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Abstract
It has been previously established that, for multi-criterion selection problems, over a finite set of options, solved via simple
additive weighting, there exists a set of weights for which the optimal alternative remains the best choice. This invariance region
in the n-dimensional hyperspace defined by the problem criteria contains the set of all weights for which the optimal solution is
robust to preference changes. When the set of options is a continuum, there are no known invariance regions reported in the
literature. In this work, we develop a procedure to characterize and trace this invariance region when the number of options is
finite. The methodology is demonstrated on a case study involving a selection of negative emission technologies based on carbon
sequestration potential, water footprint, energy demand, and cost.

Keywords Multiple-attribute decision-making (MADM) . Simple additive weighting (SAW) . Sensitivity analysis . Rank
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Introduction

Multiple-attribute decision-making (MADM) problems are
prevalent in sustainable engineering, where technology op-
tions often need to be evaluated based on a number of criteria
representing technical, economic, environmental, social, and
other relevant considerations. Simple additive weighting
(SAW) is an MADM method whose origins can be traced
back to the work of MacCrimmon (1968). SAW involves a
two-step procedure, where the performance ratings of alterna-
tives are first normalized to a commensurate dimensionless
scale, such as the interval [0, 1], where the interval limits
include the worst and best possible scores, respectively. The
weighted sum of the score of each alternative is then

computed, and the options are finally ranked based on the
values of the aggregate scores. This general approach is valu-
able for identifying optimal technologies from a sustainability
perspective (Sikdar 2009). It is assumed that the weights used
are exogenously determined, for instance, using the pairwise
comparison approach of the analytic hierarchy process (AHP)
of Saaty (1980), and that the weights sum up to unity.

For any given MADM problem, when the number of op-
tions is finite, the SAW method involves the following equa-
tions:

Σ j w j di j ¼ si ∀i ð1Þ
Σ j w j ¼ 1 ð2Þ

where wj is the dimensionless weight of criterion j, dij is the
dimensionless score of alternative i with respect to criterion j,
and si is the aggregate score of alternative I, where i is a
member of a finite set. The optimal solution is the alternative
with the highest aggregate score, si′. The choice of weighting
factors clearly determines the solution of the problem. These
weights reflect the decision-maker’s preferences and are thus
inherently subjective. As such, elicitation of appropriate
weights remains a major issue in the MADM research.

Research on MADM methodology has sought to develop
means to capture uncertainties inherent in weighting. For
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example, imprecise weight values can be represented using
appropriate mathematical frameworks for representing episte-
mic uncertainty, such as fuzzy set theory (e.g., Geldermann
et al. 2000; Tseng 2013). Alternatively, sensitivity analysis is
also widely used to handle uncertainties with respect to
decision-maker preferences in MADM problems. The disper-
sion of aggregate scores can give important insights such as
identifying critical attributes (Maliene et al. 2018). A common
approach is to vary the weight of one criterion from 0 to 1,
while assuming that the other weights make up the balance
and retain constant relative proportions (e.g., Tan et al. 2016).
Such approaches are able to detect rank reversals among all
alternatives, but are limited to the isolated analysis of one
criterion at a time. On the other hand, the decision-maker
may be concerned only with the optimal alternative and
competitors which threaten to overtake it, but may be
interested in the interplay among criteria weights. Cruz and
Almario (2018) established the existence of a rank invariance
region in n-dimensional space defined by the criteria in the
MADM problem, provided that the number of options is fi-
nite. This region contains the set of all criteria weights for
which the optimal alternative in a SAW problem remains op-
timal. There is no known result on invariance when the num-
ber of options is not finite. Cruz and Almario (2018) is the
only paper that characterized the invariance region. As no
numerical procedure was proposed by Cruz and Almario
(2018) to trace this rank invariance region, we propose a meth-
odology for this purpose and illustrate it with an MADM
example from the literature. The main novelty of this work
lies in providing a specific procedure for performing a special
form of sensitivity analysis in MADM problems.

Problem Statement

The problem addressed in this work may be stated as follows:

& Given a set of M alternatives each rated with respect to N
criteria on a scale in the interval [0, 1], where 1 corre-
sponds to the most desirable score;

& Given a set of normalized weights wj by which the aggre-
gate scores of the alternatives si can be found via SAW;

& Given an optimal solution identified by inspection of its
aggregate score si′;

& The task is to determine the set of weights for which the
optimal solution remains optimal.

Methodology

This methodology is partly based on a procedure developed
by Cortés-Borda et al. (2013) for sensitivity analysis with

respect to weights in the context of life cycle assessment
(LCA). However, in the context of LCA, the weights are gen-
erally not subject to the constraint defined by Eq. (2) in the
SAWmethod. Instead, LCAweights are independent and thus
potentially unbounded, which limits the previously developed
method to the analysis of one weight factor at a time. In this
work, the convex n-dimensional polytope that defined the
rank invariance region can be traced numerically.

Stage 1: Determining the Bounding Polytope

The decision-maker may seek to determine the upper and
lower bounds of the weights for which the optimal alternative
remains optimal. For any given weight wj, the upper bound
(wU

j) can be determined by solving the linear programming
(LP) model:

max w j ð3aÞ

subject to:

si ≤ si′ ∀i≠i′ ð3bÞ
Σ j w j di j ¼ si ∀i ð3cÞ
Σ j w j ¼ 1 ð3dÞ

where constraint (3b) ensures that the optimal alternative score
si′ is at least as good as any of its competitors, and constraints
(3c) and (3d) are the same as Eqs. (1) and (2) in the basic SAW
method. Conversely, for eachweightwj, the lower bound (w

L
j)

can be determined by retaining all the LP constraints, and
replacing objective function (3a) with

min w j ð4Þ

In Cruz and Almario (2018), the invariance set is defined
by (3b), (3c), and (3d). In this paper, we provide a numerical
procedure for finding this set.

This procedure is repeated for all the weights, thus deter-
mining a convex polytope bounded by pairs of parallel hyper-
planes that correspond to these upper and lower bounds. The
resulting polytope gives the outer bounds of the rank invari-
ance region, which is itself a convex polytope inscribed within
the said limits. For some decision-makers, this information
may be sufficient, as any weight deviation beyond the identi-
fied limits is guaranteed to result in a new optimum.

Stage 2: Tracing the Rank Invariance Region

The next step is to trace the rank invariance region itself,
which is inscribed within the polytope determined by the pre-
vious step. The hyperplanes which define the faces of the rank
invariance regions signify the limits beyond which the base-
line optimal solution is overtaken by other alternatives as the
weights shift. The rank invariance region corresponds to the
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feasible region of the LP above. Applying the simplex algo-
rithm to the model, however, is not guaranteed to identify all
of the vertices of the feasible region, since the procedure will
halt as soon as an optimum is reached. Instead, the exact
boundaries of this region can be found by applying any of a
range of established algorithms for tracing convex polytopes
(Mathiess and Rubin 1980). For sufficiently small problems
with up to four criteria, the resulting region is easily visualized
for decision support purposes. On the other hand, for prob-
lems with more than four criteria, direct visualization will not
be possible, so the decision-maker can opt to use the bounds
determined in Stage 1 as an outer approximation of the
polytope.

Case Study

This case study involves the comparison of negative emission
technologies (NETs), which are techniques for removing at-
mospheric carbon. Haszeldine et al. (2018) argue that NETs
will need to be deployed commercially in the coming decades
in order to stabilize climate change to safe levels. The data
used in this example are drawn from the conservative esti-
mates reported by Smith et al. (2016) on selected NETs that
can be used in the UK. The available options are listed and
described briefly in Table 1, while their normalized scores
with respect to carbon, water, and energy footprints are given
in Table 2. Note that values of 0 and 1 signify the worst and
best alternatives for any given criterion; the normalization of
the raw data into this dimensionless form is a trivial stepwhich

is omitted here for brevity. The weights of the criteria are
initially assumed to be 0.6, 0.1, 0.1, and 0.2, respectively,
which leads to alternative AR being selected as the optimal
solution based on its aggregate score of 0.78.

In this problem, all possible weight combinations can be
mapped on a three-dimensional tetrahedral diagram whose
vertices correspond to full weighting (i.e., wj = 1) to each of
the four criteria. The methodology developed is implemented
using the commercial optimization software LINGO.
Applying Stage 1 of the procedure gives the upper and lower
bounds of the weights, which are shown in Table 3. These
results show that the optimal solution AR is most sensitive
to the weight of the water requirement (w2), because rank
reversal definitely occurs for w2 > 0.53. On the other hand,
the optimal alternative can remain optimal-specific cost
weights (w4) ranging from 0 to 1 and is thus least sensitive
to this criterion.

Subsequent application of Stage 2 generates the rank in-
variance region. This 3-dimensional polytope which can be
visualized by parametrically varying the weight of one of the
criteria to generate as a series of 2-dimensional polygons.
These polygons represent parallel cross-sections or cuts
through the polytope. For example, Fig. 1 shows the two-
dimensional sections of the rank invariance region with cuts
at w4 = 0, 0.3, 0.6, and 0.9, plotted here using the spreadsheet
developed by Graham and Midgley (2000). Each of the four
sections shown is a rank invariance region at a corresponding
value of w4. The boundary of the rank invariance at w4 = 0 is
indicated by the green triangle in Fig. 1. The edges of this

Table 1 Alternative NETs (Smith et al. 2016)

Alternative Description

Bioenergy with CO2 capture
and storage (BECCS)

Augmentation of inherently
carbon-neutral biomass combustion
systems with CO2 capture and storage
(CCS) to effect net removal of atmo-
spheric carbon.

Afforestation and
reforestation (AR)

Increasing carbon stock in forest through
plant growth.

Soil carbon sequestration
(SCS)

Modification of agricultural practices to
maximize soil carbon stock.

Biochar application (BA) Application of stable, carbonized biomass
to soil to achieve long-term sequestra-
tion of recalcitrant carbon.

Direct air capture (DAC) Direct removal of atmospheric CO2 using
alkaline scrubbing systems coupled
with CO2 storage.

Enhanced weathering (EW) Acceleration of natural weathering of
basic minerals with chemical affinity
for atmospheric CO2 by size reduction
and application to soil.

Table 2 Normalized scores of NETs with respect to criteria (adapted
from Smith et al. 2016)

Alternative Sequestration
potential

Water
requirement

Energy
requirement

Specific
cost

Aggregate
score

BECCS 0.63 0.00 0.64 0.98 0.64

AR* 0.72 0.73 0.79 1.00 0.78*

SCS 0.00 1.00 0.79 1.00 0.38

BA 0.22 1.00 1.00 0.86 0.50

DAC 0.63 0.96 0.00 0.61 0.60

EW 1.00 1.00 0.07 0.00 0.71

*Optimal alternative at baseline state

Table 3 Upper and lower bounds of criteria weights

Sequestration
potential

Water
requirement

Energy
requirement

Specific
cost

Upper
limit

0.78 0.53 0.70 1

Baseline 0.60 0.10 0.10 0.20

Lower
limit

0 0 0 0
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region correspond to weight values where the baseline optimal
choice, AR, is overtaken by other alternatives. Above and to
the left of the rank invariance region, the new optimal choice
is EW, while to the left of this region, the best alternative
becomes BA. At the vertex with coordinates (0.33, 0.40,
0.27), alternatives AR, EW, and BA all have equal perfor-
mance. As the importance of cost (i.e., the value of w4) in-
creases, the optimal choice AR becomes increasingly more
robust to further perturbations in w1, w2, and w3. For instance,
at w4 = 0.6, the rank invariance region indicated by the blue
triangle occupies most of the feasible range of values of w1,
w2, and w3 (whose values should sum up to 0.4). Rank rever-
sal occurs below the lower edge of this region at higher values
of w2 (e.g., at w2 = 0.4 and w1 =w3 = 0), in which case, SCS
becomes the optimal solution.

Conclusion

A method has been developed to numerically determine the
invariance region of an MADM problem solved using the
SAW method, when the number of options is finite. This in-
variance region contains the set of weights for which the op-
timal alternative remains optimal. The procedure has been
illustrated on a problem involving ranking of NETs based on
three footprints (carbon, water, and energy) and implementa-
tion cost. The method is easily scalable and can be easily
applied to larger problems. The methodology is particularly
valuable for assessing novel sustainable technologies using
criteria whose priority weights are subject to volatility due to
the presence of multiple stakeholders or shifting priorities. In
future work, the algorithm can potentially be extended to other
MADM methods that use an additive structure, such as AHP.
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