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Abstract
Sweat-based diagnostics offer an exciting avenue to noninvasively monitor analytes which had previously only been avail-
able through painful blood draws. Sweat is enriched with physiologically valuable information, and recent proteomic studies 
have identified numerous critical analytes which have highly correlated levels in blood, interstitial fluid and sweat. How-
ever, usage of sweat for health monitoring has not been studied extensively due to the substantial challenge of assembling 
a composite clinic-ready device. Recent advances in soft electronics have made this goal realizable, as these devices can 
perform electronic or optical monitoring on a flexible substrate using small volumes of liquid. While this field is still in its 
infancy, this review examines the physiological composition of sweat, various improvements in material science that improve 
sensor design, existing FDA approvals, methods of extracting sweat and comparisons to blood-based tests. Furthermore, 
this review assesses the critical challenges which must be overcome for this type of technology to make it out of research 
laboratories and into continuous clinical use. We believe that once properly harnessed, sweat-based diagnostics can provide 
patients a painless monitoring tool which can be customized to track a wide variety of medical conditions from the comfort 
of a patient’s own home.
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1 Introduction

Sweat is enriched with electrolytes  (Na+,  Cl−,  K+,  NH4
+, 

 Ca2+,  H+), metabolites (lactate, glucose, urea, uric acid and 
creatinine), proteins and peptides (interleukins, tumor necro-
sis factor) and xenobiotics (drugs, heavy metals and ethanol) 
[1, 2]. By collecting sweat, it is possible to monitor these 
numerous types of physiologically important molecules 
without any invasive procedure in real time. Thus, a sweat 
sensor when used as an in vitro diagnostic (IVD) device can 
be an excellent tool for continuous monitoring of disease 
markers.

IVD devices are the most convenient tools for a patient 
or clinical professional to evaluate, prevent or monitor a 
disease. IVD products are defined by the Food and Drug 
Administration (FDA) as any reagents, instruments and 

systems used for diagnosing disease or conditions. Here, 
the “diagnose” term encompasses the spectrum of cure, pre-
vent or heal a condition [3]. The FDA further narrowed their 
definition of IVD by placing it under the umbrella of medical 
devices which can be used to determine health status. Those 
devices can be used for screening, risk assessment, staging 
and prognosis. The specimen types used in these devices are 
mainly whole blood, serum and cerebrospinal fluid. How-
ever, to diagnose cystic fibrosis the FDA recently cleared an 
IVD system which can induct and collect sweat to diagnose 
the disease [4].

The FDA closely monitors and regulates IVD devices 
since the introduction of the Medical Device Amendments 
of 1976.  Many devices since then have received FDA 
approval and have been commercialized. For example, a 
single-lead ECG device to monitor eight different physi-
ological features such as heart rate, heart rate variability, 
respiratory rate, skin temperature and posture has recently 
received FDA approval [5]. This patch can collect clinical-
grade measurements and can transmit the data wirelessly to 
computers or cell phones. The Stat-Strip Glucose Hospital 
Meter System, used to measure glucose level in intensive 
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care units (ICUs) patients, has also been recognized by the 
FDA as a valid platform to monitor blood glucose level [6]. 
Additional implantable electronic devices for cardiac appli-
cations have been reported since [7].

2  Sweat: An Introduction

The human body possesses 3 to 4 million eccrine sweat 
glands, which are distributed throughout the dermis layer 
of the skin [8]. However, at any given time only a small por-
tion of these glands becomes active, indicating an enormous 
potential to secrete a large volume of sweat under critical cir-
cumstances. In a healthy individual, the sweat rate can range 
from 0.1 L/Hr to a maximum of 1.0 L/Hr [9]. On average, 
the sweat gland is 2–4 mm in length with an external diam-
eter ranging from 30 to 60 μm [10]. The secretion of sweat 
can seem ordinary; however, the whole process is rather 
complex and requires participation of several receptors.

Sweat can be secreted from the sweat gland due to two 
different responses: thermoregulatory (via the hypothala-
mus) and limbic [12]. The sympathetic nerves distributed 
to sweat glands mainly consist of an abundant network of 
cholinergic nerve terminals and a scarce number of adr-
energic terminals [13]. The amount of sweat release is 
determined by the amount of blood carried by the capil-
laries surrounding the sweat glands. Figure 1 shows the 
location of the sweat glands under skin.

Eccrine sweat glands have secretory coils and a duct 
[14]. The secretory coil consists of single layer of epi-
thelial cells which has dark cells (granular), clear cells 
(agranular) and myoepithelial cells. Figure 2 shows the 
histology of the sweat glands [15]. The osmiophilic gran-
ules are released from the cells in order to produce sweat, 
whereas the clear cells are believed to be the core source 
of the production of sodium-chloride-rich fluid.

The secretory coils merge into a glandular duct. The 
duct is lined with epithelial cells and close to the surface 
of the skin it changes dramatically to a metabolically inac-
tive opening to facilitate exit of the fluid [16]. Histology 
image of human sweat glands is shown in Fig. 2.

Fig. 1  Eccrine sweat glands in thick skin (left) and thin skin (right) [11]
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3  Sweat Generation

The plasma membrane of the sweat glands initiates a com-
plex series of biochemical processes which alters the level of 
calcium within the cells. The  Na+–K+ pump utilizes ATP to 
transport 3  Na+ ions out of the cells in exchange of 2 K+ ions 
into the cells. This pump ensures a low level of  Na+ intracel-
lularly. A blocker of the  Na+–K+ pump has been found to 
block the secretion of sweat [17]. The outward movement 
of  Cl− ions through calcium-activated chloride channels 
makes the lumen of the duct electronegative with respect to 
the surrounding cells. When  Na+ combines with localized 
 Cl− ions, it forms NaCl. The presence of NaCl generates 
an osmotic gradient and facilitates the movement of water 
through the duct.

4  Biomarkers Within Sweat

In a proteomic analysis, Yu et al. [18] found 861 unique 
proteins of which 57 were proteases and 38 were protease 
inhibitors. They also identified 32,818 endogenous peptides. 
Table 1 represents the concentration of commonly found 
ions and proteins in the blood and sweat.

4.1  Wearable Biosensors for Sweat Test

To create a skin-contact-based sensor, the electronics have 
to be flexible and soft. Soft electronics significantly expand 
the capabilities of conventional rigid electronics in sensing, 
monitoring and diagnosing functions. Figure 3 represents a 
sweat-based sensor on the skin surface. In the field of wear-
able soft electronics sensors, there are various materials of 
interest that could provide an ideal sensing platform. Hydro-
gels, nanomaterials and liquid metals are three fundamental 
materials used in the development of soft electronics.

4.1.1  Hydrogels

Applications of hydrogels in soft electronics have emerged 
in the past few years. Unique physicochemical properties 
such as stretchability, self-healing, biocompatibility and 

Fig. 2  Histology of human sweat glands [15]

Table 1  Comparison of 
sweat and blood ions/proteins 
concentration

Ions/proteins Concentration

Sweat (mM) Blood (mM)

Sodium  (Na+) 38.3 ± 20.8 (mean of eight sites) [19] P: 135–150 [20]
Chloride  (Cl−) 33.5 ± 21.7 (mean of eight sites) [19] S: 96–106 [21]
Potassium  (K+) 4.48 ± 0.58 (mean of eight sites) [19] 3.5 to 5.5 [22]
Lactate 8.45 ± 1.83 (mean of eight sites)[19] < 2.3 mmol/l [23]
Interleukin-6 (IL-6) 10.0 ± 2.2 (pg/ml) [24] P: 8.4 ± 2.0 (pg/ml) [24]

Fig. 3  Demonstration of a wearable sensor on skin surface
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conductivity of hydrogels make them extremely suitable 
for wearable soft electronic sensors [25]. Additionally, 
major innovations in polymer chemistry, composite phys-
ics and micro- and nanofabrication have vastly expanded 
the capabilities of hydrogels. For example, the fundamen-
tal methods of synthesizing cellulose-based hydrogels are 
to dissolve the cellulose fibers and to introduce a physi-
cal and/or chemical cross-linking in order to form a 3-D 
hydrophilic network [26].

The physical process used during fabrication may 
include an interaction between ions or a hydrogen bond. 
Chemical processes are more complex and include dif-
ferent polymerization techniques, including chain-growth 
polymerization, irradiation polymerization and step-
growth polymerization. Figure 4 demonstrates hydrogel 
design and structure under FESEM. Chemical routes have 
their own disadvantages, such as strong and irreversible 
covalent bonds which can lead to slow stimuli response, 
limited stretchability, and poor self-healing properties 
[28]. In contrast, the physical cross-linking methods are 
flexible and suitable for proper self-healing. However, it 
is critical to keep in mind that the physically cross-linked 
method exhibits excess stiffness, limiting its applications 
in soft electronics (Table 2).

4.1.2  Nanomaterials

Nanomaterials have become an attractive tool to fabricate 
stretchable electronics. Nanomaterial-based conductors are 
made by the mixing of conductive fillers in a stretchable 
polymeric matrix [29]. The nanofillers allow for an electrical 
current pathway toward the composite since the nanofillers 
form a percolated network in the elastomer, allowing for the 
flow of current. The nanofillers can be categorized into the 
following three groups: 0D nanoparticles (NPs); 1D nanow-
ires (NWs) and nanotubes (NTs) with high aspect ratios; and 
2D nanosheets with large junction areas. Researchers also 
show interest to employ natural nanomaterials in designing 
new type of sensor. Figure 5 shows an example of a naturally 
occurring nanomaterial.

4.1.3  Liquid Metals

Liquid metals are soft electronic sensors which have an ideal 
combination of conductivity and deformability properties. 
These two properties provide an environment in which the 
electromechanical properties of the device can be enhanced 
using this type of material. The most common liquid metals 
used are Ga and its alloys such as EGaIn (75% gallium and 

Fig. 4  The produced hydrogel rigidity increased after cross-linking (a–b). After infiltrating the hydrogel with phenol red, it appeared red in color 
(c). Field-emission scanning electron microscopy (FESEM) image representing the dense fibrous network structure in the gel (d) [27]
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25% indium) and galinstan (68.5% gallium, 21.5% indium 
and 10% tin) which are some of the least toxic liquid metals.

The liquid metals are typically embedded in fluidic chan-
nels of elastomers such as Ecoflex, poly(dimethylsiloxane) 
(PDMS), polyacrylates and block copolymer elastomers to 
form an intrinsically stretchable conductor [31]. The liquid 
metals do not add any mechanical loading to the carrying 
elastomers due to their fluidity. Thus, mechanical properties 

of the resulting conductor mainly depend on the carrier elas-
tomeric matrix.

4.2  FDA‑Approved Wearable Sensor

The revolutionary Abbott’s system is capable of real-time 
glucose monitoring without the hurdle of finger pricking [32, 
33]. A small sensor is fixed on to the upper arm, and when 
scanned with a reader, it can reveal if a person is experienc-
ing hypoglycemia (low level of blood glucose) or hypergly-
cemia (high blood glucose level). Figure 6 shows similar 
representation of a glucose monitoring system.

In 2002, the FDA approved  GlucoWatch® G2 Biogra-
pher an automatic glucose biographer [34]. It can detect 
trends in collected data and track patterns of glucose levels 
when used in diabetic patient both at home or in clinical 
settings. The device is comfortable and can be worn as a 
wrist watch. When in use, it can send a low level of current 
to draw fluid onto the top of the skin. The interstitial fluid 
saturates the hydrogel disk and glucose reacts with glucose 
oxidase, generating hydrogen peroxide. A platinum sensor 
sensing the hydrogen peroxide produces electric current 
equivalent to the glucose level. An inbuilt warning system is 
capable of warning the user if glucose levels are abnormally 
low or high. However, most patient complaints about the 

Table 2  Examples of sweat biosensors from scientific literature

SEM sweat extraction method, PE post-exercise, DPA during physical activity, ORMOSIL organically modified silicate, GPTMS 3-glycidoxypro-
pyltrimethoxysilane, PPG/HRM photoplethysmography/heart rate monitoring

SEM Analyte Range/LOD Response time (s) Sensor platform Signal transduction Signal detection References

PE Lactate < 1 mM Kapton patch 
(2.5 × 7.5 cm)

Organic electro-
chemical transistor 
(OECT)

NFC
Smartphone

[35]

PE Total ion content C: 0.1–1000
Au: 0.1–100
Pt: 0.1–316

C: 17 ± 6
Au: 22 ± 14
Pt: 18 ± 6

Nafion membrane on 
carbon ink/Gold/Pt 
coated paper

Donnan potential Potentiometer [36]

PE pH 4.5–8.3 Fast Cotton fabric treated 
with ORMOSIL by 
using litmus and 
GPTMS as silox-
ane precursor

Miniaturized, low-
power wireless 
electronics

FTIR & UV–Vis 
spectroscopy

[37]

N/A Glucose ∼100 to 100 ppm N/A Chemochromic 
mixture coated thin 
film positioned on 
rear of smart watch 
with PPG/HRM

Glucose concentra-
tion, using mul-
tivariate analysis 
based on neural 
network algorithms 

Smart watch [38]

DPA Zinc 0.1–2.0 μg/ml  0.05 μg/ml  Bismuth/Nafion 
film electrode

Tattoo-based print-
able stripping vol-
tammetric sensor 

Square wave anodic 
stripping voltam-
metry (SWASV)

[39]

DPA Glucose 0.02–1.0 mg/mL N/A Paper-based glucose/
oxygen enzymatic 
fuel cell within a 
standard Band-Aid 
adhesive patch

Glucose concentra-
tion through moni-
toring changes 
in current output 
from the enzymatic 
reactions

LabView DAQ [40]

Fig. 5  Natural nanomaterial formed by silica nanoparticles (150–
300  nm) can interfere and diffract light propagation, resulting in 
extraordinary colored object [30]
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GlucoWatch are due to it being extremely uncomfortable, 
painful and irritating to skin. Overall, this device could not 
meet patient’s satisfaction and now it is no longer in market.

5  Portable Sweat Biosensors in the Scientific 
Literature

5.1  Sweat Collection Approaches

5.1.1  Automated Micro‑Pump

To analyze a sweat sample, a continuous flow of fluid in the 
sensor system is desirable. To assist this process, Bellando 
et al. [41] designed their sensor assembly with an autono-
mous micro-pump. This micro-pump is capable of driv-
ing continuous unidirectional flow of sweat in the amount 
of ~ 120 pL/minute. This pump is autonomous and requires 
zero energy for pumping sweat due to the use of passive 
channels. SU-8 passive micro/nanofluidic channels on SOI 
FETs were fabricated which collected sweat and transported 
it to a reservoir on the skin surface. Finally, a miniaturized 
Ag/AgCl electrode was used to measure biomarkers in sweat 
including pH, Na + and K + concentrations in sweat in real 
time.

5.1.2  Passive Perspiration

A PDMS-based soft microfluidic device reported by Koh 
et al. can retain 50 μl of sweat. Fundamentally the device 
is compatible with skin, and upon contact with skin, it 
forms a sealed barrier and forces a vertical flow of sweat. 
The device additionally contains reservoirs for reagents 
to produce a colorimetric response due to the presence of 

chloride, glucose and lactate and the sweat pH. To transfer 
the signal from the device, a near-field communication 
system is incorporated. Choi et al. [42] similarly relied on 
the passive movement of sweat in their developed skin-like 
microfluidic device. This device bonds onto the skin and 
transports sweat into a micro-reservoir. A 1.8-μl sweat 
sample was collected in 0.8 min and stored in a zone of 
size 0.03 cm2. Collected sweat was analyzed for lactate, 
sodium and potassium concentrations. Figure 7 demon-
strates how a colorimetric sweat sensor can be used to 
detect analyte presence.

5.1.3  Iontophoresis Sweat Extraction Approach

To extract sweat on demand is a major hurdle in wearable 
sweat sensing technologies. To overcome this challenge, 
Emaminejad et al. [43] constructed an electrochemically 
enhanced iontophoresis device. This wearable platform 
can be used to induce sweat for a real-time analysis. The 
iontophoresis process involves delivery of stimulating 
agonists to the sweat glands with the aid of an electrical 
current. The system caused no discomfort or burning sen-
sation when used on subjects.

Various drugs for sweat gland stimulation have been 
reported in the past, including acetylcholine, carbachol, 
methacholine and pilocarpine. Sonner et al. [44] used car-
bachol gel as a sweat-stimulating agent and developed a 
corresponding sensor to examine sweat. A pH-sensitive 
dye (bromophenol blue) was used to monitor the sweat 
secretion. The concept of iontophoresis and reverse ion-
tophoresis is shown in Fig. 8.

Fig. 6  A wearable continuous glucose monitoring system (CGM)

Fig. 7  A PDMS-based colorimetric sweat sensor
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5.2  Current Sweat Testing Applications

Noninvasively obtainable physiological information has 
been a holy grail for biomedical applications. Examining 
sweat can be a valuable method for noninvasive, continuous 
health monitoring in real time, and numerous physiological 
and clinical investigations can be performed. For example, 
in sports or other outdoor activities the bodily water content 
may deplete. A sweat sensor can hence be utilized to monitor 
the level of hydration by monitoring the level of sweat  Na+ 
ions. Gao et al. [45] developed a fully integrated wearable 
sensor arrays to evaluate the level of sweat metabolites (such 
as glucose and lactate) and electrolytes (such as sodium and 
potassium ions). Their study showed that doses of methylx-
anthine drug can be monitored by evaluating sweat through 
a wearable sweat sensor [46]. Of additional interest is the 
measurement of cortisol, since it has been identified as 
the “stress biomarker.” A significant amount of cortisol is 
released in sweat [47], and wearable skin-like microfluid-
ics devices have been developed to take advantage of this 
phenomenon to measure cortisol from sweat [48].

5.3  Challenge of Sweat Testing Compared 
to Blood‑Based Test

Even though sweat is an excellent candidate for continu-
ous health monitoring, sweat sensing still encompasses 
many major challenges. First, inducing sweat on demand is 
often challenging whereas blood can be withdrawn from the 
patient at any time. Second, the markers present in sweat are 
at very low concentrations compared to their concentrations 
in blood. Third, in a given period of time only a very small 
amount of sweat can be collected, and the amount can be 
further reduced by evaporation. Fourth, sweat on the epider-
mis can be easily contaminated with other entities present 
on the skin, reducing the accuracy of the results. Blood test, 
however, does not suffer from this degree of potential con-
tamination. Due to these challenges, the number of sweat 
sensors which can monitor biomarkers accurately in real 

time is still very few. There are an insufficient quantity of 
studies on sweat sensors for monitoring peptides, hormones 
and DNAs/RNAs—despite the markers being readily avail-
able in sweat at low concentrations. It is also important to 
consider the substantial challenge that the sensing, analyzing 
and communication process often requires an energy source. 
A lightweight, flexible and self-powered battery to drive sen-
sors is highly desired but is often hard to incorporate into the 
flexible, wearable device. Challenges arise when electronic 
devices generate excessive heat during operation, and the 
accumulation of heat can shorten device lifetime and lead 
to catastrophic failure [49]. Especially for soft electronics, 
elastomers are known to be poor thermal conductors, so heat 
dissipation of soft electronics becomes critical.

6  Conclusions

Numerous advantages of sweat monitoring platforms have 
been identified. A wearable, biocompatible, flexible and 
real-time monitoring device incorporating sweat measure-
ment can clearly be a tremendous aid within the field of 
healthcare. Compared with rigid electronics, wearable soft 
electronics do not have air gaps at the interface between the 
device and the object, which reduces noise and artifacts. Fur-
thermore, close contact between the soft device and the non-
planar object (human skin) allows collection of high-quality 
data. A sensing platform made by soft electronics, due to its 
mechanical properties, will furthermore cause minimal irri-
tation to the human skin. Hence, these soft electronics can 
be essential in the development of new technologies for con-
tinuous healthcare sensing. However, trying to implement all 
of these sensing components while maintaining the flexible 
structure of the sensor is a recurrent issue in the assembly of 
soft electronics. This field still requires extensive research 
to reveal the true potential of the wearable sensing platform, 
and to tackle these challenges, a highly sensitive sensor with 
a preconcentration technology will be the ideal next target 
for research groups.

Fig. 8  Release of sweat by iontophoresis and reverse iontophore-
sis. The drive of current results in movement of pilocarpine drug 
under the skin which stimulates sweat glands to release sweat (left), 

whereas current can be used to release interstitial fluid without any 
drugs by reverse iontophoresis technique
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