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Abstract 
Nucleic acids-based functional nanomaterials in biological imaging have drawn more and more attention in recent years. 
The rapid development of various nanomaterials provides nucleic acids more possibility to achieve the recognition and 
bioimaging of different small moleculars in living cells. Coupling of nucleic acids and various nanomaterials obviously 
enhances the cell uptake efficiency of nucleic acids and the signal amplification strategies of nucleic acids have successfully 
expanded the applications of nucleic acids-based functional nanomaterials for the detection of trace small molecules in living 
cells, like microRNAs, proteins, and so on. This review summarizes the recent progresses of nucleic acids-based functional 
nanomaterials in the application of bioimaging with different amplification mechanism and the recent rapid development 
of stimulate-response nucleic acids-based nanomaterial for time-spatial controlled imaging of intracellular targets. The 
advantages of these nucleic acids-based functional nanomaterials and possibility of future development of bioimaging are 
discussed from the perspective of biological imaging.
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1  Introduction

Bioimaging provides a powerful platform for the analysis 
and detection of pathogen, as well as the development of 
clinical diagnostic tools and therapeutic modalities [1–3]. 
One of the major challenges in pathogen bioimaging and 
diseases diagnosis is the lack of highly selective and ultra-
sensitive analytical methods for the analysis of markers of 
disease with low expression levels in complex biological 
environments. To overcome this challenge, nucleic acids 
were widely used in designing efficient imaging methods 
for analysis of the aberrant target in living cells or tissues 
[4–9]. For instance, nucleic acids were not only known as the 
carrier of genetic information [10–12], many related stud-
ies have shown that they can also be folded into different 
structures and different nucleic acids sequences can perform 
different functions, such as target recognition, treatment, and 

enzyme catalytic functions [13–15]. Compared with tradi-
tional chemical recognition mechanisms, nucleic acids have 
excellent properties such as simple synthesis, great biocom-
patibility and easier modification, which enable them special 
recognition characteristics [16, 17].

Nanomaterials have several unique characteristics, includ-
ing well biocompatibility, large specific surface area, easy 
surface modification and good stability [18–24]. The devel-
opment of functional nanomaterials provides greater flexibil-
ity for the application of nucleic acids. Unlike other biomol-
ecules (such as proteins), nucleic acids are more stable and 
flexible after modification. Therefore, many nanomaterials 
such as gold nanoparticles (AuNPs), silica nanoparticles, 
quantum dots, upconversion nanoparticles (UCNPs) and 
magnetic nanoparticles have been combined with nucleic 
acids to construct various nucleic acids-functionalized nano-
materials for biological applications [16, 25–27]. Recently, 
the developments of isothermal amplification of nucleic 
acids and nanomaterials have provided new methods for bio-
imaging. Since the complex environment of the biological 
system, many smart nucleic acids nanomaterials for time-
spatial accurate biological imaging have been constructed 
(Fig. 1).
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2 � Nanomaterials as Carrier of Nucleic Acids 
for Bioimaging

As one of the fastest growing directions in the field of nano-
technology, nanomaterials have attracted more and more 
attentions of biological researchers in recent years. In the 
past decades, various nanomaterials with distinct properties 
have been synthesized such as well biocompatibility, easy 
to surface modification and good stability. These nanoma-
terials have different classifications with unique merits. For 
instance, AuNPs, as one of the precious metal nanoparti-
cles [28–32], have the merits of simple to synthesize, stable, 
easy to modify, and unique optical or electrical properties. 
Semiconductor nanocrystals [33–36] have the characteristics 
of trapping photo-generated charge carriers at the interface 
and tunable emission wavelength. Magnetic nanomaterials 
[37–39] have superparamagnetism. UCNPs [40–43] have the 
merits of longer fluorescence lifetime and deeper penetration 
depth. Furthermore, recently, metal–organic frameworks 
nanomaterials [44–47] have been applied in bioimaging 
with excellent pH response characteristics. For instance, 
copper metal–organic frameworks designed by Zhang’s 
group [48] have been applied in temporal-spatial controlled 
fluorescence imaging of intracellular microRNA (miRNA). 
Various nanomaterials with unique properties as nanocar-
rier of nucleic acids could efficiently transport nucleic acids 
into cells and have successfully expanded the applications 
of nucleic acids for bioimaging of trace small molecules in 
living cells. Understanding the interaction between various 
nanomaterials and small molecule [49], living cells [50], tis-
sues [51, 52] is crucial for the applications of various nano-
materials in bioimaging and biomedicine [53].

3 � Nucleic Acids‑based Functional 
Nanomaterials for Bioimaging

3.1 � Traditional Nucleic Acids‑based Functionalized 
Nanomaterials for Bioimaging

The traditional nucleic acids functionalized nanomaterials 
applied in bioimaging are the nanoprobes obtaining one sig-
nal output after reacting with one target. These nanoprobes 
laid the foundation for the multifunctional design of nucleic 
acids-based functional nanomaterials for bioimaging. The 
traditional nucleic acids-based functionalized nanomaterials 
mainly include AuNPs-based nanoflare and nanobeacon. In 
2007, Mirkin’s group [54] designed a nanoflare for detecting 
mRNA in living cells based on strand replacement strategy 
by combining AuNPs with fluorophore-labeled oligonucleo-
tides. As shown in Fig. 2a, the recognition sequence was 
hybridized with the reporter sequence and then connected 
on the surface of AuNPs. The fluorescence of the reporter 
sequence was quenched due to the surface plasmon reso-
nance absorption band of AuNPs overlaps with the emission 
peak of the fluorophore. While meeting with target mRNA, 
the fluorophore-labeled reporter strand was replaced by the 
mRNA and thus achieved the visual detection of mRNA 
in the living cells. In 2010, Wright’s group [55] developed 
molecular beacon-based nanomaterials by assembling hair-
pin DNA on the surface of AuNPs. The hairpin DNA in this 
method not only served as the recognition sequence but also 
as the reporter sequence. After the target mRNA hybridized 
with the hairpin DNA, the end sequence with the fluoro-
phore of hairpin DNA was moved away from the AuNPs and 
the fluorescence was restored (Fig. 2b). This nanoprobe has 
the advantage of great specificity, low background, and real-
izes the imaging of the target in living cells. Subsequently, 
based on the previous works, Tang’s group [56] designed a 
four-target nanoprobe by introducing four different harpin 
DNA. Based on the same working mechanism, the fluo-
rescence of the fluorophore on the four harpin DNA was 
quenched by the AuNPs. Once hybridizing with their target, 
these four kinds of harpin DNA would be turned on and their 
own fluorescence was restored (Fig. 2c). These nanoflares 
and nanobeacons have been applied to one or more small 
molecule bioimaging with the advantages of simple, respond 
rapid and good specificity. However, the sensitivity of these 
methods is limited by the 1:1 format between the target iden-
tification and signal conversion.

3.2 � Signal Amplified‑Nucleic Acids‑based 
Functionalized Nanomaterials for Bioimaging

Sensitive and specific imaging of intracellular small molecu-
lar such as tumor markers is important for the early diagnosis 

Fig. 1   Schematic illustration of various nucleic acids-based func-
tional nanomaterials for amplified and stimulus-responsive bioimag-
ing
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and treatment of diseases [57]. However, the detection of 
small molecules in organisms currently faces many chal-
lenges, such as low content and more interference [58–60]. 
To achieve sensitive detection of targets in living cells or 
tissues with low expression levels, it is necessary to design 
efficiently amplified nucleic acids-based nanomaterials as 
nanoprobes. In recent years, great progresses have been 
obtained in the development of amplified detection strategies 
for intracellular small molecular bioimaging. Taking miRNA 
detection as an example, miRNA signal amplification strate-
gies mainly based on three strategies, DNA cascade reaction, 
Deoxyribozymes (DNAzymes) catalyst and DNA motors. 
The coupling of DNA amplification strategies with various 
nanomaterials provides new ideas for constructing new bio-
sensing systems and made great progress in the imaging of 
biomarkers and disease diagnosis.

3.2.1 � Amplified Bioimaging Based on DNA Cascade 
Reaction

The DNA cascade reaction consists of three main reactions: 
hybrid chain reaction (HCR), catalytic hairpin assembly 
(CHA), and entropy-driven DNA catalysis (EDC). Once 
meeting with the target sequence of nucleic acids, these 
reactions are initiated to undergo strand displacement reac-
tions and further release the target into new cycle. Through 
these reactions, we can detect and image the marker with 
high sensitivity and selectivity. As any single-stranded DNA 
can be applied in initiating the following catalytic reactions 
during this process, DNA cascade reaction can be applied 
in the bioimaging of specific nucleic acids in living cells 

with low expression levels. Furthermore, the cascade reac-
tion does not require the addition of any enzymes and there 
is no special temperature requirement. Therefore, nucleic 
acids-functionalized nanomaterials based on these cascade 
reactions provide a great way for the amplified imaging and 
detection of small molecules in living cells with low expres-
sion levels.

The two-dimensional nanomaterials like graphene oxide 
(GO), MoS2, WS2, and MnO2 nanosheets, have the excellent 
properties of loading, quenching and well biocompatibility. 
They have drawn substantial attentions [61–67] and have 
been widely applied in bioanalysis with DNA cascade reac-
tions. In 2016, Tang’s group [68] designed a nucleic acids-
based nanomaterial as nanoprobe to achieve the imaging 
of intracellular miRNA-21 (miR-21) and let-7a with signal 
amplificated strategy. As shown in Fig. 3a, this nanoprobe 
consists of GO nanosheets and four kinds of harpin DNA. 
These harpin DNA labelled with fluorophore were modified 
on the surface of GO and their fluorescence were quenched 
by GO. After the nanoprobe entering living cells, HCR reac-
tions between harpin DNA 1 (H1) and harpin DNA 2 (H2) 
could be initiated while meeting with the target miRNA, 
yielding a long double strand with obviously enhanced 
fluorescence signals as the interaction between dsDNA 
and GO was very weak. Similarly, HCR reactions based 
on harpin DNA 3 (H3) and harpin DNA 4 (H4) were initi-
ated by another target miRNA let-7a. Finally, this method 
achieved the imaging of intracellular miR-21 and let-7a with 
low expression levels. Jin’s group [69] reported a harpin 
DNA-GO nanoprobe for the efficient imaging of intracel-
lular telomerase RNA via amplified strategy (Fig. 3b). After 

Fig. 2   a The detection principle of nanoflare based on strand sub-
stitution by assembling fluorophore-labeled oligonucleotides with 
AuNPs. Reprinted with permission from [54]. Copyright 2007 
American Chemical Society. b The detection principle of molecular 
beacon-based nanomaterials by coupling hairpin DNA with AuNPs. 

Reprinted with permission from [55]. Copyright 2010 American 
Chemical Society. c The detection principle of the four-target nano-
probe for miRNAs imaging. Reprinted with permission from [56]. 
Copyright 2013 American Chemical Society
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meeting with the telomerase RNA, one of the harpin DNA 
could turn on to hybridize with H2 and perform the HCR 
reaction. MnO2 nanosheets have also attracted substantial 
attentions due to its advantage of acting as excellent carrier, 
quencher, and self-supplying source. In 2017, Xiang’s group 
[70] synthesized nucleic acids-based functionalized MnO2 
nanosheets as the nanoprobe for the imaging of miR-21 in 
living cells. As Fig. 3c shown, after the nanoprobe entering 
cells, MnO2 would be degraded to Mn2+ by the glutathione 
(GSH) and released DNA on the surface of them. The HCR 
initiated by the target and obtained amplified fluorescent sig-
nal outputs. Except for GO and MnO2, Wang’s group [71] 
designed nucleic acids functionalized MoS2 nanosheet for 
the imaging of intracellular miRNA detection with CHA-
amplified strategy (Fig. 3d). These nucleic acids-based 
functionalized nanomaterials based on two-dimensional 

nanomaterials have excellent property of imaging and detec-
tion of targets in living cells with low expression levels.

Combing the three-dimensional nanomaterials such as 
metal nanoparticles (like Au, Ag nanoparticles), UCNPs 
(like NaYF4@NaYF4:Yb, Er@NaYF4), metal–organic 
frameworks nanomaterials with DNA cascade amplifica-
tion technology to construct amplification biosensors for 
biomedical diagnostics also have obtained great achieve-
ment in recent years. In 2018, Wang et al. and Li et al. 
functionalized AuNPs with hairpins DNA and achieved the 
sensitive detection of miR-21 in living cells based on the 
CHA-amplified strategy (Fig. 4a, b) [72, 73]. In 2020, Liu’s 
group [74] also designed a fluorescent nanoprobe based on 
AuNPs for in situ and dule-signal imaging of miRNA on the 
level of single-molecule. As shown in Fig. 4c, the capture 
probe H1 connected on the surface of AuNPs and the Cy5 
fluorescence of H1 cannot be observed as it was quenched by 

Fig. 3   a Design of the harpin DNA-GO nanoprobe for the imaging 
of intracellular miR-21 and let-7a with signal amplificated strategy 
(HCR). Reprinted with permission from [68]. Copyright the Royal 
Society of Chemistry 2016. b Design of the harpin DNA-GO nano-
probe for the imaging of human telomerase RNA with signal amplifi-
cated strategy (HCR). Reprinted with permission from [69]. Copy-
right the Royal Society of Chemistry 2016. c Design of the harpin 

DNA-MnO2 nanoprobe for sensitive detection of miRNA-21 in Liv-
ing Cells. Reprinted with permission from [70]. Copyright 2017 
American Chemical Society. d Design of the harpin DNA-MoS2 
nanoprobe for the detection and imaging of intracellular aberrant 
miRNA-21 with signal amplificated strategy (CHA). Reprinted with 
permission from [71]. Copyright 2019 American Chemical Society
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the AuNPs. After the nanoprobes entering cells, H1 reacted 
with the target miRNA and the opened H1 would further 
react with H2, followed by the performing of HCR. This 
strategy could detect the miRNA at femtomolar and image 
miRNA on single-molecule level. Based on UCNPs, Zhang 
et al. [75] designed a DNA-programmed UCNP-AuNPs 
nanoprobe for the detection of miRNA in living cells. As 
discussed above, the nanoprobes-based various nanomate-
rials and DNA cascade-amplified strategy all successfully 
achieved the sensitive imaging of the aberrant markers of 
diseases in living cells.

3.2.2 � Amplified Bioimaging Based on DNAzymes catalyst

DNAzymes [76–79] are the DNA sequence can catalyze 
their specific substrates, and the catalytic process requires 
the participation of specific metal ions as cofactors [80–83]. 
Compared with the DNA cascade reactions, the nanoprobes 
based on DNAzyme catalytic activities are easier to imple-
ment integrated design. In recent years, DNAzymes with 
great catalytic activity such as 8–17, 10–23 DNAzyme have 
been widely used in the efficient detection and imaging of 
nucleic acids, proteins and metal ions with signal ampli-
fication [84–86]. Furthermore, as it is difficult to deliver 
DNAzyme and its substrate chain to living cells due to their 
negatively charge, people have introduced various nanoma-
terials as carriers for delivering DNAzyme and its substrate 

into living cells in recent years [87]. For example, Zhu’s 
group [88] designed a MNAzymes nanoprobe for the logic 
imaging of miR-145 and miR-21 in living cells based on 
the mesoporous silica-coated gold nanorods (Fig. 5a). In 
this system, as DNAzymes were divided into two different 
sequences being called MNAzymes, the activity of DNA-
zymes was blocked. Once meeting with the miR-21, the 
conformation of MNAzyme motif changed and the activity 
of DNAzyme restored. Then, the substrates labelled with 
fluorophore were cleaved and moved away from the sur-
face of mesoporous silica-coated gold nanorods, resulting 
in the restore of the fluorescence. Subsequently, the released 
strands of DNAzymes would automatically move to the adja-
cent substrates and carry out a catalytic loop reaction, result-
ing in an obvious enhanced fluorescent signal. This design 
of MNAzyme nanoprobe successfully realized the sensitive 
detection and imaging of miR-21 and miR-145 in living 
cells. Liu’s group [89] and Xu’s group [90] also reported 
DNAzyme amplification strategies for miRNA imaging 
in living cells with DNAzyme-MnO2 nanoprobe (Fig. 5b, 
c). In these systems, MnO2 nanomaterials not only served 
as the transporter of nucleic acids (consist of the strand 
of DNAzyme and its substrate), but also were reduced by 
intracellular GSH to Mn2+, which serving as the confac-
tors of DNAzyme catalysis. Most recently, Zhang’s group 
[48] reported DNA@Cu-MOF nanoprobes for the ampli-
fied imaging of aberrant miRNA in living cells based on the 

Fig. 4   a Design of the CHA hairpins DNA -AuNPs nanoprobe for 
the efficiently imaging of intracellular miR-21. Reprinted with per-
mission from [72]. Copyright the Royal Society of Chemistry 2018. 
b Design of the bio-cleavable H1-AuNPs-H2 nanoprobes for the effi-
ciently imaging of intracellular miR-21. Reprinted with permission 

from [73]. Copyright the Royal Society of Chemistry 2018. c Design 
of the fluorescent probes based on AuNPs for in situ and dule-signal 
imaging of miRNA on the level of single-molecule. Reprinted with 
permission from [74]. Copyright 2020 American Chemical Society
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DNAzyme catalysis reactions. In this system, Cu-MOF was 
degraded into Cu2+ by the hypoxic after entering cells and 
released the harpin DNA and double strand DNA (dsDNA) 
on the surface of them. The dsDNA consists of the sequence 
of DNAzymes and the conformation of double strand, which 
ensures the inactive state of DNAzyme. Once meeting the 
target, the conformation of dsDNA was rearranged, further 
reaction with the harpin DNA happened and the activity of 
DNAzyme restored. In the presence of Cu2+, the substrate 
strand labelled with Cy3 was released and carried out the 
catalytic loop reactions (Fig. 5d). These methods based on 
nanomaterials of MnO2 or Cu-MOF overcame the limitation 
of DNAzyme that requires additional external cofactors and 
expanded the application of nucleic acids-based functional-
ized nanomaterials with DNAzyme amplification strategy.

3.2.3 � Amplified Bioimaging Based on DNA Motors

As the nature protein motors own efficient and compli-
cated working mechanism in human, in recent years, many 
researchers have devoted to designing synthetic DNA motors 
for the detection and imaging of small molecules in cells 
and studying the important physiological processes in organ-
isms, like springs, walkers, and nanorobots. These synthetic 
DNA motors have excellent biocompatibility and the merits 

of high sensitivity and selectivity for imaging and detection 
of intracellular small molecule in living cells [91–99]. DNA 
motor usually consists of motors, fuels and tracks and the 
higher local concentration of tracks ensures the in-situ sig-
nal amplification. Briefly, initiated by the target, the locked 
walking ligands would return to be free and start working 
along the tracks. To improve the endocytosis efficiency of 
the DNA motors and the local concentration of the tracks to 
obtain a more sensitive detection and imaging effect, many 
methods have been developed by assembling the DNA 
motors on multifunctional nanomaterials.

The participation of various nanomaterial plays a great 
role in the designing of DNA motors with excellent biocom-
patibility and high sensitivity for the detection and imaging 
of intracellular small molecules in living cells [100–107]. 
In 2017, Peng et al. [104] designed a DNA motor based on 
AuNPs and DNAzyme for the amplified imaging of miRNA 
in living cells. As the results shown in Fig. 6a, once meeting 
with the miRNA, the walking strands of the DNA motors 
would restore its free state. As the end of walking strands 
was designed as the DNAzyme, it would hybridize with the 
substrate chain on the tracks. In the presence of cofactors, the 
substrate chains were cleaved to release the fragment con-
taining the fluorophore. The distribution of tracks ensured 
more signal output while meeting the aberrant miRNA in 

Fig. 5   a Application of the MNAzymes nanoprobe for the logic 
imaging of miR-145 and miR-21 in living cells based on the 
mesoporous silica-coated gold nanorods. Reprinted with permission 
from [88]. Copyright 2015 American Chemical Society. b Applica-
tion of DNAzyme amplification strategies for miR-155 imaging in 
living cells with DNAzyme-MnO2 nanoprobe. Reprinted with per-
mission from [89]. Copyright 2018 American Chemical Society. c 

Application of the target-triggered DNAzyme-MnO2 nanoprobe for 
miR-155 imaging in living cells by DNAzyme amplification strate-
gies. Reprinted with permission from [90]. Copyright the Royal Soci-
ety of Chemistry 2019. d Application of a DNA@Cu-MOF nano-
probes for the amplified imaging of aberrant miRNA in living cells 
based on the DNAzyme catalysis reactions. Reprinted with permis-
sion from [48]. Copyright 2020 American Chemical Society
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living cells. Furthermore, Zhou’s group [108] reported 
another DNA motor for the sensitive imaging of intracel-
lular miR-21 by assembling two DNA harpin (H1 consist 
of the sequence of DNAzyme, H2 consists of the sequence 
of substrate) on the surface of AuNPs (Fig. 6b). Soon after, 
Ye’s group [106] designed a simpler DNA motor based on 
EDC strategy for the imaging of intracellular miRNA with-
out the participation of the cofactors. As shown in Fig. 6c, in 
the presence of miRNA, the walking strand connected with 
the signal DNA on the surface of AuNPs, and then autono-
mously and progressively walked along the tracks by EDC, 
followed by an obviously enhanced signal output. Com-
pared to the DNAzyme motors, this nanomachine avoided 
the background produced by the non-specific cleavage of 
DNAzyme and realized the sensitive imaging of intracel-
lular miRNA. To avoid adding metal ions as cofactors in 
the application of DNAzyme motors, Kong’s group [109] 
designed a self-powered DNAzyme motor-MnO2 nanosys-
tem for miRNA imaging. The target-induced mechanism of 
this motor is strands displacement reaction and this strategy 
can be applied in the detection of miRNA or other nucleic 
acids sequences. Just recently, Xu’s group [110] designed a 
binding-induced DNA motor-MnO2 nanosystem for miRNA 
imaging. Different from the previous methods, this method 
can be applied in the detection and imaging of any biomol-
ecule in living cells by changing the two ligand molecules 
including proteins, thrombin and streptavidin (Fig. 6d).

4 � Stimulus‑Responsive Nucleic Acids‑based 
Functionalized Nanomaterials 
for Bioimaging

Despite great gains on the constructing of nucleic acids-
based nanomaterials for imaging of small molecule in living 
cells with low expression levels, there are still challenges 
for bioimaging of small molecules in complex biological 
systems due to the disadvantages of low bioavailability, poor 
targeting specificity, and generation of false positive sig-
nals. Facing with these problems, many stimulus–response 
nucleic acids nanomaterials have been constructed for time-
spatial accurate biological detection and imaging [111–115]. 
These methods have attracted widespread attention and have 
become one of the powerful tools in the field of nanomedi-
cine diagnosis and treatment. The working mechanism of the 
stimulus-responsive nucleic acids nanomaterials is mainly 
through the intelligent design of nucleic acids or nanomate-
rials to realize biological detection at a specific site and time 
under stimulus. The forms of stimulation mainly include 
internal stimulation (pH, redox potential, biomolecules) and 
external stimulation (light, temperature, magnetism).

Fig. 6   a Scheme of the DNA 
motor based on AuNPs and 
DNAzyme for the amplified 
imaging of miRNA in living 
cells. Reprinted with permission 
from [104]. Copyright 2017 
Nature Publishing Group.  
b Scheme of the harpin DNA-
AuNPs nanomachine for the 
amplified imaging of intracel-
lular miRNA. Reprinted with 
permission from [108]. Copy-
right 2017 American Chemical 
Society. c Scheme of a simpler 
DNA motor based on EDC 
strategy for miRNAs analysis. 
Reprinted with permission from 
[106]. Copyright 2017 Wiley–
VCH Verlag GmbH &Co. 
KGaA, Weinheim.  
d Scheme of the binding-
induced DNA motor-MnO2 
nanosystem for miRNA imag-
ing. Reprinted with permission 
from [110]. Copyright 2020 
American Chemical Society
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4.1 � Endogenous Stimulus‑Responsive Nucleic 
Acids‑based Functionalized Nanomaterials

Tumor tissue maintains a microenvironment conducive 
to tumor cell survival and development. The intracellular 
environment and extracellular microenvironment of tumor 
tissues and normal tissues are different. For example, com-
pared with normal tissue, the pH in the lysosomes of can-
cer cells is lower than that in normal cells [116, 117]. Fur-
thermore, tumor tissue has a hypoxic, reductive and acidic 
microenvironment, and the intracellular reactive oxygen 
species (ROS) and GSH in tumor tissues are overexpressed 
[118]. In recent years, endogenous stimulus-responsive 
nucleic acids nanomaterials have been well applied in bio-
imaging of small molecules imaging in living cells or tis-
sues in the special location. For example, Wang’s group 
[119] designed the DNA-honeycomb MnO2 nanosponge 
for the efficient imaging of miRNA in living cells based on 
CHA-HCR-DNAzyme-amplified strategy. After this nano-
systerm entering cells, the honeycomb MnO2 nanosponge 
was reduced to Mn2+ by endogenous GSH and released the 
DNA strands for CHA-HCR-DNAzyme amplification reac-
tion. This nanoprobe kept the DNAzyme away from the non-
specific degradation before being delivered into living cells 
and the CHA-HCR-DNAzyme-amplified strategy largely 

improved the sensitivity of miRNA detection (Fig. 7a). Li’s 
group [120] constructed a DNA nanoprobe driven by an 
acidic pH for specific ATP imaging in the extracellular envi-
ronment of tumors. As shown in Fig. 7b, this nanoprobe was 
designed by connecting the ATP aptamers with a pH (low) 
insertion peptide. Only in the acidic pH of the extracellular 
environment of tumors, pH (low) insertion peptide could 
insert into the cell membrane and realized the accurate imag-
ing of extracellular ATP of tumor. This nanoprobe achieved 
the imaging of ATP in the environment of the extracellular 
environment of tumors in vivo. After that, Xu’s group [121] 
proposed a smart acid-responsive DNAzymes nanoprobe for 
imaging of Zn2+, Pb2+ in living cells by assembling the pH 
sensitive DNA sequences and metal-assisted DNAzymes 
on the surface of AuNPs. After this nanodevice entering 
cells, the locked DNAzyme could be activated by the acidic 
environment in the lysosomes (pH 4.5–5.0) and realized the 
imaging of dual metal ions in living cells. Therefore, the 
exogenous stimuli existing inside the microenvironment of 
cells or tissues was successfully applied in the small mol-
ecule imaging in cells or tissues at our desire site.

Fig. 7   a The scheme of the nanoprobe based on honeycomb MnO2 
nanosponge for the efficiently imaging of miRNA in living cells with 
CHA-HCR-DNAzyme-amplified strategy. Reprinted with permission 
from [119]. Copyright 2020 Wiley–VCH Verlag GmbH &Co. KGaA, 

Weinheim. b The scheme of a DNA nanoprobe driven by an acidic 
pH for ATP imaging in the extracellular environment of tumors. 
Reprinted with permission from [120]. Copyright 2019 Wiley–VCH 
Verlag GmbH &Co. KGaA, Weinheim
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4.2 � Exogenous Stimulus‑Responsive Nucleic 
Acids‑based Functionalized Nanomaterials

Unlike the exogenous stimuli existing inside the microenvi-
ronment of cells or tissues, exogenous stimuli can be applied 
in the small molecule imaging in cells or tissues at our desire 
time [122–125]. Near-infrared (NIR) light as an excellent 
stimulus has drawn more and more attentions for the design-
ing of stimulus-responsive methods for the imaging of bio-
molecular due to its less toxic and deeper penetration depth. 
For instance, as shown in Fig. 8a, Wang et al. [126] designed 
a NIR light controlled imaging strategy by the nanoprobes 
of DNAzyme-gold nanoshells (AuNS). The conformation 
of the three-stranded DNAzyme precursor (TSDP) ensured 

the DNAzyme to be inactive. Under NIR light irradiation, 
as the local temperature increases, the dsDNA consisted of 
the DNAzyme strand and its substrate strand was released 
from the surface of AuNS. The fluorescence of Cy5 on the 
strand of DNAzyme was quenched by the quencher on the 
substrate strand. Once meeting with the Zn2+, the strand 
of substrate would be cleaved and restore its fluorescence. 
This method overcame the limitation of DNAzyme, suscep-
tibility to metal-dependent cleavage during delivery into liv-
ing cells and realized the NIR light controlled detecting of 
metal ions in biological systems. Li’s group [127] designed 
a NIR light activated nanodevice for the time-controlled 
imaging of intracellular miRNA based on UCNPs. In this 
system, the harpin DNA contained an ultraviolet (UV) 

Fig. 8   a Scheme of the NIR light activated nanoprobe of TSDP-
AuNS for intracellular Zn2+ imaging. Reprinted with permission 
from [126]. Copyright 2019 Wiley–VCH Verlag GmbH &Co. KGaA, 
Weinheim. b Scheme of the NIR light activated nanodevice for the 
time-controlled imaging of intracellular miRNA based on UCNPs. 

Reprinted with permission from [127]. Copyright 2019 American 
Chemical Society. c Scheme of the ultrasound responsive method 
for photoacoustic imaging by a microbubbles containing AuNPs. 
Reprinted with permission from [130]. Copyright 2019 American 
Chemical Society
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light photocleavable bond. Under NIR light irradiation, the 
UCNP transformed the NIR light to UV light, followed by 
the conformation change of the harpin DNA which hybrid-
ized with intracellular miRNA. This method realized the 
time-controlled miRNA imaging in living cells (Fig. 8b). 
Furthermore, his group also constructed a series of NIR light 
activated nanodevices and successfully realized in-situ sen-
sitive detection of important biomolecules and monitoring 
of intracellular pH fluctuations [128, 129]. Furthermore, 
recently, Liu’s group [130] reported an ultrasound respon-
sive method for photoacoustic imaging by microbubbles 
containing AuNPs (Fig. 8c). As discussed above, stimu-
lus–response nanodevices can cleverly inhibit the activity 
of the detection system before delivering into our desire site 
and restore its activity by many stimulus tools.

5 � Conclusions and Perspectives

In summary, the development of nucleic acids-based func-
tional nanomaterials has made a great sense for bioim-
aging. Various amplified or stimulus-responsive nucleic 
acids-based functional nanomaterials have been designed 
for the imaging of small molecules in living cells or tis-
sues. Owing to the development of amplified nucleic 
acids-based functionalized nanomaterials based on vari-
ous excellent nucleic acids-amplified strategy like DNA 
cascade reactions, DNAzymes catalyst and DNA motors 
for signal amplification, intracellular small molecules in 
living cells with low expression levels can be detected and 
imaged, which facilitated the develop of the diagnosis of 
disease. Particularly, stimulus-responsive nucleic acids-
based nanomaterials have shown excellent advantages for 
time-spatial controlled detection and imaging of targets 
in living cells and tissues and presented great promise for 
imaging of genes or other small molecules in subcellu-
lar domain, like cell nucleic, mitochondria. Furthermore, 
two or more stimulus-responsive systems with dule/mul-
tiple kinds of amplification strategy have great promise 
for more accurate disease diagnosis and treatment. The 
results of nucleic acids-based functional nanomaterials 
provide excellent platforms for the disease diagnosis and 
treatment and this emerging field still shows a bright pros-
pect in the future.
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