
ORIGINAL PAPER

Spectral Representation of Proton NMR Spectroscopy
for the Pattern Recognition of Complex Materials

Peter de B. Harrington1 • Xinyi Wang1

Received: 5 December 2016 / Accepted: 3 January 2017 / Published online: 24 February 2017

� The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract Proton nuclear magnetic resonance (NMR)

spectroscopy provides a powerful tool for chemical pro-

filing, also known as spectral fingerprinting, because of its

inherent reproducibility. NMR is now increasing in use for

authentication of complex materials. Typically, the absor-

bance spectrum is used that is obtained as the phase-cor-

rected real component of the Fourier transform (FT) of the

free induction decay (FID). However, the practice discards

half the information that is available in the dispersion

spectrum obtained as the imaginary component from the

FT. For qualitative analysis or quantitative analysis of

small sets of absorbance peaks, the symmetric and sharp

peaks of the real spectra work well. However, for pattern

recognition of entire spectra, trading peak resolution for

peak reproducibility is beneficial. The absolute value of the

complex spectrum gives the length or magnitude of mag-

netization vector in the complex plane; therefore, the

magnitude relates directly to the signal (i.e., induced

magnetization). The magnitude spectrum is obtained as the

absolute value from the real and imaginary spectral com-

ponents after the FT of the FID. By breaking with tradition

and using the magnitude spectrum the reproducibility of

the spectra and consequent recognition rates can be

improved. This study used a 500-MHz 1H NMR instrument

to obtain spectra from 4 diverse datasets; 12 tea extracts, 8

liquor samples, 9 hops extracts, and 25 Cannabis extracts.

Six classifiers were statistically evaluated using 100

bootstrapped Latin partitions. The classifiers were a fuzzy

rule-building expert system (FuRES) tree, support vector

machine trees (SVMTreeG and SVMTreeH), a regularized

linear discriminant analysis (LDA), super partial least

squares discriminant analysis (sPLS-DA), and a one

against all support vector machine (SVM). All classifiers

gave better or equivalent results for the magnitude spectral

representation than for the real spectra, except for one case

of the 24 evaluations. In addition, the enhanced repro-

ducibility of the absolute value spectra is demonstrated by

comparisons of the pooled within sample standard devia-

tions. For pattern recognition of NMR spectra, the mag-

nitude spectrum is advocated.

Keywords Cannabis � Tea � Hops � Liquor � Humulus �
NMR fingerprinting �Magnitude spectrum � Absolute value
spectrum � Pattern recognition � Classification

Introduction

Authentication of herbal medicines and nutraceuticals is

growing in importance, especially as the global economy

grows and products are shipped worldwide. A useful

approach is chemical profiling or spectral fingerprinting of

plant extracts [1–5]. Although less sensitive than mass

spectrometry (MS), nuclear magnetic resonance (NMR)

spectroscopy provides a more reproducible complementary

technique for the identification and quantification of

metabolites in plant extracts [6].

NMR is a key method for metabolomics and the number

of papers has been growing exponentially as demonstrated

by a nice review [7]. However, much of this growth has

been in targeted analysis for which sets of metabolites are

identified and quantified in the NMR spectrum. For
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authentication and screening, especially in industry, a fas-

ter and easier untargeted analysis approach is provided by

chemical profiling which is also known as spectral finger-

printing. These approaches avoid the inherent problems in

selecting and quantifying peaks in complex NMR spectra.

Chemical profiling is an untargeted analysis for which the

individual components of the botanical material are not

identified or quantified; instead, the spectra are compared

point by point using chemometric classifiers. The use of

NMR for untargeted profiling coupled to chemometrics is a

burgeoning and important application area. Here are some

nice reviews on the topic of NMR metabolic profiling

[8–12].

Typically for NMR spectroscopy the real spectral

component of the Fourier transform of the free induction

decay (FID) is used. After phase correction, the real

absorbance spectrum has sharp and symmetric peaks.

However, additional information in the imaginary disper-

sion spectrum is only used for phase-correcting the real

spectrum. Because the rotating magnetization vector is

modeled in the complex plane by using only the real

spectrum some of the analytical signal is unused. The use

of the magnitude or amplitude spectrum is proposed

because this spectrum although less visually appealing will

have greater signal-to-noise and reproducibility compared

to the real absorbance spectrum. Reproducibility is

important for classification or pattern recognition approa-

ches to work effectively. The increase of signal in the

magnitude spectrum results from the greater peak areas of

the wider peaks than those found in the real spectrum. This

finding is not surprising because it is a trading rule between

signal and resolution [13].

NMR was used to profile four diverse sets of extracts.

The samples were classified using six different classifica-

tion methods. The average classification rates were statis-

tically compared between the real NMR absorbance spectra

and the magnitude spectra obtained from the absolute value

of the complex spectrum. All the validations used 100

bootstrapped Latin partitions (BLPs) [14].

Theory

Pooled Standard Deviation

The pooled standard deviation is a useful measure of

experimental uncertainty about the sample mean. It also is

useful for scaling the variables of sets of spectra, espe-

cially for cases when informative peaks have smaller

intensities than other peaks in the spectra. The pooled

standard deviation sp is obtained from the equation given

below:

spj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pg
k¼1

Pmk

i¼1ðxij � �xkjÞ2

m� g

s

; ð1Þ

for which xij is an element of a data matrix for which each

row is an NMR spectrum and each column is a chemical

shift measurement. Bold italic upper case typeface denotes

a matrix and lower case bold italic typeface denotes a

vector. The data matrix X comprises m rows of spectra and

n columns of measurements j. The sum of squares is cal-

culated as the difference between the mk spectra of each

sample or group g and their group mean �xkj. The pooled

standard deviation is a measure of the pooled error about

the samples.

Fuzzy Rule-building Expert System

The fuzzy rule-building expert system (FuRES) builds a

classification tree that comprises branches (i.e., rules) of

linear discriminants that minimize the fuzzy entropy of

classification. The algorithm initiates by projecting the data

from a multidimensional space onto a normalized weight

vector to yield scalar scores [15] which are used to cal-

culate the fuzzy entropy of classification. The fuzzy

logistic values are the consequents of each rule, and the

multivariate rules comprise the branches of the classifica-

tion tree. The divide and conquer algorithm continues until

all the data of each node consist of a single class [16], and

the final classification tree allows the visualization of the

inductive structure of the rules.

Super Partial Least Squares-Discriminant Analysis

Super partial least squares-discriminant analysis (sPLS-

DA) is used as reference method for the other classifiers

[17, 18]. The response matrix Y is a set of binary variables

describing the class membership of the spectra in rows of

the matrix X. An internal BLP is applied to the training

data to calculate an average prediction error [19]. The

number of latent variables is selected that yields the least

prediction error and then this number is used for the entire

calibration set to generate the model. Because the response

matrix has a binary encoding, PLS estimates greater than

unity or less than zero are set to the corresponding limits

(e.g., 0 and 1) during the iterative cycles.

Support Vector Machine

A support vector machine (SVM) is a learning algorithm

that can recognize subtle patterns in complex datasets [20].

The SVM is a binary linear classifier that optimizes a

classification hyperplane between the surface data points of

two clusters in the data space [21]. The one against all
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method builds an SVM model for each class and all the

other objects are grouped together into an opposing class.

During prediction, the SVM that yields the largest output

designates the predicted class of the object. The main

advantage of the SVM is its fast construction of the clas-

sification models, especially for megavariate data which

have many more measurements than objects.

Support Vector Machine Tree

The support vector machine tree (SVMTreeG) builds a

classification tree of SVMs whose encodings are achieved

by the separation of scores with the least fuzzy entropy

[21]. The key advantage of this tree-based classifier is that

nonlinearly separable data may be classified, and for

SVMs, this advantage avoids the necessity of finding a

workable kernel transform. By variance driven [based on

principal component analysis (PCA)] or covariance driven

(based on PLS), after the SVM models are built, the one

that provides the lowest entropy of classification is the

most efficient classifier and is selected for the branch of the

tree. The SVMTreeH [22] is a modification to the support

vector machine tree that uses fuzzy entropy to encode

overlapping clusters in the data space.

Table 1 Description of the 12 tea samples

ID Tea name Water temperature Amount of tea Steeping time (min) Color of the extract

A Golden Dragon Before boiling Level tsp 3 Light green

B Gyokuro Before boiling Level tsp 3 Dark green

C Puerh Imperial Boiling Level tsp 3 Light green

D Puerh Liu An Anhui Very light green

E Sessa Assam Boiling Level tsp 3 Colorless

F Silver Needle Before boiling Level tsp 3 Colorless

G Singelli Darjeeling Boiling Level tsp 3 Colorless

H Tieguanyin Light green

I Vivid Huoshan Yellow Bud Before boiling Level tsp 3 Very light green

J White Peony Before boiling Level tsp 3 Very light green

K Wild Yeti Very light green

L Yi Wu Beencha Boiling Level tsp 3 Light green

Table 2 Description of the eight liquor samples

ID Type

A Primary fermentation ambrosia

B Secondary fermentation ambrosia

C First bottle

D First carboy

E First distillate

F Second distillate

G Third distillate

H Fourth distillate

Table 3 Description of the 25 Cannabis extracts

ID Name

A Grape Stamper

B F10

C HOG

D Agent Orange

E Blue Dream

F Jah Kush

G Golden Goat

H Big Black

I Sour D

J Denver OG

K Chem 4

L Moby Chem

M Chem 91

N Micado

O Head Band

P Super Lemon Haze

Q Jack Herer

R Hit Man OG

S Wreckage

T Glass Slipper

U Skunk

V Purple Kush

W Power F10

X Green Crack

Y Sage N Saw
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Regularized Linear Discriminant Analysis

A regularized version of linear discriminant analysis

(LDA) was used that uses a pseudo-inverse to invert the

pooled within group covariance matrix [23]. The shortest

Mahalanobis distances calculated from the scores on the

canonical variates are used to designate the best fitting

class membership.

Experimental Section

Sample Preparation

Tea, liquor, and hops samples and Cannabis extracts were

supplied by Chemical Mapping, Inc. (Golden, CO). Direct

CDCl3 extraction instead of extraction drying and recon-

stitution was used for samples except for the liquor. Twelve

varieties of commercial tea leaves of 50.0 mg each were

extracted with 2.0 mL of CDCl3 (99.8%, Sigma-Aldrich,

St. Louis, MO, USA) in a glass vial with a screw phenolic

cap for 18 h at room temperature; then the extract was

vortexed and filtered with 0.45 lm polyvinylidene fluoride

(PVDF) filter (Bonna-Agela Technologies, Wilmington,

DE, USA). A 693-lL filtrate was mixed with 7 lL of a 1%

(v/v) solution of tetramethylsilane (TMS) in CDCl3 (99.8%,

Sigma-Aldrich, St. Louis, MO, USA) in the NMR tube to

calibrate the NMR spectra. An overview of the tea extracts

according to the labeling is given in Table 1.

For the eight liquor samples, 540 lL of each liquor

sample was mixed with 60 lL 99.9% D2O (Cambridge

Isotope Laboratories, Andover, MA, USA) in the NMR

tube to calibrate the NMR spectra. An overview of the

liquor samples is given in Table 2.

For the nine hops samples, 300.0 mg of each, was

powdered by sieve and extracted with 10.0 mL of CDCl3 in

a glass vial with a screw phenolic cap for 17 h at room

temperature; then the extract was vortexed and filtered with

0.45 lm PVDF filter. The filtrate was treated with 100 rods

of 12 mesh 3Å molecular sieves (Fluka Analytical, USA)

which were added into each of the vials for more than 24 h

before analysis. Then a 500-lL aliquot of the filtrate was

mixed with 5 lL CDCl3 with 1% TMS in the NMR tube.

For the 25 Cannabis samples, plant buds, 300.0 mg of

each, were powdered by sieve and extracted with 10.0 mL

of CDCl3 in a glass vial with a screw phenolic cap for 17 h

at room temperature; then the extract was vortexed and

filtered with 0.45 lm PVDF filter. A 495-lL aliquot of the

filtrate was mixed with 5 lL of a 1% TMS in CDCl3 in the

NMR tube to calibrate the NMR spectra. Samples were

stored in their NMR tubes at 4 �C between daily analyses.

An overview of the types of all Cannabis samples per the

labeling is given in Table 3.

1234567
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Fig. 1 Top REAL absorbance spectra of 60 tea extracts; middle

IMAG dispersion spectra; and bottom ABS magnitude spectra
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Instrumental Parameters

All the NMR measurements were performed on a Bruker

Avance III HD and Bruker AscendTM 500 nuclear mag-

netic resonance spectrometer (Bruker BioSpin AG,

Fällanden, Switzerland) equipped with a Ø5-mm broad-

band multinuclear (PABBO) probe. Proton NMR spectra

were acquired at 298.0 K. Sixteen scans and two prior

dummy scans of 65,536 spectra measurements were

acquired with a spectral range of 19.9923 ppm. Data were

acquired with random block designs with each block col-

lected on a subsequent day to minimize the instrument

drifts effect. The IconNMRTM version 4.7 software was

used to collect, and TopSpinTM version 3.2 software was

used to automatically phase- and baseline-correct the

spectra. Chemical shifts were calibrated with the TMS

signal at d 0.00 ppm for all samples except the liquor

samples which used the H2O peak at d 4.79 ppm [24].

Calibration of the chemical-shifts was accomplished on the

instrument using the TopSpinTM software.

Data Processing

All of the raw NMR data were read and converted to the

MATLAB mat file format by the rbnmr function [25]. All

evaluations used the range of [0.5, 7.0] ppm for processing.

Each magnitude spectrum was created in MATLAB by

using the complex function and the phase-corrected imag-

inary and real spectra from the rbnmr function. The

absolute value of the complex spectra gave the magnitude

spectra. Before multivariate analysis, all the data were

normalized to unit vector length. For some datasets, the

classification rate was improved by error scaling for which

the spectra are divided by the pooled within sample stan-

dard deviation. MATLAB R2016b (MathWorks Inc., Nat-

ick, MA, USA) was used to process the NMR spectra and

calculate statistics from the classification results. The

computer was equipped with a Core i7 930 K CPU (Intel

Corporation, Santa Clara, CA, USA) operating at 3.2 GHz

with six physical and six logical processing units (i.e.,

hyperthreading turned off). The computer had 64 GBs of

quad channel memory. The operating system is MS Win-

dows 8 64-bit Enterprise edition (Microsoft Corp., Red-

mond, WA, USA).

Discussion of Results

Spectral Representation

Three spectral representations from the Fourier trans-

formed FIDs, the real spectrum (REAL), the imaginary

spectrum (IMAG), and the absolute value spectrum (ABS)

are given for the set of 60 tea spectra in Fig. 1. The ABS is

the absolute value of the complex spectrum (i.e., REA-

L ? IMAGi) and represents the magnitude of the magne-

tization in the complex plane. The peaks of the ABS

spectrum are broader and less symmetric than those in the

Fig. 2 The pooled standard

deviation about the sample

means for the REAL, IMAG,

and ABS spectral datasets that

gives the error with respect to

chemical shift
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REAL spectrum. For this reason, the REAL spectrum is the

preferred choice for spectroscopists who are concerned

with qualitative analysis. Note that the IMAG spectrum

does not contribute to the amplitude of the ABS spectrum,

because it passes through zero at chemical shifts where the

REAL peak maxima occur. However, since the contribu-

tion occurs at the peak edges, wider peaks will comprise

more signal by the larger peak areas. When the peak res-

olution is unimportant as is the case for spectral pattern

recognition and comparison, the ABS spectrum will be

beneficial because it uses the entire NMR signal. In theory,

the signal-to-noise ratio should improve by a factor of the

square root of two.

To evaluate the reproducibility, the pooled standard

deviation about the 12 tea sample means was calculated

from the normalized spectra. This figure of merit measures

the inherent error of the measurement. The pooled standard

deviation has two functions for this paper. First, it is used

to characterize measurement error of the experiment.

Second, it will be used to scale some of the datasets that

have high dynamic range (i.e., very large and very small

peaks). The benefit will be demonstrated with the liquor

study.

The pooled standard deviations for the REAL, IMAG,

and ABS spectra are given in Fig. 2. The larger the peak or

the intensity of standard deviation, the greater the error. In

this figure, the ABS error profile gives the minimum error

throughout most of the spectral range, while the REAL and

IMAG spectra have greater errors. For pattern recognition,

reproducibility is key and the classification results will be

consistent with this finding.

All the evaluations of the four datasets used consistent

conditions. The spectral range was [0.5, 7.0] ppm to

eliminate the solvent peak at d 7.26 ppm and the TMS peak

at d 0.00 ppm. The number of spectral measurements (i.e.,

data points per spectrum) was 20,000. Each spectrum was

normalized to unit vector length. For two datasets, the

liquor and hops, the spectra were scaled by the pooled

standard deviation; because those spectra have high

dynamic ranges, without scaling poor classification

Fig. 3 Tea extracts of 12 samples and 5 replicates. Top left principal component scores for the REAL spectra; top right principal component

scores for the ABS spectra; bottom left SVMTreeH for the REAL spectra; and bottom right SVMTreeH for the ABS spectra

Table 4 Comparison of spectral representation for 6 classifiers using

100 bootstraps and 5-Latin partitions for 12 tea extracts

REAL (%) ABS (%) T p value

FuRES 88.4 ± 0.5 92.2 ± 0.4 12.8 «0.001

LDA 96.2 ± 0.3 96.8 ± 0.2 4.1 «0.001

sPLS-DA 99.5 ± 0.2 100.0 ± 0.05 5.7 «0.001

SVM 96.2 ± 0.4 99.2 ± 0.2 17.1 «0.001

SVMTreeG 89.4 ± 0.3 92.9 ± 0.2 20.8 «0.001

SVMTreeH 88.6 ± 0.3 93.9 ± 0.2 29.3 «0.001

Average classification accuracies with 95% confidence intervals
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Fig. 4 Top left liquor REAL spectra; Top right ABS spectra; middle

left principal component scores of the REAL spectra; middle right

principal component scores of the ABS spectra; bottom left principal

component scores of the error-scaled REAL spectra; and bottom right

principal component scores of the error-scaled ABS spectra
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accuracy was obtained (e.g., 60%). This scaling is hence

referred to as error-scaling. All comparisons will examine

the REAL versus the ABS spectrum because the IMAG

spectrum generally gave the worst classification results.

BLPs were used to achieve a statistical validation with 100

bootstraps to yield sufficient statistical power. Positive t

scores will favor ABS and negative REAL spectral repre-

sentations. The matched sample t test is used to compare

the classification results for each bootstrap between the

REAL and ABS spectrum.

Most of the classifiers were parameter free, except for

the SVM. The SVM had its cost C factor arbitrarily set to

inf which is a MATLAB variable for a very large number.

The sPLS-DA was the super PLS implementation which

determines the optimal number of latent variables by an

internal BLP of the calibration set. FuRES is the softest

classifier and tends to be the most sensitive to the repre-

sentation of the data because it balances variance and bias

(i.e., larger peaks are favored over smaller features). The

SVMTreeG is the softest of the SVM classifiers and the

SVMTreeH trades softness for efficiency in building min-

imal spanning trees.

A brief description of the teas is given in Table 1.

Missing fields in the table correspond to unknown infor-

mation. The spectra for the tea extracts are given in Fig. 1.

The principal component scores and the classification trees

are given in Fig. 3. The principal component scores allow

for the visualization of the distribution of the spectra. The

REAL results are in the left column and the ABS results on

the right column of this figure. Both sets of scores appear to

be similar; however, the percent total variances (sum of the

percentages on each axis) of the ABS scores of 95% is

greater than the value for the REAL scores 92%, which

indicates that the ABS scores have a better noise distri-

bution. At the bottom are two classification trees obtained

from SVMTreeH, a fuzzy entropy-based support vector

machine tree. For both trees, all the classes have been

resolved. The tree structures are the same except for rules

#6, #8, and #9 that characterize groups that are closer

together in the dataspace. Table 4 reports the average

results of the 100 bootstraps and 5-Latin partitions. The

measures of precision presented with the averages are 95%

confidence levels. A matched sample t test was used to

compare the classification rates between the REAL and

ABS spectra. Positive t scores indicate a higher classifi-

cation rate for the ABS set of data. For all six classifiers,

the ABS spectra gave significantly better classifications.

The next set is a set of eight liquor samples from various

phases of production. A description is given in Table 2.

Figure 4 demonstrates the usefulness of the error-scaling

procedure. The spectra for both the REAL (left) and ABS

(right) are dominated by the peaks for ethanol. The char-

acteristic peaks are from the other compounds that are

minuscule. The middle of the figure comprises the principal

component scores for the normalized spectra and the bot-

tom of the figure comprises principal component scores

that were obtained after the error scaling procedure. Two

trends are obvious. First, error scaling greatly enhances the

resolution of the objects in the different classes by giving

appropriate weights to the smaller peaks in the spectra.

Second, the ABS spectral scores exhibit much greater

resolution of samples than the REAL spectral scores. The

classification results using 100 bootstraps and 3-Latin

partitions are given in Table 5. The ABS dataset gave

significantly improved results for all classifiers.

A set of data were nine samples of hops extracts that had

replicate measurements collected on different days. A

description of these samples is given in Table 6. The

spectra and principal component scores are given in Fig. 5.

There are many smaller but characteristic peaks downfield

from 2 ppm. For this case, error scaling improved the

classification results significantly as well. There are subtle

differences between the principal component scores of the

REAL and ABS sets. The ABS scores have a greater

cumulative variance than the REAL scores. The results are

reported in Table 7. For all six classifiers, the results were

significantly better for the ABS data.

Table 5 Comparison of spectral representation for 6 classifiers using

100 bootstraps and 5-Latin partitions for 8 liquor samples using error

scaling

REAL (%) ABS (%) t p value

FuRES 83.9 ± 0.7 99.6 ± 0.2 46.0 \0.001

LDA 95.9 ± 0.6 99.5 ± 0.2 13.3 \0.001

sPLS-DA 88.0 ± 0.8 99.6 ± 0.2 26.9 \0.001

SVM 95.5 ± 0.7 99.1 ± 0.3 10.1 \0.001

SVMTreeG 89.0 ± 0.6 99.9 ± 0.1 35.8 \0.001

SVMTreeH 88.8 ± 0.7 99.9 ± 0.1 29.9 \0.001

Average classification accuracies with 95% confidence intervals

Table 6 Description of the nine

hops samples
ID Name

A Chinook

B Apollo

C Mount Hood

D Centennial

E Citra

F Simcoe

G CTZ

H Cascade

I Galaxy
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The last set was also the largest. It comprised 25 Can-

nabis extracts that each had 5 replicates yielding 125

spectra. Error scaling was not required for this data.

Table 3 gives a description of the sample extracts and

Fig. 6 contains the spectra and principal component scores.

When comparing the principal component scores, REAL

has the greater cumulative variance of 80% compared to

79% for the ABS. The classification results are given in

Table 8. For all classifiers, except for SVMTreeG, the ABS

representation gave significantly better results.

Conclusions

For characterization or authentication of botanical extracts

and other complex materials, NMR coupled to pattern

recognition is a powerful and robust tool. For pattern

recognition spectral reproducibility is important. By adding

signal via increased peak width will improve the repro-

ducibility. This requirement may be a departure from

conventional NMR spectroscopy for qualitative analysis

for which peak resolution is more important. The ABS

spectral representation measures the magnitude of the

NMR magnetization. It combines the information obtained

from the real absorption and imaginary dispersion spectra.

The magnitude spectra obtained from the absolute value of

the complex spectrum is less visually appealing because

the peaks are broader and lack symmetry. However, for

pattern recognition of NMR spectra, the increase in

reproducibility and signal-to-noise ratio as exhibited by the

pooled standard deviation spectrum yields better classifi-

cation accuracy. This behavior typically occurs as a trad-

ing-rule [13] between spectral resolution and signal-to-

noise ratio. It also is typical in chemometrics that data

beautification by an assortment of methods, e.g.,

Fig. 5 Top left hops REAL spectra; top right, ABS spectra; bottom left principal component scores of the REAL spectra; and bottom right

principal component scores of the ABS spectra

Table 7 Comparison of spectral representation for 6 classifiers using

100 bootstraps and 3-Latin partitions for 9 hops extracts using error

scaling

REAL (%) ABS (%) t p value

FuRES 100.0 100.0 0.0 1

LDA 97.0 ± 0.3 100.0 18.8 \0.001

sPLS-DA 98.4 ± 0.5 99.0 ± 0.4 1.6 0.1

SVM 100.0 100.0 0.0 1

SVMTreeG 98.7 ± 0.3 100.0 7.1 \0.001

SVMTreeH 98.2 ± 0.6 100.0 6.0 \0.001

Average classification accuracies with 95% confidence intervals
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deconvolution and peak fitting, may make the data visually

appealing but at the cost of reducing the inherent

reproducibility.

Furthermore, error scaling by using the pooled standard

deviation about the sample means provides a measure of

the experimental error. It also is beneficial for scaling

spectra that have a large dynamic range and a mix of large

and small characteristic peaks.

Spectral representations from four diverse sets of data

were statistically evaluated with six classifiers. For all 24

classifier comparisons except for one, the ABS spectral

dataset yielded improved or equal performance. There-

fore, the use of the magnitude or ABS spectrum is

advocated for pattern recognition and classification of

NMR spectra.
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Fig. 6 Top left Cannabis REAL spectra; top right ABS spectra; bottom left principal component scores of the REAL spectra; and bottom right

principal component scores of the ABS spectra

Table 8 Comparison of spectral representation for 6 classifiers using

100 bootstraps and 5-Latin partitions for 25 Cannabis extracts

REAL (%) ABS (%) t p value

FuRES 92.4 ± 0.3 94.0 ± 0.3 8.3 «0.001

LDA 98.0 ± 0.2 98.9 ± 0.1 10.4 «0.001

sPLS-DA 99.1 ± 0.1 99.5 ± 0.1 4.3 «0.001

SVM 96.8 ± 0.1 97.6 ± 0.1 9.6 «0.001

SVMTreeG 96.7 ± 0.2 96.2 ± 0.2 -4.8 «0.001

SVMTreeH 94.8 ± 0.3 95.4 ± 0.2 3.4 0.0009

Average classification accuracies with 95% confidence intervals
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