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Abstract
This study examines the seasonal and long-term variations in land surface temperature over Dehradun, a rapidly expanding city 
in the Himalayan region of India. MODIS (Terra and Aqua) satellite data from 2000 to 2019 were utilized to assess (i) seasonal 
variations in surface urban heat island intensity (SUHII) and (ii) trends in land surface temperature (LST). Positive SUHII was 
observed over Dehradun throughout the year. However, the magnitude of SUHII varies both diurnally and seasonally, with 
greater intensity during daytime and the rainy season. Furthermore, our analysis reveals that spatio-temporal variations in 
LST over Dehradun are significantly influenced by land use-land cover (LULC) variables and elevation. Specifically, open and 
dense forest areas exert a negative influence, while urban built-up areas have a positive impact on LST. We observed that areas 
in Dehradun and its surrounding regions that underwent a transition in LULC from agriculture/open forest to urban built-up 
categories experienced the most significant increase in LST. This rise occurred despite a general warming trend observed in 
night-time LST across the entire study region, possibly due to global warming. Finally, our study demonstrates an increasing 
trend in annual cooling degree days, the number of cooling days, and electricity consumption in Dehradun. Therefore, our 
results suggest that urbanization in Dehradun has resulted in increased warming, which in turn, has steadily contributed to 
the growth in electricity consumption in the region.
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Introduction

Through landmark societal transitions such as agriculture, 
urbanization, and industrialization, humans have profoundly 
impacted various systems and subsystems on Earth, posing 
several environmental challenges. In the present-day context, 
the increase in the worldwide average surface temperature 
compared to the pre-industrial period (i.e., global warming) 
is one of the key challenges faced by human society (Hawkins 
et al. 2017; Schurer et al. 2017). Although global warming 
is mostly attributed to the unprecedented raise in the 

concentrations of greenhouse gases caused by the surge in 
anthropogenic activities over the last two centuries (Hansen and 
Sato 2004), the land use-land cover (LULC) change brought 
about by urbanization is also known to influence the local 
thermal climate of a place (Oke 2010).

Thus, if a rising temperature trend is observed at a place, 
it may have a contribution from both global warming caused 
by greenhouse gases and local warming due to LULC 
changes associated with urbanization. At the current pace 
of urbanization, it is expected that approximately 68% of 
the world’s population would reside in urban areas by 2050 
(World Urbanization Prospects 2018). A significant part 
of this increase in urbanization is likely to be concentrated 
in the low-income and lower-middle-income countries of 
Asia and Africa. Thus, as urbanization spreads to more areas 
of the world, the urban footprint on the local and regional 
thermal climate is also expected to grow.

The land use-land cover (LULC) changes accompanying 
urbanization involve the transformation of predominantly 
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vegetated and pervious surfaces into high-density built-up 
structures with impervious surfaces for industrial, commer-
cial, transportation, and residential activities (Oke 1981; 
Arnfield 1982; Li et al., 2017; Tabassum et al. 2023). These 
changes often manifest as the so-called ‘urban heat island’ 
(UHI), referring to the phenomenon of urban areas being 
warmer than the surrounding rural areas (Oke 1982). The 
formation of UHI adversely impacts the comfort level of 
residents in urban areas, forcing them to employ devices for 
space cooling. This puts additional pressure on local energy 
demand (Akbari et al. 2001; Kumari et al. 2021). There-
fore, studying urban climate dynamics is crucial for devising 
appropriate strategies for a city’s energy management.

In this regard, thermal remote sensing techniques (Voogt 
and Oke 2003) have been widely employed in urban climate 
studies over the last two decades (e.g., Pu et  al. 2006; 
Buyantuyev et al., 2010; Sobrino et al. 2013; Weng et al. 2014; 
Chakraborty et al. 2020; Morshed et al. 2022; Dutta et al., 
2022; Kimothi et al. 2023; Chettry 2023) due to their definite 
advantage in terms of spatial coverage. These studies generally 
examine spatio-temporal variations in satellite-derived land 
surface temperature (LST) to gain insights into the formation 
of the surface urban heat island (SUHI).

Most of these studies, however, pertain to plain regions of 
the world, as cities are preferentially located on flat terrain 
near rivers or coasts (Oke et al. 2017). However, urbaniza-
tion is not limited to plain regions. Countries such as India, 
facing immense population pressure, have witnessed unprec-
edented urbanization even in hilly regions (Singh et al. 
2021; Chettry 2022). In the last few years, several studies 
(Romshoo and Rashid 2014; Dame et al. 2019; Ullah et al. 
2019; Habeeb et al. 2019; Joshi 2021; Diksha et al. 2022) 
have highlighted the adverse impacts of urbanization in the 
Himalayan region. Studies examining the urban climate in 
hilly regions, however, are rather sparse. Understanding 
the changes in the local climate due to urbanization in hilly 
regions is more complex and challenging due to the addi-
tional influence of altitude on land surface temperature.

Estoque and Murayama (2017) showed that SUHI formed 
in a tropical mountain city in the Philippines, despite the 
cool climate of the study area. Similarly, Liao et al. (2021) 
also examined UHI formation over Chongqing city on hilly 
terrain in China and suggested a method to estimate the 
UHI index for cities with such terrain. In the Indian context, 
however, no attempts have been made (i) to examine the 
thermal climate variations in hilly urban areas by taking into 
consideration the altitudinal variations, and (ii) to assess the 
impact of urbanization-induced changes in thermal climate 
on cooling degree days (a proxy for energy demand for 
cooling) and electricity consumption in hilly urban areas.

The present study addresses these aspects by studying 
the seasonal and long-term variations in the thermal climate 
of Dehradun, the capital city of Uttarakhand state, India, 

situated in the Himalayan foothills. It is pertinent to mention 
that Dehradun has been included in the list of cities chosen 
for the Indian Government’s Smart Cities Mission, recogniz-
ing the need for providing a clean and sustainable environ-
ment with the application of 'smart' solutions for waste and 
energy management (https:// smart cities. gov. in/ sites/ defau lt/ 
files/ Smart CityG uidel ines. pdf downloaded on 23–05-2023). 
Thus, it becomes important to assess the impact of urbaniza-
tion on Dehradun’s thermal climate and examine its implica-
tions for the energy demand and consumption of the city.

Data Description and Methodology

Study Area

In the present work, the study area encompasses the Deh-
radun city municipality and its surrounding areas, covering 
a total area of 547  km2 (Fig. 1). Dehradun is located in the 
Indian state of Uttarakhand, positioned between 30.26° N 
and 30.40° N latitudes and 77.98° E and 78.10° E longitudes 
at an average elevation of 640 m above mean sea level. The 
city is bounded by the Himalayan ranges towards the north 
and the Shivaliks towards the south, the river Song to the 
east, and the river Tons to the west. Topographically, the city 
has hilly terrain with elevations ranging from 578 to 1041 m 
above mean sea level. However, considering the entire study 
area, the elevation range widens further from 483 to 2058 m 
above mean sea level.

The climate of Dehradun is characterized by hot summers 
when maximum temperatures may reach up to 40 °C or even 
higher during peak summer and cold winters when minimum 
temperatures may drop to 4 °C or even below during peak 
winter (Sharma et al. 2012). The average annual rainfall over 
Dehradun is more than 200 cm, the major part of which is 
received during the summer monsoon season (Sharma et al. 
2012). Over the last two decades, Dehradun has witnessed 
rapid urbanization. The Dehradun metropolitan area's 
population grew from 0.535 million in 2001 to 0.713 million 
in 2011, and its current population is estimated to be 0.992 
million in 2023 (Dehradun Population n.d.).

Landsat 7 Data

In the present work, the LULC classification of the study 
area for the year 2000 was conducted based on Landsat 
7 imagery dated February 24, 2000. Equipped with 
a powerful sensor, Enhanced Thematic Mapper Plus 
(ETM +), this satellite was launched by NASA in 1999 to 
capture information on Earth’s landmasses. At a height of 
705 kms, the satellite is positioned in a sun-synchronous 
orbit, crossing the equator at approximately 10:00 am on a 
descending orbital node from north to south. The satellite 

https://smartcities.gov.in/sites/default/files/SmartCityGuidelines.pdf
https://smartcities.gov.in/sites/default/files/SmartCityGuidelines.pdf
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has a swath of 185 km with a repeat coverage cycle of 
16 days. It captures high-quality data in the visible (bands 
1, 2, and 3), infrared (bands 4, 5, and 7) regions of the 
electromagnetic spectrum at a spatial resolution of 30 m and 
the thermal (band 6) region at a spatial resolution of 60 m 
(Goward et al. 2001; Rongali et al. 2018).

Sentinel 2 Data

We utilized a Sentinel 2 image from March 6, 2019, for 
LULC classification of our study area for the year 2019. 
Sentinel 2 is made up of two identical satellites, 2A and 2B, 
in polar orbit, launched by the European Space Agency in 
June 2015 and March 2017, respectively. Both satellites are 
placed in a sun-synchronous orbit at an altitude of 786 km 
and are phased at 180° from each other, providing a revisit 
time of 5 days with both satellites. The satellite is equipped 
with a multispectral imaging sensor to capture information 
about the Earth’s surface, with a wide swath of 290 km. The 
multispectral sensor captures data in 13 bands at spatial 
resolutions of 10 m (bands 2, 3, 4, 8), 20 m (bands 5, 6, 7, 
8A, 11, 12), and 60 m (bands 1, 9, 10) (Phiri et al. 2020).

MODIS LST Data

In the present study, MODIS Terra product (MOD11A2.
v061) and MODIS Aqua product (MYD11A2.v061) were 
used to obtain LST (1 km resolution) over Dehradun city 

and the surrounding areas. MOD11A2.v061 and MYD11A2.
v061 are 8-days composite average products derived from 
the MOD11A1 and MYD11A1 daily global products (Wan 
et al. 2002).

Moderate Resolution Imaging Spectroradiometers 
(MODIS), mounted on Terra and Aqua satellites, were 
launched by NASA in December 1999 and May 2002, 
respectively. Both Terra and Aqua orbit around the Earth in 
polar sun-synchronous orbits at an altitude of 705 km, with 
equator crossing times of 10:30 am/pm (Terra) and 1:30 pm/
am (Aqua) respectively. The instrument has a wide swath 
width of 2330 km, enabling it to view every point on Earth’s 
surface in a 1 to 2 days cycle. MODIS captures data in 36 
spectral bands ranging from 0.405 to 14.385 μm, at varying 
spatial resolutions of 250 m (bands 1–2), 500 m (bands 3–7), 
and 1000 m (bands 8–36) (Vancutsem et al. 2010).

ASTER DEM Data

The Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer (ASTER) is an imaging sensor onboard 
the Terra satellite, launched by NASA's Earth Observing 
System in December 1999. ASTER captures high-resolu-
tion images of the Earth in 14 different wavelength bands 
in the visible (bands 1, 2, 3N, and 3B at 15 m spatial reso-
lution), shortwave infrared (bands 4 to 9 at 30 m spatial 
resolution), and thermal infrared (bands 10 to 14 at 90 m 
spatial resolution) regions of the electromagnetic spectrum 

Fig. 1  Location of study area (a) Uttarakhand state; (b) Dehradun district (c) False Color Composite (FCC) map of Dehradun city
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to obtain useful information on land surface temperature, 
emissivity, reflectance, and elevation (Hirano et al. 2003; 
Rana and Suryanarayana 2019). In the present study, the 
ASTGTMv003 product of ASTER was used to obtain infor-
mation on elevation (Supplementary Fig. 1).

Land Use Land Cover (LULC) Classification 
and Change Detection Analysis

For the land use-land cover (LULC) classification, we 
employed the Maximum Likelihood Classifier (MLC) 
method of supervised classification. MLC is a very robust 
method of LULC analysis and has been widely used in 
several scientific studies across the world (Sun et al. 2013; 
Ganasri and Dwarakish 2015; Hishe et al. 2021; Mishra 
et al. 2020; Saha et al. 2021). This classification technique 
is based on the affinity of the spectral signature of a targeted 
pixel to the specific class (Otukei and Blaschke 2010). Each 
pixel's reflectance value is assigned to the class for which 
it has highest probability of resembling a signature under a 
probability-based weighting scheme (Strahler 1980; Yuan 
et al. 2005).

We categorised the study area into seven distinct classes, 
namely Dense Forest (DFOR), Open Forest (OFOR), Agri-
culture (AGRI), Fallow Land (FALO), Built-Up (BILT), 
Water Body (WBOD), and Open Space (OPNS). These 
classes are very different in terms of their physical proper-
ties, (such as- heat capacity, thermal conductivity, emissiv-
ity, albedo, moisture content, thermal inertia and sky-view 
factor) which are known to significantly influence the local 
thermal climate of a place (Taha 1997; Priyadarsini 2009; 
Mohajerani et al. 2017; Oke et al. 2017). The accuracy 
assessment was performed using the stratified random point 
generation method, which involved generating 50 sample 
points for each class to obtain a confusion matrix and Kappa 
statistics for the classified image (Supplementary Tables S1 
and S2).

Estimation of Urban Heat Island Intensity (UHII)

For the estimation UHII over the study area, average 
monthly daytime and nighttime land surface temperatures 
over the core urban region and four rectangular strips out-
side Dehradun city (Supplementary Fig. 2) were extracted 
from the MODIS-Terra and Aqua 8-days composite LST 
products (MOD11A2.v061 and MYD11A2.v061) at 1 km 
resolution for the period January 2019 to December 2019. 
The four strips, named North, South, East, and West, were 
defined based on their location in relation to the core urban 
region strip.

For the estimation of UHII, the average LST in each strip 
outside Dehradun city was subtracted from the average LST 
over the core urban region of Dehradun city. In this way, 

we calculated UHII for the study area. However, since LST 
is known to be influenced by elevation (Khandelwal et al. 
2018), the average elevation of each of these strips was also 
taken into consideration while analysing our results.

Air Temperature Data and Computation of Cooling 
Degree Days

In the present study, air temperature data for Dehradun 
from https://www.visualcrossing.com/. was utilized to 
obtain the trend in cooling degree days for Dehradun for 
the period 2003 to 2022. This dataset provides the air 
temperature for the location (30°31´N and 78°03´E) in 
Dehradun. Cooling Degree Days (CDDs) indicate how 
hot a given day is relative to a base temperature, are 
a useful measure of the cooling requirements of a city 
(Christenson et al. 2006; Jiang et al. 2009; Rosa et al. 
2015; Borah et al. 2015; Ukey and Rai 2021). In the pre-
sent study, for the computation of cooling degree days 
(CDDs) we subtracted the base temperature of 18 °C 
(Bhatnagar et al. 2018) from the average temperature for 
those days when the average temperature exceeded the 
base temperature. For instance, if the average tempera-
ture of the day is 30 °C, the CDDs for that day is 12 °C. 
Adding all the CDDs in a given year gave us the annual 
magnitude of CDDs. Counting the number of days in a 
year when the average temperature was greater than the 
base temperature provided us with the annual frequency 
of CDDs.

Furthermore, for the computation of pixel-wise 
trends in cooling degree days for Dehradun, we initially 
validated the MODIS LST data with air temperature data 
by considering the LST data of the pixel corresponding 
to the site for the collection of air temperature data. For 
the computation of mean LST, the mean of Aqua day-
time and night-time LST was calculated. The scatter plot 
(Fig. 2) between the mean MODIS LST and mean air 
temperature shows a strong agreement between them with 

Fig. 2  Scatter plot between mean air temperature and mean LST
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an  R2 value of ~ 0.9, Index of Agreement value ~ 0.97 
and Normalized Mean Square Error value ~ 0.0085. The 
regression equation of the best-fit line between mean 
MODIS LST and mean air temperature was then used 
to derive the mean air temperature pertaining to each 
MODIS LST pixel. The mean air temperature obtained 
for each pixel was then used to compute the trend in the 
annual magnitude and frequency of cooling degree days 
for each pixel. It is pertinent here to mention that we have 
assumed that the equation governing linear relationship 
between average air temperature obtained from weather 
station and the mean LST of the pixel where the weather 
station is located, is applicable for all the pixels in the 
study region. This is one of the limitations in the present 

study, as average air temperature data was available from 
only one weather station in Dehradun.

The flow chart (Fig. 3) given below describes different 
steps followed in the preparation of DEM, LST and 
LULC maps used in this study. For LULC classification 
Landsat-7 and Sentinel-2 images (2000 and 2019) were 
taken. Layer stacking of bands and pre-processing of 
image were done and then created training signatures 
for all the LULC classes. With the help of Supervised 
classification method (Maximum Likelihood) the LULC 
map was classified. Further, 1 km*1 km grid was overlaid 
on DEM, LST and LULC maps and all the gridded data 
obtained were used in the statistical correlation and 
regression analysis.

Fig. 3  Flow Chart of the steps 
involved in the methodology
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Fig. 4  Land use and land cover distribution over Dehradun city 
and its surrounding area for the years (a) 2000, (b) 2019, (c) LULC 
changes from 2000 to 2019. The rectangular boxes shown by numer-
als 1 to 5 represent typical areas with/without any change in LULC 

from 2000 to 2019 as follows: 1-Built-up to built-up,2-Agriculture 
to agriculture,3-Open forest to open forest,4-Dense forest to dense 
forest,5-Agriculture/Open forest to built-up
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Results and Discussion

Urbanisation and LST Trends Over Dehradun

The state of Uttarakhand in India was carved out of the exist-
ing state of Uttar Pradesh in the year 2000, and Dehradun 
was declared as the capital of this newly formed state. Ever.

since then, Dehradun has witnessed rapid urbanization. 
Figure 4a and b represent the classified images of Dehradun 
from Landsat-7 and Sentinel-2 for the years 2000 and.

2019, respectively. Figure 4c represents the major LULC 
changes over the study region from 2000 to 2019. Landsat-7 
for the LULC analysis in the year 2000 was chosen as it is 
the open access multispectral data available from NASA. We 
could not use the Landsat-7 data for 2019 LULC analysis as 
Scan line corrector (SLC) error has appeared in the Landsat- 
7 data since 2003 (Landsat-7 data (https:// www. usgs. gov/ 
lands at- missi ons/ lands at-7), n.d). So, for the LULC analy-
sis for the year 2019, we were left with the option of using 
Sentinel-2 data or Landsat-8 data. In our study, we preferred 
Sentinel-2 data because of its better spatial resolution.

A comparative visual examination of the images reveals 
the growth of the built-up area within the Dehradun city 
municipality area, both in the northern and southern parts. 
However, this expansion is not confined to the city bounda-
ries alone. Significant growth in the built-up area is observed 
in the surrounding regions to the south, south-east, and 
south-west of the city. With relatively flat terrain and low 
altitude, these regions are more conducive to the growth of 
the built-up area. Urban expansion in the surrounding region 
lying north and north-east of the city has been somewhat 
limited due to high altitude, though some growth in the built-
up area can be seen in these regions also.

Figure 4c shows major classes which have undergone 
LULC change during the study period, i.e., dense forest to 
open forest, open forest to built-up, open forest to fallow 
land and agriculture to built-up are shown with different 
colours. Other classes which have not witnessed any change 
or negligible change are shown with white colour for proper 
discrimination of the LULC change.

To analyse the impact of urbanization, we examined 
MODIS LST trends over the study region at places that have 
not witnessed any LULC change during the last two decades 
and those that have undergone a transition from agriculture/
open forest to built-up areas. These places have been repre-
sented by different rectangular boxes in Fig. 4 according to 
the scheme given in Table 1.

We hypothesized that places which have undergone a 
change in land use and land cover (LULC) from agriculture/
open forest to built-up (e.g., rectangular box 5) during the 
study period were expected to experience the sharpest rise 
in land surface temperature (LST) among all classes. This is 
revealed in Fig. 5(a-d), which shows the spatial distribution 
of LST trends over the study region. Averaged LST trends at 
places pertaining to different rectangular boxes (Table 1) are 
also provided separately in Supplementary Figure S3(a-j).

It is observed that the increasing trend in land surface 
temperature (LST) over places that have undergone LULC 
change from agriculture/open forest to built-up is much 
higher (0.12 to 0.13 °C/yr) for nighttime Aqua and Terra 
data (Fig. 5a and b and Figure S3i), compared to LST trends 
ranging from 0.03 to 0.05 °C/yr over places that have not 
witnessed any LULC change from 2000 to 2019 (Fig. 5a and 
b and Supplementary Figure S3-a, c, e, g). The relatively 
smaller positive LST trends during nighttime at places that 
have not witnessed any change in LULC during the last two 
decades suggest that there is a general warming in the study 
region, possibly occurring due to global warming. However, 
at places that have witnessed urbanization due to a change in 
LULC from agriculture/open forest to built-up, the impact of 
urbanization adds to this general warming trend.

During the daytime, land surface temperature (LST) 
trends over places that have undergone LULC change from 
agriculture/open forest to built-up show positive slope 
coefficients (~ 0.02 to 0.05 °C/yr) for Terra and Aqua data, 
respectively (Fig. 5c and d and Supplementary Figure S3j), 
compared to almost zero or negative slope coefficients over 
places that have not witnessed any LULC change from 2000 
to 2019 (Fig. 5c and d and Supplementary Figure S3-b, d, f, 
h). The comparatively reduced positive LST trend for places 
which have undergone a change in LULC and negative LST 
trends for places that have not witnessed any LULC change 
during the daytime are possibly due to an increase in solar 
dimming over the study region because of an increase in 
cloud cover. MERRA-2 derived datasets, which assimilate 
observations from various satellites (e.g., MODIS, MISR), 
reveal an increasing trend in cloud cover over the Dehra-
dun region during the last two decades (Supplementary 
Figure S4).

Cox et al. (2020) have suggested that there exists a diurnal 
asymmetry in global warming due to the increase in cloud 
cover over the humid and wetter regions of the world. They 
have shown that nighttime surface temperatures increase 

Table 1  Typical areas with/without any change in LULC from 2000 
to 2019, as represented by different rectangular boxes in Figure

Box Number LULC class in 2000 LULC class in 2019

1 Built-up Built-up
2 Agriculture Agriculture
3 Open forest Open forest
4 Dense forest Dense forest
5 Agriculture/Open forest Built-up

https://www.usgs.gov/landsat-missions/landsat-7
https://www.usgs.gov/landsat-missions/landsat-7


 Journal of Geovisualization and Spatial Analysis            (2024) 8:23    23  Page 8 of 19

more than the corresponding daytime temperatures due to 
increased cloud cover under global warming. During the 
daytime, these clouds predominantly attenuate the incoming 
shortwave solar radiation, thereby inducing surface dimming 
and cooling (Rieck et al. 2014; Pyrgou et al. 2019). On 
the contrary, during the nighttime, the clouds absorb the 
outgoing longwave radiation and reradiate it back towards 
the surface, thereby causing raise in surface temperature 
(Pyrgou et al. 2019).

Being in the Terai belt of India, Dehradun has a 
somewhat humid and wet climate, with significant rainfall 
in almost all months of the year (Sharma et  al. 2012). 
Therefore, the increasing trend in annual cloud cover over 
Dehradun (Supplementary Figure S4) seems to be the most 
plausible reason for the observed land surface temperature 
(LST) trends during day and nighttime. Moreover, despite 
the diminishing effect of increased cloud cover during the 
daytime, the regions that have undergone urbanization 
(i.e., a change in land use and land cover from agriculture/
open forest to urban built-up) show a positive trend in LST, 
though weak compared to that in the nighttime. Finally, to 
summarize, the increasing trend in cloud cover over the 

Fig. 5  (a-d) LST trends over Dehradun city and the surrounding areas showing enhanced warming at places which have undergone urbanization 
during the period 2000 to 2019

Fig. 6  Day and Night SUHII over the study area using MODIS Terra 
and Aqua observations
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study region seems to counteract the warming during the day 
while playing a supportive role in warming during the night.

Urban Heat Island Intensity over Dehradun and its 
Seasonal and Diurnal Dynamics

As mentioned in the methodology section, we computed 
monthly surface urban heat island intensity for each of the 
four strips (i.e., north, south, east, and west) surrounding the 
urban core using daytime and nighttime MODIS LST data 
from Terra and Aqua.

The climatology of the seasonal variations in surface 
urban heat island intensity (SUHII) obtained by averaging 
the data for the entire study duration is presented in Fig. 6. 
The plots in Fig. 6 reveal several interesting features of 
SUHI formation over Dehradun.

It is observed that the urban core remains warmer than 
the surrounding rural areas during both day (~ 2–6 °C for 
Terra and ~ 4–9 °C for Aqua) and night (~ 1.5–3.5 °C for 
Terra and ~ 0.5–2 °C for Aqua) in all seasons. In other words, 
positive SUHII is observed throughout the year over Deh-
radun. This observation is at variance from several Indian 
cities that show negative SUHII (i.e., cool island formation) 
during the daytime in some seasons (Pandey et al. 2012, 
2014; Shastri et al. 2017). This is plausible because the sur-
rounding strips of Dehradun are predominantly covered with 
vegetation (open forest/dense forest) throughout the year. 
A comparatively small fraction of the surrounding strips is 
cropland which may undergo seasonal variation in LULC 
from agriculture to fallow land depending on the crop cycle.

In the context of Delhi, Pandey et al. (2014) have shown 
that daytime SUHII is positive (i.e., surface heat island 
formation) in the months of February–March when Delhi 
surrounding regions are adorned with crop vegetation. They 
attribute this behaviour to the comparatively higher thermal 
inertia of vegetation. Thus, if the surrounding regions of 
Dehradun are predominantly adorned with vegetation (open/
dense forest) throughout the year, their heating up during 
the daytime is comparatively slower, and daytime SUHII is 
always positive.

Another feature of SUHI formation over Dehradun is 
that the magnitude of SUHII is generally greater in the day-
time than that during the nighttime (Fig. 6). Generally, the 
vegetated area tends to heat up slowly during the daytime 
because of latent heat loss through evapotranspiration (Gu 
et al. 2021) as compared to urban built-up. Moreover, the 
thermal inertia of vegetation being greater than the urban 
building materials (Carnahan and Larson 1990; Sobrino and 
Kharraz 1999), it is expected that surrounding areas of Deh-
radun would heat up slower than the urban built-up area dur-
ing the daytime, leading to high values of SUHII. Also, the 
emission of anthropogenic heat in the urban core is expected 
to be greater during the daytime as compared to nighttime, 

which further strengthens the daytime SUHII. Further, it 
may be observed that the daytime SUHII is maximum at 
Aqua overpass time (i.e., 1.30 pm) since heating of the urban 
core relative to surrounding strips is maximum at this time.

During the nighttime, the greater thermal inertia of 
the vegetated surrounding regions favours slower cooling 
compared to the urban-core built-up area. This tendency 
tends to offset the relatively greater efficiency of radiative 
cooling over the surrounding regions during nighttime 
because of better sky-view factors there. Thus, the nighttime 
SUHII is somewhat diminished compared to the daytime 
SUHII. Furthermore, it may be observed that the nighttime 
SUHII is minimum at the Aqua overpass time (i.e., 1.30 am) 
since the impact of lower thermal inertia of the urban core 
relative to the surrounding strips would be more pronounced 
at this time.

Another feature of SUHI formation over Dehradun is the 
seasonal variation in the magnitude of SUHII (Fig. 6). It is 
observed that SUHII over Dehradun is generally minimum 
during the winter months of December and January (< 2 °C), 
while it reaches its peak values during the monsoon months, 
i.e., July and August (> 6 °C). The climatology of rainfall 
over Dehradun (Sharma et al., 2012) reveals that the months 
of November and December receive the least rainfall while 
the monsoon months, i.e., July and August, receive the 
maximum rainfall.

This pattern suggests that the soil moisture over the study 
region is expected to be less during the winter months and 
high during the monsoon months. Since the degree of soil 
moisture directly influences the thermal inertia of soil, i.e., 
dry soils have low thermal inertia and wet soils have high 
thermal inertia (Lu et al. 2009), we infer that the thermal 
inertia of the surrounding strips of Dehradun is maximum 
during the monsoon months and minimum during the winter 
months. Thus, the thermal inertia differential between the 
vegetated surrounding strips and the built-up urban core is 
expected to be the maximum during the monsoon months. 
Therefore, the surrounding strips heat up/cool down much 
slower during the monsoon months, leading to greater values 
of SUHII in these months. In contrast, the thermal inertia 
differential between the vegetated surrounding strips and the 
urban core is minimum during the winters, which leads to 
lower values of SUHII during these months.

Impact of Elevation on SUHII

As can be seen from Supplementary Figure  S2, the 
surrounding strips to the north (average elevation 1185 m) 
and east (average elevation 923 m) of Dehradun are at much 
higher elevations compared to the urban core of Dehradun 
city (average elevation 660 m). The strips to the south 
(average elevation 664  m) and west (average elevation 
669 m) of the core region are at comparable elevations.
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To examine the impact of elevation on SUHII, we computed 
the SUHII with reference to each of the four surrounding strips 
(i.e., north, south, east, and west), which is shown in Fig. 7. It 
is seen that the SUHII of the surrounding strips lying north and 
east of Dehradun is significantly higher than that of the strips 
lying south and west both during the daytime and nighttime. 
The scatter plots between elevation and daytime LST over 
the study region (Fig. 8 and Supplementary figure S5) show 
a negative association between them, i.e., LST decreases as 
the elevation increases. Thus, LST of places located at higher 
elevations is lower than those located at lower elevations. 
Therefore, daytime SUHII of the surrounding strips located 
north and east is higher as compared to the strips lying south 
and west.

During the nighttime, however, the situation is not as 
straightforward. The scatter plots between elevation and 
nighttime LST over the study region (Fig. 9 and Supplementary 
figure S6) show that LST first increases with elevation up to 
about 1000 m, and thereafter LST decreases with elevation. It 
may also be noted that this kind of behaviour is not observed 
in the monsoon months (July to September) when the sky 
is cloudy, and nighttime cooling is much diminished. This 
suggests that a temperature inversion layer forms over Dehradun 
during the nighttime for a major part of the year (i.e., except the 
monsoon months).

This temperature inversion layer is more pronounced 
during the winters when nighttime cooling dominates the 
daytime heating. Such temperature inversions generally 

form over a valley because the slopes get cooled during 
the nighttime, creating downslope or katabatic wind flow 
which allows the cold air to settle at lower elevations, 
leading to the formation of a temperature inversion (Ball 
1956; Papadopoulos and Helmis 1999; Vihma et al. 2011). 
Above this inversion layer, LST decreases with elevation 
as it does during the daytime. Thus, the nighttime SUHII 
of the surrounding strips lying north and east of Dehradun 
at average altitude of more than 900 m is also slightly 
higher than the SUHII of the strips lying south and west 
of Dehradun.

Association of LST with LULC and Elevation

To gain a deeper insight into the dependence of LST on 
LULC and elevation, we overlaid a grid over the study 
region with a grid cell size of 1 km × 1 km corresponding 
to MODIS LST data and computed percentage LULC and 
average elevation for each grid cell to perform correlation 
and regression analysis. Table 2 presents the correlation 
of daytime and nighttime LST with percentage LULC 
and elevation over the study region for March 2019. It is 
observed that daytime LST (DLST) has a significant positive 
correlation with Built-up (BILT), Agriculture (AGRI), and 
Fallow land (FALO), while it has a significant negative 
correlation with Elevation (ELEV), Dense forest (DFOR), 
and Open forest (OFOR). These results are expected since 
agricultural land, fallow land, and built-up areas would heat 

Fig. 7  SUHII with reference 
to strips located (a) north, (b) 
south, (c) east and (d) west, of 
the urban core
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up faster than open and dense forests as their thermal inertia 
is comparatively lower. It may be noted that the strongest 
negative association is seen with ELEV while the strongest 
positive association is seen with BILT.

Nighttime LST (NLST) shows a significant positive 
correlation with DFOR and a significant negative correlation 
with ELEV, AGRI, and FALO. Surprisingly, BILT is found 
to have a poor correlation with NLST. This is somewhat 
unexpected since built-up areas are expected to be warmer 
during the night, and earlier studies, e.g., Pandey et al. 2014, 
have reported a significant positive correlation between LST 
and built-up areas over Delhi.

Further, low-lying areas are expected to be cooler during 
the night because of the temperature inversion, and hence, 
a positive (instead of negative) correlation is expected 
between NLST and ELEV. The negative correlation 
between NLST and ELEV has occurred due to the variable 

behaviour of ELEV with NLST (i.e., first increasing and 
then decreasing with an increase in elevation). Figure 10 
shows that a quadratic curve fits the scatter plot between 
NLST and ELEV reasonably well. To limit this effect, we 
performed correlation analysis of LST with percentage 
LULC and ELEV only for places in the study region that lie 
in the elevation range of 500 m to 700 m. These results are 
presented in Table 3. It is observed that now NLST has a 
significant positive correlation with ELEV and BILT.

Table 4 presents the results of multiple linear regression 
analysis for predicting DLST and NLST based on LULC 
and ELEV information for each grid cell. It is seen that 
ELEV has a significant negative regression coefficient 
while BILT, AGRI, and FALO have significant positive 
regression coefficients in the model for DLST. Further, these 
four variables together yield an  R2 value of more than 0.81 
for explaining the variations in DLST. This indicates that 

Fig. 8  Scatter plot between 
Aqua Day LST and Elevation
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these four variables play a dominant role in determining the 
daytime variations of LST over the study region.

The model results for NLST (Table 4) show that ELEV, 
AGRI, and FALO remain significant variables during the 
nighttime also, but the nature of their relationship with 
NLST is different from that with DLST. The negative regres-
sion coefficients for AGRI and FALO indicate that these 
variables tend to reduce NLST. The relationship of ELEV 
with NLST is curvilinear (Fig. 10), and hence the night 
model contains a linear term (ELEV) and a quadratic term 
 (ELEV2) to capture the relationship. The positive regression 
coefficient for ELEV suggests that at lower elevations, the 
positive linear association between NLST and ELEV will 
dominate. The negative regression coefficient of the  ELEV2 
term indicates that at higher altitudes, the negative associa-
tion dominates between NLST and ELEV. The fourth vari-
able, i.e., BILT, is found to have a positive regression coef-
ficient, but its p-value is slightly more than 0.05. Further, the 
 R2 values of 0.42 in the nighttime model suggest that though 
the LULC variables and ELEV play a significant role, their 
explanatory power is not as strong as it is during the day.

Implications of Warming on Cooling Degree 
Days and Energy Consumption

As UHIs have a substantial impact on a city's energy 
demand by elevating ambient temperatures, thereby 
increasing indoor space cooling requirements, Estimating 
the cooling degree days as an indicator of energy 
consumption due to space cooling, is a well established 
and accepted approach among the scientific community. 
Ukey and Rai (2021) clearly state that the degree days 
approach stands out due to its simplicity, transparency, 
and repeatability as indicators in predicting energy 
requirements for space cooling. One of the limitations in 
the present study is that we have not evaluated the impact 
of other variables such as relative humidity and wind 
speed which also impact energy consumption. However, 
Ukey and Rai (2021) further state that even though the 
degree days approach does not consider the effect of 
other variables like relative humidity and wind speed on 
energy consumption, they remain excellent indicators for 
explaining the variation in energy consumption. Similarly, 

Fig. 9  Scatter plot between 
Aqua Night LST and Elevation
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Rosa et al. 2015 also described degree days as a versatile 
climatic indicator for analysing energy consumption in a 
territory.

Figure 11 shows the trend in the annual magnitude and 
frequency of CDDs computed from (i) the daily mean air 
temperature data of the weather station over Dehradun 
(Fig. 11a and b) and (ii) daily mean air temperature of each 
pixel derived from LST (Fig. 11c and d). The increasing 

trend in both the annual magnitude and frequency of CDDs 
is a noteworthy observation over Dehradun.

It is pertinent here to mention that the daily LST pixel 
data had missing values, and therefore, the trend values 
pertaining to weather station data and satellite-derived 
pixel data may not compare well. However, the trend values 
from the satellite-derived pixel data clearly show that 
the increasing trend is more pronounced over the places 

Fig. 9  (continued)

Table 2  Correlation matrix 
for the month of March (2019) 
at elevation (400-2000 m). 
(NLST-Night-time land surface 
temperature, DLST-Day time 
land surface temperature, 
ELEV-Elevation, DFOR-Dense 
Forest, OFOR-Open Forest, 
AGRI-Agriculture, FALO-
Fallow land, BILT-Built up, 
WBOD-Water body, OPNS-
Open space)

** Correlation is significant at the 0.01 level (2-tailed)
* Correlation is significant at the 0.05 level (2-tailed)

Variables NLST DLST ELEV DFOR OFOR AGRI FALO BILT WBOD OPNS

NLST 1 .140** -.223** .176** 0.026 -.304** -.275** 0.03 -0.047 -0.06
DLST .140** 1 -.790** -.104* -.655** .416** .210** .615** 0.001 0.042
ELEV -.223** -.790** 1 -.159** .668** -.373** -.295** -.244** -.168** -.159**

DFOR .176** -.104* -.159** 1 -.369** -.317** -.222** -.410** -.146** -.148**

OFOR 0.026 -.655** .668** -.369** 1 -.369** -.195** -.458** -.095* -.126**

AGRI -.304** .416** -.373** -.317** -.369** 1 .141** .277** -0.053 -0.067
FALO -.275** .210** -.295** -.222** -.195** .141** 1 -0.063 .326** .414**

BILT 0.03 .615** -.244** -.410** -.458** .277** -0.063 1 -.206** -.167**

WBOD -0.047 0.001 -.168** -.146** -.095* -0.053 .326** -.206** 1 .487**

OPNS -0.06 0.042 -.159** -.148** -.126** -0.067 .414** -.167** .487** 1
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which have witnessed the transformation of land-cover 
from agriculture/open forest to built-up. The increasing 
trend in CDDs suggests that electricity demand for cooling 
requirements of indoor spaces should have increased over 
Dehradun.

Figure 12 illustrates a noteworthy increase in the annual 
electricity consumption of Dehradun city. One may, how-
ever, attribute this increase to the rising trend in Dehra-
dun’s population. However, when we compute the elec-
tricity consumption per capita, the increasing trend still 
persists (Fig. 12a). Thus, we observe that the increasing 
trend in the annual magnitude and frequency of CDDs 
over Dehradun is consistent with the increasing trend of 
per capita electricity consumption in the city.

Further, Fig. 12(b) shows a significant positive associa-
tion between average annual air temperature and annual 
electricity consumption of Dehradun. This suggests that 
warming over Dehradun has been a contributing factor to 
the increasing trend of electricity consumption in the city.

Numerous studies (Garg et al. 2011; Rajagopalan et al. 2014; 
Li and Norford 2016; Ma et al. 2018) indicate that the imple-
mentation of UHI mitigation techniques, e.g., cool roofs, vertical 
gardens, high albedo surfaces, and increased greenery in urban 
areas, could potentially lead to a reduction in ambient air tem-
peratures by 3 °C to 4 °C. In the light of the fact that Dehradun 

Fig. 10  Scatter plot between night-time LST and Elevation (ELEV)

Table 3  Correlation matrix 
for the month of March (2019) 
at Elevation (500-700 m). 
(NLST-Night-time land surface 
temperature, DLST-Day time 
land surface temperature, 
ELEV-Elevation, DFOR-Dense 
Forest, OFOR-Open Forest, 
AGRI-Agriculture, FALO-
Fallow land, BILT-Built up, 
WBOD-Water body, OPNS-
Open space)

** Correlation is significant at the 0.01 level (2-tailed)
* Correlation is significant at the 0.05 level (2-tailed)

Variables NLST DLST ELEV DFOR OFOR AGRI FALO BILT WBOD OPNS

NLST 1 0.054 .327** 0.089 .137* -.385** -.393** .201** -0.117 -0.077
DLST 0.054 1 -0.001 -.569** -.278** .237** -0.09 .775** -.181** -.157*
ELEV .327** -0.001 1 .368** -0.015 -.404** -.179** 0.049 -.270** -.168**
DFOR 0.089 -.569** .368** 1 -0.114 -.439** -.290** -.522** -.148* -.167**
OFOR .137* -.278** -0.015 -0.114 1 -.202** 0.048 -.418** -0.079 -0.073
AGRI -.385** .237** -.404** -.439** -.202** 1 -0.003 .134* -.154* -.175**
FALO -.393** -0.09 -.179** -.290** 0.048 -0.003 1 -.261** .352** .442**
BILT .201** .775** 0.049 -.522** -.418** .134* -.261** 1 -.289** -.279**
WBOD -0.117 -.181** -.270** -.148* -0.079 -.154* .352** -.289** 1 .503**
OPNS -0.077 -.157* -.168** -.167** -0.073 -.175** .442** -.279** .503** 1

Table 4  Results of Regression analysis for the month of March (2019) at elevation (400-2000 m)

Model description Dependent 
Variables

Explanatory Variables B Std. error t value Sig Value R2

Regression model for March-Day time DLST (Constant) 303.325 0.189 1601.3 0.00 0.81
ELEV -0.006 0 -30.7 0.00
AGRI 0.008 0.004 2.1 0.04
FALO 0.013 0.007 2.0 0.05
BILT 0.042 0.002 22.4 0.00

Regression model for March-Night-time NLST (Constant) 283.661 0.399 711.8 0.00 0.42
ELEV2 -3.23 ×  10–06 0 -8.9 0.00
ELEV 0.005 0.001 6.6 0.00
AGRI -0.023 0.003 -8.8 0.00
FALO -0.041 0.005 -8.6 0.00
BILT 0.002 0.001 1.8 0.07
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is part of the smart city mission launched by the Indian Govern-
ment, the adoption of appropriate UHI mitigation measures is 
very much required for the city of Dehradun. Even a reduction 
of 1 °C in the average air temperature of Dehradun should lead 
to substantial electricity consumption savings for the city.

Conclusion

Our study shows that Dehradun city and its adjoining 
surrounding areas, particularly in the southern and eastern 
regions, have witnessed urbanization over the last two decades. 
The Land Surface Temperature (LST) trends over the study 
region indicate that areas undergoing a transition in Land 
Use and Land Cover (LULC) from agriculture/open forest to 
built-up have experienced the greatest increase in LST. We 
have also observed diurnal asymmetry in LST trends over the 
study region, which is best explained by the increase in cloud 
cover under the global warming effect.

Furthermore, the Urban Heat Island (UHI) formation 
over Dehradun persists throughout the year. However, the 
magnitude of UHI during the daytime (~ 2–6 °C for Terra 
and ~ 4–9 °C for Aqua) is generally greater than that during 
the night-time (~ 1.5–3.5  °C for Terra and ~ 0.5–2  °C 
for Aqua), possibly because the thermal inertia of the 
surrounding vegetated area is greater than that of the 
built-up area. Additionally, the magnitude of Surface Urban 
Heat Island Intensity (SUHII) is found to be maximum 
during the rainy season (> 6 °C) and minimum during winter 
(< 2 °C) as the thermal inertia of the surrounding wet soil 
covered with vegetation is even higher during the wet period 
compared to the dry winter.

Our correlation and regression results indicate that 
Elevation (ELEV), along with LULC variables such as 
Agriculture (AGRI), Fallow Land (FALO), and Built-Up 
(BILT), significantly affects the LST of a place in the 
study area. Moreover, ELEV is found to have a negative 
relationship with LST during the daytime. However, at 

Fig. 11  (a) Scatter plot between annual magnitude of cooling degree days (CDD) over years, (b) Scatter plot between frequency of cooling 
degree days (CDD) over years. (c) Trend in annual frequency of CDDs, (d)Trend in annual magnitude of CDDs
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night, the relationship between ELEV and LST becomes 
curvilinear due to the effect of the local slope factor, 
allowing cold air to settle at lower altitudes of up to 
1000 m. Thus, night-time LST is found to increase with 
elevation up to 1000 m, and thereafter, LST decreases with 
elevation as it does during the daytime.

There is also an increasing trend in the annual magnitude 
as well as the annual frequency of Cooling Degree Days 
(CDDs) over Dehradun city. However, the trend values from 
satellite-based pixel data clearly show the increasing trend 
is more prominent over areas showing a transformation of 
land-cover from agriculture/open forest to built-up. The 
rising trend in CDDs also indicates that electricity demand 
for cooling requirements of indoor spaces is likely to have 
increased over Dehradun city.

In summary, our study reveals warming trends over 
Dehradun city due to the combined effect of the Urban 
Heat Island and global warming. This warming is 

particularly pronounced over areas that have undergone 
urbanization. These changes in the thermal climate of the 
city have led to increased energy consumption to improve 
human comfort levels, providing a positive feedback 
loop. In other words, urbanization in Dehradun has led 
to increased warming, which in turn, has resulted in 
increased energy consumption, releasing anthropogenic 
heat in the process, which further contributes to warming. 
Given that Dehradun city falls under the ambit of the 
'Indian Government Smart Cities Mission,' it is necessary 
to establish a conceptual framework for future urban 
planning to achieve the mission goals. This may involve 
developing regulations that promote the increase in green 
spaces, cool rooftops, pervious surfaces, water bodies, 
and green buildings in the city to mitigate urban heating. 
In this regard, our study offers useful insights for urban 
policymakers, especially in the context of cities with hilly 
terrain.

Fig. 12  (a-b) Scatter plots 
between (a) Annual electricity 
consumption with per capita 
electricity consumption over the 
years, (b) Per capita electric-
ity consumption and mean air 
temperature
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