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Abstract
Integrated production and maintenance planning optimizes efficiency and productivity by coordinating schedules. Investigating 
this planning can improve operational efficiency, reduce costs, and enhance productivity. It reduces equipment breakdowns, 
minimizes downtime and delays, and facilitates better resource allocation, thereby lowering costs and enhancing cash flow. 
On the other hand, human error can significantly affect maintenance operations, reducing performance. This paper introduces 
a novel mathematical model aimed at cost minimization through the optimization of preventive maintenance (PM) operation 
planning, production scheduling, and the consideration of human error. Unlike prior research, this research accounts for the 
influence of human error on both the reduction coefficient of equipment virtual age and associated costs. Besides, this paper 
categorizes the costs linked to maintenance operations into two distinct groups. The results help decision-makers implement 
optimal production and maintenance operations in organizations, taking human error into account. Optimal and integrated 
maintenance and production planning that takes into account human error can have a significant impact on sustainability in 
several ways. The model is tested in the real world and validated using the sensitivity analysis method. The results suggest that 
the optimal human error probability, based on its costs, is equal to 0.00005. This finding encourages decision-makers to identify 
sources of human error and develop proactive measures to optimize performance. Overall, the model can help organizations 
optimize production and maintenance operations, reduce costs, and improve performance.

Keywords Production planning · Human error probability · Maintenance planning · Integrated optimization · 
Manufacturing systems

Introduction

Organizations need to improve production systems to meet 
customer demands on time due to competition in work 
environments. In fact, organizations typically operate in 
accordance with their production plan and prevent the costly 
consequences of production line downtime. Preventive 
maintenance (PM) operations, human errors, equipment 
failures, and corrective maintenance (CM) operations 
are recognized as the major causes of production line 
downtime (Ayvaza and Alpay 2021). The implementation of 
PM and CM operations brings about temporary downtime for 
the production line, thereby affecting the amount of production 
and the organization’s inventory levels (Ait-El-Cadi et al. 2021). 
Moreover, maintenance planning and the frequency of PM 
operations during the examination period have a considerable 
effect on the equipment failure rate (Rivera-Gómez et al. 
2021). Consequently, the proper implementation of PM and 
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CM operations has a significant effect on the downtime of the 
production line and the overall performance of the production 
system (Alaswad and Xiang 2017).

Timely maintenance operations contribute to improving 
performance and reducing equipment failures (Guo et al. 
2013). Consequently, organizations experience fewer equip-
ment breakdowns and achieve a desirable level of produc-
tion and inventory (Bouslah et al. 2018). Proper planning 
ensures the availability of the production system to meet 
customer demands even during the maintenance period 
(Modares et al. 2023a). Therefore, proper planning of PM 
operations plays a vital role in enhancing the performance 
of the production system. Although implementing mainte-
nance activities is crucial for enhancing the reliability of 
systems, improper execution of these operations can result 
in equipment failures and excessive, abnormal shutdowns of 
the production line (Hobbs and Williamson 2003). Improper 
planning of maintenance operations increases the occurrence 
of unplanned failures and downtimes in the production line 
and reduces its overall efficiency. Besides, human error is 
one of the reasons for the improper implementation of main-
tenance activities, which disrupts the effectiveness of these 
operations (Hobbs 2021).

Therefore, human error is a decisive factor in ensuring 
that these operations are performed correctly (Chen 2013). 
Recognizing the undeniable presence of human error in 
maintenance operations, it is increasingly challenging to 
overlook its impact on these activities. Human error plays 
a considerable role in incidents across various industries, 
resulting in adverse consequences and an increase in 
maintenance-related breakdowns (Hobbs 2021). These errors 
result in negative outcomes and an upsurge in breakdowns 
related to maintenance. The presence of human error in 
maintenance activities obstructs the creation of successful 
equipment maintenance strategies (Hobbs and Williamson 
2003), and also brings about ineffective implementation of 
inspections and maintenance tasks. Furthermore, human 
error is a decisive factor in equipment failures and the 
halting of production lines  (Froger et  al. 2018). Given 
the substantial expenses incurred due to breakdowns, it 
is essential to address the human errors associated with 
maintenance activities.

Despite the significant impact of human error on 
maintenance operations, little attention has been given to 
this aspect in previous studies. Most research has focused 
solely on non-human factors in maintenance and production 
operations, overlooking the role of human error. Although 
some studies have explored the integration of maintenance 
and production operations, none have considered the impact 
of human error. The aim of this study is to determine the 
optimal values of production rate, the frequency of PM 
operations, the level of PM operation in each period, and 
the human error probability so as to minimize costs subject 

to various constraints. Consequently, this study considers 
the integrated aspects of production planning, inventory 
management, maintenance operations, and human error 
associated with this task. Moreover, this research assesses 
the costs associated with maintenance operations, which 
are both time-dependent and time-independent costs, 
to establish a stronger relationship with the production 
department and minimize production line downtime. In 
addition, this research takes into account equipment setup 
costs associated with maintenance operations.

To address these challenges, a novel mathematical model 
is presented in this research for the first time, which ena-
bles simultaneous planning of production and maintenance 
operations while quantitatively accounting for human errors. 
Moreover, the costs associated with PM and CM operations 
are considered more comprehensively. Optimal and integrated 
maintenance and production planning that takes human error 
into account can significantly impact sustainability in several 
ways. This type of planning reduces the likelihood of equip-
ment breakdowns and unplanned downtime, minimizing waste 
and improving resource efficiency. As a result, there is lower 
energy consumption, reduced material waste, and more effi-
cient use of labor, all of which contribute to a more sustain-
able operation (Vrignat et al. 2022). In addition, incorporat-
ing human error into maintenance and production planning 
reduces the risk of accidents and injuries, benefiting employ-
ees' health, and reducing costs associated with lost time, 
worker compensation, and legal liabilities (Siew et al. 2020).

Human error can result in accidents, injuries, and 
fatalities, leading to increased healthcare costs, lost 
productivity, and decreased employee morale. Consequently, 
improving safety and preventing accidents are essential for 
creating a safer and healthier workplace, which is crucial for 
sustainability. Moreover, human error can lead to inefficient 
use of resources, such as water, energy, and raw materials. 
Companies can reduce costs and environmental impact by 
reducing human error and improving resource efficiency. 
Additionally, human error can bring about non-compliance 
with environmental, health, and safety regulations, leading to 
fines, legal liabilities, and damage to a company’s reputation. 
By implementing better training and controls, companies 
can reduce the risk of non-compliance and improve their 
sustainability (Jasiulewicz Kaczmarek and Saniuk 2015). 
Overall, an optimal and integrated maintenance and 
production planning approach that considers human 
error can positively impact sustainability by improving 
resource efficiency, reducing waste, enhancing safety, and 
maximizing operational effectiveness. Based on previous 
studies conducted in this field, we will highlight five factors 
which are the main contributions of this paper:

• Based on a review of previous studies, it is evident that 
none of them have examined the cost of human error 
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associated with maintenance and production quantita-
tively using a mathematical model. Furthermore, the 
impact of human error on the reduction coefficient of 
equipment virtual age has not been considered.

• In the proposed model of this research, the cost function 
associated with the human error probability for mainte-
nance tasks, including PM and CM operations, is esti-
mated using the regression method.

• Also, a model is proposed in order to minimize costs 
associated with production, maintenance, inventory con-
trol, and human error, while simultaneously satisfying 
constraints related to customer demand, budget, produc-
tion rate, and capacity.

• Additionally, no one to the best of our knowledge has 
categorized the costs of maintenance operations, and 
the costs associated with maintenance operations have 
been categorized into two groups for the first time in this 
paper: time-dependent and time-independent costs.

• In contrast to existing research in the literature, the model 
considers setup and equipment opportunity costs, which 
are determined based on the equipment downtime result-
ing from maintenance operations.

The rest of this paper is organized as follows: The second 
section provides an explanation of the theoretical background; 
the third section provides a brief overview of previous research 
on this topic. In the fourth section, the problem statement and 
a case study are introduced. The fifth section discusses the 
methods employed. The research findings are reported in the 
sixth section. To ensure the validity of the suggested model, 
the sensitivity analysis is investigated in the seventh section. 
In the eight section, we provide a discussion on the research 
findings and compare the results of this paper to those of con-
ducted studies. The ninth section offers insights into manage-
rial aspects. Finally, the tenth section provides some remark-
able conclusions and suggestions for future studies.

Conceptual Background

Maintenance

Maintenance operations impose significant costs on companies. 
For example, in manufacturing companies, approximately 
15 to 40% of their expenses are allocated to maintenance 
operations costs (Wireman 2014), while for thermal power 
plants and offshore wind farms, these operations account 
for about 30% of the total expenses. As a result, the effective 
implementation of maintenance operations and strategies 
is a decisive and important factor in the profitability and 
competitiveness of companies (Gräber 2004). In PM operation, 
the machine’s lifetime is generally considered a benchmark for 
conducting PM operations. The equipment’s age is typically 

determined based on the scheduling and execution of PM and 
CM operations, as well as the type and number of components 
involved in each operation (Legat et al. 1996).

Human Error

Human error refers to unintentional failure in performing an 
action to achieve the desired outcome. According to this defini-
tion, human error occurs when there is no deliberate intent to 
make an error (Whittingham 2004). Human errors can occur 
due to a variety of reasons, such as lack of training, fatigue, 
stress, distraction, complexity of the task, or inadequate com-
munication. Human error has been studied extensively in vari-
ous fields, including aviation, healthcare, nuclear power plants, 
transportation, and manufacturing. Understanding the causes 
and consequences of human error is crucial to preventing acci-
dents and improving safety in these industries (Reason 2000). 
Human error is a significant concern in industrial settings, 
where workers perform complex tasks that require high levels 
of attention, skill, and precision. Human errors in industrial 
settings can result in accidents, equipment damage, decreased 
productivity, and increased costs  (Hagen 1980).

Human error is a critical concern in the maintenance 
industry, where workers perform complex and often hazard-
ous tasks that require a high level of attention, skill, and pre-
cision (Bafandegan Emroozi et al. 2023). Human error in the 
maintenance industry can lead to accidents, equipment dam-
age, reduced efficiency, and increased costs. Therefore, it is 
crucial to understand the causes and consequences of human 
error in maintenance operations and implement measures 
to prevent or mitigate it (Melchers 1995). Human error is 
examined as a significant aspect of human factors in main-
tenance operations (Bafandegan Emroozi and Fakoor 2023). 
The effective implementation of maintenance operations and 
related processes depends on the performance of human 
resources and their errors. Therefore, in addition to engi-
neering aspects, attention should be given to human factors 
and human errors associated with maintenance operations 
in the effective implementation of maintenance operations.

Literature Review

While there is a vast amount of literature exclusively focused 
on maintenance and production operations, only a few stud-
ies have examined these operations simultaneously. Unfor-
tunately, these studies have also failed to investigate and 
address the impact of human error on maintenance and 
production operations. To mention just a few, some of this 
research has been presented as follows:

The initial work in this field primarily focused on inte-
grated preventive maintenance planning problems and pro-
duction control in order to increase the availability of the 
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production system and reduce overall costs (Boukas and 
Haurie 1990). In their groundbreaking 1999 paper, Das and 
Sarkar (1999) developed a preventive maintenance model for 
a production system by identifying the probability distribu-
tion of machine failures and gathering information on system 
conditions. In their investigation of maintenance and produc-
tion operations planning, Gharbi et al. (2007) introduced a 
combined approach that integrated PM operations and spare 
part inventory management in unreliable production envi-
ronments. Their study took into consideration factors such 
as backorders and machine failures. Dehayem Nodem et al. 
(2011) considered the production planning problem by tak-
ing into account system failures and repair time.

In a study conducted by Moghaddam and Usher (2011), a 
mixed-integer nonlinear multi-objective optimization model 
was presented with the purpose of determining the optimal 
scheduling for PM and replacement. Mifdal et al. (2013) 
addressed optimal production and maintenance planning 
in a multi-product production system considering random 
demands to meet the demands of customers for each product. 
Aramon Bajestani et al. (2014) presented a combination of 
production and maintenance planning in deteriorating multi-
machine production systems over multiple periods. In a 
study conducted by Assid et al. (2015), effective integrated 
policies for maintenance, setup, and production in a single-
machine production system were developed. Emami-
Mehrgani et al. (2016) investigated the effect of human errors 
on repairable production systems under conditions where 
the time horizon is unlimited and errors occur randomly. 
In this study, an optimal policy for minimizing production 
costs based on maintenance, machine repairs, and inventory 
management to meet market demands is discussed. Huang 
et al. (2019) introduced a mixed-integer programming model 
for integrating production and maintenance problems so as 
to minimize costs.

Kang and Subramaniam (2018) presented an integrated 
control of dynamic maintenance and production in deterio-
rating systems. Kim et al. (2019) evaluated the probabilistic 
perspective for optimal inspection and maintenance plan-
ning. Their approach encompassed both pre- and post-failure 
detection multi-objective optimization processes. Duffuaa 
et al. (2020) provided an integrated model for optimizing 
production, maintenance, and process control decisions for 
a single machine. In this research, a methodology was devel-
oped that optimized the scheduling of PM operations and 
incorporated an integrated model for production schedul-
ing, inventory holding, maintenance and repair, and process 
control. Ghaleb et al. (2020) presented a mixed-integer sto-
chastic mathematical model that integrated production and 
maintenance planning decisions in a single-machine deterio-
rating production environment. Rivera-Gómez et al. (2020) 
determined an appropriate PM and production policy, and 
also quality control rate so as to minimize costs.

Liu et al. (2020A) presented an integrated production 
and maintenance planning model considering production 
capacity and service level constraints. Liu et al. (2020b) 
presented an integrated model considering buffer inven-
tory and imperfect PM in production systems. Adloor and 
Vassiliadis (2020) proposed an optimal control approach for 
maintenance and production planning. They introduced a 
multi-stage mixed-integer optimization problem (MSMI-
OCP) and solved it using standard nonlinear optimization 
techniques. Zheng et al. (2021) pointed out that an economic 
production quantity and condition-based maintenance policy 
for a deteriorating production system is significantly more 
cost-effective. Sharifi and Taghipour (2021) introduced an 
integrated model for production and maintenance planning. 
This model was designed for single-machine production sys-
tems with multiple types of failures. Rivera-Gómez et al. 
(2021) presented a production control, sampling inspection, 
and maintenance planning policy based on machine age in 
their research. The policies were examined for an unreliable 
production system with a deteriorating trend.

Ait-El-Cadi et al. (2021) addressed a novel combination 
of production, maintenance, and sampling inspection control 
policies for susceptible failure production systems. uit het 
Broek et al. (2021) suggested a novel policy for production 
and maintenance that takes into account dynamic condi-
tions. This innovative approach combined condition-based 
production and condition-based maintenance policies. Li 
et al. (2022) offered a multi-objective optimization model 
which was applied to estimate maintenance performance 
taking into account maintenance costs and production losses. 
The research incorporated the perspective of probabilistic 
modeling. Bismut et al. (2022) improved maintenance and 
inspection strategies in conditions where the system had an 
acceptable level of reliability. Morato et al. (2022) provided 
an in-depth analysis of optimal maintenance and inspection 
planning approaches for deteriorating components through 
a dynamic Bayesian network and Markov decision process. 
Also, Hejazi and Roozkhosh (2019) proposed an optimiza-
tion model for multi-stages systems inspection. Their model 
focuses on cost minimization, even when faced with uncer-
tainties in costs.

Azadeh et al. (2016) put forth a sophisticated, scenario-
based approach that integrated historical data and simu-
lation optimization to elevate maintenance planning and 
policy frameworks. The authors’ methodology took human 
error and learning effects into account. The outcomes of 
their approach encompassed metrics such as reliability, 
machine availability, errors, and costs. These outcomes 
underwent analysis using the analytical hierarchy process 
(AHP) and the Technique for Order Preference by Similarity 
to Ideal Solution (TOPSIS) methods. Hameed et al. (2016) 
suggested a novel risk-based methodology that integrates 
human errors with degradation modeling for estimating 
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shutdown inspection and maintenance intervals in a process-
ing unit. Authors determined the number of shutdown inter-
vals needed to achieve target reliability within a specified 
timeframe. Human error probability during the shutdown 
is assessed through the success likelihood methodology 
(SLIM).

Carr and Christer (2003) brought up a mathematical 
framework for delay-time modeling in inspection mainte-
nance expanded to include human error. Their primary aim 
was to establish a method for quantifying the cost of human 
error, thereby assisting in making corrective decisions. 
Ighravwe and Ayoola Oke (2021) utilized multi-criteria 
decision-making methods to incorporate human factors into 
maintenance system evaluation. They employed fuzzy logic, 
AHP, GRA, and TOPSIS along with key indicators. Their 
paper’s novelty lies in merging safety, maintenance tasks, 
errors, human relations, and equipment factors through 
a fuzzy multi-criteria approach for maintenance system 
assessment. Aalipour et al. (2016) focused on improving 
maintenance human reliability in cable manufacturing. The 
authors employed three common HRA techniques (i.e., 
human error assessment and reduction technique, stand-
ardized plant analysis risk-human reliability, and Bayesian 
network) to estimate error probabilities consistently. Major 
maintenance error causes include time pressure, inexperi-
ence, and procedural issues. Table 1 presents some previ-
ous studies that have focused on maintenance and produc-
tion operations simultaneously. However, it is important to 
note that these studies have not considered the influence of 
human factors on maintenance operations.

Overall, these studies offer significant insights into main-
tenance and production operations. However, they have failed 
to explore the impact of human error on these operations. 
The main weakness in these papers lies in their neglect of the 
influence of the human factor on maintenance, as they have 
solely focused on the effects of non-human factors on inte-
grated maintenance and production operations. In order to 
bridge this gap, our research aims to investigate the integrated 
production and maintenance operations while considering the 
decisive factor of human error probability on the total cost 
and equipment's age resulting from these operations.

Problem Statement

The hydraulic steering box is an essential component in 
modern vehicles, enabling drivers to steer easily and safely. 
The manufacturing process of hydraulic steering boxes 
involves several stages, including designing, prototyping, 
testing, and production. The production stage involves the 
mass production of the steering boxes. The manufacturing 
process includes casting, machining, assembly, and testing. 
During the casting process, the raw materials are melted and 

poured into a mold to form the steering box's basic shape. 
The machining process involves cutting and shaping the 
steering box’s components to the required specifications. 
The assembly process involves combining all the compo-
nents to form the final steering box. Finally, the steering 
box is tested to ensure that it meets the required standards 
for quality and performance. Common equipment and 
machinery used in the manufacturing process include cast-
ing machines, lathes, drilling machines, assembly machines, 
CNC machines, and testing machines.

In this research, we focus on planning and practical evalu-
ation of maintenance operations on a computer numerical 
control (CNC) machine in an automobile parts manufacturing 
factory. The data for analyzing and optimizing integrated pro-
duction and maintenance operations is focused only on a CNC 
machine for manufacturing automobile steering boxes. The 
reliable operation of CNC machines significantly influences 
production reliability and waste reduction within an organi-
zation. As equipment damage increases, the average time 
between device failures decreases, potentially leading to dis-
ruptions in the production process. Equipment failures due to 
damage not only result in lost production time but also require 
additional time for equipment setup and adjustments. To gather 
relevant reliability data, maintenance report books from the 
automobile parts manufacturing industry are examined.

Improper implementation of maintenance operations can 
lead to equipment breakdowns and disruptions in produc-
tion. Consequently, conducting maintenance operations at 
inappropriate timing and frequency not only fails to enhance 
production operations but also incurs additional costs for 
the organization. Moreover, human error has a detrimen-
tal impact on the proper execution of maintenance opera-
tions. Therefore, achieving the correct implementation of 
these operations requires desirable planning and the opti-
mization of human error. It is crucial to minimize human 
error to ensure that operations comply with predetermined 
targets and plans. Reducing human error involves improv-
ing contextual conditions that impose costs on the organi-
zation. Hence, establishing a proper balance between costs 
is essential for optimizing the occurrence of human error. 
Essentially, improving the levels of contextual conditions 
that influence human error, known as common performance 
conditions (CPCs), should be done at an optimal and cost-
effective level. To address this challenge, a model for the 
optimal implementation of maintenance operations, consid-
ering human error, is presented.

Methods

This research presents a mathematical model for simul-
taneous optimization planning of production and mainte-
nance, aiming to enhance operational efficiency and reduce 
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downtime in the production line. To validate the proposed 
model, it has been implemented in a real-world case study. 
The study utilizes written documents from the organiza-
tion, questionnaires, and interviews to gather the necessary 
parameters for the problem. Questionnaires and interviews 
with experts and professionals from the company are used 
to collect data related to factors that influence human error 
probability, known as CPCs. Additionally, this research 
involves estimating the cost function associated with human 
errors in maintenance activities. Historical data from the 
company is employed to estimate the function that represents 
the cost of maintenance-related human errors. The presented 
model considers a single product and equipment, based on 
the following assumptions:

Model Assumptions

• The time horizon is limited.
• The repair and replacement costs after failure are higher 

than the activities related to the PM operations.
• Over time, the failure rate increases.
• Opportunistic maintenance is not included.
• The CM operation is carried out as soon as the equipment 

breakdown.
• The time spent on PM and CM operations are considered 

as part of the system’s operating time.
• PM is performed in the range from perfect to minimal, 

and CM is minimal.
• The CM does not affect the machine’s failure rate and the 

virtual age; its distribution function always follows the 
Weibull distribution function with specific parameters.

• The time-independent cost of PM and CM in different 
periods is always constant.

• During the time and the increasing number of PM times, 
the time required to implement the PM decreases (due to 
the increase in the skill of the personnel and based on the 
learning curve).

• Shortage costs depended on the shortage average.
• Holding costs depended on the inventory average.

Mathematical Model

Nomenclature

Sets T The set of periods indexed by t;
K The set of the types of levels (i.e., actions) of PM 

indexed by k;

Decision variables p Human error probability in main-
tenance task.
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zkt The binary variable is equal to 1 if a PM operation 
is performed for kth level in tth period; otherwise, it is equal 
to 0.

yt The binary variable is equal to 1 if the production 
operation is executed in tth period; otherwise, it is equal to 
0.

at The virtual age of the equipment in tth period.
t
p

t  Production time (available time) in tth period 
(hours/month).

t
[m]

kt
 Preventive maintenance time for kth level in tth 

period (hours/month).
ut The production rate in tth period (number/month).
Bt The shortage quantity in tth period
It The inventory quantity in tth period

Parameters ShtInventory shortage cost for each unit of prod-
uct in tth period (currency/unit).

ht Inventory holding cost for each unit of product in 
tth period (currency/unit).

dt Demand for product in tth period (value).
CsettSetup cost of production operation in tth period 

(currency).
Cvt Variable cost to each unit of product in tth period 

(currency/unit).
Cb Lost opportunity cost for CM or PM operations 

(currency).
t
[r]
t Corrective maintenance time in tth period (hours/

month).
gt Machine nominal production rate in tth period 

(value/month).
Wart Product warehouse capacity in tth period (value).
Nmkt Number of required technicians for PM operation 

for kth level in tth period (number).
Nrt Number of required technicians for CM operation 

in tth period (number).
Npt Number of required technicians for manufacturing 

each product unit in tth period (number).
Hmkt Human resource cost for PM operation for kth level 

in tth period (currency/month).
Hrt Human resource cost for CM operation in tth period 

(currency/month).
Hpt Human resource cost for each manufacturing each 

product unit in tth period (currency/month).
Sprt The cost of required material and spare parts for 

CM in tth period (currency).
Spmkt The cost of required material and spare parts for the 

PM for kth level in tth period (currency).
HLength of the planning horizon (month).
umin
t

 Minimize production rate in tth period (value/
month).

umax
t

 Maximize production rate in tth period (value/
month).

β The shape parameter of Weibull distribution 
(machine failure time distribution).

η Scale parameter of Weibull distribution (machine 
failure time distribution).

αkt The reduction coefficient of virtual age of the 
equipment using implementing kth level of PM operation in 
tth period.

bpt Sell price of per unit product in tth period 
(currency).

l The length of each time interval (month).
AEt The minimum of machine accessibility in tth period 

(hours/month).
TB The maximum available budget (currency).
pcurrent Human error probability in maintenance 

task for the current state of the company.

Objective Function

The objective function is designed to maximize the overall 
profit of the organization. The first part of the objective 
function involves multiplying the profit of each unit of 
the product by the organization’s sales volume, which is 
determined based on the minimum production level and 
product demand. This expression is assigned a positive 
coefficient in the objective function. Conversely, the 
other expressions in the objective function represent the 
organization’s costs and thus have negative coefficients. 
The second and third parts of the objective function account 
for inventory control costs. The second part specifically 
considers holding costs, while the third part represents the 
costs associated with product shortages. The fourth part of 
the objective function represents the costs of human errors 
in maintenance tasks. Lastly, the fifth, sixth, and seventh 
parts of the objective function correspond to the costs of 
production planning, CM, and PM operations, respectively, 
which are associated with maintenance operations. The first 
objective function presents in Eq. (1).

The symbol “bt” signifies the profit per unit of the prod-
uct. Consequently, the organization’s total profit results from 
multiplying the profit per unit by the quantity of the prod-
uct sold. The volume of product sales is contingent upon 
both production quantity and market demand. Therefore, 
the product’s sales volume is established by determining the 

(1)
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lower value between market demand and factory production 
quantity. In order to linearize Eq. (2), a new decision vari-
able (PSt) should be added to the problem. Essentially, this 
new decision variable denotes the minimum value between 
market demand and production quantity. Consequently, Eq. 
(3) is introduced to ensure the fulfillment of these conditions.

Fig. 1 shows the modeling framework such as objective 
function and constraints, as well as the steps of solving the 
model and its validation.

The Inventory Control Costs

This part consists of two components related to holding and 
shortage costs. Eq. (4) represents the inventory and shortage 
levels. Inventory level (It) is the difference between the quantity 
of the produced product and the demand level. Essentially, when 
the quantity of the manufactured product surpasses the demand 
level, the expression takes on a positive value, and the shortage 
level (Bt) equals zero. Conversely, if the demand level exceeds 
the quantity of the ordered product, the total inventory (It) is 
reduced to zero, and the shortage level (Bt) assumes a positive 
value. Eq. (4) represents which how It and Bt are calculated.

The holding cost considers the expenses incurred from main-
taining excessive inventory beyond the demand at the end of each 
period (Modares et al. 2023b). It is calculated by multiplying 
the average inventory level during each period by the per-unit 
maintenance cost. On the other hand, if the demand exceeds the 
production level, the cost of inventory shortage is incorporated 
into the overall cost. In this model, the total shortage cost is deter-
mined by multiplying the average shortage level by the cost per 
unit of shortage. These costs are formulated in Eq. (5) that

where

Production Costs

The fifth part of the objective function represents the 
costs associated with product manufacturing, which 

(2)bt
[
min uttt

p, dt
]
= btPSt

(3)min ut tt
p, dt = btPSt PSt ≤ ut tt

p,PSt ≤ dt

(4)
It = ut t

p

t + It−1 − dt − Bt−1, Bt = −ut t
p

t − It−1 + dt + Bt−1

(5)
T∑
t=1

htIt +

T∑
t=1

ShtBt.

(6)It =
ut t

p
t +It−1−dt−Bt−1

t
p
t

, Bt =
−ut t

p
t −It−1+dt+Bt−1

t
p
t

include both fixed and variable costs per unit. The variable 
costs vary depending on the number of units produced, 
while the fixed costs are not directly influenced by the 
production quantity but are generated by the production 
in each period. The variable costs consist of expenses for 
raw materials, energy per unit of product, and labor. As 
these costs depend on the production quantity, they are 
multiplied by the production rate during the production 
periods to determine the total production cost based on 
the number of products. In this study, the fixed cost is 
considered equivalent to the equipment setup cost. These 
costs are calculated based on Eq. (7) that

CM Costs

Due to the unpredictable nature of equipment breakdowns, 
they occur randomly, resulting in stochastic maintenance 
operations (Al-Naggar et al. 2021; Gbadamosi et al. 2021). 
As equipment and its components gradually deteriorate, 
failure becomes inevitable. In this study, equipment failure 
is modeled using the Weibull distribution, with parameter 
values determined based on degradation processes and fail-
ure events. The Weibull distribution is commonly employed 
in research to estimate equipment failure and consists of 
two parameters: shape (β) and scale (𝜂) (Niu et al. 2021; 
Chien et al. 2019; Montoya et al. 2019; Sgarbossa et al. 
2018). Eq. (8) describes the probability density function 
of the Weibull distribution, wherein the shape parameter 
(β) and scale parameter (𝜂) are defined.

In Eqs. (6) and (7), the value of the shape parameter 
(β) in the Weibull distribution is specified to be greater 
than one. When the shape parameter is greater than 1, the 
probability of equipment failure increases as the equipment 
ages. Conversely, if the shape parameter is equal to 1, the 
failure probability remains constant over time. If the shape 
parameter is determined to be less than 1, it indicates that 
the failure probability of the equipment decreases as time 
passes. In this study, considering the typical assumption 
of equipment deterioration in most studies on production 
systems, the value of β is set to be greater than 1. Eq. (9) 
presents the cumulative distribution function of the Weibull 
distribution as follows:

(7)
∑
t∈T

((
Cvt + HptNpt

)
ut t

p

t + Cset yt
)
.

(8)f (t) =
𝛽
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(
t
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)𝛽−1

exp

(
−

t

𝜂

)𝛽

𝛽 > 1, 𝜂 > 0, t > 0.

(9)F(t) = 1 − exp

[
−

(
t

𝜂

)𝛽
]
𝛽 > 1, 𝜂 > 0, t > 0.
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Therefore, Eq. (10) illustrates the failure rate in the 
Weibull distribution that

Thus, the mean number of failures in each period with 
length L is shown based on Eq. (11):

In this study, according to the model assumptions, CM oper-
ations are performed minimally, meaning that the virtual age 
of the equipment remains unchanged after the CM operation. 
Consequently, the equipment’s condition remains as bad as it 
was before. Therefore, no improvement in the equipment’s con-
dition is considered. Considering this minimal approach in CM 
operations, the average number of failures occurring in each 
period is determined by a heterogeneous Poisson process with 
a rate denoted as h(t), which is defined in Eq. (10). As a result, 
the total cost of CM operations is calculated by multiplying the 
number of equipment failures by their associated costs.

In this paper, the costs per failure include both time-
dependent and time-independent costs. The time-dependent 
costs encompass the opportunity cost, which represents the 
loss incurred by the company due to production line downtime, 
and is related to the profit generated from each unit of product 
sales. Additionally, expenses related to human resources, such 
as wages, are considered, which depend on the hours required 
to repair the equipment failure. Furthermore, there are time-
independent costs associated with the CM operation, includ-
ing expenses for spare parts, materials, and equipment setup. 
These costs are independent of the frequency of CM opera-
tions. In this study, the time dedicated to CM is considered as 
part of the overall operating time. The CM time is assumed to 
be constant and does not depend on the number of CM occur-
rences or system failure time. Besides, only one level for the 
CM operation is assumed. Eq. (12) outlines the calculation for 
the total cost of the CM operation, as follows:

PM Costs

Similar to CM operations, costs associated with PM opera-
tions include both time-dependent and time-independent 
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costs. The time required to perform PM at different levels 
is not fixed and varies depending on the frequency of PM 
operations. As employees gain more experience and knowl-
edge, the time needed for PM operations decreases with an 
increase in the number of these operations. Eq. (13) defines 
the function for determining the time required for PM opera-
tions, where γ denotes the time required for the initial PM 
operation of each level, and r represents the percentage of the 
experience curve. Fig. 2 illustrates the impact of learning on 
performing PM operations.

This paper investigates the impact of PM operations on 
reducing the equipment age. Fig. 3 provides a visual repre-
sentation of the influence of PM operations on the equip-
ment age. Moreover, Fig. 3 illustrates how the implemen-
tation time of PM is affected by the learning process. The 
coefficient α represents the age reduction coefficient, which 
determines the effectiveness of the PM operation in reducing 
the equipment age. As a result, the virtual age of the equip-
ment is calculated using Eq. (14), which indicates that the 
virtual age at the beginning of each period is equal to the 
virtual age at the end of the previous period, plus the dura-
tion of the period minus the extent of improvement achieved 
through the performance of PM operations.

In this research, three different levels of PM operations 
are considered for equipment maintenance: level 3 involves 
servicing and inspection of equipment, level 2 involves ser-
vicing and repairing certain components, and level 1 involves 
servicing and replacing specific components. The parameter 
αk, which represents the impact on machine performance and 
equipment virtual lifetime, varies for each level. If any of 
these levels of PM operations are implemented, the virtual 

(13)tm
kt
= �k zkt

⎛⎜⎜⎜⎜⎜⎝

1 +
�

l ∈ T

l ≤ t − 1

zkl

⎞⎟⎟⎟⎟⎟⎠

ln r

ln 2

∀k, t

Fig. 2  The learning influence of PM operations
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lifetime of the equipment will decrease proportionally to 
the age reduction coefficient (αk) associated with each level. 
Without any PM operations, the age reduction coefficient 
becomes zero, resulting in no change to the machine’s 
lifetime. The overall virtual age of the equipment is deter-
mined by adding the virtual age of the previous period to 
the duration of the current period. This research emphasizes 
the influence of human error probability on the successful 
execution of each level of PM operations. Consequently, the 
age reduction coefficient (αk) is multiplied by the human 
resource reliability. In other words, the effective and proper 
execution of PM operations at each level depends on the 
human error probability.

If maintenance operations are limited to equipment 
inspection and service at level 3, they will have a minimal 
effect on the equipment’s lifespan, and the equipment will 
remain relatively deteriorated. When PM operations are 
performed at level 2, involving equipment servicing and 
repair of certain components, the impact of these preven-
tive measures will be partial, resulting in the equipment's 
condition falling between “as bad as old” and “as good as 
new.” Finally, implementing PM operations at level 1, which 
includes equipment servicing and replacement of specific 
components, will restore the equipment to an “as good as 
new” state. In this scenario, the equipment’s lifespan is 
effectively reset to zero, treating it as if it is a new machine. 
As a result, the age reduction coefficient (αk) in this research 
varies depending on the level of PM operation implementa-
tion, assuming different values (zero, a value between zero 
and one, and one). It is important to note that besides the 
direct impact of the age reduction coefficient on the equip-
ment’s lifespan, human error also plays a significant role 
in determining this value. The execution of each level of 

PM operations involves a certain probability of human error. 
Therefore, in the absence of human error, the age reduction 
coefficient can accurately reflect its impact on the equip-
ment's lifespan.

Therefore, taking into account the influence of human 
error, the implementation of the third level of PM operations 
on the equipment will have a limited effect on its lifespan 
(i.e., the age reduction coefficient is 0.1). Even with the pres-
ence of human error associated with this level’s execution, it 
is not possible to extend the equipment’s lifespan beyond its 
actual age. Consequently, the implementation of this level 
will minimally impact the equipment’s age. When the sec-
ond level of PM operations is performed on the equipment, 
the equipment’s age will be reduced but not completely (i.e., 
the age reduction coefficient is between zero and one). In the 
presence of human errors during the execution of this level, 
the impact of its implementation on the equipment’s age 
will be diminished (αk(1 − P)). Hence, the implementation 
of this level influences the equipment’s age, but the extent 
of its impact on the virtual age of the equipment depends on 
the value of the human error probability. The operations at 
this level are executed imperfectly, leading to a partial effect 
on the equipment's age.

If the first level of PM operation is implemented on the 
equipment, it will effectively restore the equipment to an 
“as good as new” state, resulting in an age of zero (i.e., 
the age reduction coefficient is one). However, in the pres-
ence of human errors during its execution, the impact of 
the first level of PM operation on the equipment's age will 
be diminished. Considering the human error probability, 
the equipment may not be fully restored to an “as good 
as new” state. Human error acts as a barrier to achiev-
ing a virtual age equivalent to an “as good as new” state 

Fig. 3  The impact of different levels of PM operations and learning on the equipment’s age
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for the equipment. This can only occur when the human 
error probability is zero. Therefore, implementing the first 
level will effectively impact the equipment’s age, and the 
degree of impact and reduction in the virtual age resulting 
from the execution of this level will depend on the human 
error probability. Although the operations at this level are 
executed perfectly, due to the presence of human error, the 
impact of executing this level on the equipment's age will 
consistently be imperfect. Fig. 3 illustrates the impact of 
different levels of PM operations on the equipment’s age, 
and it also demonstrates the influence of learning on the 
execution time of these operations. The parameter αk rep-
resents the age reduction coefficient, and thus the virtual 
age of the equipment is calculated according to Eq. (14).

Fig. 4 depicts the interrelation between age reduction 
coefficient αkt and the level of PM operation concisely and 
effectively.

(14)at =
(
at−1 + l

)(
1 − zkt�k(1 − p)

)
, 0 ≤ �k ≤ 1,∀t.

The selection of PM operations to be performed in 
each period can be determined based on the equipment's 
condition, which encompasses factors such as its lifetime, 
production rate, noise levels, and other equipment-
specific conditions. This study focuses on time-based 
maintenance, where the level of PM operations depends 
on the equipment’s age. Decision variables are utilized to 
establish threshold levels for the equipment’s age and the 
corresponding levels of PM operations. In this research, the 
symbols ξ and ξ′ represent the upper and lower threshold 
values, respectively. These values enable the determination 
of suitable levels of PM operations based on the equipment's 
age, considering their associated costs and effects on other 
expenses. The symbol μ denotes the maximum number of 
levels, which is set to 3 in this study, while ψ represents 
the levels of PM operation. The variables ψ, ξ, and ξ′ are 
decision variables within the problem. Eq. (15) represents 
the determination of the level of PM operation dependent 
on the equipment's age.

Fig. 4  The interrelation between age reduction coefficient αkt and level of PM 
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To determine the various levels of PM, it is necessary to 
consider Eqs. (14) and (15). Eq. (16) illustrates that only one 
level of PM can be selected at each inspection point, based 
on the equipment’s conditions. This ensures that the logical 
requirements of the problem are met, allowing for the selection 
of a single maintenance level for each inspection point. Eq. 
(17) establishes a connection between Eqs. (15) and (16). In 
Eq. (15), the appropriate level of PM operation is determined 
by taking into account the predicted age of the equipment. The 
variable ψ represents the execution level for PM, and through 
Eq. (16), the relationship between ψ and k can be defined.

The total costs associated with PM operations are 
addressed in Eq. (18). The decision variable zkt, which is 
binary, represents the execution or non-execution of each 
level of PM operations in each period. The time function for 
executing each level of PM operations is based on Eq. (13).

The Human Error Probability Cost Associated 
with the Maintenance Task

Since human beings are responsible for conducting inspections, 
PM operations, and CM operations on equipment, there 
is always a risk of human error. This can lead to higher 
costs resulting from incorrect PM operations, inspections, 
misdiagnosis during PM operations, and unrecognized 
PM needs leading to higher CM costs. To estimate the cost 
function associated with human error, historical data, and 
expert opinions are used to gather information on the costs 
incurred due to human error. Since it is not feasible to directly 
collect information on human error from experts, information 
regarding CPCs is collected, and human error is calculated 
based on Eq. (19).

The CII index, introduced in Eq. (20), calculates 
the difference between the total number of factors that 
exhibit reduced performance (represented by CPCs in an 
undesirable condition) and the total number of factors that 
exhibit improved performance (represented by CPCs in a 
desirable condition.

(15)
𝜉� −

𝜉�−𝜉

𝜇−2

(
𝜓t − 1

)
≤ at−1 + l ≤ 𝜉� −

𝜉�−𝜉

𝜇−2

(
𝜓t − 2

)
𝜇 > 2,∀t

(16)
∑

∈K zkt = 1 ∀t

(17)�t =
∑

k∈K kt zkt ∀t

(18)

T∑
t=1

Cm(b) + HmktNmktt
m
kt
+ Spmkt + Csettzkt

(19)HEP = HEP0 × ek CII = 0.002236 × e−0.7629 CII

In order to include human error in the calculation of 
maintenance costs within the organization, a cost function that 
accounts for human error must be developed. To address this 
issue, maintenance cost data related to various human errors 
was collected, based on expert opinions. Regression analysis 
was used to estimate the relationship between the probability of 
human error and its corresponding costs, using historical data. 
Among several known functions such as quadratic, exponential, 
Fourier, and exponential, it was found that the cubic function 
provided the closest fit to the collected data.

Regression algorithms are utilized to approximate the 
mapping function between input variables and continuous 
output variables. Several error metrics are employed to 
evaluate the performance of the model, and one commonly 
used method is the mean squared error (MSE). MSE measures 
the error by squaring the difference between the actual value 
(yi) and the predicted value and then averaging it across the 
dataset. The results of the average score in predicting the 
relationship between HEP and its cost using various functions 
are given in Table 2. According to the findings presented 
in Table  2, the cubic function demonstrates the highest 
concordance in terms of R-square and MSE, serving as the 
optimal choice for describing cost function. The cost function 
derived from this regression method is expressed as follows:

The goal of this method is to find the best regression function 
(f(xi; ω)) that is equivalent to the best ω, where the optimal 
linear parameters of the regression function are. Fig. 5 shows 
the relationship between maintenance cost and human error 
probability.

The value of the coefficient and intercept of the cubic 
function is given in Table 3.

According to the obtained results from Table 5, the final 
cost in terms of the total cost of human error probability in 
maintenance operation is as follows:

(20)CII =
∑

(Reduced − Improvement)

(21)MSE =
1

n

n∑
i=1

(
yi − f

(
xi;�

))2

Table 2  Evaluating different known functions (e.g., quadratic, expo-
nential, Fourier, exp)

Distribution type RMSE Score (R-square)

Quadratic 1.365 0.9988
Cubic 1.08 0.9992
Power 1.799 0.9978
Exponential 4.847 0.9842
Gaussian 2.636 0.9953
Linear 2.919 0.9943
Fourier 1.372 0.9987
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Constraints

Eq. (23) is one of the capacity constraints of the model. This 
constraint ensures that the inventory level is less than the 
warehouse capacity. This constraint is formulated as follows:

where

Eq. (25) signifies that the sum of the previous period’s 
inventory level and the current period’s production quan-
tity must exceed the predicted demand level in order to 
minimize shortages within the system. Shortages not only 
result in evident financial losses but also impose significant 
hidden costs on the company, such as diminished company 
credibility and customer satisfaction. Therefore, it is cru-
cial to minimize the occurrence of shortages to the greatest 
extent possible.

(22)
f (p) =

(
±�

0
± �

1
p ± �

2
p2 ± �

3
p3
)

= −1.022 p3 + 128.9 p2 − 55.41 p + 69.83

(23)It−1 + utt
p

t − dt ≤ Wart∀t

(24)It = ut t
p

t + It−1 − dt − Bt−1

(25)It−1 + ut t
p

t ≥ dt∀t

Eq. (26) represents the production time for each period. 
The production time is calculated by subtracting the duration 
of each period (L) from the time intervals associated with 
production line stoppages caused by system breakdowns or 
PM and CM operations.

Eq. (27) defines the boundaries of the production rate range 
for the product. Since the production rate is a variable decision, 
it is essential to ensure that it does not exceed the nominal 
capacity of the machinery. Moreover, considering the economic 
aspect of the organization’s operations, the production rate 
should surpass a predetermined threshold. Therefore, a range is 
established to accommodate the production rate. In practice, the 
actual production rate of the machinery tends to be lower than 
its nominal capacity due to interruptions caused by breakdowns 
and maintenance operations. The nominal coefficient of the 
machinery’s production rate (ϑt) effectively reduces the overall 
time allocated to production operations, including the duration 
of machinery breakdown stoppages and the time dedicated to 
maintenance operations.

where

and

If no production takes place during a specific period, then 
no setup costs are applied to the system, and the production 
rate is zero. This inherent constraint is represented by Eq. (30).

By combining Eqs. (29) and (30), Eq. (31) is obtained, 
which effectively represents the integration of both constraints 
and ensures their fulfillment.

Eq. (32) indicates that during each period, only one level of 
PM operation can be performed on the machine.

(26)t
[p]
t = l −

K�
k=1

t
[m]

kt
− t]r]

t

⎡
⎢⎢⎢⎣

��
at + l

��
− a

�

t

�

��

⎤
⎥⎥⎥⎦
∀t

(27)umin
t

≤ ut ≤ umax
t

(28)umax
t

= gt
(
1 − �t

)

(29)�t =
tm
kt
zkt

H
+ tr

t

⎡⎢⎢⎢⎣

��
at + l

��
− a

�

t

�

��

⎤⎥⎥⎥⎦

(30)0 ≤ ut ≤ Cset yt∀t

(31)umin

t
yt ≤ ut ≤ umax

t
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(32)

K∑
k=1

zkt = 1∀t

Fig. 5  The relationship between maintenance cost and human error 
probability (cubic function)

Table 3  Coefficient and intercept of the estimated cubic function

Coefficients Coefficient 
of P3

Coefficient 
of P2

Coefficient 
of P

Intercept

Value −1.022 128.9 −55.41 69.83
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Eq. (33) describes that the machine availability must sur-
pass the minimum accessibility level required for servicing in 
each period.

Eq. (34) indicates that the total organization costs should 
be less than the available budget amount.

The final constraint outlines the specific range limita-
tions of certain variables in the model, which, based on their 
nature, can only take on values within a particular range.

Findings

The model is converted to a mixed-integer non-linear 
programming model and solved using the DICOPT solver in 
the GAMS software. The computations are executed on a system 
with an AMD Ryzen 3 2200U processor running at 2.5 GHz, 
8 GB of RAM, and a 64-bit operating system. Notice that the 
case study of this research centers around a factory engaged 
in the manufacturing of automobile hydraulic steering boxes. 
This study specifically directs its attention towards the strategic 
planning and practical evaluation of maintenance operations, 
focusing on a CNC machine situated within an automobile parts 
manufacturing facility. The dataset employed for the analysis 
and optimization of integrated production and maintenance 
activities is exclusively centered on a CNC machine designated 
for the manufacturing of automobile steering boxes. The 
dependable functionality of CNC machines plays a significant 
role in influencing production reliability and reducing waste 
generation within an organizational context. As equipment 
damage escalates, the average interval between device failures 
diminishes, potentially resulting in disruptions to the production 
process. Equipment failures arising from damage not only 
lead to periods of lost production time but also necessitate 
supplementary time for equipment setup and adjustments.

The results obtained from solving the model, based on 
data from the case study involving a single equipment (CNC 
lathe machine), one product (hydraulic steering box), and 
three different levels of PM operations over nine periods, 
are presented in Table 4. These results provide insights into 
the associated costs for each inspection period, the threshold 
associated with the equipment’s age, and the impact of each level 
of PM operations on the equipment’s age (ak). The equipment’s 
age in each period (at) is determined by the execution of each 
level of PM operations and the passage of time. The timing of 
executing each level of PM operations during the inspection 
period ( t[m]

kt
 ) is determined based on whether that level of 

(33)t
p

t ≥ AEt∀t

(34)Total Cost ≤ TB

(35)0.00005 ≤ p ≤ pcurrent, zkt ∈ {0, 1}

operation is implemented or not, as well as the initial timing 
for executing that particular level. The production quantity (ut) 
is also determined by taking into account maintenance costs, 
shortages, the demand level, and the equipment’s condition in 
terms of maintenance operations. The production time in each 
period is calculated based on the total available time and the 
downtime caused by PM and CM operations (Table 5).

The results suggest that for the first, fourth, sixth, and eighth 
periods, it is preferable to implement level 3 PM operations. 
However, it should be noted that level 3 has only a negligible 
impact on the equipment's age. Therefore, at the beginning of the 
second period, the equipment’s virtual age is set at 3.6 (while its 
actual age remains at 4). Considering the costs associated with 
each level of PM operations, their effects on the equipment's age, 
and the resulting failure rate and CM cost for the next period, it 
is advisable to perform level 2 PM operations on the equipment. 
By implementing level 2 PM operations, the virtual age of 
the equipment is significantly reduced, halving its duration. 
Consequently, at the start of the third period, the equipment's 
age is expected to be 3.8 (compared to its age of 8, considering 
two periods with 4-unit time intervals). Taking into account the 
costs involved in executing PM operations at different levels, the 
most favorable approach for the equipment in this period is to 
implement level 1 PM operations on the system.

Implementing level 1 PM operations results in optimal PM 
operations, leading to a significant reduction in the equipment’s 
age, approaching zero (although a complete reduction to zero is 
not achieved due to the probability of human errors associated 
with these operations). This trend continues in subsequent 
periods. The equipment's accessibility time is determined by 
considering the overall duration and the time allocated to both 
PM and CM operations. The eighth period stands out with the 
highest level of equipment accessibility. During this period, 
level 3 PM operations were carried out, ensuring uninterrupted 
production line operation. Moreover, level 1 PM operations 
were performed in the previous period, resulting in a decrease 
in system failures for the next period. As a result, system 
downtime caused by equipment failures and PM operations 
can be minimized to the lowest feasible value.

The results of the model for the next nine periods of 
the company propose that in three periods, first-level PM 
operations (i.e., Periods 3, 5, and 7); in two periods, second-
level PM operations (i.e., Periods 2 and 9); and in four 
periods, third-level operations (i.e., Periods 1, 4, 6 and 8) 
should be implemented. Also, the human error probability 
level should be reduced to 0.00005.

Sensitivity Analysis

This section employs a sensitivity analysis procedure to 
assess the accuracy and performance of the model. This 
is accomplished by manipulating various parameters to 
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create different scenarios, involving both decreases and 
increases. By evaluating the model's performance in each 
scenario, a comprehensive understanding of its capabilities 
is obtained. The validation of the model’s results relies on 
the consistency between the outcomes of each scenario and 
the expected behavior. If the results demonstrate the desired 
behavior and exhibit logical performance in each scenario, it 
can be concluded that the model is representative and accu-
rate. This validation process enhances the credibility of the 
model’s results. It is important to note that all other param-
eters were kept constant at their original values throughout 
each analysis. Through this sensitivity analysis, our goal was 
to gain deeper insights into how changes in the parameters 
impact the components of the objective function. This pro-
cess aimed to provide valuable insights into the behavior of 
the model.

In this section, we conducted an extensive sensitivity 
analysis on specific model parameters, namely, the age 

reduction coefficient, profit per unit, setup cost, and length 
of each period. The objective was to examine how variations 
in these input parameters affect the objective function and 
decision variables. The results obtained from solving the 
model with different values of αk for each level are presented 
in Table 6. In the first scenario, we decreased the value of 
αk for the third level from 0.1 to 0, resulting in no impact 
on the virtual age of the equipment when the third level of 
PM actions is performed. The results indicate that executing 
the third level of PM actions is no longer cost effective. As 
a result, the outcomes for the first, fourth, sixth, and eighth 
periods, where PM actions were implemented at the third 
level, have changed. Consequently, it is advisable to carry 
out the first and second levels of PM actions during these 
periods (Fig. 6).

In the second scenario, when the value of αk for the first 
level is reduced from 1 to 0.8, it becomes more favorable to 
execute the second level of PM actions. This indicates that 
the effectiveness of implementing the first level in enhanc-
ing the machine’s age decreases, leading to the selection of 
the second level for these operations. Since the benefits of 
executing the second level of PM actions outweigh the asso-
ciated costs, this level is chosen for more periods (Fig. 7).

In the third scenario, when the value of αkt for the sec-
ond level decreases from 0.5 to 0.45, the possibility of opt-
ing for the second level of PM actions decreases. As evi-
dent from the results, either level 1 or level 3 consistently 

Table 4  The values obtained 
from solving the model

ZProfit 2,960,093.847 ́

𝜉
7.6 ξ 4 p 0.00005

Zkt Period (t)
1 2 3 4 5 6 7 8 9

Level (k) 1 1 1 1
2 1 1
3 1 1 1 1

t
[m]

kt
Period (t)
0 4.68 7.4 0 7.4 0 7.4 0 4.68

at Period (t)
3.6 3.8 0.0004 3.6 0.0004 3.6 0.0004 3.6 3.8

ψt Period (t)
3 2 1 3 1 3 1 3 2

t
[p]

t
Period (t)

142.857 150 157.143 171.429 185.714 185.714 171.429 200 171.429
qt Period (t)

10000 12000 11000 12000 13000 13000 12000 14000 12000
ut Period (t)

70 80 70 70 70 75 70 70 75

t
[r]

t
Period (t)
2.303 2.408 6.688 2.777 7.879 3.014 7.283 3.251 2.750

yt Period (t)
1 1 1 1 1 1 1 1 1

Table 5  The various scenario to conducting sensitive analysis

α1t α2t α3t

Current situation 1 0.5 0.1
Scenario 1 1 0.5 0
Scenario 2 0.8 0.5 0.1
Scenario 3 1 0.45 0.1
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emerges as the optimal choice for PM actions across dif-
ferent periods (Fig. 8).

Moreover, in order to perform the analysis, we systemati-
cally adjusted the values of three parameters (i.e., the inter-
val of each time, the profit of each unit, and setup cos). These 
adjustments ranged from −5 to +5% of their original values. 
Table 6 shows the results for some selected values. For the 
basic model, bp,  Csett and L are 285, 20, and 4, respectively. 
Clearly, if the profit of each product increase, the total profit 
will also grow. On the other hand, the decrease in setup cost 
brings about the growth in total profit. Therefore, our expec-
tations regarding the model’s performance are accurately 
satisfied based on the results presented in Table 7. Also, it 
illustrates the change in the length of each period param-
eter. Smaller inspection periods bring the system closer to 
continuous inspection mode. This leads to more frequent 
PM considerations and operations, resulting in improved 
review and implementation accuracy for these operations. 
Consequently, as the length of each period decreases, costs 
decrease due to the appropriate execution of PM operations.

Discussion

Previous studies provide valuable insights into both main-
tenance and production operations. However, these studies 
have thus far overlooked the crucial examination of how 
human errors impact these operations. The primary defi-
ciency within these papers is their omission of the signifi-
cant influence of the human factor on maintenance. Their 
concentration has been exclusively directed toward the 
effects of non-human factors on integrated maintenance 
and production operations. To the best of our knowledge, 
this paper is the inaugural instance in which the decisive 
influence of human error probability on the overall cost and 
equipment lifespan resulting from these operations has been 
considered. Furthermore, this paper introduces an enhanced 
model aimed at cost reduction across production, mainte-
nance, inventory control, and human error aspects, all while 
ensuring adherence to constraints tied to customer demand, 
budgetary limits, production rates, and capacity considera-
tions. In this study, maintenance operation costs have been 

Table 6  The values obtained 
from the sensitive analysis Scenario 1 α3t=0 Zkt Period (t) zprofit

1 2 3 4 5 6 7 8 9
Level (k) 1 1 1 1 1 1 1 1 2,959,408

2 1 1
3

Scenario 2 α1t=0.8 Zkt Period (t) zprofit

1 2 3 4 5 6 7 8 9
Level (k) 1 2,959,246

2 1 1 1 1 1 1 1 1
3 1

Scenario 3 α2t=0.45 Zkt Period (t) zprofit

1 2 3 4 5 6 7 8 9
Level (k) 1 1 1 1 1 2,960,600

2
3 1 1 1 1 1

Fig. 6  The changes of decision 
variables  (zkt) in scenario 1 (α3t 
= 0)
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methodically classified. Notably, this work innovatively seg-
regates maintenance-related costs into two distinct catego-
ries: time-dependent and time-independent costs. Besides, 
in contrast to existing research in the literature, the model 
takes into account setup and equipment opportunity costs, 
calculated based on the downtime experienced by equipment 
due to maintenance activities.

The findings underscore the substantial role of human 
error in contributing to equipment failures. The derived 
results have determined the optimal human error probability 
to be 0.00005. This numeric insight strongly highlights the 
significant influence of human error on both overall costs 
and equipment lifespan. It emphasizes the critical need for 
implementing substantial reductions in human error when-
ever viable. Our findings are consistent with prior research 
by Aalipour et al. (2016), Azadeh et al. (2016), Hameed 
et al. (2016), and Ighravwe and Ayoola Oke (2021). These 

studies have considered the importance of human errors in 
maintenance, addressing the analysis and prioritization of 
such errors through MADM methods. However, as previ-
ously mentioned in the research background, none of these 
studies have quantitatively computed the optimal value of 
human error in production, maintenance, and repair opera-
tions, while accounting for additional costs. Moreover, our 
results share a number of similarities with the result of 
Emami-Mehrgani et al. 2016 Their research confirms that 
human errors in maintenance activities contribute to an 
escalation in the total production cost. The findings of this 
study also suggest that the overall costs decrease through 
the integrated optimization of production and maintenance 
operations, in comparison to individually examining each 
of these components. This concurs well with the findings of 
Rivera-Gómez et al. (2021), Sharifi and Taghipour (2021), 
Ghaleb et al. (2020), and Zheng et al. (2021).

Fig. 7  The changes of decision 
variable  (zkt) in scenario 2 (α1t 
= 0.8)
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Fig. 8  The changes of decision 
variable  (zkt) in scenario 3 (α2t 
= 0.45)
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Table 7  The values obtained 
from sensitive analysis for three 
parameters (i.e., Cset, bp, and L)

Δ Cset Cset z Δ bp Cbp z ΔL L z

−5% 19 3,167,208 −5% 271 2,959,067 −2.5% 3.9 2,961,217
0 20 2,960,094 0 285 2,960,094 0 4 2,960,094
5% 21 2,861,146 5% 299 2,960,248 2.5% 4.1 2,959,334
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In this study, considering human errors, the execution 
of PM and CM operations is consistently accompanied 
by a margin of human error. Human error is indeed rec-
ognized as an integral factor affecting equipment lifespan. 
Consequently, within this investigation, none of the PM 
operation levels lead to achieving an “as good as new” 
state for the equipment after their implementation. In fact, 
the machine’s lifespan never reaches zero. As a result, the 
outcomes of optimizing PM operations differ from certain 
published studies, e.g., Ait-El-Cadi et al. (2021), Li et al. 
(2022),; and uit het Broek et al. (2021); they align with the 
results anticipated under perfect PM conditions. In studies 
assuming maintenance operations are perfect, the selection 
of maintenance levels is interdependently linked with the 
costs associated with implementing these maintenance lev-
els. Nonetheless, within the framework of this study, the 
identification of optimal maintenance levels goes beyond the 
sole consideration of PM operation costs. It also takes into 
account human errors and their associated expense.

Managerial Insights

This paper provides a solution to decreasing costs in indus-
tries to increase equipment accessibility and reduce human 
error probability. The findings of this study are important for 
managers and system designers who intend to implement the 
policies to develop efficient solutions for decreasing human 
error probability and increasing equipment accessibility. 
These outstanding results and optimal solutions are very 
important for industrial managers and decision-makers to 
achieve a successful market. Our research could be a useful 
aid for decision-makers because simultaneously identifying 
and investigating both maintenance and production opera-
tions lead to more appropriate planning and a unified model 
in the field of this research. In order to mitigate the impact 
of human error on equipment, organizations should focus on 
CPCs affecting human error probability and oversight during 
maintenance activities. Thus, managers and decision-makers 
will make efforts to improve the factors that influence human 
error (i.e., CPCs), aiming to minimize costs by determining 
the optimal value of human error. In conclusion, optimizing 
integrated production and maintenance planning in indus-
trial settings should involve a comprehensive consideration 
of human error. Improving contextual conditions that affect 
human error in maintenance activities, such as implement-
ing proactive measures, training programs, error-proofing 
mechanisms, and utilizing advanced technologies, can 
enhance operational efficiency, reliability, and productivity 
in maintenance activities.

The presented model is highly beneficial to similar organ-
izations in which PM performance is essential, and human 

error and equipment failure will incur high costs. This model 
determines the time and frequency of PM operation properly 
regarding production operations. Moreover. In this paper 
by improving the level of CPCs affecting human error, the 
human error probability can be improved to the desired level. 
Consequently, the equipment maintenance and production 
costs are minimized by properly implementing maintenance 
and production operations and the optimal value of human 
error. In order to validate the presented model, sensitivity 
analysis was conducted on four parameters (i.e., αkt, Cset, bp 
and l), and their results were presented. The changes in these 
parameters were investigated, and the effect of these changes 
on the decision variables and the total cost was presented.

Conclusions

In summary, this research has presented a model for the 
integrated planning of production and maintenance opera-
tions. An optimal and integrated maintenance and produc-
tion planning approach that considers human error can 
positively impact sustainability by improving resource 
efficiency, reducing waste, enhancing safety, and maxi-
mizing operational effectiveness. The main purpose of the 
current study was to introduce a model so as to optimize 
the planning of these operations to minimize costs and 
enhance future work processes within the organization. 
This research simultaneously considers the costs associated 
with production operations, inventory control, PM and CM 
operations, as well as human errors related to maintenance 
tasks. One of the main advantages of the proposed model 
is its ability to quantify the impact of human errors and 
integrate them into the comprehensive planning of produc-
tion and maintenance operations, an aspect that has been 
overlooked in previous research. Moreover, this is the first 
study to estimate the cost function associated with human 
errors in maintenance tasks using historical data and a 
regression method.

Due to the fact that the human error probability has a con-
siderable impact on the efficiency and suitability of mainte-
nance operations, this study has demonstrated, for the first 
time, that human error could affect the age reduction coeffi-
cient of equipment lifespan. Indeed, if the level of human error 
decreases, the execution of maintenance operations at different 
levels can be carried out more effectively and appropriately, as 
well as leading to enhancing equipment conditions. The find-
ings of this paper effectively outlined the optimal production 
rate to minimize holding and shortage costs, as production 
line downtime is caused by maintenance operations. Moreover, 
the results of this study suggest which period and level of PM 
operations have been more suitable, taking into account their 
impact on the lifespan and conditions of the equipment, and 
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also its associated costs. Besides, the findings determine the 
frequency of execution for each level of PM operation.

This research investigated human error only on the cost of 
maintenance and equipment age. It is recommended that fur-
ther research should be undertaken at different levels of influ-
ence on the equipment age of CM operations. Furthermore, 
future work can concentrate on the effect of human error on 
other operations simultaneously. The issue of human error 
in various operations of an organization is an intriguing one 
that could be usefully explored in further studies. The present 
study has only investigated the impact of personnel learn-
ing on PM operations. Therefore, future work on the current 
topic can examine this impact on CM operations. Also, in this 
paper, the time-independent cost of PM and CM operations in 
different periods is assumed to be constant. Future research 
can be assumed to be unstable, and their costs are dependent 
on other parameters, e.g., inflation rate and spare part inven-
tory level. Also, we need to examine more closely the links 
between human error and maintenance operations. Besides, 
in the case of CM operations, akin to PM measures, it is 
essential to account for various levels with varying degrees of 
influence on equipment conditions and lifespan. This practice 
ensures a closer alignment between the execution of these 
operations and real-world scenarios.

In the present study, maintenance operations have 
been carried out based on the equipment’s lifespan, 
forming the basis for decisions regarding the execution 
of different levels of preventive measures. So far, all 
conducted studies have either focused on preventive 
actions solely based on lifespan or have centered around 
equipment conditions when formulating plans for 
preventive maintenance programs. It is recommended 
that future research endeavors take a more integrated 
approach by simultaneously considering maintenance 

based on both conditions and lifespan. This integration 
has the potential to yield enhancements in the process of 
scheduling preventive maintenance activities. In this study, 
the impact of human error on the equipment's lifespan has 
been exclusively assessed by evaluating its influence on the 
reduction coefficient. It is advisable that future research 
efforts focus on estimating the effect of human error on the 
equipment's lifespan as a function. Such an approach would 
facilitate a more accurate representation of its influence on 
the overall life span of the equipment. Moreover, through 
the integration of inventory control planning for spare 
parts, maintenance operations can be executed efficiently.

Appendix

Case study data has been presented in this section. It is 
worth mentioning that certain parameters have been kept 
constant across various periods. It might seem unnecessary 
to define the index “t” for these parameters, as the same 
values have been used in all periods. This is due to the 
intention of presenting a comprehensive and generalized 
model. It is possible that employing this model in subsequent 
studies might require the presence of the parameter “t” in all 
problem parameters. It should be noted that considering the 
scope of the current research study, only the implementation 
of the first level of maintenance and repair operations 
necessitates equipment shutdown. Therefore, for the second 
and third levels of maintenance and preventive operations, 
no setup costs are incurred for the system due to the 
uninterrupted production line. Additionally, for executing 
the third level of these operations, no spare parts are required 
(Table 8 and 9).

Table 8  Data related to the case 
study αk Level (k)

1 2 3
1 0.5 0.1

γk Level (k)
1 2 3
1 0.6 0

dt Period (t)
β 𝜂 l r TB bp μ
1.5 4 4 0.8 5000000 280 3
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Table 9  Data related to the case 
study Nmkt Period (t)

1 2 3 4 5 6 7 8 9
Level (k) 1 5 5 5 5 5 5 5 5 5

2 2 2 2 2 2 2 2 2 2
3 1 1 1 1 1 1 1 1 1

Hmkt Period (t)
1 2 3 4 5 6 7 8 9

Level (k) 1 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
2 3 3 3 3 3 3 3 3 3
3 1 1 1 1 1 1 1 1 1

Spmkt Period (t)
1 2 3 4 5 6 7 8 9

Level (k) 1 5 5 5 5 5 5 5 5 5
2 2 2 2 2 2 2 2 2 2
3 0 0 0 0 0 0 0 0 0

Csetkt Period (t)
1 2 3 4 5 6 7 8 9

Level (k) 1 20 20 20 20 20 20 20 20 20
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

Sht Period (t)
1 2 3 4 5 6 7 8 9
0.5 0.4 0.45 0.5 0.5 0.55 0.5 0.55 0.55

ht Period (t)
1 2 3 4 5 6 7 8 9
0.56 0.57 0.560 0.57 0.56 0.57 0.57 0.57 0.57

Csett Period (t)
1 2 3 4 5 6 7 8 9
20 20 20 20 20 20 20 20 20

Wart Period (t)
1 2 3 4 5 6 7 8 9
5000 5000 5000 5000 5000 5000 5000 5000 5000

Npt Period (t)
1 2 3 4 5 6 7 8 9
5 5 5 5 5 5 5.5 5.5 5.5

Nrt Period (t)
1 2 3 4 5 6 7 8 9
3 3 3 3 3 3 3 3 3

Hpt Period (t)
1 2 3 4 5 6 7 8 9
50 50 50 50 50 50 50 50 50

Hrt Period (t)
1 2 3 4 5 6 7 8 9
50 50 50 50 50 50 50 50 50

Cbt Period (t)
1 2 3 4 5 6 7 8 9
20 20 20 20 20 20 20 20 20

dt Period (t)
1 2 3 4 5 6 7 8 9
10,000 12,000 11,000 12,000 13,000 13,000 12,000 14,000 12,000
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