier accuracy we would recommend the SVM for CVD severity
classification. The best SVM and MLP were then deployed to a mobile environment
for further testing as discussed in Section 3.4.

Our results are promising since they do exceed those of current early-warning
system which monitor physiological indicators [38]. The early-warning system was
implemented in twelve hospitals over a six month period and identified 30% (95/611)
of patients who were subsequently admitted to the ICU. Nevertheless, existing algo-
rithms are designed for analyzing homogeneous data from a single data source. As

Fig. 2 ROC curve for severity estimation. The mean of 1000 experiments have been shown for each
classifier
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Table 6 Machine learning challenges

Challenges

Model inputs 1. Current machine learning models are designed for homogeneous datasets

2. MLA need to deal with structured, semi-structured, and unstructured data

simultaneously

Training 1. MLA cannot incorporate new data once deployed without retraining the

whole system under constant expert supervision

2. Cross-validation training only maximizes classifier accuracy

3. The classifier’s precision and recall or F1 scores are not always presented

when reporting model performance

a result, there a number of challenges (Table 6) using machine learning for analyz-
ing heterogeneous data on a mobile device. First, there is a need for new algorithms
that can analyze heterogeneous datasets [39]. Such algorithms will need to deal
with structured, semi-structured, and unstructured data simultaneously [40]. Sec-
ond, deployed MLAs cannot incorporate new data without expert supervision. Third,
the main challenge we identified is that the current classifier training methodology
focuses on determining the model configurations that maximizes the model’s clas-
sification performance (e.g., accuracy). In Section 4.3 we propose a new training
methodology for machine learning that evaluates a model using classification per-
formance and mobile computational complexity. Finally, many RPM systems we
reviewed (Section 5) were only evaluated using accuracy which can lead to subopti-
mal solutions [41]. Researchers should also report precision and recall or F1 scores
when discussing classifier performance.

3.4 Deployment and Hardware Evaluation

In this paper, the development and deployment of M4CVD was done on different
target hardware. We used a 64-bit Windows 7 laptop with a 2.2 GHz Intel i7 CPU
and 12 GB RAM using MATLAB 2014A for developing the monitoring system. The
final system was then deployed in C++ to a Linux Raspberry Pi 2 Model B (RASPI),
a single board computer (Quad-core, ARMv7, 900 MHz CPU, 1 GB RAM) with
similar performance to the low-cost 2014 Motorola Moto G.

Table 7 shows the computational requirements for the input, data processing, and
deployed classifier modules. Our initial hypothesis was that machine learning models
present a considerable burden for low resource devices because they have a complex-
ity order of approximately O(n)3 [9]. Surprisingly, our results show that the analysis
stage required among the lowest computational resources in terms of execution time
and current consumption. Instead, the signal acquisition and data processing modules
were major computational bottlenecks in our mobile monitoring system. The most
computationally expensive components in our system were the ECG quality assess-
ment and R peak detection stages due to a large amount of raw physiological data
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Table 7 Hardware consumption for acquisition, data processing and deployed classifier modules on
Raspberry Pi 2

Input Data processing Deployed MLA

SVM MLP

CPU usage 1.39 ± 0.01% 26.434 ± 6.63% 38.28 ± 6.11% 54.03 ± 16.44%

Memory usage 0.20% 0.606% ± 0.44% 0.12% 0.10%

Execution time 322. 5 sec (5 min) 1228.43 ± 152.88 ms 71.0 ± 1.72 ms 2.65 ± 0.1 ms

Current consumption 274 ± 6.6 mA 43.18 ± 11.53 mA 11.7 ± 10.7 mA 6.7 ± 7.5 mA

The highest value for each metric is in italics

processed. Interestingly, Table 7 shows that the support vector machine and multi-
layer perceptron had very different computational requirements despite their similar
classification performances. The SVM took 70x longer and required 2X the cur-
rent compared to the multilayer perceptron. The different computational requirement
appears to be a result of how each model classifies new data after deployment. The
SVM constantly maps each input data vector into higher dimensional space using the
kernel function which can be computationally expensive. On the other hand, once
deployed the MLP is a series of equations requiring less computational resources.
Overall, our results demonstrate that the MLA’s complexity was not a barrier for
adoption on a mobile device. In fact, our findings suggest that many RPM sys-
tems already run the most computationally expensive modules (data collection and
processing) locally. We recommend the MLP for deployment in a mobile monitor-
ing system because the MLP has similar classifier performance and superior mobile
computational performance compared to the support vector machine.

Deploying a monitoring system to a mobile device and evaluating the system’s
computational performance is a non-trivial and time-consuming task (Table 8). First,
there is a need for preprocessing and machine learning libraries that are optimized
for deployment on a mobile device. For example, the support vector machine can
be implemented using fixed-point arithmetic which is less computationally expen-
sive [42]. Next, developers should consider both accuracy and computational power
when selecting the preprocessing techniques, features, and classifier for their moni-
toring systems. Third, popular MLA libraries [43, 44] assume that model training and
deployment occurs in the same computational environment. Future libraries should
support training and deployment to different platforms natively. The next generation
of RPM systems will be deployed entirely on mobile devices with little communi-
cation with remote servers. However, the main challenge with existing mobile RPM
systems such as M4CVD is that they have constant computational requirements
regardless of the current usage environment. In Section 4.4, we propose a methodol-
ogy to allow a monitoring system to adapt their classification module based on user
preferences and the current system condition. However, evaluating the computational
requirements for mobile systems requires its own experimental procedure and setup
which extends classifier training and system development time.
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Table 8 Deployment and mobile computational requirement challenges

Deployment stage Challenges

Data processing 1. Current preprocessing libraries are not computationally efficient

2. Feature selection techniques only consider each feature’s contribution

to accuracy

Machine learning 1. MLA libraries assume that model training and deployment occurs

in the same computational environment

2. Both classification performance and computational power should

be considered when evaluating classifiers for mobile systems

Entire system 1. Evaluating the computational requirements of a monitoring system

requires its own experimental procedure

2. Computational requirements for each stage remains constant once

deployed and cannot adapt to the current usage environment

4 Recommendations

In this section we propose a system development methodology (Fig. 1b) that
addresses the four main decision points identified in this paper: 1) training data
labeling method, 2) heterogeneous data fusion, 3) optimizing machine learning
classifiers for a mobile environment, and 4) adapting MLA based on current com-
putational requirements. In Section 4.1 we investigate using automatic techniques to
label our training set. Section 4.2 compares two data fusion techniques (feature and
decision-level fusion) for combining heterogeneous data sources. Note that our rec-
ommendations for automatic data labeling and heterogeneous data fusion are based
on our experience developing M4CVD and are domain specific. We also propose
a machine learning training methodology that considers both classification perfor-
mance and computational cost during cross-validated training in Section 4.3. In
Section 4.4 we propose a deployment methodology for dynamically selecting the best
classifier based on the current computational resources available on a mobile device.
Our recommendations for extending the MLA training and deployment methodology
can be used when developing classifiers for any mobile application.

4.1 Data Collection

In this section, we investigate two methods to automatically label the disease sever-
ity of the 502 patient records used to train M4CVD: 1) Simplified Acute Physiology
Score I (SAPS) [16] and 2) Diagnosis Related Group (DRG) [15]. SAPS is an inten-
sive care unit (ICU) patient severity scoring system. DRG is a USA hospital payment
classification system that measures the relative amount of resources used to treat the
patient which we use as an indicator for patient severity. Both metrics are calculated
by health professionals during the patient’s hospital stay and stored in the MIMIC-II
database.
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Once the SAPS and DRG scores were retrieved for each patient record, the next
step was to separate the training examples into low and high severity classes using
the automatic prioritization of ICU patients method proposed by [45, 46]. High-risk
patients were defined as those whose severity score was above the calculated median
scores. Overall, 54 and 51% of patient examples were labeled high severity based on
their SAPS and DRG score respectively. Table 9 compares the classification results
for each labeling technique across a subset of the classifier configurations tested.
Our results show that both models could be trained to distinguish between low and
high-risk patients using data labeled automatically by the SAPS or DRG metrics. The
support vector machine had higher classification performance using the SAPS while
the multilayer perception showed improved performance using the DRG labels.

Automatic labeling offers several advantages. First, automated labeling enables
developers to build models using larger datasets compared to datasets that are labeled
manually. Next, automatic labeling is a method for incorporating pre-existing med-
ical knowledge into MLAs. Third, automatic labeling reduces system development
time. Automatic labeling can serve as a preprocessing step to evaluate the distribution
of a dataset and identify the best data subset for manual expert labeling. However,
automatic labeling can be domain specific and time-consuming to develop. In addi-
tion, an important area to investigate is the agreement between labels generated by
automated techniques and human experts. Finally, automatic labeling may not always
be available. An alternative labeling method is unsupervised learning [47] which
is a class of algorithms used to discover hidden patterns or groupings from unla-
beled datasets. Interested readers are referred to [48] for a detailed explanation on
unsupervised learning.

4.2 Data Processing

A data fusion stage is increasingly used in monitoring systems to combine hetero-
geneous data into a single higher dimension feature vector. Multiple data fusion
techniques have been used in the literature; interested readers are referred to [49] for
a full review. However, as far as we know a comparison between fusion methods on
the same monitoring system has not been presented. In this section we compared two
data fusion techniques on a mobile device: (1) feature-level and (2) decision-level
fusion [50, 51]. While our comparison in this section is domain specific, our rec-
ommendations can serve as a starting point for researchers developing systems that
combine data from heterogeneous sources.

Feature-level fusion is the simple concatenation of heterogeneous features into
a single input vector [52]. However, each extracted feature has their own numeric
ranges which present a challenge. During training features with large physiological
ranges may be assigned more weight regardless of the importance of the feature to
classification accuracy [53]. The range bias can be removed by normalizing all fea-
tures to a range of (0,1). Feature-level fusion can be very powerful because it allows
us to correlate features across data sources and is not computationally expensive.
However, feature-level fusion requires a large training dataset in order to apply fea-
ture selection algorithms [31]. On the other hand, decision-level fusion allows us to
incorporate medical knowledge directly into our model. Before concatenation, each
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Table 10 Decision-level data fusion local decision ranges for each feature

Feature Wearable
sensor?

Clinical
database?

Physiological
range

Decision-level
fusion format

Body mass index N Y Normal < 24 kg/m2 1

Overweight 25 − 29.9 kg/m2 2

Obese I 30 − 39.9 kg/m2 3

Obese II > 40 kg/m2 4

Systolic blood Y Y Low risk < 120 mmHg 0

Pressure Medium Risk 121 − 139 mmHg 1

High risk > 140 mmHg 2

Diastolic blood Y Y Low risk < 80 mmHg 0

Pressure Medium risk 80 − 89 mmHg 1

High risk >90 mmHg 2

Heart rate Y Y Normal 60 − 100 beats/min 0

Abnormal other 1

R-R interval Y N Normal 0.4 − 1.5 s 0

Abnormal >1.5s 1

feature is first evaluated individually to make a local decision. The classifier then
makes a high-level decision by analyzing all the local decisions [52]. In this paper,
healthy and unhealthy ranges set by The Canadian Heart and Stroke Foundation [54]
were used for each local decision (Table 10). Each feature was assigned a category
corresponding to each its range of healthy and unhealthy values (e.g., 1–4) and nor-
malized to remove range bias. Features without healthy and unhealthy ranges (e.g.,
age) were normalized.

Both feature and decision-level fusion were tested across all classifier training
configurations, a subset of results is shown in Table 11. Interestingly, both models
showed improved performance using feature-level fusion that did not incorporate any
a priori medical knowledge. Our results demonstrate the risk of injecting design-
ers’ bias into the model using decision-level fusion. For example, the physiological
ranges used in Table 10 are based on the overall healthy population. However, our
training set on average has higher mean values for each feature compared to the over-
all population because the patients have CVD. As a result, the local decision assigns
many of the training patient’s features as medium or high risk (few low risk) reducing
the classifier’s sensitivity. On the other hand, when no decision-level fusion is con-
ducted the machine learning algorithm determines for itself the relative importance
of each input feature individually without the need for expert input. The MLP consid-
ers each feature importance by updating each weight and bias individually through
back-propagation [55]. Both feature and decision-level fusion were not computa-
tionally expensive but decision-level fusion does introduce additional computational
overhead.
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(a) (b)

Fig. 3 The proposed cross-validation procedure examines both accuracy (a) and normalized execution
time (b) to identify the best overall SVM classifier

4.3 Machine Learning

Currently, the objective of training MLAs is to determine the best architecture (e.g.,
kernel and learning function) and user-defined parameters (e.g., C, gamma, num-
ber of neurons) that maximize the model’s classification performance. Our proposed
methodology extends MLA training to evaluate each model configuration’s classi-
fication performance (e.g., accuracy) and mobile computational requirements. First,
each configuration is trained and tested using the traditional cross-validation tech-
nique. For example, Fig. 3a shows the traditional cross-validation accuracy results
for the SVM presented in Section 3.3. Next, each model is deployed to the tar-
get mobile device and evaluated in terms of current consumption, execution time,
CPU and memory usage. As a work in progress, we evaluated the SVM training and
computational testing on a Windows 7 laptop with 2.2 GHz Intel i7 CPU and 12
GB RAM using MATLAB 2014A. Finally, a cross-validation graph showing how
the performance metrics change with different model configurations was generated.
Figure 3b demonstrates how the SVM’s configuration effects the model’s execution
time. Developers can use Fig. 3 to study the trade-offs between a classifier’s accuracy
and efficiency. For example, examining Fig. 3 the highest classifier accuracy was
65.3% and took 1.1 ms to run. However, the developer may decide that a 5% decrease
in accuracy (65.3% down to 60%) is an acceptable trade-off to save 36% in execution
time (1.1 ms down to 0.7 ms) increasing the monitoring systems’ operation time. The
optimal model is now the one that balances both accuracy and execution time.

Our proposed training methodology provides developers a better indicator of their
classifiers overall performance. The proposed methodology can be used when devel-
oping classifiers for any mobile application as our method extends the MLA training
procedure. However, our methodology will increase the model’s training time com-
pared to traditional cross-validation training since every candidate model is deployed
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Fig. 4 The proposed deployment model allows the user to select the trade-off between the SVM’s
computational usage (a) and accuracy (b)

and tested on the mobile device. In addition, our proposed methodology would
require the development of an automated procedure to deploy the classifier to the
mobile device and evaluate its computational performance.

4.4 Deployment

The final stage in Fig. 1b is deploying the classifier to the mobile device. However,
once deployed existing monitoring systems cannot adapt their model’s computa-
tional resources based on real-time resource availability. A potential solution is
to deploy multiple classifiers with various accuracy-computational profiles to the
mobile device. Our study shows that multiple classifiers can be stored on a mobile
device due to each model’s small storage requirement (SVM- 68 KB, MLP- 20 KB).
Figure 4 shows our proposed model for selecting the best classifier. Figure 4a shows
the normalized run times for 100 SVMs. In this paper, we assume the model with
the shortest run time also has the lowest resource requirements. The user selects the
minimally acceptable runtime they will accept (yellow plane) and Fig. 4b shows the
maximum normalized accuracy the system can achieve under the user constraints. In
this case, our model shows that there is no trade-off between accuracy and execution
time until 0.5 normalized run time after which decreasing the classifier’s execution
time reduces its classification accuracy. Interestingly, we only need to deploy three of
the 100 SVMs to capture the full range of accuracy and computational trade-offs cor-
responding to the main inflection points in Fig. 4b. Our proposed model will further
increase the efficiency of classifiers running on mobile and low resource devices.

The proposed methodology for dynamically selecting a MLA’s configuration can
be used when deploying any classifier into a mobile environment. In addition, the
proposed methodology can be automated as many mobile systems provide access
to the device’s current computational status (e.g., CPU, RAM, battery life). For
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example, if the monitoring system’s battery life goes below 10% the system can
automatically switch to the most efficient classifier to extend the system’s operation
time. The proposed model allows the user to visualize the trade-off between system
accuracy and execution time.

5 Related Work

In this section, we review existing remote monitoring systems in terms of their data
collection (Section 5.1), processing (Section 5.2) and analysis (Section 5.3) modules.

5.1 Data Collection

Early RPM proposals measured only a single physiological signal, primarily
ECG [56] and activity level [17, 42]. Increasingly, RPM systems are monitoring
multiple physiological signals using wearable devices [6, 57] or ICU monitors [58,
59]. However, most monitoring systems we reviewed used the local device for
signal acquisition only, despite mobile phones having the computational power to
support MLAs [60]. Existing systems also do not integrate with electronic health
record repositories despite their growing accessibility on mobile devices [4]. Instead,
existing systems only collect and display basic clinical data to the health profession-
als [61]. In addition, the majority of the papers we reviewed [59, 62–64] had their
own internal data collection stage or used an open-sourced database [65]. However,
most training records are annotated manually by experts [3, 63, 65, 66]. As a result,
the size of training sets in existing studies has been small ranging in size from only
a few dozen [62, 63] to a few hundred [59, 64] patients. Existing studies on monitor-
ing systems have focused on describing each system’s implementation and accuracy.
In this paper, we explored the challenges of developing the acquisition, processing
and analysis stages for a monitoring system that analyzed heterogeneous data on a
mobile device. We also investigated the use of hospital severity metrics to label a
large training set automatically.

5.2 Data Processing

The data processing stage consists of preprocessing, feature extraction and data
fusion to combine heterogeneous data. Most physiological preprocessing modules
involve low/high pass filtering [56, 67], signal amplification [68] and basic feature
detection (e.g., R peak [67]). The features extracted from the preprocessed signals
have varied considerably between RPM systems [23] depending on the combination
of features that best maximize each system’s accuracy. In current systems, the feature
extraction stage has occurred primarily on remote servers [2, 3, 65, 69] but is increas-
ingly being completed on low resource devices [10, 60]. While developing prepro-
cessing and feature extraction techniques remains an active area of research [25,
69], the computational requirements for these stages on low resource devices have
not been investigated in depth [23]. In this paper, we evaluated the computational
requirements for M4CVD’s preprocessing and feature extraction stage. Surprisingly,
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our results show that the preprocessing stage was the most computationally demand-
ing component of our system.

Multi-sensor monitoring systems have traditionally analyzed [2] and dis-
played [70] each sensor stream independently. Recently, RPM systems have begun to
use data fusion techniques to combine data from multiple sources for analysis [49].
Feature-level fusion is the most common data fusion technique used in monitoring
systems [2, 59, 71]. Decision-level fusion has also been used to detect abnormal
physiological signals [64] and label sensor data with the patient’s current activity
level [63]. However, existing surveys on sensor fusion techniques [49] do not com-
pare the effectiveness of different techniques using the same RPM system. In this
paper, we compared the classification performance and computational requirements
for both feature and decision-level fusion in the same monitoring system.

5.3 Machine Learning

Machine learning algorithms are increasingly being used in the medical field for
screening, diagnosis, treatment, prognosis, monitoring and disease management [72].
In monitoring systems MLAs are primarily used for novelty detection [2, 69] and
severity classification [3, 64, 65] applications. The main limitation of these systems
is that the data analysis occurs on remote servers requiring continuous data transmis-
sion. Increasing mobile computational power provides new opportunities to deploy
MLAs directly on the low resource device. For example, HeartToGo [60] used MLAs
deployed on a mobile device to classify ECG signals with an accuracy of 90%.
However, HeartToGo only monitors a single wearable sensor. Another example is
the CHRONIOUS platform [10], a mobile RPM system for patients suffering from
chronic obstructive pulmonary and kidney disease which achieves an accuracy of
95% [10, 73].

Multiple studies have conducted a comparative analysis of MLAs [3, 5]. Over-
all, the SVM has slightly better performance compared to the MLP in monitoring
patient severity. For example, Clifton et al. [2] used ICU monitors to analyze patient
respiratory rate, HR, and BP to detect periods of signal abnormality. The SVM per-
formed best out of the five classifiers tested with an accuracy of 95%. Another
comparative analysis was conducted during the development of the CHRONIOUS
system [10] where both the SVM and MLP achieved a similar accuracy of 89%
and 87.5% respectively. Existing comparative analyses have focused on evaluating
a system’s classification accuracy. However, a key difference between mobile and
remote server-based systems is the limited computational resources available on the
mobile device. Understanding the system’s resource requirements is a key metric to
assess the systems overall usability and to identify areas of improvement. Despite
this importance, only a few studies have investigated their system’s resource require-
ments in-depth [11, 68, 74]. In this paper, we have evaluated the SVM and MLP in
terms of both their classification performance and execution time. We have also pro-
posed a novel training and deployment methodology for MLAs operating on mobile
devices.
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6 Conclusion, Limitations, and Future Work

Advances in mobile technology provide new opportunities to analyze collected data
directly on low and even ultra-low resource devices. However, our findings show
that there are specific challenges when monitoring systems are being developed
for mobile platforms. In this paper, we presented a case study to systematically
investigate the challenges we faced in the design, implementation, and deployment
of a mobile monitoring system. Based on our findings, we developed recommen-
dations for each development stage which can be used as guidelines by future
researchers, system designers, and developers working on mobile-based monitor-
ing systems. While most of our recommendations are stage-specific, our proposal to
evaluate classifiers based on accuracy and computational performance is applicable
throughout the development process. For example, MLA features could be evaluated
based on their contribution to both model accuracy and computational overhead. The
work presented in this paper contributes towards the goal of personalized predictive
monitoring.

Our study also exhibits some limitations. First, our recommendations are domain
specific and do not account for the data collection, processing and analysis techniques
used for monitoring other chronic diseases such as respiratory disease and diabetes.
In addition, the implementation challenges for the communication, security and pri-
vacy modules for a monitoring system on a mobile device were not investigated in
this paper.

In view of these results, our next step is to generalize our methodology by investi-
gating other MLA-based mobile systems. Future work will also focus on developing
feature selection and training methodologies that consider both classifier accuracy
and mobile computational requirements during the optimization of machine learning
algorithms. The training methodology will require heuristic algorithms to automati-
cally find satisfactory solutions in the model configuration search space. We are also
investigating MLAs that can incorporate new data without constant expert supervi-
sion. Finally, we will consider testing the monitoring system using other classifiers
such as random forest trees and multi-class MLAs.
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