
Vol.:(0123456789)1 3

Journal of Analysis and Testing (2021) 5:95–111 
https://doi.org/10.1007/s41664-021-00175-y

INVITED REVIEW

DNA Technology‑assisted Signal Amplification Strategies 
in Electrochemiluminescence Bioanalysis

Yue Cao1 · Cheng Ma1 · Jun‑Jie Zhu1

Received: 31 December 2020 / Accepted: 11 March 2021 / Published online: 1 May 2021 
© The Nonferrous Metals Society of China 2021

Abstract
Sensitive and accurate detection of biological analytes, such as proteins, genes, small molecules, ions, cells, etc., has been a 
significant project in life science. Signal amplification is one of the most effective approaches to improve the sensitivity of 
bioanalysis. Taking advantage of specific base pairing, programmable operation, and predictable assembly, DNA is flexible 
and suitable to perform the signal amplification procedure. In recent years, signal amplification strategies by means of DNA 
technology have been widely integrated into the construction of electrochemiluminescence (ECL) biosensors, achieving desir-
able analytical performance in clinical diagnosis, biomedical research, and drug development. To the best of our knowledge, 
these DNA signal amplification technologies mainly include classical polymerase chain reaction, and various amplification 
approaches conducted under mild conditions, such as rolling circle amplification (RCA) or hyperbranched RCA, cleaving 
enzyme-assisted amplification, DNAzyme-involved amplification, toehold-mediated DNA strand displacement amplifica-
tion without enzyme participation, and so on. This review overviews the recent advancements of DNA signal amplification 
strategies for bioanalysis in the ECL realm, sketching the creative trajectory from strategies design to ultrasensitive ECL 
platform construction and resulting applications.
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1 Introduction

Since the first detailed studies on electrochemiluminescence 
(ECL) originated from the papers published by Hercules 
[1] and Bard [2] in the 1960s, ECL has been acknowledged 
as a versatile analytical technique and widely exploited in 
numerous applications, especially bioanalysis [3–5]. ECL 
describes a photoemission phenomenon that occurs during 
the energy relaxation of excited substances triggered by a 
modulated potential in the vicinity of the electrode [6, 7]. 
ECL makes a combination of electrochemistry (EC) and 
chemiluminescence (CL) with both advantages, such as 
remarkable sensitivity, wide dynamic range, cheap instru-
ments, and simple operations [8–10]. Moreover, ECL shows 
inherent superiorities of easy regulation by the applied 
potential and almost no background noise due to the absence 

of external excitation light sources [11, 12]. The dominant 
ECL mechanisms are usually divided into two categories: 
annihilation and coreactant mechanism. The former trans-
mits an ECL signal electrogenerated from single emitters, 
and the latter usually requires a suitable coreactant assist-
ing emitters to output the ECL intensity [9]. In the ECL 
realm, developing advanced strategies for highly sensitive 
bioanalysis is in urgent demand to meet the requirements of 
clinical diagnosis, biomedical research, and pharmaceutical 
development [13, 14].

Signal amplification is one of the most effective 
approaches to improve the sensitivity of bioanalysis [5]. 
General signal amplification strategies sprang up in the past 
decades, covering the design of novel efficient ECL system 
with powerful luminophores, suitable coreactants, efficient 
redox probes, functional nanomaterial matrixes, and the pro-
posal of skillful analysis strategies. Taking advantage of spe-
cific base pairing, programmable operation, and predictable 
assembly, DNA is flexible and suitable to perform the signal 
amplification procedure. To the best of our knowledge, DNA 
amplification technologies used in the ECL domain mainly 
include classical polymerase chain reaction (PCR), various 
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mild amplification approaches, such as rolling circle amplifi-
cation (RCA) or hyperbranched RCA (HRCA), endonuclease 
or exonuclease-assisted amplification, DNAzyme-involved 
amplification, toehold-mediated nonenzymic strand dis-
placement amplification (TSDA), and so on. These versatile 
amplification strategies have been widely integrated into the 
manufacture of ECL biosensors to achieve higher analytical 
performance.

This review overviews the recent ECL bioanalysis strate-
gies with a more detailed emphasis on the advanced DNA 
signal amplification technologies. Several representative 
ones are summarized in Table 1, and others will be described 
in more detail below. Nevertheless, there have been hun-
dreds of published papers covering this field in recent years, 
and it is a pity that we are incapable of referring to them 
wholly. We apologize to those authors whose researches are 
not mentioned here. At last, this work outlines brief future 

trends and perspectives of the DNA technology-based signal 
amplification strategies in ECL bioanalysis.

2  Polymerase‑assisted Amplifications in ECL 
Bioanalysis

Polymerases are a class of enzymes that specialize in the 
biocatalytic synthesis of DNA and RNA. It can replicate 
the DNA from the 5′ to 3′ end with the assistance of a DNA 
template, primers, and deoxy-ribonucleoside triphosphates 
(dNTPs). PCR is the most conventional DNA technology 
and regarded as the “golden standard” method for DNA 
amplification due to its ultrasensitivity and rapidity [32]. For 
example, asymmetric PCR was performed to produce mas-
sive 5′-biotin-labeled target single-stranded DNA (ssDNA) 
of Staphylococcus aureus, and the PCR products were then 

Table 1  Various ECL biosensors integrated with typical DNA signal amplification technologies

Amplification methods Targets Strategy LOD Ref

Polymerase PCR ssDNA Asymmetric PCR and the products are hybridized with 
accumulated Ru(bpy)3

2+ probes
2 pM [15]

RCA PEDV antibody RCA and the tandem repeat products are assembled with 
Ru-DNA nanotags

0.05 pg  mL−1 [16]

HRCA ochratoxin A HRCA and the resultant dsDNA products are interca-
lated with Ru(phen)3

2+ molecules
0.02 pg  mL−1 [17]

Endonuclease NEase miR-21 Nb.BbvcI-cleaved Y junction structure for target recy-
cling amplification

10 aM [18]

NEase miR-21 Nt.BsmAI-assisted cycling strand displacement ampli-
fication

3.3 aM [19]

DSN miR-107 DSN-released target from DNA/RNA duplexes for recy-
cling amplification

9.4 aM [20]

Exonuclease Exo I Pb2+ Exo I-mediated digestion of  Pb2+-aptamer complex for 
target recycling amplification

0.04 pM [21]

Exo III NF-kB p50 Target-modulated proximity hybridization and Exo III-
powered recycling amplification

29 fM [22]

T7 Exo miR-155 T7 Exo-digested DNA/RNA duplexes for target recy-
cling amplification

0.83 fM [23]

RecJf Exo TB RecJf Exo-mediated digestion of TB-aptamer complex 
for target recycling amplification

0.23 pM [24]

λ-Exo miR-21 K-junction structure and λ-Exo-mediated exponential 
signal amplification

0.033 fM [25]

DNAzyme Mn2+ specific DNAzyme GSH Mn2+ as a substitute target triggered DNAzyme-assisted 
cleavage-cycling amplification

0.44 μM [26]

Nonenzymic TSDA HCR ssDNA In situ HCR and the obtained dsDNA grooves are inter-
calated with Ru(phen)3

2+ molecules
15 fM [27]

CHA MUC1 Target-induced CHA to circularly graft Ru-HPNSs tags 
on the electrode surface

0.31 fg  mL−1 [28]

Entropy beacon ssDNA Programmable DNA cyclic amplification driven by 
entropy force

40 aM [29]

DNA aggregates Dendrimers LPS Self-assembled tetrahedron DNA dendrimers interca-
lated with Dox-ABEI probes

0.18 fg  mL−1 [30]

Hydrogel miR let-7a Target-induced nonlinear HCR to form DNA hydrogel 
for PTC-DEDA intercalation

1.49 fM [31]
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immobilized with Ru(bpy)3
2+ probes via DNA hybridiza-

tion to generate an amplified ECL signal for sensitive geno-
sensing [15, 33]. However, the PCR process requires high-
precision thermal cycling; thus, sophisticated equipment, 
laboratory setting, and trained personnel are necessary [34]. 
Moreover, the PCR results might be false-positive due to the 
existence of nonspecific amplification [35]. Therefore, these 
drawbacks restrict the practical use of PCR in the ECL realm 
and promote the prosperous development of facile DNA 
amplification techniques with isothermal operation.

As a classic isothermal amplification technique with-
out precise thermal cycling involving, RCA is a preferable 
method for low-cost and simple-operation assays [36, 37]. 
RCA process requires a circular template and a single primer 
to linearly amplify DNA in the presence of polymerase, 
producing tandem repeats complementary to the circular 
probe [38]. The tandem repeats with special units can be 
grafted with or in situ form indicators, thereby outputting the 
altered ECL signals. Forming G-quadruplex/hemin probe is 
a general method based on the conjunction of hemin and the 
G-quadruplex units of RCA products [39]. Zhang et al. fabri-
cated an “off–on” switching ECL genosensor via cascading 
DNAzyme-induced target recycling and RCA. The massive 
guanine-rich (G-rich) RCA products were coupled with 
hemin to turn on the ECL signal of luminol/H2O2 system 
[40]. Zhuo’s group realized trace Mucin 1 (MUC1) and  Hg2+ 
detection via the combination of cleaving enzyme-mediated 
target recycling and RCA, and the in-situ formation of abun-
dant G-quadruplex/hemin complexes triggered the amplified 
ECL signals [41, 42]. Besides, Ru (II) complexes, as com-
mercial ECL luminophores, are usually used to label DNA 
to form functional signal probes (Ru-DNA nanotags), which 
can specifically hybridize with the tandem repeats of RCA 
products. An ECL platform was established to detect por-
cine epidemic diarrhea virus antibody with RCA for signal 

amplification, and Ru-DNA nanotags were hybridized for 
strong ECL emission [16]. Also, ECL-active quantum dots 
(QDs) are exploited, such as carbon dots (CDs), polymer 
dots (PDs), etc. A meticulous ECL device for human IgG 
assay was manufactured based on origami paper integrated 
with RCA, generating a linear concatenated DNA molecule 
to tag massive CDs for ECL readout [43]. Wang et al. estab-
lished a true-color ECL imaging platform for multicompo-
nent immunoassay with an enhanced ECL signal by coupling 
PDs with the RCA products [44].

In addition, the in-situ generation of efficient lumino-
phores or quenchers can avoid tedious bio-functionalization 
and separation process. Chen et al. detected trace microRNA 
(miR)-21 through synchronizing target recycling with RCA 
to produce cytosine-rich (C-rich) DNA sequences, which 
captured  Ag+ to form Ag nanoclusters as ECL emitters by 
in-situ EC reduction [46]. Wang et al. utilized the target-
initiated RCA products with T-T pairs to specifically inter-
act with  Hg2+, which had opposite effects on the ECL of 
N-(aminobutyl)-N-(ethylisoluminol) (ABEI) and g-C3N4. 
Thus, a potential-resolved ratiometric ECL genosensor with 
the g-C3N4/ABEI/Hg2+ substrate was proposed for miR-133a 
determination (Fig. 1) [45].

HRCA, as an evolved version of RCA, not only inher-
its the advantage of isothermal expansion, but also shows 
higher sensitivity because of its exponential growth model 
[47, 48]. HRCA requires a second primer to trigger a suc-
cessive cascade of primer extension and chain displacement, 
then generating accumulated ssDNA and double-stranded 
DNA (dsDNA) with various lengths [48]. Ru (II) complex, 
an efficient and stable ECL beacon, can be directly embed-
ded in the grooves of dsDNA products, affording a con-
venient amplification process. Lin’s group fabricated two 
ECL biosensors integrated with HRCA, and the resultant 
dsDNA products were intercalated with Ru(phen)3

2+ for 

Fig. 1  Schematic illustration of 
g-C3N4/ABEI/Hg2+-based and 
RCA-assisted strategies in pro-
posed ratiometric ECL bioassay 
for miR-133a determination. 
Reproduced with permission 
from Ref. [45] Copyright 2020, 
American Chemical Society
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ultrasensitive detection of ochratoxin A and thrombin (TB), 
respectively [17, 49]. This group also proposed a dual sig-
nal amplification strategy by cascading cleaving enzyme-
assisted target recycling and HRCA, and the intercalated 
Ru(phen)3

2+ served as ECL readout to indicate the amount 
of p53 DNA sequence [50]. The sensitivity of most RCA 
or HRCA-based ECL biosensors is significantly improved, 
showing great potential in clinical diagnosis, environmental 
monitoring, and biomedical research.

3  Cleaving Enzyme‑assisted Amplification 
in ECL Bioanalysis

Cleaving enzymes can recognize a specific base or sequence 
of nucleotides and then cleave the phosphodiester bonds of 
nucleic acids. Cleaving enzyme-assisted target recycling 
amplification usually utilizes their unique cleavage capaci-
ties to release the target. The released target is recycled to 
be captured by an unreacted substrate for the next round. In 
principle, a single target can undergo N times of capture and 
release, thereby allowing N times of signal amplification. In 
this part, we outline ECL biosensing systems regarding sig-
nal amplification strategies with the assistance of two main 
cleaving enzymes of endonuclease and exonuclease.

3.1  Endonuclease‑assisted Amplification in ECL 
Bioanalysis

Nicking endonuclease (NEase) is the most commonly used 
endonuclease in the ECL realm, which preferentially hydro-
lyzes only one strand of dsDNA at a specific recognition site 
[51]. For example, through partial integration of NEase (Nb.
BbvcI)-assisted amplification strategy, several elaborated 
biosensors were successfully fabricated for the ultrasensitive 
detection of miR-21, insulin, and tumor exosomes [18, 52, 
53]. Some groups further synchronized NEase (Nb.BbvcI 
or Nt.BstNBI)-assisted target recycling with RCA or HRCA 
to sensitively detect protein or specific ssDNA [41, 50, 54]. 
Coupled with efficient metal–organic frameworks (MOF)-
based ECL emitters of Ru-polyethyleneimine (PEI)@ZIF-8 
and AuNPs-PEI@Ru-PCN-777, cyclic amplification process 
mediated by NEase (Nb.BbvcI) was also adopted for telom-
erase activity and MUC1 evaluation, respectively [55, 56].

Artificial molecular machines can move and function 
at a single molecular level, attracting considerable atten-
tion recently [58, 59]. DNA, featuring specific base pairing, 
programmable operation, and divinable assembly, is par-
ticularly suitable to construct DNA machines [60]. Among 
these, nucleic acid-functionalized nanoparticles (NPs) can 
assemble 3D walking machines which are basically powered 
by NEase with higher payload release efficiency and superior 
signal amplification. For example, Tu et al. designed a 3D 

nanomachine powered by target miR, two hairpin DNAs, 
and NEase (Nb.BbvcI) to generate enormous AgNPs-tagged 
ssDNAs. The mimic targets not only released the ferrocene 
(Fc)-DNA quenching probe, but also introduced AgNPs as 
a coreaction accelerator, achieving a strong ECL signal of 
1-pyrenecarboxaldehyde dots@mesoporous silica xerogel 
for miR-126 detection [61]. Wang et al. designed a bipedal 
3D DNA walking machine powered by NEase (Nt.BsmAI) 
to convert trace target (miR-141) into substitute dopamine 
(DA) probes, which significantly quenched the ECL of 
 Ce3+-Ru(dcbpy)3

2+ nanostructured coordination polymer/
S2O8

2− system (Fig. 2) [57]. In addition, electrode inter-
face-derived DNA walking machine can simplify the separa-
tion and capture process. Chen et al. designed a NEase (Nt.
AlwI)-powered DNA walking machine for sensitive geno-
sensing. In their work, target ssDNA served as a walker, 
and the REase assisted the walker to move automatically 
and release the Ru(bpy)2phen-containing stators from the 
electrode, causing a significant decrease in the ECL signal 
[62]. Pan et al. confined Cu nanoclusters in a porous poly-
L-cysteine film via in-situ EC reduction with efficient solid-
state ECL emission. The cascade of alkaline phosphatase 
(ALP)-initiated click chemistry and NEase (Nb.BbvcI)-pow-
ered DNA walker resulted in the release of Fc-DNA from 
the electrode surface, and the ECL of Cu nanoclusters was 
recovered for ALP detection [63].

Strand displacement amplification (SDA) is an important 
DNA technology to improve the sensitivity of ECL bioanaly-
sis due to its high efficiency, adaptability, and simple opera-
tion [64]. Here, we mainly introduce the SDA benefiting 
from the NEase’s unique characteristic, which can recognize 
and hydrolyze the nicking site of only one strand of dsDNA. 
Then DNA polymerase helps to extend the ssDNA from 
3′-end of the nicking site and form a new complementary 
strand, thereby displacing the original ssDNA. In this way, 
the nicking site is renewed, cleaved by NEase, and displaced 
cyclically to output accumulated ssDNA [65]. Chen et al. 
utilized this SDA strategy with the assistance of NEase (Nt.
BsmAI) and DNA polymerase (phi29) for miR-21 detection. 
Amounts of auxiliary ssDNA were created to hybridize with 
the capture and Fc-tagged ssDNAs, forming a self-quench-
ing ternary “Y” structure with a reduced ECL signal [19]. 
Through a similar SDA strategy, massive reporter ssDNAs 
were produced to straighten the hairpin DNA structure, 
resulting in the labeled quenching probes (AuNPs) away 
from the AgNPs-3D networks/CdSe QDs substrate, and the 
ECL signal was recovered accordingly for genosensing [66]. 
Lei et al. synchronized a circular peptide-DNA nanomachine 
with NEase (Nt.BbvCI)-assisted SDA to output mimic tar-
get, which released Fc-DNA from the electrode surface. 
Thus, ECL signal of the  SnS2 QDs/S2O8

2−/Ag nanoflower 
(NFs) system was turned on for cytomegalovirus pp65 anti-
body [67]. Moreover, the two-stage or multi-stage SDA 
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processes were well cascaded and coordinated to achieve 
ultrasensitive ECL gene detection [68, 69].

Duplex-specific nuclease (DSN) is a thermostable and 
nonspecific endonuclease, which shows a strong prefer-
ence for cleavage of dsDNA or DNA strand in DNA-RNA 
hybrids, but has little activity on ssDNA, ssRNA, or dsRNA 
[70]. Benefiting from this unique property, DSN is mostly 
employed for miR signal-amplifying detection via the for-
mation of DNA-RNA heteroduplexes with a capture DNA 
probe [71]. For example, DSN was utilized to recycle the 
trace target miR and establish a distance-dependent reso-
nance energy transfer (RET) system. The presence of target 
miR led to ECL quenching of CdS NCs and ECL increasing 
of luminol, respectively. Thus, a ratiometric ECL platform 
was established for accurate and sensitive quantification 
of miR-21 [72]. DNA bio-gate blocked the Ru(bpy)3

2+ in 
mesoporous silica NPs, and the release of Ru(bpy)3

2+ was 
triggered by the target miR for ECL reading, accompanying 
with a DSN-assisted target recycling process [73]. Com-
bined with the DSN-mediated target recycling strategy for 
signal amplification, two wavelength-resolved radiomet-
ric biosensors were fabricated for sensitive and accurate 
determination of miRs, based on two respective ECL-RET 
pairs of Au-g-C3N4 nanosheet (NSs)/Ru(bpy)3

2+ (Fig. 3) 
and AuNPs-luminol-layered-double-hydroxides/Au nano-
clusters [20, 74]. A nanopore-based ECL sensor was also 
integrated with the DSN-assisted target recycling strategy 

for miR-107 assay. During the process, the specific target 
RNA-DNA binding and DSN cleaving detached the AuNPs-
labeled DNA capture, exposing the nanopore electrode for 
enhanced ECL signal [75].

3.2  Exonuclease‑assisted Amplification in ECL 
Bioanalysis

Exonuclease is a series of enzymes that can specifically 
hydrolyze 3,5-phosphodiester bonds and degrade nucleo-
tides stepwise from the end of the polynucleotide chain. 
Utilizing specific catalytic activity and complete dissocia-
tion ability, many exonucleases have been applied to develop 
sensitive ECL biosensors.

Benefiting from the feature of preferentially cleaving 
ssDNA into nucleotides in the 3′ to 5′ direction, Exonucle-
ase I (Exo I) is mainly integrated into aptasensor to directly 
release the captured target for recycling [76]. For instance, 
Exo I released chloramphenicol (CAP) from its aptamer for 
target recycling. The depletion of aptamers blocked the ECL 
enhancement of CdS nanocrystals (NCs) by the AuNPs-
horseradish peroxidase (HRP)-linked polymer, causing a 
decreased ECL signal for CAP monitoring [77]. Inspired by 
the discovery that  Hg2+ could efficiently inhibit the ECL of 
ABEI, a switchable ECL aptasensor integrated with the Exo 
I-assisted target recycling process was proposed for simulta-
neous  Hg2+ and MUC1 assay [78]. Our group achieved trace 

Fig. 2  Construction of the ECL biosensor and assembly process of the bipedal 3D DNA walking machine. Reproduced with permission from 
Ref. [57] Copyring 2020, American Chemical Society
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 Pb2+ quantification based on efficient ECL-RET system 
between g-C3N4 nanofibers and Ru(phen)3

2+ implemented 
with Exo I-assisted decomposition of  Pb2+-aptamer complex 
for target recycling [21].

Exonuclease III (Exo III) can degrade many types of 
phosphodiester bonds in dsDNA, one of its main catalytic 
activities focuses on the release of nucleotides from 3′-OH 
terminal of dsDNA. DNA nanomachines powered by Exo 
III were designed for the transferring of trace targets into 
enormous reporter ssDNAs. They could further graft the 
doxorubicin (Dox)-ABEI probes or release the Fc probes, 
exhibiting recovered ECL signals for laminin and amyloid-β 
detection, respectively [79, 80]. Through the target-induced 
proximity hybridization and Exo III-assisted recycling strat-
egy, Ru(bpy)3

2+-nucleotides were released into a homogene-
ous solution and easily diffused to the indium tin oxide (ITO) 
electrode surface, resulting in an enhanced ECL signal for 
transcription factor (NF) assay (Fig. 4) [22]. Meanwhile, the 
CdSe QDs bilayers/Au@Ag-based ECL-RET system was 
established for sensitive detection of TB via an autocatalytic 
multiple amplification strategy, containing two Exo III and 
one endonuclease-aided recycling processes [81].

T7 exonuclease (T7 Exo) has been reported to hydro-
lyze dsDNA or DNA/RNA helixes in the 5′ to 3′ direc-
tion without requiring a specific recognition site in the 

target sequence, but it cannot decompose either dsRNA 
or ssRNA [23]. Zhang et al. utilized T7 Exo to digest 
the RNA/DNA hybrids and recycle the target to form 
3D DNA skeletons. AgNPs were then formed by in-situ 
reduction and electrostatic adsorption, which extraor-
dinarily enhanced the ECL of graphene QDs/aminated 
3,4,9,10-perylenetetracarboxylic acid (PTCA)/Au@Fe3O4 
substrate for miR-155 quantification [23]. Li et al. pro-
posed an efficient target conversion strategy for MUC1 
assay via target and mimic target synchronous recycling 
amplification with the assistance of T7 Exo. Then, mas-
sive mimic ssDNAs were generated to trigger the in-situ 
formation of DNA NFs, which were further loaded with 
abundant Dox-ABEI for extremely high ECL readout [82]. 
Yang et al. introduced an antibody-powered triplex-DNA 
nanomachine to release the cargo ssDNA, which further 
participated in a T7 Exo-assisted strand displacement 
cyclic process to release the Fc quenching probes. Hence, 
the ECL of rubrene microblocks/dissolved  O2/porous pal-
ladium nanospheres ternary system was recovered for 
anti-digoxigenin detection [83]. Nie et al. manufactured 
a T7 Exo-assisted DNA walking machine, which could 
cyclically release Zn-doped  MoS2 QDs from the reductive  
Cu (I) particles substate, exhibiting a decreased ECL sig-
nal for human papilloma virus 16 DNA detection [84].

Fig. 3  Schematic illustration of the dual-wavelength ratiometric ECL-RET biosensor. Reproduced with permission from Ref. [74] Copyright 
2016, American Chemical Society
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Additionally,  RecJf exonuclease  (RecJf Exo) can specifi-
cally catalyze the decomposition of ssDNA into deoxynucle-
otide monophosphates in the direction from 5′ to 3′-terminal, 
and it was reported to release target TB and alpha-fetopro-
tein (AFP) from their aptamers for target recycling, improv-
ing their detection sensitivity accordingly [24, 85]. Lambda 
exonuclease (λ-Exo) can progressively hydrolyze dsDNA 
into nucleotides from 5′-PO4 terminal. With the assistance 
of λ-Exo and the designed “K” DNA structure, Li et al. 
proposed an exponential amplification strategy for miR-21 
quantification, and ten cells could be detected in human lung 
cancer cell lines [25].

4  DNAzyme‑assisted Amplifications in ECL 
Bioanalysis

DNAzyme is a functional DNA molecule, exhibiting cata-
lytic activity toward a specific substrate strand, which usu-
ally contains a single RNA linkage (rA) as the embedded 
cleavage site [86]. After incubating with target metal ions 
(e.g.,  Zn2+,  Pb2+,  Cu2+,  Mn2+, etc.), DNAzyme forms and 
cleaves the rA, causing the splitting of substrate strand 
[87]. Since metal ions are vital and specific to trigger the 
catalytic activity, various DNAzymes directly serve as 
sensing platform for metal ions, bypassing the require-
ments of metal immobilization [88]. Liang et  al. con-
structed DNAzyme micronet to load large amounts of 
Ru(dcbpy)2dppz2+ on the electrode surface, which could 
be circularly decomposed by the target  Pb2+ to release the 
luminophores, causing a decreased ECL signal for ultra-
trace  Pb2+ analysis [89]. Because GSH could reduce  MnO2 
NSs to  Mn2+, Ge et al. measured GSH using substitute 

 Mn2+-specific DNAzyme and NEase (Nt.BbvCI)-powered 
DNA walker to form allosteric streptavidin (SA) aptamers 
for the capture of CdS:Mn QDs-SA ECL tags [26].

DNAzyme probes are also designed for genosensing 
due to their remarkable catalytic activity and stability. 
Zhou et al. designed an  Mn2+-specific DNAzyme-induced 
autonomous walking machine, prompting the formation of 
A-T riched dsDNA on the top of tetrahedral DNA nano-
structure for  Cu2+ capture. Cu nanoclusters were formed 
subsequently via in-situ EC reduction, exhibiting remark-
able ECL for ultrasensitive miR-155 quantification [90]. 
Ling et al. combined the self-enhanced CuMn-CeO2-PEI-
luminol ECL emitter with the  Mg2+-specific multicom-
ponent DNAzyme target recycling strategy to sensitively 
analyze DNA, which was extracted from Group B Strep-
tococci strain [91]. Wang et al. cascaded  Pb2+-specific 
DNAzyme-assisted target recycling process with a 3D 
DNA nanomachine, which inhibited the multiple ECL-
RET between Alexa fluor and PtNCs@Ru(dcbpy)3

2+, lead-
ing to significantly decreased ECL intensity for miR-141 
assay [92].

Aptazyme, a combination of DNAzyme and aptamer, 
provides a new approach for sensitive protein detection. 
For example,  Zn2+-specific aptazyme for both target rec-
ognition and recycling was employed as one of the signal 
amplification modules for TB detection [93, 94]. Besides, 
the DNAzyme can also be utilized as the signal amplifi-
cation tags to indicate immunoassay. Through sandwich-
type immunoreaction of target cardiac troponin I (cTnI) 
and  Pb2+-specific DNAzyme, accumulative DNA walkers 
were generated to start the walking machine and trigger 
the ECL recovery [95].

Fig. 4  Homogeneous ECL 
biosensor for NF assay using 
target-modulated proxim-
ity hybridization and Exo 
III-powered signal amplifica-
tion strategy. Reproduced with 
permission from Ref. [22] 
Copyright 2020, American 
Chemical Society
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5  Toehold‑mediated DNA Strand 
Displacement‑assisted Amplification 
in ECL Bioanalysis

These DNA amplification technologies discussed above 
require the participation of enzymes, which show inherent 
shortcomings of high experimental cost and susceptibility 
to environmental conditions, such as temperature, acidity, 
and alkalinity. Hence, novel nonenzymic DNA amplifica-
tion technologies have attracted widespread attention and 
are in high demand. TSDA, pioneered by Yurke et al. [96], 
is considered to be an efficient signal amplification approach 
without the enzyme involvement, and it can even achieve 
polynomial or exponential growth [97]. Toehold refers to 
an ssDNA fragment consisting of 5–8 bases, suspended at 
the sticky end of dsDNA, where strand displacement can be 
initiated by branched strand migration. TSDA is triggered by 
the hybridization of fuel chain with the complementary toe-
holds of two or more pre-hybridized strands and processed 
via a chain exchange mechanism to displace the original 
short ssDNA, which was driven thermodynamically by 
entropy in a spontaneous process [98]. Hybridization chain 
reaction (HCR), catalytic hairpin assembly (CHA), and 
entropy beacon as classical TSDA methods are increasingly 
applied to ECL bioanalysis.

5.1  Hybridization Chain Reaction

Since the first report published by Dirks and Pierce in 2004 
[99], HCR has become an important signal amplification 
strategy. Typically, the target ssDNA initiates continuous 

hybridization with two hairpin DNA containing the toehold 
areas and results in the polymerization of oligonucleotides 
to form long-nicked dsDNA polymers under mild conditions 
[100]. Because this process can achieve simultaneous target 
identification and signal amplification, HCR has been widely 
integrated into ECL biosensing systems [101, 102].

Ru (II) complexes can be directly embedded into the 
grooves of the long-necked dsDNA for ECL readout. Lu 
et  al. constructed a Faraday cage with a large specific 
surface area and excellent electron transport property via 
anchoring HCR products on graphene oxide (GO) surface 
and then embedding Ru(phen)3

2+ as the ECL transducer 
to detect miR-141 [103]. Huang et al. combined specific 
 Cu+-catalyzed azide-alkyne cycloaddition (click chemistry) 
and the highly efficient HCR with Ru(phen)3

2+ beacon in 
a homogeneous solution for pyrophosphatase evaluation 
[104]. Zhang et al. prepared Ru(bpy)2(cpaphen)2+-interca-
lated HCR products on the electrode surface with a strong 
initial ECL signal, and the GSH-reduced  Mn2+ served as 
the coenzyme factor to release the luminescent composites, 
resulting in a weak ECL signal for GSH detection (Fig. 5) 
[105]. Li et al. synthesized silver-based metal–organic gels 
as a coreactant substrate for the Ru(phen)3

2+-intercalated 
HCR products, displaying a significantly enhanced ECL 
signal for genosensing [106].

Certain metal ions with catalytic capability can be 
inserted into special base pairs of HCR products. Lei et al. 
embedded  Ag+ into C-rich HCR products as a powerful 
coreaction accelerator to enhance the PTCA/S2O8

2− ECL 
system, eventually realizing the detection of  Hg2+ [107]. 
Based on the enhancing and quenching effects of the HCR 
products embedded with  Ag+ and Ag nanoclusters (in-situ 

Fig. 5  a The preparation 
process of the proposed ECL 
biosensor; b the conversion 
process of GSH into substitute 
target  Mn2+. Reproduced with 
permission from Ref. [105] 
Copyright 2019, American 
Chemical Society
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reduction) toward the CdSe QDs/S2O8
2− ECL system, 

respectively, a switchable ECL platform was established for 
sequential TB and miR-21 measurement [108].  Cu2+ was 
intercalated into A-T complementary bases of HCR products 
and converted to Cu nanoclusters by in-situ EC reduction, 
which served as efficient ECL emitters for sensitive miR-21 
detection [109].

Catalytic hemin/G-quadruplex DNAzyme can be formed 
directly with hemin and the G-rich HCR products. Highly 
sensitive evaluation of adenine methyltransferase (Dam 
MTase) activity was accomplished based on the fact that 
REase (Nt.AlwI) was unable to cleave the Dam MTase-
methylated dsDNA, and it further inhibited the formation 
of the HCR-based DNAzyme, resulting in a drastically 
enhanced ECL signal of  O2/S2O8

2− system [110].
Nanocarriers can also be tagged on HCR products for 

high luminophores payload. For example, by utilizing 
AuNPs-luminol labeled hairpin DNAs for HCR, the long 
dsDNA polymers were fully loaded with signal molecules, 
outputting strong ECL emission. This strategy has been suc-
cessfully proposed for cytosensing based on a “one-pot” cas-
caded DNA automachine and a paper-based closed-bipolar 
electrode, respectively [111, 112]. Novel emitters of euro-
pium multiwalled carbon nanotubes with carboxyl groups 
were also introduced to  NH2-terminated HCR products via 
amidation reaction and emitted an amplified ECL signal for 
trace TB detection [24].

Loading quenching probes is an alternative way to access 
the bioanalysis. Our group synthesized a dual-potential ECL 
emitter of  CsPbBr3@hollow g-C3N4 nanosphere (HCNS). 
The anodic ECL of  CsPbBr3 was quenched by the HCR 
products-rhodamine 6G due to the efficient ECL-RET, while 
the cathodic ECL of HCNS remained unchanged. Further 
combining with a well-designed DNA probe, a ratiometric 
strategy was proposed for the sensitive and accurate eval-
uation of CD44 expression on MCF-7 cells [113]. Wang 
et al. measured C-peptide by utilizing a NEase (Nb.BvCI)-
powered walking machine to produce intermediate ssDNA, 
which further initiated the HCR for DA loading, and the 
massive DA exhibited a dual quenching effect to the ECL 
of Ru-PEI-ABEI [114]. Ultrasensitive miR-21 detection 
was also realized by anchoring enormous Fc on the sensing 
surface via the target-initialed HCR self-assembly, and the 
Fc quenched the ECL of luminol/dissolved  O2 system with 
coreaction accelerators of ZnO nanostars and  MnOx micro-
flowers, respectively [115, 116].

5.2  Catalyzed Hairpin Assembly

As a DNA circuit without enzyme participation, CHA 
can handily proceed with a hairpin DNA probe through 
self-assembly and disassembly of original ssDNA 
[117]. Therefore, CHA has been frequently designed for 

signal-amplifying ECL bioanalysis. Sensitive and accu-
rate gene quantification helps to understand human genetic 
diseases and other related biological activities. Sun et al. 
synthesized flowerlike  MoS2/GO/o-MWNTs nanohybrids 
as the electrode substrate for the immobilization of Cu-Zn-
In-S NCs emitters. Using an Au nanostars-labeled hair-
pin DNA probe, CHA-induced target recycling promoted 
the establishment of a near-infrared ECL-RET system 
for FLT3 gene detection [118]. Feng et al. grafted glu-
cose oxidase (GOD) on the vertex of the DNA scaffold 
through the CHA-assisted target recycling process. Then, 
the GOD catalyzed glucose to form  H2O2, which efficiently 
quenched the ECL of Ru(bpy)3

2+-tripropylamine (TPrA) 
system for genosensing [119].

MiRs, a family of endogenous noncoding RNAs about 
18–25 bases in length, have been recognized as promising 
biomarkers. Yu et al. amplified ECL readout for miR-21 
assay by coupling CHA-mediated target recycling strat-
egy with ECL system of Ru(dcbpy)3

2+ with PEI and thio-
semicarbazide as both intramolecular and intermolecular 
coreactants [120]. Zhang et al. recycled the target miR-21 
using three pairwise and partly complementary hairpin 
DNA probes to form a “Y” structure via CHA, and mas-
sive reporter ssDNAs were then produced via  Pb2+-specific 
DNAzyme. After that, a designed DNA tweezer was trig-
gered by the reporter ssDNAs, situating an ECL-RET state 
to indicate the ECL signal. Besides, the state could be 
regenerated more than seven times by a simple strand dis-
placement [121]. Jiang et al. designed an elaborate DNA 
nanomachine involving CHA-mediated target recycling 
process, producing massive Fc-DNA probes to quench 
the ECL of g-C3N4 NSs for miR-21 assay [122]. Through 
CHA-mediated target recycling and acid dissolution pro-
cesses, trace target miR-21 was converted to large amounts 
of substitute  Zn2+. Afterward, these  Zn2+ drove a speedy 
DNA rolling machine to cut off the Fc-tagged track DNA, 
thus recovering the ECL signal of CdS:Mn QDs substrate 
(Fig. 6) [123]. Wang et al. fabricated a paper-based Au-
bipolar electrode for miR-155 detection. The cathode is a 
sensing cell integrated with a typical CHA-assisted tar-
get recycling process to load AuPd NPs on the electrode 
surface, and the anode is a reporting cell coupled with 
the classical Ru(bpy)3

2+/TPrA ECL system [124]. Luo 
et al. synthesized conjugated PDs as the coreactant-free 
emitters and proposed a dual signal amplification strat-
egy with the CHA-mediated target recycling and Exo III-
powered DNA walker for sensitive miR-155 sensing [125]. 
Zhu et al. cascaded the DSN-assisted target recycling and 
multiple CHA-related amplification processes to output 
massive long dsDNAs. During the process, the Fc-DNA 
probes were displaced and the resultant dsDNAs were fur-
ther combined with Ru(phen)3

2+, causing reduced EC and 
enhanced ECL signals. Based on a ratiometric ECL/EC 
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strategy, accurate and sensitive quantification of miR-499 
was finally achieved [126].

Indirect protein detection based on specific aptamers can 
realize the conversion of target protein to nucleic acid analy-
sis. MUC1, an important biomarker in serum or tissues, is 
closely related to several lethal diseases, such as pancreatic, 
bladder, and breast cancers [127]. Therefore, it is of great 
significance to design suitable DNA amplification strategies 
for sensitive MUC1 detection. Chen et al. synthesized hol-
low porous polymeric nanospheres containing self-enhanced 
PEI-Ru(mcbpy)(bpy)2

2+ complex (Ru-HPNSs) with remark-
able ECL efficiency. In their work, the Ru-HPNSs tags were 
grafted onto the electrode surface through a CHA-mediated 
cyclic process, achieving high ECL readout for MUC1 detec-
tion [28]. Li et al. detected MUC1 sensitively via enzyme-
free target recycling with double outputs, and massive mimic 
ssDNAs further initiated a CHA-assisted recycling process 
to load the signal probes of ABEI-Ag-MoS2 NFs [128]. Yao 
et al. synthesized 2D ultra-thin  Zr12-9,10-anthracene diben-
zoate MOF nanoplate with high solid-state ECL efficiency 
because of the restriction of intramolecular motions. The 
ECL substrate was further combined with a CHA-assisted 
target recycling process and a bipedal walking machine to 
load Fc quencher on the electrode surface, resulting in a 
decreased ECL signal for MUC1 assay [129].

In addition, aflatoxin M1 (AFM1), a class 1 human 
carcinogen from aflatoxin B1, poses a serious threat to 
human health. Zeng et al. constructed an ECL aptasensor 
for trace AFM1 detection with PTCA as the ECL lumino-
phore based on dual amplification of CHA and HCR [130]. 

Lipopolysaccharide (LPS) is the main component of the 
outer membrane of Gram-negative bacteria and is the main 
cause of many diseases, including fever, microcirculation 
disorder, endotoxin shock, etc. LPS could be quantified sen-
sitively using ABEI-loaded tetrahedron DNA dendrimers 
as the ECL indicator and CHA-assisted cyclic strategy for 
signal amplification [30].

5.3  Entropy Beacon

Inspired by the entropy-driven DNA catalysis pioneered by 
Yurke’s group [131], entropy beacon can achieve enzyme- 
and hairpin-free signal amplification, showing its inherent 
potential in high-sensitivity ECL bioanalysis [132, 133]. 
Feng et al. performed a programmable DNA cyclic amplifi-
cation initiated with target ssDNA via entropy-driven force 
to produce accumulated GOD-labeled reporter ssDNAs, 
which were further grafted onto the top vertex of self-assem-
bled DNA tetrahedral scaffolds. Thus, the ECL signal of 
Ru(bpy)3

2+-TPrA system was quenched by  H2O2, the prod-
uct of GOD catalyzing glucose (Fig. 7) [29]. Chen et al. 
utilized the entropy beacon to convert target miR-21 to abun-
dant mimic ssDNAs, which further initiated the dynamic 
DNA molecular machine. The free walker moved on a lipid 
bilayer interface to make Fc away from the Ru(bcbpy)3

2+, 
affording a recovered ECL signal [134]. A similar conver-
sion and amplification strategy via the entropy beacon was 
also coupled for the capture of Ru(phen)3

2+-DNA nanoclews 
to the sensing electrode for miR-21 detection [135].

Fig. 6  Fabrication process of the ECL biosensor based on a  Zn2+-driven DNA rolling machine for speedy detection of miR-21. Reproduced with 
permission from Ref. [123] Copyright 2019, American Chemical Society
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6  Self‑assembled DNA Aggregates‑assisted 
Amplification in ECL Bioanalysis

As a building material with biocompatibility and eco-
friendliness, DNA has been often assembled into various 
DNA aggregates, serving as desirable carriers to improve 
luminous efficiency. For instance, different types of DNA 
dendrimers were self-assembled as nanocarriers for the 
Dox-ABEI loading, affording high ECL efficiency for ultra-
sensitive LPS and laminin detection, respectively [30, 79]. 
Meanwhile, [Ru(dcbpy)2dppz]2+ and its coreactant of N,N-
diisopropylethylenediamine (DPEA) were co-embedded into 
the DNA dendrimer to assemble the self-enhanced DNA 
composite, which was utilized as ECL labels for sandwiched 
immunoassay of N-acetyl-β-D-glucosaminidase, a reliable 
biomarker for diabetic nephropathy [136]. Initiated with a 
trigger DNA in the hairpin switch, DNA dendrimers were 
self-assembled by in-situ nonlinear HCR for Ru(phen)3

2+ 
intercalation, realizing label-free ECL detection of BCR/
ABL fusion gene [137].

Additionally, multifarious assembles, such as DNA nano-
tube, DNA nanonet, 3D DNA matrix, 3D DNA network, and 
DNA hydrogel, are also constructed as ideal nanocarriers. Wu 

et al. designed a highly efficient ECL system for tryptase sens-
ing, containing DNA nanotubes loaded with Dox-luminol as 
efficient ECL probes, dissolved  O2 as endogenous coreactant, 
and Au-Ag-Pt hetero-nanostructures as coreaction accelera-
tor [139]. One-step self-assembled DNA nanonet was trig-
gered by target miR-21 for Dox-ABEI embedding. Further 
using dissolved  O2 as coreactant and  Ag3BiO3 NCs substrate 
as coreaction accelerator, high-intense ECL of ABEI for miR-
21 assay was achieved [140]. A 3D DNA matrix was self-
assembled from alkyne-rich tetrahedral DNA blocks on the 
electrode surface. Target GSH reduced  Cu2+ to  Cu+, which 
served as the catalyst to link  N3-AuAg nanoclusters with the 
3D DNA matrix. By this means, massive AuAg nanoclusters 
emitted strong ECL for GSH assay (Fig. 8) [138]. Zhang et al. 
assembled a target-triggered 3D DNA network via cyclic 
CHA with a high loading ability, and it was completely col-
lapsed by dissolving AuNPs to covert trace target miR-21 to 
massive mimic targets for signal amplification [141]. DNA 
hydrogel with abundant dendritic DNA structures was gener-
ated via a target (miR let-7a)-induced nonlinear HCR, which 
was entrapped with abundant ECL intercalator of amphiphilic 
perylene derivative modified with N,N-diethylethylenediamine 
(PTC-DEDA) for an enhanced ECL intensity [31].

Fig. 7  Working principle of the programmable DNA cyclic amplifying ECL genosensor. Reproduced with permission from Ref. [29] Copyright 
2017, American Chemical Society
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7  Conclusion and Outlook

The demands for ultrasensitive bioanalysis and its trend in 
clinical diagnosis, biomedical research, and pharmaceuti-
cal development have forced the advancement of numer-
ous DNA amplification strategies in the ECL domain. First, 
PCR as the “gold standard” method for DNA amplification 
is rarely used in ECL bioanalysis due to the requirement 
of high-precision thermal cycling. Then, a wide variety of 
isothermal DNA amplification technologies are proposed 
for ECL biosensing, including RCA, HRCA, and cleav-
ing enzyme and DNAzyme-mediated amplification. Next, 
considering the high experimental cost and susceptibility 
of enzymes, nonenzymic DNA amplification technologies 
are increasingly applied to ECL applications, such as HCR, 
CHA, and entropy beacon. Finally, self-assembled DNA 
aggregates feature biocompatibility and eco-friendliness, 
serving as nanocarriers for luminophores loading with 
enhanced ECL efficiency. This review provides a thorough 
review of the basic principles and broad applications of 
ECL biosensors integrated with DNA signal amplification 

strategies, hoping to provide a comprehensive understanding 
of the relevant contents and new ideas.

Despite the great potential of DNA amplification-based 
ECL biosensing strategies, the practical applications of such 
biosensors are still in their infancy. Although the cascade 
of multiple ones can achieve remarkable sensitivity in most 
cases, the accuracy is being at risk because of the increasing 
complicated circuits. Balancing the sensitivity and accuracy 
is a significant project for future progress. In our humble 
opinion, the lack of ready-to-use kits for performing these 
DNA technologies hinders their further advancement, and 
commercial kits are still to be developed accordingly. Nev-
ertheless, we envision that this field will continue to grow 
benefiting from the coupling of integrated and miniaturized 
biosensing devices. Thus, it is urgent to develop convenient 
and budget DNA amplification circuits, which are further 
coupled with disposable ECL biosensors based on paper, 
cloth, or chip to achieve point-of-care tests and low-cost 
mass bioanalysis. DNA origami provides a new idea for 
the design of DNA assembles with special structure and 
function, serving as the biocompatible nanocontainer for 

Fig. 8  Schematic illustration of the biosensor based on 3D DNA matrix for GSH detection. Reproduced with permission from Ref. [138] Copy-
right 2020, American Chemical Society
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customized usages. In addition, ECL imaging as a burgeon-
ing technique coupled with DNA amplification technologies 
might realize multi-component analysis and even achieve 
single-molecule sensitivity for in-situ visualized bioanalysis.
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