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Abstract
The variations in load and generation result in higher degree of uncertainty in power flow calculation and create new challenge 
for the system operator to develop new tools to assess the current and future state of the system. Therefore, the incorpora-
tion of the system uncertainties plays a vital role for sustainable planning of the power system. This paper demonstrates the 
combined application of the probabilistic and possibilistic approach to address line, load and distributed generation (DG) 
uncertainties in a radial distribution system. The uncertainty in load demand is represented as a Gaussian distribution func-
tion, whereas line and DG uncertainty are varied at a fixed proportion. The load is modelled as composite. Type I (penetrates 
real power), Type II (penetrates reactive power) and Type IV (penetrates both real and reactive power) DG are considered 
depending upon the type of power injected. The efficacy of improved power flow techniques with the inclusion of various 
types of DG and its effect on power losses is verified by four test cases on three IEEE test systems: 33-bus, 34-bus and 
69-bus. The obtained results are compared to the possibilistic-only approach and found out to be superior. The convergence 
characteristic is also analysed at various degree of belongingness. The technique converges in smaller number of iterations 
as compared to other methods. The lower interval width signifies the numerical stability. The statistical analysis of power 
losses reduction with DG penetration is also carried out.

Keywords  Radial distribution system · Interval arithmetic · Distributed generation · Gaussian distribution function · 
Composite load model · Uncertainties

Introduction

Motivation

The distribution system is ill-conditioned because most 
of it is radial structure, low X/R ratio due to the smaller 
inductance of line and determinant of admittance matrix 
being small due to sparsity. Thus, the methods for solv-
ing power flow in the transmission system such as New-
ton–Raphson and Gauss–Seidel fail to converge, in most 
cases in a radial distribution system (RDS). Moreover, the 
deterministic power flow methods require precise values 
of generation and load to find bus voltage and power flows 
for only specific system configuration and operating condi-
tions at a given instant and thus do not contribute to optimal 

planning and operation. Due to social, economic, technical 
and environmental concerns, the emphasis is to incorporate 
distributed generation (DG) in the power distribution sys-
tem. At distribution level, DG serves as a small-scale power 
generation using renewable (wind, micro/mini/small hydro-
power, biomass, solar, etc.) or non-renewable (gas turbine, 
etc.) resources and technologies. The generation of these 
resources exhibits stochastic behaviour and introduces sig-
nificant uncertainty in total power production. These uncer-
tainties should be considered in future planning to meet the 
growing energy needs of the consumer, hence, grabbing the 
focus of the system operators towards sustainable develop-
ment of the power system.

Real-world systems are complex due to its non-linearity 
and inability of the system to express its variables in pre-
cise terms whose complexity can be reduced by either mak-
ing certain assumptions about the system or allowing some 
degree of uncertainty in its description. The propositions 
obtained from this simplified system are less precise but 
their relevance to the original system is fully maintained. In 
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actual power grid operations, the input parameters (system 
line, load and transformer data) are assumed to be fixed but 
are practically uncertain. The uncertainty in system line data 
is because of an error in the estimation of resistance and 
reactance due to variation in temperature and ageing effects 
of conductors. The uncertainties in load data are because of 
an error in assumed load demand (load forecasting) due to 
unscheduled outages, uncertain load switching and change 
in status data of various protective devices. Uncertainty in 
hydropower is due to climate change and water runoff. The 
sensitivity to temperature brings uncertainty in a fuel cell 
as temperature variation has a greater effect at higher cur-
rents (Noorkami et al. 2014). This influences the analysis 
and subsequent results of the RDS.

Therefore, these uncertainties are modelled using either 
as a probabilistic or possibilistic approach. Monte Carlo sim-
ulation (MCS) and stochastic methods fall under the proba-
bilistic domain, whereas fuzzy sets and Interval Arithmetic 
(IA) are possibilistic approaches. IA provides a strict bound 
of all plausible system conditions that could have been 
obtained by thousands of repeated MCS which increases 
the computation time considerably and makes the analysis 
difficult. IA is able to obtain good quality results with a 
lower computational effort. Probabilistic modelling is quan-
titative through stochastic randomness (Wang and Alvarado 
1992) and is preferred where adequate historical information 
of uncertain parameter or their probability density function 
(PDF) is available such as load pattern, solar irradiation and 
wind speed (Aiena et al. 2014), whereas possibilistic mod-
elling is qualitative in nature (Wang and Alvarado 1992) 
and is desirable when there is inadequate information for 
operators and planners to establish PDF of the variables such 
as line data, controllable gas turbine DG power output and 
battery charge in an electric vehicle (Aiena et al. 2014). Both 
approaches are cooperative and their use may lead to a more 
realistic approximation to system modelling.

Literature Review

The uncertainties in input parameters were first introduced 
in the power transmission system by Wang and Alvarado 
(1992) and in the distribution system by Das (2002). Effect 
of load uncertainties on the system’s performance is ana-
lysed in (Ersavas and Karatepe 2017). Vidovic and Saric 
(2017) developed a correlated interval-based backward/
forward power flow algorithm to account uncertainties in 
renewable energy resources. To deal with uncertainties of 
the system a novel midpoint-radius interval-based algorithm 
is developed in (Marin et al. 2017), which eliminates the fac-
torization of the interval Jacobian matrix. Wang et al. (2017) 
demonstrate the impact of intermittent energy sources and 
uncertainty in load on the power flow solution and found 
out to be superior in precision and computation aspects. To 

attain more realistic interval solutions, the interval-based 
power flow models are converted into the interval optimiza-
tion problem in (Ding et al. 2015) which reduces the con-
servatism of the interval solutions. In (Pereira et al. 2012), 
the Krawczyk technique is presented for solving the interval 
power flow equations. An Affine Arithmetic approach is pro-
jected in (Vaccaro et al. 2010) to incorporate uncertainties. 
The proposed method is not dependent on the level and the 
types of uncertainties present in the system data. A probabil-
istic distribution-based IA method is simulated in (Chatur-
vedi et al. 2006) to incorporate load demand uncertainty in 
conventional power flow. Parihar and Malik (2017) projected 
the IA-based power flow analysis considering uncertainties 
in line and load data. Das (2009) proposed the application 
of IA to introduce fixed line and load uncertainties in the 
RDS considering voltage-dependent loads. A similar method 
is used in (Attari et al. 2015) to forecast accurate opera-
tional conditions of the distribution system considering input 
uncertainties. Wang et al. (2009) demonstrated an interval-
based fast-decoupled power flow algorithm for large-scale 
power system analysis. Abdelkader et al. (2014) developed 
a Fuzzy Arithmetic Algorithm (FAA) for introducing fixed 
load and line uncertainties in RDS. Triangular Fuzzy Num-
ber method is proposed in (Esmaeili et al. 2016) for intro-
ducing uncertainties in the distribution system but with a 
higher system loss. A probabilistic approach is shown in 
Carpinelli et al. (2015) to analyse the behaviour of the elec-
trical distribution system considering wind and photovoltaic 
generators in the presence of system uncertainties. The effect 
of uncertainty on optimal placement of capacitor in distribu-
tion system is analysed in (Das and Malakar 2020). (Raj and 
Kumar 2019) presented a modified affine approach for the 
power flow analysis in the RDS considering DG.

Paper Contribution

It has been observed from the published literature that the 
combined application of the IA and the probabilistic approach 
to determine the load interval width variations for solving the 
power flow problem considering different types of DG has not 
been evaluated before. This article contributes to the existing 
body of knowledge by making use of the hybrid possibilis-
tic–probabilistic approach. This article presents a direct tech-
nique to simulate results for Type I, Type II and Type IV DG 
with a composite load (CL) model considering uncertainties 
in system input parameters (both line and load). All input vari-
ables (line and loads) and generation in the system are defined 
as random variables with load uncertainty as Gaussian distri-
bution function, whereas line variables and DG uncertainty 
are varied at fixed proportion. Further, the results of previous 
literature and the proposed technique are compared and the 
significant improvement in the voltage profile is observed by 
installing DG at different buses. The proposed method is also 
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found out be less conservative as compared to the published 
methods. Various case studies for uncertainty in load models 
with and without DG have been presented in Sect. 6. The sum-
marized contributions of this article are given below:

A combined application of the IA and probabilistic 
approach to incorporate load uncertainty is presented for 
analysing the performance of the proposed method to 
obtain more realistic and accurate state of the distribution 
system.
Uncertainty in both system parameter and different types of 
DGs (Type I and IV DG) is considered.
The effect of system uncertainties is also analysed in the 
presence of different DGs and load models by directly 
integrating them into the Interval-based backward-forward 
power flow algorithm.
The analysis of system’s performance in the presence of 
DGs is carried out considering system uncertainties which 
actually helps the distribution system operators (DSO) in 
future planning.
The results signified that the proposed technique is efficient 
and feasible to design larger systems with a high degree of 
uncertainty.

Interval Arithmetic

In this method, any number can be written in the form of a 
confidence interval (CI) either closed, open or a combination 
as opposed to a point estimate for a parameter of the system 
which suffers from the disadvantage that the estimated result 
cannot cover all possible solution space. An interval number 
can be defined as a set of real numbers. Let K and L be the 
two interval numbers (of real numbers) with their supporting 
interval [k1, k2] and [l1, l2], respectively. Here, the k1, l1 and k2, 
l2 represent the lower and upper interval limits (end points), 
respectively. The interval width of K and L is k2-k1 and l2-l1, 
respectively. The mathematical operations of addition, mul-
tiplication, subtraction, division, maximum and minimum 
can be applied to intervals numbers (Alefeld and Herzeberger 
1983).

where L−1 = [1/l2, 1/l1] with 0 ∉ [l1, l2].

(1)K + L = [k1 + l1, k2 + l2]

(2)K − L = [k1 − l2, k2 − l1]

(3)K ∗ L =
[
min.(k1 ∗ l1, k1 ∗ l2, k2 ∗ l1, k2 ∗ l2

)
,max.(k1 ∗ l1, k1 ∗ l2, k2 ∗ l1, k2 ∗ l2)]

(4)
K

L
= K ∗ L−1

The distance between two interval numbers, K and L 
is given as

Complex uncertainty can be expressed by projecting 
real numbers to the complex domain. Any complex num-
ber whose real and imaginary parts are interval numbers 
can be expressed as a complex interval number. Using 
the above fundamental operations for the real numbers, 
the relationship between uncertain variables in terms of 
complex interval numbers is calculated for the power 
flow study. The uncertainties present in the system data 
are handled using IA. Therefore, resistance, reactance, 
system power and bus voltages are considered as interval 
numbers rather than  a fixed value. Here, load at any bus 
is varied over a certain range based on Gaussian distribu-
tion (continuous probability distribution) rather than fixed 
variation as discussed in Sect. 3.2.

Mathematical Modelling

Line Variation Model

The equivalent diagram of one branch connected between 
i-1th and ith bus in a single-line diagram (SLD) of a 
RDS of Fig.  1 is shown in Fig.  2. The line-to-ground 

(5)d(K, L) = max
[||k1 − l1

||, ||k2 − l2
||
]

Fig. 1   SLD of a sample RDS

Fig. 2   Equivalent diagram of a single branch of Fig. 1
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capacitance is very small for short line model in RDS and 
therefore neglected (Parihar and Malik 2020).

From Fig. 2, we get

where Vi is receiving-end bus voltage and Vi-1 is sending-
end bus voltage. Qi and Pi represent total downstream reac-
tive and real power load fed by the bus i, respectively. The 
initial voltage estimated at every bus including source bus 
is taken as [1.0,1.0] + j [0.0,0.0] p.u. As both voltage and 
power are complex interval quantities, the subsequent cur-
rent at bus i ( Ii ) is also found as a complex interval quantity 
given in Eq. (7) and can be evaluated using division opera-
tion as in Eq. (4).

where Pilo
 , Qilo

 and Piup
 , Qiup

 are the lower and the upper 
limit for real and reactive power load at bus i, respectively. 
The branch real power loss ( Ploss ) and reactive power loss 
( Qloss ) are expressed as

where X is the branch reactance and R is the branch 
resistance. The uncertainty in line parameter at a fixed pro-
portion can be introduced as

where Rlo(i) , Xlo(i) and Rup(i) , Xup(i) are the lower and the 
upper limit of resistance and reactance, respectively.

Load Variation Model

Generally, the load model chosen is complex power type 
but in practice, load is a combination of various voltage-
dependent load models, therefore, modelling load as 
the composite load is more appropriate which includes 
three practical voltage-dependent loads in addition to the 

(6)Pi + jQi = Vi ∗ I∗
i

(7)Ii =

[
Pilo

,Piup

]
− j

[
Qilo

,Qiup

]

Vi
∗

(8)Ploss(i − 1, i) =

(
Pi

2 + Q2
i

)

|Vi|2
∗ R

(9)Qloss(i − 1, i) =

(
Pi

2 + Q2
i

)

|Vi|2
∗ X

(10)Xlo(i) = (1 − %(X))X(i)

(11)Xup(i) = (1 + %(X))X(i)

(12)Rlo(i) = (1 − %(R))R(i)

(13)Rup(i) = (1 + %(R))R(i)

constant power load. Analysis of the effect of these load 
models in the distribution system is very useful for DSOs 
in different planning scenarios. Mathematically, these load 
models can be given as

The 1st term of (14) and (15) represents the constant 
power (CP) load, the 2nd term signifies the constant current 
(CC) load, the 3rd term shows the constant impedance (CZ) 
load and the last term indicates the exponential load. Pino is 
the nominal real power load and  Qino is the nominal reac-
tive power load at bus i. The values of the participating 
coefficients may vary as per the locality and nature of load 
connected. The coefficients considered for the analysis 
purpose are  a = a1 = 0.2,b = b1 = 0.3, c = c1 = 0.25 and d 
= d1 = 0.25 for both test systems (Ranjan et al. 2003). The 
values of the exponents chosen for the exponential load are 
x1=1.38 and x2 = 3.22 (Ranjan et al. 2003) for both test 
systems. The random fluctuations in the model parameters 
such as reactive and real power load demand are fairly 
represented by the normal distribution and is expected to 
change as per the Gaussian distribution function because 
we have a large sample size for the power load in IEEE 
bus system and so central limit theorem kicks in. As the 
distribution system with uncertainties provides many ran-
dom solutions, hence, Gaussian distribution function is 
used to model load over other distribution functions. The 
Gaussian distribution is a bell-shaped distribution which 
is symmetric about its mean value and is defined as in (16)

where distribution parameters μ and �2 are the mean 
(expected) value and the  variance of the base loads, 
respectively, and are considered as random variables. The 
variance captures the width/spread of the probability dis-
tribution, i.e. how far the random variable is expected to 
vary (specific percentage) from its mean value. The nor-
malized value of the real or reactive power load ( yi ) at the 
ith bus is given as (Chaturvedi et al. 2006)

where Pi and Qi are defined in (14) and (15), 
respectively.

The degree of belongingness for real and reactive power 
load is denoted by  �pl(k)  and �ql(k) , where k represents 
the number of degree of belongingness varying from 1 

(14)Pi = Pino ×
(
a + b|V| + c|V|2 + d|V|x1)

(15)Qi = Qino × (a1 + b1|V| + c1|V|2 + d1|V|x2 )

(16)f (yi) =
1√
2��2

e−
1

2

(yi − �)2

�2

(17)yi =
Pi

Pino

and yi =
Qi

Qino
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through N, where N is taken as the number of points of 
linearization of the Gaussian curve. The degree of belong-
ingness will have a value from �plmax

N
  (minimum degree 

of belongingness) to �plmax (highest possible degree of 
belongingness) for the specified number of intervals N. 
The Gaussian distribution curve of real power load is 
shown in Fig. 3 (Chaturvedi et al. 2006). From the char-
acteristic curve of the load illustrated in Fig. 3, the mean 
value of the normalized system power load is 1.0 for the 
degree of belongingness 1.0.

Equation (16) can be rewritten as

From the above equation, we get � = 0.399 for � = 1.0 
and �pl(k) = 1.0.

Using � = 0.399 as a fixed standard deviation through-
out the study and using � = 1.0 in (18), we get

Similarly, for reactive load

Right-hand side of (19) and (20) is given as

Thus, (19) can be rewritten as

(18)�pl(k) = f

�
Pi

Pino

�
=

1√
2��2

e

�
Pi

Pino

− �

�2�
2�2

(19)Pi

Pino

− 1 = ±

√
−ln

(
�pl(k)

)
�

for
Pi

Pino

≠ 1

(20)Qi

Qino

− 1 = ±

√
−ln(�ql(k))

�
for

Qi

Qino

≠ 1

(21)

√
−ln(�pl(k))

�
= �K =

√
−ln(�ql(k))

�

where ± sign provides a lower limit and an upper limit of 
real and reactive power load at the ith bus.

Linearization at different values of k of the above equa-
tions results in k distinct load intervals in bounded form. The  
linearization conducted at three different points as shown in 
Fig. 3 provides three distinct load intervals (D-regions) as 
given below.

Equations (28–30) clearly reflect that the D1, D2 and D3 
are definitely in bounded form. Therefore, IA operation must 
be applied to integrate these variations in power flow.

Distributed Generators Modelling

The DG resources of small size generally operate in constant 
power mode, that is, the generator bus is being modelled as a 
constant negative PQ load. According to IEEE 1547 Stand-
ard (2003), the utilities do not recommend the DG units to 
regulate bus voltages in order to avoid their conflict with the 
existing voltage control schemes (Walling et al. 2008). In 
addition to this, as the amount of reactive power delivered 
by the generator depends upon the system configuration and 
cannot be stated in advance. Therefore, the DG is modelled 
as PQ load. On the basis of power delivering capability, DG 
is classified as (Jagtap and Khatod 2016).

Type I (injects real power, power factor (PF) = 1): Ex. 
photovoltaic, battery, fuel cell
Type II (injects reactive power, PF = 0): Ex. synchronous 
capacitor

(22)
Pi

Pino

= 1 ± �K

(23)Pi = Pino(1 ± �K)

(24)Pilo
= Pino(1 − �K)

(25)Piup
= Pino(1 + �K)

(26)Qilo
= Qino(1 − �K)

(27)Qiup
= Qino

(
1 + �K

)
where k = 1, 2,… ., N

(28)
D1 →

{
Pino[1 − �1],Pino[1 + �1]

}
point interval for k = 1

(29)D2 →

{
Pino[1 − �2],Pino[1 + �2]

}
for k = 2

(30)D3 →

{
Pino

[
1 − �3

]
,Pino

[
1 + �3

]}
for k = 3

Fig. 3   Gaussian distribution of load
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Type III (injects real power, consumes reactive power, PF 
is leading): Ex. induction generator
Type IV (injects reactive and real power at lagging PF): 
Ex. synchronous generator, wind power

The system performance in terms of bus voltage enhance-
ment and loss reduction attained from Type III DG is found 
out to be worst amongst all other DG types (Pradeepa et al. 
2015). The total load demand is reduced by the power 
injected by the DG at that bus. If a DG is placed at bus i, 
then the equivalent load at the same bus can be articulated as

where Pgi and Qgi represent the real and reactive power 
penetrated by any DG connected at bus i, respectively. As 
uncertainty may also be present in the distribution system 
due to variation in generation, therefore, it is important to 
consider uncertainty in DG units as well. The uncertainty 
in Type I and Type IV DG is considered to vary at fixed 
proportion in this paper.

Interval‑Based Backward/Forward Power 
Flow Solution Methodology

A direct power flow solution (Teng 2003) of RDS is obtained 
by the multiplication of the BCBV (Branch Current to Bus 
Voltage) matrix and BIBC (Bus Incidence to Branch current) 
matrix. This technique is free from the substitution of the 
admittance matrix, Jacobian matrix and matrix decomposi-
tion because of which this technique is found to be superior 
to other methods. To articulate the BIBC matrix, branch 
currents are expressed as a function of the equivalent bus 
current injection. From Fig. 1, we get

The above formulated matrix is an upper triangular 
matrix having values 0 and 1. Thus (33) can be given as

For BCBV matrix formulation, the bus voltages are 
expressed in terms of branch current, branch impedance 

(31)P
eq

i
= Pi − Pgi

(32)Q
eq

i
= Qi − Qgi

(33)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1

B2

B3

B4

B5

B6

B7

B8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 0 1 1 0 0 1 1

0 0 0 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I2

I3

I4

I5

I6

I7

I8

I9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(34)
[
B
]
=
[
BIBC

][
I
]

and the substation bus voltage. Hence, its relationship can 
be given as (35)

The above matrix is a lower triangular matrix rep-
resented by branch impedances. The above (35) can be 
rewritten as (36)

where ΔV  is defined as a vector of system bus voltage 
differences compared to the substation bus voltage (1.0 
p.u). By substituting (34) in (36),

where DPF stands for distribution power flow matrix 
which gives a direct solution for the power flow problem 
by multiplying BIBC and BCBV matrices. Therefore, the 
iterative formula used for the solution of a power flow 
problem is given by (39) and (40).

where V0
i
 is the initial voltage [1.0,1.0] + j [0.0,0.0] p.u.

As Vn
i
 and V0

i
 are both complex interval numbers, they 

can be expressed as Vn
i
= A1 + iA2 and V0

i
= B1 + iB2 , 

where A1 , A2 , B1 and B2 are all interval numbers.

where d
(
A1,B1

)
 and d(A2,B2) are calculated using Eq. 

(5).
The bus voltage magnitude and system losses are deter-

mined as per the given steps:

Step I: Read system load and line data at various buses.
Step II: Find the degree of belongingness �pl(k)  and 
�ql(k) for the specified number of intervals N.
Step III: All buses including the source bus are initial-
ized to a flat voltage start of [1.0,1.0] + j [0.0,0.0] p.u. 

(35)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V1

V1

V1

V1

V1

V1

V1

V1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V2

V3

V4

V5

V6

V7

V8

V9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z12 0 0 0 0 0 0 0

Z12 Z23 0 0 0 0 0 0

Z12 Z23 Z34 0 0 0 0 0

Z12 Z23 Z34 Z45 0 0 0 0

Z12 Z23 0 0 Z36 0 0 0

Z12 Z23 0 0 Z36 Z67 0 0

Z12 Z23 Z34 0 0 0 Z48 0

Z12 Z23 Z34 0 0 0 Z48 Z89

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1

B2

B3

B4

B5

B6

B7

B8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(36)
[
ΔV

]
=
[
BCBV

][
B
]

(37)
[
ΔV

]
=
[
BCBV

][
BIBC

][
I
]

(38)
[
ΔV

]
= [DPF]

[
I
]

(39)
[
ΔVn

i

]
= [DPF]

[
In−1
i

]

(40)
[
Vn
i

]
=
[
V0
i

]
+
[
ΔVn

i

]

(41)Vn
i
− V0

i
= max

[
d
(
A1,B1

)
, d(A2,B2)

]
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Real and reactive system power losses are initially set to 
zero. Slack bus angle and iteration count are set to zero.
Step IV: Compute the equivalent real power load and 
reactive power load at the bus where the DG has been 
installed using (31) and (32).
Step V: Define the variation in line and load data and 
determine their respective closed intervals using (10) 
through (13) and (24) through (27), for the different 
degree of belongingness.
Step VI: Update the bounded intervals for real and reac-
tive power load for the composite nature of load using 
(14) and (15).
Step VII: Formulate BIBC, BCBV and DPF matrices.
Step VIII: Calculate bus current and bus voltage using 
Eqs. (7) and (40) using subtraction, division, multiplica-
tion and addition operation of the complex interval num-
bers as explained in Sect. 2.
Step IX: If max

[
d
(
A1,B1

)
, d(A2,B2)

]
< 0.0001 for all the 

buses then go to step X, otherwise go to step V.

Step X: Determine system power losses using Eqs. (8) 
and (9).
Step XI: Obtain the results for a particular value of �pl(k)  
and �ql(k).
Step XII: If k = N terminates the programme, else give 
increment to the counter and jump to step II.

Figure 4 illustrates the complete work flow of the pro-
posed approach to solve Interval-based backward/forward 
power flow problem.

Simulation Test Result and Discussion

To illustrate the performance of the IA-based power flow 
algorithm, it has been extensively stimulated on three IEEE 
distribution test systems having different configuration, 
size and complexity level to authenticate its robustness. 
The single-line diagram of IEEE 33-bus and the 69-bus 
RDS is illustrated in Figs. 5 and 6, respectively, whereas 

Fig. 4   Flow chart of Interval-based backward/forward power flow solution methodology
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the complete system data for 33-bus, 34-bus and 69-bus 
RDS are taken from Baran and Wu (1989a), Salama and 
Chikhani (1993) and Baran and Wu (1989b), respectively. 
The power demand of 69-bus RDS is 3.803 + j2.693 MVA. 
The single-line diagram of the IEEE 34-bus system is taken 
from Salama and Chikhani (1993).

The base kV and MVA taken for 33-bus and 69-bus RDS 
are 12.66 kV & 100 MVA, respectively, and for IEEE 34-bus 
system as 11 kV & 5 MVA, respectively. The IEEE bus 
feeders were tested on MATLAB. A tolerance of 10–4 p.u in 
bus voltage difference in two successive iterations at all the 
buses is considered as the stopping criteria.

Power Flow with DG for Different Load Models

The voltage magnitude and system losses for the IEEE 
33-bus system were calculated by considering two differ-
ent cases: without and with DG. The DG is located at bus 
33 with DG power penetration of 25% of total real power 
load of the RDS as in (Jagtap and Khatod 2016). The bus 
voltages obtained for the IEEE 33-bus system for CP model 
before and after installation of Type I DG are tabularized in 
Table 1. Figure 7 exemplifies the convergence of the volt-
age magnitude with and without DG. It is obvious from the 

results that by installing DG the minimum voltage obtained 
at bus 18 is raised from 0.9131 p.u to 0.9274 p.u.

The impact of various load models on real and reactive 
system losses is analysed and tabulated in Table 2. The 
results depict the reduction in real and reactive losses of the 
system with DG integration for all the types of load models. 
The comparative study is carried out with previously pub-
lished results (Jagtap and Khatod 2016) and found compa-
rable in every respect. The CPU time for bus voltages com-
putation for the constant power load model in IEEE 33-bus 
system obtained from the proposed method is 0.05 s.

Uncertainties in Line and Load Data (Without DG)

In 33-bus system, the line and load uncertainties for the 
CP load model are taken as 1% and 5%, respectively, as in 
(Abdelkader et al. 2014). The interval width and percentage 

Fig. 5   SLD of 33-bus RDS

Fig. 6   SLD of 69-bus RDS

Table 1   Base case power flow results for 33-bus RDS with and with-
out DG

Bus No Voltage 
(p.u) with-
out DG

Voltage 
(p.u) with 
DG

Bus No Voltage 
(p.u) with-
out DG

Voltage 
(p.u) with 
DG

1 1.0000 1.0000 18 0.9131 0.9274
2 0.9970 0.9976 19 0.9965 0.9971
3 0.9829 0.9867 20 0.9929 0.9935
4 0.9755 0.9815 21 0.9922 0.9928
5 0.9681 0.9765 22 0.9916 0.9922
6 0.9497 0.9634 23 0.9794 0.9831
7 0.9462 0.9600 24 0.9727 0.9764
8 0.9413 0.9552 25 0.9694 0.9731
9 0.9351 0.9490 26 0.9477 0.9627
10 0.9292 0.9000 27 0.9452 0.9619
11 0.9284 0.9424 28 0.9337 0.9572
12 0.9269 0.9410 29 0.9255 0.9540
13 0.9208 0.9349 30 0.9220 0.9537
14 0.9185 0.9327 31 0.9178 0.9555
15 0.9171 0.9313 32 0.9169 0.9565
16 0.9157 0.9300 33 0.9166 0.9583
17 0.9137 0.9280

5 10 15 20 25 30 35
0.9

0.92

0.94

0.96

0.98

1

Bus Number

u.p
ni

edutinga
m

egatloV

without DG
with DG

Fig. 7   Voltage profile of a 33-bus distribution system
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reduction in it at minimum bus voltage for line and load 
uncertain parameters are calculated and tabulated in Table 3. 
The results obtained from the proposed probabilistic–pos-
sibilistic approach are further compared with the FAA 
(Abdelkader et al. 2014), which clearly illustrates that the 
interval width attained from the proposed approach is nar-
rower and hence the solution is found out to be less conserv-
ative and superior than the possibilistic approach alone. It 
was also observed that the incorporation of load uncertainty 
in the system leads to a greater voltage drop than with the 
line uncertainty.

The bus voltage convergence for the CP model and CL 
model for the 34-bus RDS is presented in Fig. 8. For the 
given system, the minimum bus voltage attained is 0.8834 
p.u at bus 27 for a constant power model and is 0.8961 p.u 
for the CL model. However, since the practical RDS has all 
types of load and system power losses are voltage-depend-
ent, it is more appropriate to consider the CL model. In addi-
tion to CL modelling, the disparity in input parameters is 
also considered for this case study using IA.

The degree of belongingness varies from 0 to 1.0. To 
exemplify the application of IA, the total real and reactive 
power fed and system power losses at three different degree 
of belongingness obtained for 34-bus RDS are depicted and 
compared with Chaturvedi et al. (Chaturvedi et al. 2006) in 
Table 4. The proposed approach takes four iterations less 
and is found to be in close agreement with the published 
results. Here, all four types of loads are considered for the 
CL model. The interval width in p.u and its reduction in 
% for power fed and system power losses in 34-bus RDS 
at α = 0.6 and 0.2 are calculated and given in Table 5. The 
obtained results demonstrate that the interval width obtained 
from the proposed method is narrower and hence the solu-
tion is found out to be less conservative than the published 
results.

Figure 9 illustrates the lower and upper limits of the volt-
age magnitude with different load parameters at α = 0.2, 0.6 
and 1.0. It can be recognized from the figure that the interval 
of voltage variation rises with a decline in the degree of 
belongingness. The voltage magnitude at each bus is within 
the interval attained by the IA power flow solution. The vari-
ation in minimum bus voltage for the 34-bus system at dif-
ferent degree of belongingness (0.1 through 1.0) has been 
displayed in Fig. 10, which shows that the interval width of 
voltage magnitude at bus 27 reduces as degree of belonging-
ness increases.

The interval width of voltage magnitude in IEEE 69-bus 
system considering fixed load variation of ± 5% was calcu-
lated for CP load model in (Nogueira et al. 2021). The inter-
val width obtained in this study is 0.0001 p.u at bus 29 and 
0.0097 p.u at bus 63, which is found to be less as compared 
to 0.0002 p.u at 29 and 0.0098 p.u at bus 63 as mentioned in 
Nogueira et al. (2021).

Table 2   Performance 
comparison for 33-bus RDS 
with published results

Load Model Without DG With DG

Ploss (kW) Qloss (kVAr) Ploss (kW) Qloss (kVAr)

Proposed method CP 202.665 135.132 133.586 92.659
CC 176.361 117.346 119.865 83.133
CZ 155.697 103.379 111.289 77.008

Jagtap and Khatod (2016) CP 202.67 135.14 133.58 92.66
CC 176.61 117.51 120.82 84.06
CZ 155.69 103.38 110.05 76.87

Table 3   Interval width of 
minimum bus voltage for CP 
load model in IEEE 33-bus 
system

Output variable Uncertainty Interval width (p.u) Interval width 
reduction in %

FAA Abdelkader 
et al. (2014)

Probabilistic–possibil-
istic approach

Vmin (p.u) Line uncertainty 0.0021 0.0019 9.52
Load uncertainty 0.0142 0.0094 33.80
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Fig. 8   Bus voltage profile for CP and CL model for 34-bus RDS
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Uncertainties in Line and Load Data (with Different 
Types of DG)

In this case, independent placement of Type I, Type II and 
Type IV DG is presented for the IEEE 69-bus system. The 
variation of ± 3% is taken in the line parameter, whereas 
variation in load parameter is taken as per the Gaussian dis-
tribution function. The DG is located at bus 61 as in Ali 
et al. (2018). The real and reactive power penetration are 
assumed to be 25% of the total real and reactive power load 
demand, respectively.

For the CL model, value of Vmin is upgraded from 0.9181 
p.u to 0.9522, 0.9272 and 0.9588 p.u at bus 65 after penetra-
tion of Type I, II and IV DG with the percentage voltage 
improvement of 3.7%, 1% and 4.4%, respectively, for fixed 
line and load data. The deterministic CPU time determined 
for bus voltages computation with the CL model in 69-bus 
RDS for the base case (no DG) and with Type I, Type II 
and Type IV DG is 0.03 s and 0.043 s, 0.047 s and 0.040 s, 
respectively. Table 6 tabularizes the simulated results for 
minimum bus voltage, total system losses (real and reac-
tive) of 69-bus RDS with Type I, Type II and Type IV DG 
penetration for the deterministic case as well as when uncer-
tainties occur in line and load parameter at a different degree 
of belongingness. Based on the lower and the upper bounds 
of the minimum voltage magnitude, the interval width for 

Table 4   Total Real and Reactive power fed and losses with the CL model for 34-bus RDS

Degree of belongingness αpl, αql = 1 αpl, αql = 0.6 αpl, αql = 0.2

Output variables (p.u) Proposed method Chaturvedi 
et al. (2006)

Proposed method Chaturvedi 
et al. (2006)

Proposed method Chaturvedi 
et al. (2006)

Total Real Power Fed Lower 0.9998 0.9995 0.5796 0.5795 0.2696 0.2695
Upper 0.9998 0.9995 1.4421 1.4747 1.7997 1.8970

Total Reactive Power Fed Lower 0.5958 0.5957 0.3506 0.3505 0.1651 0.1651
Upper 0.5958 0.5957 0.8474 0.8567 1.0468 1.0744

Total Real Power Loss Lower 0.0725 0.0722 0.0262 0.0261 0.006 0.0060
Upper 0.0725 0.0722 0.1409 0.1735 0.2087 0.3060

Total Reactive Power Loss Lower 0.0211 0.0210 0.0076 0.0076 0.0018 0.0017
Upper 0.0211 0.0210 0.0410 0.0502 0.0607 0.0883

Table 5   Interval width at different degree of belongingness in IEEE 34-bus system

Degree of belongingness αpl, αql = 0.6 αpl, αql = 0.2

Output variables (p.u) Interval width (p.u) Interval width 
reduction in %

Interval width (p.u) Interval width 
reduction in %

Proposed method Chaturvedi 
et al. (2006)

Proposed method Chaturvedi 
et al. (2006)

Total Real Power Fed 0.8625 0.8952 3.6 1.5301 1.6275 5.9
Total Reactive Power Fed 0.4968 0.5062 1.8 0.8817 0.9093 3.0
Total Real Power Loss 0.1147 0.1474 2.2 0.2027 0.3000 3.2
Total Reactive Power Loss 0.0334 0.0426 2.2 0.0589 0.0866 3.2

Fig. 9   Voltage magnitude variation at different degree of belonging-
ness

Fig. 10   Voltage magnitude variation at a bus with minimum 
voltage|V27⃒
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Type I, II and IV DG are 0.0022 p.u, 0.0043 p.u and 0.0024 
p.u, respectively, at α = 1. The voltage magnitude interval at 
bus 65 is narrower for Type I and IV DG than that obtained 
from Type II DG installation. This concludes that the Type 
I and Type IV DG installation provides more realistic results 
in contrast to Type II DG.

Figure 11 demonstrates the consequence of introducing 
uncertainties (both line and load) on the voltage profile of 
the 69-bus RDS by considering CL model and different 
degree of belongingness, i.e. α = 0.2, 0.6 and 1. As expected, 
the voltage magnitude at each bus for the deterministic input 
parameter always lies within the possible system states 
obtained by variation in input parameters.

Figure 12 shows the variation of total Ploss and Qloss for 
CL model at various degree of belongingness with and with-
out considering Type IV DG in 69-bus RDS. It demonstrates 
that the power losses reduced significantly with the instal-
lation of Type IV DG for the IEEE 69-bus system. It can be 
recognized from Fig. 12 that the interval of power losses 
decreases with an increase in the degree of belongingness.

For 69-bus RDS, statistical analysis for Ploss reduction 
due to DG introduction has been carried out and found 
that the reduction in the value of coefficient of variation 
(CV) in power loss is maximum for Type IV DG with 
respect to other DG types as mentioned in Table 7. This 

Table 6   Results for 69-bus RDS 
with line and load uncertainty 
and DG penetration

Degree of belongingness αpl, αql = 1 αpl, αql = 0.6 αpl, αql = 0.2

DG Type Deterministic results Lower Upper Lower Upper Lower Upper

Type I Vmin 0.9522 0.9508 0.9535 0.9328 0.9706 0.9195 0.9860
Ploss 90.1626 87.8477 92.4557 35.5323 171.2908 8.1436 244.4568
Qloss 44.2705 43.1128 45.4187 17.2095 84.7258 3.9396 121.5718

Type II Vmin 0.9272 0.9250 0.9293 0.8952 0.9576 0.8723 0.9797
Ploss 144.3285 140.0834 148.5690 50.2986 290.2340 11.4891 431.4791
Qloss 67.5838 65.5932 69.5723 23.5387 135.9854 5.3741 202.2404

Type IV Vmin 0.9588 0.9576 0.9600 0.9406 0.9761 0.9276 0.9886
Ploss 59.967 58.199 61.7331 20.8732 120.6799 4.7624 179.4386
Qloss 31.4193 30.4908 32.347 10.9251 63.296 2.4907 94.1839

Fig. 11   Voltage profile with Type IV DG at different degree of 
belongingness with fixed and varying line and load parameters

Fig. 12   Variation of system power losses at various degree of belong-
ingness

Table 7   Statistical analysis for power loss due to DG penetration in 
69-bus RDS with CL model and uncertainty

DG type P
loss

(kW) Deterministic Lower Upper

Without DG Min 1.2510e-05 1.2135e-05 1.2885e-05
Max 39.5904 38.4491 40.7293
Mean 2.7064 2.6279 2.7846
Std 6.7987 6.6021 6.9948
CV 2.5121 2.5119 2.5123

Type I Min 1.2450e-05 1.2087e-05 1.2830 e-05
Max 15.7875 15.3983 16.1720
Mean 1.3259 1.2918 1.3596
Std 3.1212 3.0416 3.2001
CV 2.3541 2.3537 2.3544

Type II Min 1.2510e-05 1.2135e-05 1.2885e-05
Max 29.3071 28.4464 30.1667
Mean 2.1225 2.0601 2.1848
Std 5.2075 5.0544 5.3605
CV 2.4535 2.4534 2.4535

Type IV Min 1.2510e-05 1.2135e-05 1.2885e-05
Max 10.3873 10.0807 10.6936
Mean 0.8819 0.8559 0.9078
Std 2.0306 1.9708 2.0905
CV 2.3027 2.3026 2.3027
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demonstrates that the Type IV DG is capable of reduc-
ing the variation in system power losses in distribution 
feeders around its mean value much more effectively than 
other DG types and therefore gives better security against 
overheating of the distribution feeders. The mean, stand-
ard deviation (Std), coefficient of variation, minimum 
(min) and maximum (max) of real power loss lies between 
their lower and upper limits for α = 1.0, 0.6 and 0.2 but 
has been shown for α = 1.0 only, in Table 7. It was also 
found out that the higher DG penetration level increases 
the CV due to a higher degree of uncertainty.

Uncertainties in DG output

The power generation by DG units brings additional 
uncertainties in the system. Solar PV system (Type I 
DG) and wind power (Type IV DG) output are uncertain 
because of variability in solar insolation and wind speed, 
respectively. The non-stochastic controllable DG such as 
gas turbine output is also uncertain as it depends upon 
the decision of private DG owner. Therefore, Sect. 5.3 is 
extended to include uncertainty in the DG output power 
and is taken as ± 5% as in Vidovic and Saric (2017). The 
equivalent real and reactive power load at uncertain DG 
output power can be obtained using

The results attained for 69-bus RDS with the line, 
load and DG uncertainty are determined and tabulated in 
Table 8 for minimum bus voltage magnitude and system 
losses at a different degree of belongingness. The bus 
voltage magnitude and system power losses obtained for 
deterministic input parameters are found to lie within the 
possible system states.

(42)P
eq

i
(lo, up) = Pi − Pgi ± (0.05)Pgi

(43)Q
eq

i
(lo, up) = Qi − Qgi ± (0.05)Qgi

Conclusion

Modern RDS is subjected to many uncertainties due to var-
iations in load demand and new generation technologies, 
which motivates operators to develop new tool for incor-
porating these uncertainties in the system. In this context, 
a hybrid probabilistic–possibilistic method for solving the 
power flow problem with different types of DGs is presented 
to investigate the impact of line, load and DG uncertain-
ties in the RDS. The probabilistic approach is implemented 
to introduce load uncertainty in distribution system using 
Gaussian distribution function. Four numerical test cases 
have been developed and solved for different complexity lev-
els of the power flow problem. The voltage characteristic of 
the RDS for a different degree of belongingness is obtained 
without and with considering DG and is found to be affected 
by voltage-dependent load models. The proposed approach 
provides tighter solution interval and comprises all possi-
ble states of the system thus signifying numerical stabil-
ity and robustness of the method, especially for large-scale 
RDS when compared with the possibilistic approach (FAA) 
alone. The robustness of the method for solving distribu-
tion power flow was demonstrated on IEEE 33-bus, 34-bus 
and 69-bus RDS. It has also been statistically acknowledged 
from the test cases that the algorithm gives more realistic 
and consistent results in terms of lowest power losses, better 
voltage profile and less overheating of feeders. The percent-
age reduction in the interval width of 34-bus system losses 
is 2.2% and 3.2% for 0.6 and 0.2 degree of belongingness, 
respectively, when compared with the published result. The 
interval width of bus voltage magnitude in 69-bus system 
considering line uncertainty is 0.0027 p.u, 0.0378 p.u and 
0.0665 p.u at 1, 0.6 and 0.2 degree of belongingness, respec-
tively. The results demonstrated the significant influence of 
uncertainties on results and hence cannot be neglected. The 
qualitative information from the solution is essential to the 
DSOs for the planning and expansion of the RDS. Here, the 
analysis has been carried out without optimally allocating 
DG in the system. The proposed technique can be further 

Table 8   Results for 69-bus 
RDS with the line, load and DG 
uncertainty

Degree of belongingness αpl, αql = 1 αpl, αql = 0.6 αpl, αql = 0.2

DG type Determinis-
tic results

Lower Upper Lower Upper Lower Upper

Type I Vmin 0.9522 0.9447 0.9566 0.9403 0.9669 0.9282 0.9842
Ploss 90.1626 84.9732 109.9609 39.6857 158.3754 9.1013 227.0579
Qloss 44.2705 42.1069 52.7606 19.0156 78.9967 4.3561 113.8403

Type IV Vmin 0.9588 0.9521 0.9660 0.9524 0.9713 0.9419 0.9863
Ploss 59.967 46.6915 75.7448 27.2047 91.3878 6.2143 136.0057
Qloss 31.4193 25.7256 38.1202 13.6780 50.4008 3.1220 75.0628
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extended to evaluate possible system states in the presence 
of optimally allocated DG.
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this published article.
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