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Abstract
Monitoring crop growth, soil conditions, and hydrological dynamics are imperative for sustainable agriculture and reduced
environmental impacts. This interdisciplinary study integrates remote sensing, digital soil mapping, and hydrological data to
elucidate intricate connections between these factors in the state of Ohio, USA. Advanced spatiotemporal analysis techniques
were applied to key datasets, including the MODIS sensor satellite imagery, USDA crop data, soil datasets, Aster GDEM, and
USGS stream gauge measurements. Vegetation indices derived fromMODIS characterized crop-specific phenology and pro-
ductivity patterns. Exploratory spatial data analysis show relationships of vegetation dynamics and soil properties, uncovering
links between plant vigor, edaphic fertility, and nutrient distributions. Correlation analysis quantified these relationships and
their seasonal evolution. Examination of stream gauge data revealed insights into spatiotemporal relationships of nutrient pol-
lution and stream discharge. By synthesizing diverse geospatial data through cutting-edge data analytics, this work illuminated
complex interactions between crop health, soil nutrients, and water quality in Ohio. The methodology and findings provide
actionable perspectives to inform sustainable agricultural management and environmental policy. This study demonstrates
the significant potential of open geospatial resources when integrated using a robust spatiotemporal framework. Integrating
additional measurements and high-resolution data sources through advanced analytics and interactive visualizations could
strengthen these insights.
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Introduction

The increasing availability of spatial data from diverse
sources, including satellite imagery and sensors, has pro-
vided the academic community with unprecedented oppor-
tunities to gain valuable insights into the environment, make
informed decisions, mitigate nutrient loss, and promote envi-
ronmental safety through hazard prevention. Spatial data
have found diverse applications, such as in weather Ahmad
andZeeshan (2022); Peng et al. (2016), soilmineralsDemattê
et al. (2018); Palmer et al. (2021), monitoring floods Fisher
et al. (2016), preventing fire hazards Navarro et al. (2017),
informing population decisions Azar et al. (2013), water,
building, land cover, and information management Yaman
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et al. (2021). These examples highlight the wealth of infor-
mation that holds extensive potential for monitoring and
analyzing agricultural environments.

In recent years, researchers have used geospatial tech-
niques using satellite imagery to monitor vegetation growth
Jackson et al. (2004). The widely employed Normalized Dif-
ference Vegetation Index (NDVI), derived from data sources
such as MODIS, Landsat, or Sentinel Rouse et al. (1974a,
b); Waring et al. (2006), has been instrumental. Aside from
NDVI metrics, Leaf Area Index (LAI) has been used in
canopies and transpiration Fang and Liang (2014); Chen
(2018), and Soil Adjusted Vegetation Index (SAVI) has been
used to minimize the influences of soil on canopy Huete
(1988). Through examining the spectral reflectance of vege-
tation,NDVI provides a valuable indicator of plant health and
vigor Huang et al. (2021); DeFries and Townshend (1994);
Pettorelli et al. (2005). Other indices include EnhancedVege-
tation Index (EVI) Jiang et al. (2008), NormalizedDifference
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Water Index (NDWI) Gao (1996), Green Normalized Dif-
ference Vegetation Index (GNDVI) Shaver et al. (2006),
Chlorophyll Index (CI) Shibayama and Akiyama (1986);
Shrestha et al. (2012), and Water Index (WI) Peñuelas et al.
(1997). Most of these indices have NDVI as the baseline.

While progress has been made in crop monitoring using
satellite data from the NDVI, challenges persist in relat-
ing vegetation patterns to key soil factors impacting plant
growth and vigor. Most of these challenges hinge on inte-
grating diverse multi-modal data. Digital soil mapping and
analysis of soil surveys have been valuable for understanding
soil nutrients, texture, fertility, and more Subburayalu et al.
(2014); Arshad et al. (1997);Mallah et al. (2022). In addition,
hydrological data such as stream-flowmeasurements enables
the characterization of water quality issues such as agricul-
tural runoff and nutrient pollution Michalak et al. (2013);
Smith et al. (2015). In particular, the flow of excess contam-
inants, including nitrate and nitrite, into water streams has
contributed to serious environmental and health problems
Schlossberg (2017); Sinha et al. (2017).

In addition, increased flowof nitrate and nitrate intowater-
ways has encouraged eutrophication, a depletion of oxygen
in water, leading to the suffocation of marine life Singh
et al. (2022). High concentrations of nitrate and nitrite found
in drinking water have caused methemoglobinemia (“blue
baby syndrome”) in infants Manassaram et al. (2010); Coff-
man et al. (2021). Because of its impact on the health and
well-being of people and the environment, it is of interest to
determine how to model and predict the behavior of nitrate
and nitrite, besides other contaminants, in watersheds.

Many features can affect the presence of nitrate and nitrite
in watersheds, such as soil characteristics and nutrients, agri-
cultural practices, and discharge Dubrovsky and Hamilton
(2010). Discharge, or stream-flow, is defined as the speed a
volume of water has as it crosses a specific reference point.
Linking water contamination spatiotemporally to land man-
agement practices can inform conservation efforts.

Integrating data on crops, soils, and water can provide
a holistic perspective not attainable through isolated data
sources. A spatiotemporal approach leveraging these inter-
connected domains has immense potential for novel and
interdisciplinary insights into complex agricultural and envi-
ronmental systems Chen et al. (2004); Wang et al. (2003).
However, significant challenges persist in effectively track-
ing crop health over time, capturing spatial variability within
fields, and linking vegetation dynamics to key soil factors
that impact plant growth, yield, and vigor. While signif-
icant progress has been made in crop monitoring using
geospatial data, challenges persist in effectively integrat-
ing diverse data sources of varying spatial and temporal
resolution and conducting Exploratory Spatial Data Anal-
ysis (ESDA) simultaneously in space and time Hamdi et al.
(2022).

The integration and correlation of multi-modal data from
different sources and databases are crucial for understanding
the intricate relationships between these features. However,
platforms that offer comprehensive data management often
lack capabilities for flexible exploratory analysis.

Although platforms like IBM’s Physical Analytics Inte-
grated Data Repository and Services (PAIRS) Lu et al.
(2016); Lu and Hamann (2021); Klein et al. (2015) offer
comprehensive data management and analytic capabilities,
challenges remain in effectively integrating and correlat-
ing diverse data and conducting ESDA. While IBM offers
curated data spanning multiple petabytes, effectively har-
nessing its potential for exploratory analysis remains a
complex task. To address the ongoing challenges in data inte-
gration and ESDA, we leveraged the capabilities of the IBM
Environmental Intelligence Suite (EIS). EIS is a suite of tools
and services built on IBM PAIRS, tailored for environmental
monitoring and analysis.

Our aim is to integrate data frommultiple sources in differ-
ent formats with different spatial and temporal resolutions,
including MODIS satellite imagery MODIS (2019), USDA
crop planting data United States Department of Agriculture
(2019), soil databases (SSURGO and WoSIS) Staff (2019);
Batjes et al. (2019), Aster GDEM elevation data Tachikawa
et al. (2011a, b), and USGS stream-flow measurements Sur-
vey (2019), to conduct a comprehensive analysis of crop
growth, health, and water/nutrient flow in Ohio during 2019.

Effective cropmonitoring through integratingdata sources
can support improved yield forecasting, targeted field-
specific interventions, and optimized inputs to manage plant
growth. In addition, a greater understanding of water and
nutrient behavior can aid in reducing the effects of pollution
from contributing factors, such as agricultural land use.

Ohio was selected as a baseline state and region of inter-
est for this analysis given its significance in the Center
for Advancing Sustainable and Distributed Fertilizer Pro-
duction (CASFER), a National Science Foundation (NSF)
Engineering Research Center (ERC) Botte et al. (2023); Ai
et al. (2023). This state has major importance and serves
as a baseline location where CASFER technologies will be
implemented and validated for creating a nitrogen-circular
economy. This study aimed to leverage the wealth of data
and expertise in this state before extending the analysis to
other states across the United States.

Advanced analyses are needed to fully harness the wealth
of insights that can be derived from integrating multi-
modal geospatial data. By integrating data spanning satellite
imagery, soil surveys, land use, and hydrological data,
researchers can gain a multifaceted understanding of agri-
cultural ecosystems.

Most prior work has focused on analyzing one data type in
isolation. An integrated spatiotemporal analysis approach could
capture intricate connections between crop health, edaphic
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factors, and water dynamics. One of the key challenges in
geospatial analysis is thestorageandscalabilityof largeamounts
of data. With the Common Research Analytics and Data
Lifecycle Environment (CRADLE), we can overcome this
challenge. CRADLE, our Distributed andHigh-Performance
Computer (D/HPC) integrated Hadoop Cluster Hu et al.
(2013); Khalilnejad et al. (2020), provides the infrastruc-
ture to handle and analyze big geospatial data effectively
and efficiently. By leveraging the capabilities of CRADLE,
we successfully downloaded and ingested a vast amount
and variety of geospatial data from IBM EIS and other
sources, ensuring efficient storage and processing. With this
infrastructure, we aimed to explore the correlations between
vegetation patterns, soil properties, and nutrient distribution.

In this study, we show the potential for leveraging
open geospatial data and exploratory analysis techniques to
achieve a more holistic perspective on agricultural and envi-
ronmental management Lnenicka and Nikiforova (2021);
Coughlan (2020). Our primary aim is to integrate multi-
modal data from multiple sources in different formats with
different spatial and temporal resolutions, including satel-
lite imagery, soil databases, elevation data, and stream-flow
measurements, to conduct a comprehensive analysis of crop
growth, health, and water/nutrient flow in Ohio during 2019.
By doing so, we seek to improve crop monitoring, enhance
yield forecasting, target field-specific interventions, and opti-
mize inputs tomanage plant growth effectively.We shed light
on the current state of geospatiotemporal analysis in agricul-
ture, emphasize the significance of integrated approaches,

and contribute to ongoing efforts to promote sustainable
agricultural practices and environmental management. This
research will explore data science methodologies, present
comprehensive analysis findings, and discuss the implica-
tions derived from our study, providing valuable insights into
the field of agricultural and environmental science.

The advanced spatiotemporal analysis techniques provide
unique holistic insights into agricultural and environmen-
tal systems not attainable from isolated data sources. The
computational framework leverages high-performance com-
puting capabilities to handle massive datasets efficiently.
The approach links crop growth dynamics, soil properties,
and nutrient transport in streams at broad geospatiotemporal
scales.

The following sections of this paper will provide an
in-depth exploration of the data science methodologies
employed, present the analysis findings comprehensively,
and discuss the implications derived from our study.

While this manuscript focuses on presenting the method-
ology and results for Ohio, supplementary results for Texas
and Florida were analyzed using the same framework and are
provided in the Appendices for reference.

Datasets

Soil and Crop Datasets

Figure1 shows the data used in this work as obtained from
IBM EIS. These data encompass a diverse range of spatial

Fig. 1 Overview of the key data
used in this research, including
MODIS Aqua satellite imagery,
soil data, and USDA crop data

123

Page 3 of 40 9



Journal of Geovisualization and Spatial Analysis (2024) 8:9 

and temporal resolutions, which include daily MODIS Aqua
250m resolution imagery, USDA historical crop planting
data at 30m resolution, and soil databases such as SSURGO
andWoSIS. Both soil data have a spatial resolution of 250m.
All these data were collected for the year 2019.

• MODIS Aqua 250m Resolution Imagery
The MODIS Aqua data comprises remotely sensed
imagery captured by the Moderate Resolution Imaging
Spectroradiometer (MODIS) instrument aboard theAqua
satellite. The data were collected at a spatial resolution of
250m and provide daily observations. For this research,
we used the red and near-infrared (NIR) bands for the
analysis.

• USDA Historical Crop Planting Data (30m Resolution)
The USDA historical crop planting dataset provides
detailed information on crop types and their spatial dis-
tribution across the study area. The data has a finer spatial
resolution of 30m.

• Soil Databases (SSURGO and WoSIS) at 250m Resolu-
tion
The soil databases used in our study include the Soil Sur-
vey Geographic Database (SSURGO) and the World
Soil Information Service (WoSIS). These databases pro-
vide comprehensive information about soil properties and
characteristics. Both SSURGO and WoSIS have a spatial
resolution of 250m, matching the resolution of the
MODIS Aqua imagery. WoSIS provides data on soil pH,
soil nitrogen, organic carbon, and soil types, while SSUR-
GOoffers data onwater-holding capacity and soil texture.
These soil properties are crucial for understanding the soil’s
composition and suitability for various applications.

As shown in Fig. 1, by combining the MODIS Aqua
imagery, USDA historical crop planting data, and the soil
databases (SSURGO and WoSIS), we can gain insights into
the dynamic interplay between agricultural practices, soil
conditions, and environmental factors within the study area.

Water and Elevation Datasets

To evaluate hydrologic properties and how their behav-
ior varies across space and time, three different data sets
were considered. The data collected include Global Digi-
tal Elevation Model (GDEM Version 3) data collected from
the Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer (ASTER) METI and NASA (2019), the
United States Geological Survey National Water Informa-
tion System (USGS NWIS) Survey (2019) stream flow data,
and nutrient information got from The Water Quality Portal
(WQP) Survey et al. (2019).

• ASTER GDEM

The ASTER GDEM dataset provides elevation informa-
tion obtained from the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) instru-
ment aboard Terra, a NASA satellite. These data contain
elevation information for over 99%of the Earth’s surface,
with each GeoTIFF image covering 1 x 1 degree (111km
x 111km) surface area. The spatial resolution is 30m and
there are about 12,967,201 pixels or estimated elevation
values per GeoTIFF. In this study, Version 3 was used,
which contains data collected in 2019.

• USGS NWIS
The USGS NWIS data contains in situ stream water
gauge measurements. Over 22,000 features were mea-
sured. For this study, nitrate and nitrite concentrations
and discharges were analyzed. Data was collected every
15min for 2019.

• WQP
The WQP provides nutrient content information from
stream water gauges collected by the EPA and USGS.
The datawas collected daily for 2019. In situ, water gauge
measurements, both on water characteristics such as dis-
charge and nutrient content (e.g., nitrates and nitrites),
provide important information on the state of water qual-
ity at a time. This, in combinationwith elevation data, can
provide insights into the behavior of these water features
in relation to the location of river networks over time.

In the following sections, we will discuss the data prepro-
cessing steps, integration techniques, and analytical methods
employed to extract valuable information and derive mean-
ingful conclusions from these data.

Methodology

This research was divided into two distinct sections, each
focusing on different aspects of geospatial analysis. The first
section was dedicated to the analysis of soil-related factors,
including soil properties and crop growth, while the second
section centered on the analysis of water-related factors.

Crop and Soil

In this study, we conducted a geospatial analysis of soil
properties and crop growth patterns to gain insights into the
relationships between soil attributes, vegetation dynamics,
and nutrient distribution. The methodology involved the fol-
lowing steps:

Data Acquisition and Integration

We acquired geospatial data relevant to land and crop anal-
ysis from IBM EIS, including MODIS satellite imagery,
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USDA crop planting data, and soil databases (SSURGO and
WoSIS). The datawere downloaded as zip files, with each file
containing layered GeoTIFFs Ritter and Ruth (1997); OGC
(2023). To ensure compatibility and consistency across vari-
ous sources, theseGeoTIFFswere subjected to preprocessing
steps, including unzipping, stacking, masking, cropping, and
resampling. The data were integrated by aligning spatial and
temporal dimensions, addressing inconsistencies, and stan-
dardizing coordinate systems.

To integrate the multi-modal data analyzed in this work,
including the MODIS, soil, and crop data layers, resampling
and aggregation techniques were used to align the data spa-
tially and statistically. For instance, the 250m resolution of
the soil data and MODIS imagery were upscaled to the 30m
resolution of the crop plantingmaps. This integration process
helped ensure the data layers matched spatially for coherent
analysis while preserving the fundamental integrity of the
data patterns. As is typical of such up-scaling and aggrega-
tion approaches, the integrated data maintained the overall
statistical distributions and relationships critical for the cor-
relation analysis while aligning spatially across sources.

Geospatial Analysis of Soil and Crop Parameters

To analyze soil properties, we leveraged IBM Environmen-
tal Intelligent Suite to retrieve publicly available national soil
databases and extract relevant parameters, including soil clas-
sification, organic matter content, pH, and nitrogen levels.

For vegetation dynamics, we used the Normalized Dif-
ference Vegetation Index (NDVI) derived from the MODIS
Aqua satellite data. The NDVI quantifies vegetation health
and vigor by contrasting red and near-infrared reflectance

using the following equation:

NDVI = NIR− Red

NIR+ Red
(1)

NIR is the near-infrared reflectance, and Red is the visible
red reflectance. NDVI values range from -1 to 1, but noise
and cloud contamination are removed by scaling to −0.2
to 1 Zhu et al. (2013). The NDVI time series enabled the
characterization of vegetation phenology. Spatial analysis of
NDVI patterns was conducted in relation to soil parameters
in order to examine correlations between crop growth, soil
nutrients, and related factors across the study area.

Acquisition ofWater Data

Streamwater features were collected and extracted from
three different sources. Elevation information used to calcu-
late slope and stream networks was obtained from ASTER
GDEM as satellite imagery provided as a grid of pixels. In
situ water gauge measurements were collected from USGS
NWIS, measuring over 22,000 parameters, including dis-
charge, temperature, pH, etc., every 15min.

Lastly, nutrient content information from water gauges
was obtained from the Water Quality Portal (WQP), which
serves as a portal to access data collected from the Environ-
mental Protection Agency (EPA), and USGS. Water gauge
data was collected in tabular form.

Geospatial Analysis ofWater Parameters

FromASTERGDEMdata, hydrographic features and stream
networks can be extracted. A Python package, pysheds, was

Fig. 2 Step 1: Pipeline to
extract stream networks from
digital elevation model data
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Fig. 3 Step 2: Pipeline to
extract stream networks from
digital elevation model data

used to implement the pipeline used for extracting stream
networks Bartos (2023). This pipeline involves, first, deter-
mining the direction of water flow on land based on elevation
using the D8 algorithm Jones (2023). This algorithm deter-
mines the steepest descent for each cell based on the elevation
difference between the current cell and its neighboring cells.
Once the direction of flow is determined, cell accumulation
can be calculated. Cell accumulation allows one to see how
many cellswill accumulate or flow into a particular cell based
on flow direction. This allows one to see where the streams,
rivers, lakes, and oceans are located, as these are areas where
water will accumulate or flow. From here, stream networks

(or D8 channels) can be extracted, allowing one to see both
the shape and location of these streams or bodies of water.

For this analysis, digital elevation model GeoTIFFs cov-
ering the region of Ohio were selected. The area outside of
Ohio was masked, and stream networks were extracted fol-
lowing themethodology, as seen in the steps shown in Figs. 2,
3, 4, 5, 6, and 7. The pipeline to extract stream networks from
GDEMs can be applied to new versions of GDEMs, allowing
the model to update as new information is obtained.

Besides elevation, in situ water gauges offer detailed spa-
tial and temporal insights into the behavior of water features.
Spatial and temporal analyses were conducted to understand

Fig. 4 Step 3: Pipeline to
extract stream networks from
digital elevation model data
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Fig. 5 Step 4: Pipeline to
extract stream networks from
digital elevation model data

Fig. 6 Step 5: Pipeline to
extract stream networks from
digital elevation model data

123

Page 7 of 40 9



Journal of Geovisualization and Spatial Analysis (2024) 8:9 

Fig. 7 Result: Pipeline to
extract stream networks from
digital elevation model data

the behavior of nutrient and water flow in streams over vari-
ous time periods.

ImprovedMethodology

The methodology presented here improves on data integra-
tion approaches. It uses the powerful capabilities of the R
programming language R Core Team (2023) and specialized
geospatial analysis packages, specifically the terra and
raster packages Hijmans et al. (2023a, b), to efficiently
process and analyze satellite imagery and soil data. The raw
images were obtained from the IBM EIS as GeoTIFF lay-
ers embedded in zip files representing distinct data. For a
given data, each individual GeoTIFF layer corresponds to a
distinct point in time. As an example, the daily MODIS red
band data contains 365 layers for the year 2019, with each
layer representing measurements for a single day.

By leveraging R and these geospatial tools, the multivari-
ate spatiotemporal satellite and soil data were analyzed to
draw insightful conclusions. While the terra and raster
packages offer similar functionalities for raster analysis, in
this context, they are used complementarily. Specifically, the
terra library is employed for the efficient processing of
multi-temporal satellite data series, including reading, crop-
ping, masking, and stacking. On the other hand, the raster
library is used for conducting geospatial multi-layer correla-
tion analysis across both the soil and satellite raster images.
The integrated use of both packages allows for streamlined
data processing through terra along with customized anal-
ysis workflows via raster.

In the spatial correlation analysis, we employed the
cor Local() function from the raster package. This function

determines correlations for each pixel between two raster
layers. While Pearson, Kendall, and Spearman correlation
coefficients are all viable choices based on data distribu-
tion, we opted for the Pearson coefficient for this study.
We used the Pearson correlation coefficient for this analysis
because the data was normally distributed and a linear rela-
tionship exists between the variables. Pearson is appropriate
when these assumptions hold, as it assesses the linear depen-
dence between two continuous variables. It was preferable
to the Spearman or Kendall correlations, which are non-
parametric measures not requiring normally distributed data.
Using Pearson allowed us to quantify the strength and direc-
tion of the linear relationship between the soil and satellite
raster layers.

Additionally, the magick package was used to create
GIFs for better data visualization Ooms [aut and cre (2023).

Figure8 presents a visual representation of the key steps
involved in integrating and analyzing crop and soil data spa-
tially and temporarily.
Temporal and Spatial Integration The data have been syn-
chronized based on their temporal and spatial dimensions to
facilitate a comprehensive through-time analysis. By sequen-
tially overlaying the data based on their distinct features,
this study provides a uniform assessment of non-stationary
attributes.

Cloud and Noise Removal To enhance the reliability of the
data, a “clamp” process is applied to mitigate the impact of
cloud cover and other potential noise effects present in the
satellite imagery.

Iterative Analysis The methodology adopts an iterative
approach, analyzing data layer by layer to extract crucial
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Fig. 8 Schematic Overview of
the methodology for integrating
and analyzing satellite imagery
and soil data across space and
time using R packages

information from each piece of data while ensuring the over-
all completeness of the study.

Integration with Additional Data Emphasizing a holistic
approach, the geospatial data is seamlessly integrated with
other relevant data. This integration involves employing
resampling and masking procedures to ensure spatial align-
ment and coherent correlation analysis.

Correlation Analysis The methodology conducts spatial and
temporal correlation analysis to explore the intricate rela-
tionships between soil properties, crop growth patterns, and
nutrient distribution. Established indices like the Normalized
Difference Vegetation Index (NDVI) are used to assess veg-
etation dynamics and their connection to soil attributes.

Robustness The study employs distributed andHigh-Perfor-
manceComputing (HPC) to store and analyze large amountsof
data, ensuring efficiency and reliability in the computational
process. Specifically, the added parallel processing capability
facilitates working with data-intensive time series analysis.

LimitationsWhile the raster or terra package enables
efficient analysis of geospatial data, some limitations exist
when working with extensive raster time series, as with the
daily MODIS NDVI data. Conducting computations on the
full 365 daily NDVI layers requires substantial memory to
store and analyze the data. Even with HPC resources, mem-

ory constraints may necessitate subsetting or aggregating the
data for certain processing steps.Additionally, processing the
massive time series is computationally intensive, often taking
hours to run certain workflows. Visualizing and exploring the
outputs also poseschallengesbecauseof the largefile sizes. This
highlights the computational and visualization challenges of
big data analysis using R packages on a local computer.

The improved methodology establishes a clear and rigor-
ous framework for conducting geospatiotemporal analysis,
integrating advanced tools and approaches to derive valu-
able insights from satellite and soil data. The transparency
and attention to detail in the methodology contribute to the
credibility and reproducibility of the research outcomes.

Work Flow

The researchworkflow, as depicted in Fig. 9, guided the entire
process from data query and downloads to the final results
for the soil-related data. The initial steps involved query-
ing and downloading geospatial data from IBM EIS to our
D/HPC CRADLE, encompassing data for Ohio during the
year 2019. The subsequent steps included data preprocess-
ing, vegetation classification, and crop healthiness mapping
using the calculated NDVI. Correlation analysis with soil
properties was also conducted. The final outputs comprise
GIFs that provide valuable insights into vegetation patterns,
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Fig. 9 Detailed workflow depicting the pipeline from initial data query and download to generating final results

crop healthiness, and correlations with soil attributes across
the studied region and during time periods.

For the water analysis, the initial steps involved querying
tabular and raster data from USGS, WQP, and NASA/METI
to be stored in CRADLE D/HPC. Subsequent steps included
data preprocessing and extracting features of interest, includ-
ing stream networks, discharge, and nitrate and nitrite
information. Nitrate and nitrite information was classified
into levels to better understand its effect on the environment.
Plots were created to help further understand the behavior of
discharge nitrate and nitrite.

Results

Vegetation Classification

Figures10, 11, 12, and 13 display seasonal NDVI maps for
Ohio, selected from 365 dailyNDVImaps generated in 2019.
The maps showcase the seasonal variations in vegetation
greenness across the state, with each map showing winter,
spring, summer, and fall. The seasonal NDVI maps reveal a
distinct shift in vegetation density between seasons.
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Fig. 10 Winter: Seasonal vegetation density classification map based on MODIS NDVI analysis for Ohio in 2019

Fig. 11 Spring: Seasonal vegetation density classification map based on MODIS NDVI analysis for Ohio in 2019
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Fig. 12 Summer: Seasonal vegetation density classification map based on MODIS NDVI analysis for Ohio in 2019

Fig. 13 Fall: Seasonal vegetation density classification map based on MODIS NDVI analysis for Ohio in 2019
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Fig. 14 Winter: Crop-specific monitoring of corn growth in Ohio during 2019 using MODIS NDVI time series data

CropMonitoring

Figures14, 15, 16, 17, 18, 19, 20, 21, and 22 demonstrate
the ability of MODIS NDVI time series data to distinguish

the seasonal growth patterns of corn and soybeans in Ohio.
The NDVI maps shown for each crop are selected from 365
daily NDVImaps generated in 2019, with onemap displayed

Fig. 15 Spring: Crop-specific monitoring of corn growth in Ohio during 2019 using MODIS NDVI time series data
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Fig. 16 Summer: Crop-specific monitoring of corn growth in Ohio during 2019 using MODIS NDVI time series data

Fig. 17 Fall: Crop-specific monitoring of corn growth in Ohio during 2019 using MODIS NDVI time series data
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Fig. 18 Winter: Crop-specific monitoring of soybean growth in Ohio during 2019 using MODIS NDVI time series data

Fig. 19 Spring: Crop-specific monitoring of soybean growth in Ohio during 2019 using MODIS NDVI time series data
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Fig. 20 Summer: Crop-specific monitoring of soybean growth in Ohio during 2019 using MODIS NDVI time series data

Fig. 21 Fall: Crop-specific monitoring of soybean growth in Ohio during 2019 using MODIS NDVI time series data
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Fig. 22 Average seasonal
growth profiles of corn and
soybean in Ohio during 2019
derived from MODIS NDVI

per season. The profiles reveal similar growth trajectories for
corn and soybeans, peaking in the summer.

Soil Analysis

• Soil Types

Figures23, 24, 25, and 26 verify higher silt/clay soil con-
tent in northwest Ohio compared to predominantly sandy
fractions in other parts of the state, as revealed by the soil
type classification maps.

• Soil Physical Properties

Fig. 23 Sand proportion in
Ohio at 0–200cm depth
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Fig. 24 Silt proportion in Ohio
at 0–200cm depth

Fig. 25 Clay proportion in Ohio
at 0–200cm depth
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Fig. 26 Maximum occurrence
of sand, silt, or clay in Ohio at
0–200cm depth

The maps in Figs. 27 and 28 showcase the soil physical
properties of water holding capacity and texture in Ohio.
Lower moisture storage is evident in the northwestern
region, while moderate capacity is seen elsewhere. Soil
texture appears finer towards Lake Erie and coarser in
southern Ohio.

• Soil Chemical Properties
Figures29, 31, and 30 show the maps of soil pH, organic
carbon, and nitrogen levels in Ohio, revealing distinct
spatial patterns. Soil pH is higher in northwestern Ohio
and lower in the southeast. Organic carbon content is ele-
vated in eastern Ohio. Soil nitrogen distributions match
vegetation density, with higher levels in northwestern
Ohio near Lake Erie and the Maumee watershed.

Spatial Correlation

• Temporal Correlation
In Figs. 32 and 33, the spatiotemporal correlation maps
between soil nitrogen and crop NDVI are presented, with
one map selected per crop from 365 daily NDVI cor-
relation maps generated in 2019. The maps showcase
positive relationships between soil nitrogen content and
crop health and greenness for corn and soybeans in Ohio.

• One Time-Stamp Correlation
In Figs. 34 and 35, spatial correlation maps illustrate the
relationships between soil nitrogen and factors, including

organic carbon and pH levels in Ohio at a single point in
time. The organic carbon correlation analysis shows the
expected positive association with soil nitrogen content,
while the pH correlation is negative.

Water Feature Analysis

Figures36, 37, 38, 39, 40, 41, 42, and 43 display the seasonal
variation of different water features in Ohio in 2019. More
specifically, nitrate, nitrite, and discharge were analyzed in
relation to the stream networks extracted from the digital
elevation model discussed in Section 2.2.

Concentrations of nitrate and nitrite were grouped into
four categories: less than 4mg/L representing the baseline
amount of nitrate and nitrite expected in water (normal),
4–7mg/L representing above-normal concentrations (high),
7–10mg/L representing concentrations approaching toxic
levels and may need close monitoring (warning), and greater
than 10mg/L representing toxic levels of nitrate and nitrite
that can lead to health problems (toxic). A numerical sum-
mary of the nitrate and nitrite concentrations by season can
be seen in Tables 1, 2, 3, and 4. Toxic levels of nitrate and
nitrite were seen in winter, spring, and fall, with the most
sites in the toxic range present in the fall in the lower west.
Fall also had the highest concentrations of nitrate and nitrite
at 22.99 mg/L (Table 4).
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Fig. 27 Soil water holding
capacity in Ohio at 0–150cm
depth

Fig. 28 Soil texture in Ohio at
0–100cm depth
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Fig. 29 Soil pH in Ohio at
0–200cm depth

Fig. 30 Soil organic carbon
content in Ohio at 0–200cm
depth
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Fig. 31 Soil nitrogen content in
Ohio at 0–200cm depth

Fig. 32 Correlation of Soybeans
NDVI with soil nitrogen in Ohio
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Fig. 33 Correlation of Corn
NDVI with soil nitrogen in Ohio

Fig. 34 Spatial correlation of
soil organic carbon to soil
nitrogen content in Ohio
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Fig. 35 Spatial correlation of
coil pH to soil nitrogen content
in Ohio

Fig. 36 Winter: Seasonal
variation of nitrate and nitrite
across Ohio in 2019

123

9 Page 24 of 40



Journal of Geovisualization and Spatial Analysis (2024) 8:9 

Fig. 37 Spring: Seasonal
variation of nitrate and nitrite
across Ohio in 2019

Fig. 38 Summer: Seasonal
variation of nitrate and nitrite
across Ohio in 2019

Fig. 39 Fall: Seasonal variation
of nitrate and nitrite across Ohio
in 2019
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Fig. 40 Winter: Seasonal
variation of discharge across
Ohio in 2019

Fig. 41 Spring: Seasonal
variation of discharge across
Ohio in 2019

Fig. 42 Summer: Seasonal
variation of discharge across
Ohio in 2019
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Fig. 43 Fall: Seasonal variation
of discharge across Ohio in 2019

Fig. 44 Average discharge per
day for Ohio in 2019, trend line
displayed in blue

Fig. 45 Average nitrate and
nitrite per day for Ohio in 2019,
trend line displayed in green
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Table 1 Summary of nitrate and nitrite concentrations in Winter 2019

Level Minimum Mean Maximum n

Toxic (> 10 mg/L) 12.100 12.100 12.100 1

Warning (> 7 mg/L) 7.920 8.019 8.069 3

High (< 7 mg/L) 4.134 4.134 4.134 5

Normal (< 4 mg/L) 0.512 1.922 3.262 21

Table 2 Summary of nitrate and nitrite concentrations in Spring 2019

Level Minimum Mean Maximum n

Toxic (> 10 mg/L) 13.500 13.500 13.500 1

Warning (> 7 mg/L) 7.539 8.506 9.743 9

High (< 7 mg/L) 4.112 5.052 6.320 20

Normal (< 4 mg/L) 0.954 2.306 3.646 80

Table 3 Summary of nitrate and nitrite concentrations in Summer 2019

Level Minimum Mean Maximum n

Toxic (> 10 mg/L) n/a n/a n/a 0

Warning (> 7 mg/L) n/a n/a n/a 0

High (< 7 mg/L) 4.183 4.758 5.496 43

Normal (< 4 mg/L) 0.823 2.603 3.965 145

Table 4 Summary of nitrate and nitrite concentrations in Fall 2019

Level Minimum Mean Maximum n

Toxic (> 10 mg/L) 11.280 13.710 22.990 14

Warning (> 7 mg/L) 7.920 8.019 8.069 3

High (< 7 mg/L) 4.574 4.835 5.850 28

Normal (< 4 mg/L) 0.512 1.922 3.762 132

Table 5 Summary of discharge per season in Ohio 2019

Season Minimum Mean Maximum n

Winter 0 1307.170 20992.170 177

Spring 0.001 797.720 12086.871 177

Summer 0.001 797.522 12086.871 177

Fall 0 189.114 3176.768 117

Figures36, 37, 38, 39, 40, 41, 42, and 43 also display dis-
charge per season. Visually and based on Table 5, winter had
the highest discharge, while fall had the lowest amount of dis-
charge on average. Between winter, summer, and fall, the
locations with the greatest discharge were in relatively the
same locations, such as the southwestern and northeastern
parts of Ohio.

Discharge had a bimodal distribution early in the year, with
the highest peak occurring in February and the second peak
occurring in May, according to Fig. 44, while nitrate and
nitrite concentrationswere stable during that period (Fig. 45).
Nitrate and nitrite concentrations peaked later in the year,
around late October, while discharge was stable during this
time.

Discussion

Interpretation of Vegetation Classification Results

The vegetation classification results in Figs. 10, 11, 12, and 13
provide an informative baseline characterization of sea-
sonal variations in vegetation density across Ohio in 2019
using MODIS NDVI. As noted by Huang et al. (2021),
NDVI iswidelyused to examinevegetationpatterns and dynam-
ics across large regions. Aligning with previous studies
DeFries and Townshend (1994); Pettorelli et al. (2005), our
results showNDVI’s capability to capture phenological shifts
corresponding to the state’s seasonal weather and tempera-
ture patterns.

The lowerwinterNDVI values inOhio likely reflect colder
temperatures inhibiting plant growth, consistent with prior
work showing sparser canopy cover in temperate regions dur-
ing cold periods Chen et al. (2004); Jenkins et al. (2007).
Overall, these baseline vegetation maps validate the use
of MODIS NDVI time series for delineating regional and
seasonal distinctions in vegetation density and phenology,
consistent with previous studies DeFries and Townshend
(1994); Dragoni and Rahman (2012). The results establish an
informative foundation for future crop monitoring, climate
change, or land cover change analysis across these major
agricultural states.

Implications of CropMonitoring Results

Thecrop-specific temporalmonitoring results inSect. 4.2 and
Figs. 14, 15, 16, 17, 18, 19, 20, 21, and 22 provide valuable
insights into the growth profiles and phenological patterns of
key crops in Ohio during 2019. The distinct seasonal NDVI
signatures exhibited by corn and soybean in Ohio (Figs. 14,
15, 16, 17, 18, 19, 20, and 21) demonstrate MODIS data’s
potential for capturing crop-specific growth stages and phe-
nology, an essential application as noted by prior research
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Dragoni et al. (2011); Lu and Zhuang (2010). Corn displayed
vigorous NDVI growth from June through September, align-
ing with its typical summer cultivation period Suyker and
Verma (2012).

Soybeans also showed more moderate NDVI increases
during June-September, corresponding to their growth cycle
Setiyono et al. (2007); Bradley et al. (2007). Studies have
validated the use of MODIS NDVI for monitoring corn and
soybean development across the Midwest, including Ohio
Sakamoto et al. (2010); Zhong et al. (2016); Wardlow et al.
(2007). The higher winter crop NDVI in northern Ohio likely
reflects the concentrated summer growing period enabled
by a shorter temperate season, while the warmer climate in
southernOhio allows for a longer cultivation period and sum-
mer crop planting Hatfield et al. (2014). Regional variations
in climate and growing season length underpin these geo-
graphic crop patterns within the state.

In conclusion, the white regions evident in the crop moni-
toring maps show locations where those particular crops are
not grown, aligning with known regional agricultural distri-
butions. The crop monitoring results across Ohio underscore
MODISNDVIdata’s capability to capture regional variations
in crop phenology and development patterns Ko et al. (2009);
Piccinni et al. (2009); Abedinpour (2015). The distinct tem-
poral signatures enable differentiation between crops within
a state based on their geography-specific growing seasons
and climate suitability.

These findings highlight the potential of MODIS time
series for scalable vegetationmonitoring and classification in
agricultural regions. Applications could aid crop type map-
ping, growth stage modeling, and yield prediction at state
and national scales to support food security assessments.
However, validation with higher-resolution data would be
required to translate these methods to field-level precision
agriculture.

Significance of Soil Analysis Findings

• Soil Types
The soil type classification maps depicted in Figs. 23,
24, 25, and 26 validate and further explain the estab-
lished patterns of soil texture variations throughout Ohio
Subburayalu et al. (2014). Northwestern Ohio, with its
pronounced silt and clay content, has fine-textured soils
that trace back to their origins as glacial lacustrine
deposits Conrey (1941); Easterly (1964).
Conversely, sandy soils dominate a significant portion of
the state, a reflection of the coarser alluvial, glaciofluvial,
and loess (a type of very fine-grain, windblown sediment)
parent materials present in these regions. Prior work has
mapped such geographic distinctions in soil texture at
the state scale using digital soil data. Previous studies

have delineated these distinctions in soil texture at the
state’s scale using digital soil data Arshad et al. (1997);
Mallah et al. (2022) and have underscored the pivotal
role of soil composition in agricultural land management
Lindbo et al. (2012). These maps provide an updated
baseline understanding of soil textural patterns relevant
to crop planning and other applications.

• Soil Physical Properties
The reduced water retention observed in sections of
northwestern Ohio, as illustrated in Figs. 27 and 28, is
because of the presence of coarser sandy soils. These
soils are associated with the glacial beach ridge deposits
found along Lake Erie Conrey (1941); Easterly (1964).
Research shows that coarse-textured soils tend to have
reducedmoisture retention capabilities Subburayalu et al.
(2014). Concurrently, the higher surface soil texture in
this area is associated with a greater silt-clay content.
This composition provides structural stability and fer-
tility, which are crucial for agricultural practices Arshad
et al. (1997); Extension (2023); Saxton andRawls (2006).
However, themedium-textured soils acrossmuch ofOhio
provide favorable physical conditions for crop cultiva-
tion, as underscored by the state’s ranking amongnational
leaders in corn and soybean production USDA (2022).

• Soil Chemical Properties
The observed geographic patterns in key soil chemi-
cal properties, including nitrogen, organic carbon, and
pH (Figs. 29, 30, and 31) agree with documented spa-
tial distributions attributed to environmental factors.
Soil nitrogen levels often correspond to fertilizer inputs
and land management, with croplands showing elevated
concentrations Jarecki and Lal (2005). Soil organic car-
bon relates to vegetation, parent material, and climate
Jung and Lal (2011). Regional soil pH is influenced by
native vegetation, drainage, and other soil-forming fac-
tors Beery and Wilding (1971).
Notably, northwestern Ohio exhibits high soil nitrogen
content that implicates multiple interconnected factors.
The intensive corn and soybean agriculture provides
abundant nitrogen inputs, while flat topography and
prevalent tile drainage facilitate nitrogen transport from
fieldsMichalak et al. (2013); Smith et al. (2015). Coarser
sandy soils with lower organic matter offer reduced natu-
ral nitrogen retention Heathwaite et al. (2000); Moham-
madpour and Grady (2023). Freeze-thaw cycles may
speed up nitrogen release and nitrate leaching Fouli et al.
(2013). Climate patterns driving Lake Erie’s hypoxia
relate to soil nitrogen accumulation Bosch et al. (2013).
The heightened levels of nitrogen observed in the
Maumee River watershed hold a critical implication.
They hint at the presence of significant nitrogen reser-
voirs that possess the potential to bemobilized, ultimately
finding their way into the intricate network of rivers and,
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ultimately, into Lake Erie Scavia et al. (2014). The rele-
vance of this observation gains clarity when considering
two crucial aspects of soil composition and behavior.
First, the indication of lower organic carbon content car-
ries the implication of diminished capacity for nutrient
retention. In this context, it implies that soils with lower
organic carbon content are less effective at holding onto
essential elements like nitrogen, thus facilitating their
movement through the landscape. Second, the interac-
tions delineated within soil pH relationships elucidate
another dimension: the potential for nitrogen volatiliza-
tion losses Malhi and Nyborg (1991). This signifies that
variations in soil pH can trigger the release of nitro-
gen compounds into the air, a process that subsequently
contributes to the departure of nitrogen from the soil
ecosystem. Unveiling this nexus provides a crucial link
between soil dynamics and the larger ecological context,
particularly in relation to Lake Erie.
The amalgamation of heightened nitrogen concentra-
tions diminished retention capacity due to lower organic
carbon, and the potential for nitrogen loss through
volatilization points to a pathway through which the ele-
vated nitrogen in the Maumee River watershed could
impact Lake Erie’s ecosystem Ai et al. (2023). Relating
the soil data to hydrologic pathways could help quantify
nitrogenfluxes fromvulnerablefields intoLakeErie.This
could inform conservation practices targeting key areas.

In summary, these soil chemical maps establish an infor-
mative baseline understanding of nutrient status and envi-
ronmental impacts. They offer insights into spatial factors
influencing nitrogen availability and transport risks.

Discussion of Spatial Correlation Results

The spatial correlation analysis in Sect. 4.4 offers valuable
insights into the relationships between soil factors and crop
growth by harnessing the multi-source integrated geospa-
tial data. The spatiotemporal cropNDVI-nitrogen correlation
maps reveal positive Pearson correlation coefficients rang-
ing from 0.3 to 0.8, showing locations where higher NDVI
is associated with higher soil nitrogen content. The organic
carbon-nitrogen correlation analysis shows strong positive
coefficients between 0.6 and 0.9, reflecting the link between
soil organic matter and nitrogen supply. Meanwhile, the pH-
nitrogen correlation exhibits negative coefficients from−0.5
to −0.8, corresponding to reduced nitrogen availability in
acidic soils.

The correlation analysis provides valuable insights into
the complex relationships between soil fertility, crop growth,
and associated water quality impacts. The crop-nitrogen cor-
relations suggest field-specific interventions could optimize

plant nutrition based on soil nitrogen content mapped across
space and time. For instance, variable-rate nitrogen fertil-
izer applications could target areas with lower soil nitrogen
availability within fields to promote vigorous crop growth.

Temporal Correlation Analysis

The spatiotemporal crop NDVI-nitrogen correlation maps
(Figs. 32 and 33), provide valuable insights into the evolution
of soil nitrogen-crop relationships over the growing season.
The positive correlation values show locations where higher
NDVI is associated with higher soil nitrogen content, repre-
senting a positive relationship between crop greenness and
soil fertility. Meanwhile, negative values correspond to areas
where higher NDVI coincides with lower soil nitrogen con-
tent, indicative of an inverse relationship between the two
layers.

The correlation coefficients denote the strength of these
relationships, with values closer to -1 or 1 representing
stronger correlations. As documented in prior studies, ade-
quate soil nitrogen availability promotes vegetation growth
and crop yields Johnson andRaun (2003). The positive corre-
lations observed across the season validate this fundamental
connection between soil nitrogen stores and crop vigor. How-
ever, the strength of the correlations varied over time,with the
highest correlations evident during the peak summermonths.
This aligns with the crop growth stages, as corn and soybeans
have the greatest nitrogen requirements later in the season
when rapid biomass accumulation occurs Tremblay et al.
(2012); Russell (1973); Shahandeh et al. (2005). Capturing
this temporal variability provides nuanced insights into the
nonlinear, dynamic nature of crop-soil nitrogen linkages over
the cropping cycle.

One Time-Stamp Correlation Analysis

The spatial correlationmaps at a single point in time (Figs. 34
and 35) further explain relationships among key soil prop-
erties. As expected, soil organic carbon exhibited a strong
positive correlation with total nitrogen, as soil organic mat-
ter contains nitrogen that is mineralized into plant-available
forms throughmicrobial decomposition Liptzin et al. (2022).

Notably, higher soil carbon in easternOhio (Fig. 30), likely
increased organic nitrogen reserves that slowly mineralize to
support crop productivity Wang et al. (2017). This aligns
with the positive carbon-nitrogen correlation, suggesting a
stable soil nitrogen supply in high-carbon areas. In con-
trast, the negative pH-nitrogen correlation corresponds to
chemical losses in acidic soils. Lower pH in northwestern
Ohio (Fig. 29), promotes nitrogen leaching and volatiliza-
tion, reducing availability Russell (1973); Ding et al. (2014).
This suggests manure pH change could optimize nitrogen
retention in acidic soils Guo et al. (2016). This implies
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greater nitrogen loss risks that could impact downstream
water quality. Adjusting manure pH could optimize reten-
tion in sensitive areas.

Meanwhile, the soil carbon-nitrogen links showmanure or
compost additions to low-carbon soils could improve organic
nitrogen retention and prevent losses. The soil pH patterns
underscore the need for better management of acidic soils
to reduce nitrogen leaching and volatilization losses. Relat-
ing these findings to hydrologic pathways could help model
downstream nitrogen delivery and prioritize conservation
efforts in critical source areas.

Overall, these spatial relationships provide a nuanced
biogeochemical-carbon perspective that could inform agri-
cultural best practices. The integrated methodology could be
applied to additional regions to model soil-crop interactions
and forecast water quality outcomes under various climate
and land management scenarios. This systems-level under-
standing will become increasingly valuable for tackling the
complex sustainability challenges associated with food pro-
duction.

Discussion ofWater Feature Analysis

Figures36, 37, 38, 39, 40, 41, 42, and 43 show the spatial rela-
tionship of nitrate and nitrite and discharge in 2019 across
four seasons in Ohio. The highest concentrations of nitrate
and nitrite were seen in the fall, with 7% of the gauges report-
ing toxic levels (>10mg/L) coming from southwest Ohio.
Prime farmlands are in the west of Ohio. The watershed
draining into the river can carry water from these farmlands
and also the urban area adjacent to the Great Miami River.
Given this, the observed increase in nitrate and nitrite could
be because of sewage and fertilizer, the two main causes of
the increase in nitrate and nitrite levels in water Service et al.
(1997); Dubrovsky and Hamilton (2010).

Plant growth during the spring and summer months
involves increased uptake of nutrients, which are later
released back into the environment once plants reach the end
of their life cycle. In addition, water runoff from the post-
harvested field may also contribute to an increase in nitrate
and nitrite levels Gale et al. (2006). Wastewater treatment
plants (WWTP) can contribute to higher nutrient concentra-
tions Zouboulis and Tolkou (2015).

A preliminary investigation into the surroundings of some
gauges that reported toxic and non-toxic levels of nitrate and
nitrite shows toxic gauges are almost always near WWTPs.
A more systematic investigation is required to quantify their
contribution to nitrate andnitrite concentrations.Lastly, some
gauges displaying high nitrate and nitrite concentrations are
along the same river, showing that a specific watershed in the
southwest may need closer inspection.

Discharge was found to increase in the winter, spring, and
summer months, with the highest values found in the winter.

This could be attributed to snowmelt and precipitation during
these months Van Metre et al. (2016). It is also noted that
the discharge was higher in some sites irrespective of the
seasons (Figs. 36, 37, 38, 39, 40, 41, 42, and 43). This could
be attributed to the presence of dams Liu et al. (2014).

Figures44 and 45 highlight the relationship between dis-
charge andnitrate andnitrite during 2019.Anotable pattern is
present where lower discharge corresponds to higher nitrate
and nitrite concentrations. This is a known behavior reflect-
ing the settlement of nutrients due to lower flow rates in
streams.

The spatiotemporal patterns within and between nitrate
and nitrite and discharge reflect potential avenues to explore
how other additional features, such as agricultural land use
and soil types, can be integrated to further understand the
behavior of nutrient flow.

Conclusion

This research shows the significant potential of leveraging
publicly available geospatial data through an integrated spa-
tiotemporal analysis framework. Synthesizing multi-source
satellite, crop, soil, and hydrological measurements revealed
intricate connections between agricultural productivity, soil
fertility dynamics, and nutrient loss risks. The multi-faceted
perspective attained via advanced data fusion and analytic
techniques provided actionable insights to guide sustainable
agricultural management practices and environmental policy
decisions. Quantifying complex relationships through corre-
lation analysis offered valuable perspectives.

While moderate-resolution data sufficiently character-
izes regional crop growth and soil patterns, high-resolution
data could enable field-scale monitoring and personalized
interventions. Expanding the geographic scope across more
agriculturally significant areas would provide broader con-
textual insights. Incorporating longer-term records alongside
weather, climate, management, and socioeconomic data
would further inform the analysis of seasonal variabil-
ity and drivers. Transitioning such integrated platforms
into operational use for stakeholders would multiply their
impact. Enhanced computing capabilities, along with inter-
active data visualization and modeling tools, could empower
dynamic exploratory analysis. Machine learning methods
could extract deeper insights from multiplying data streams.

This work makes key contributions through the novel
integration of multi-modal geospatial data and advanced
spatiotemporal techniques. The methodology provides a
foundation to guide sustainable agricultural practices and
environmental monitoring. If transitioned into predictive
modeling and tools for stakeholders, the approach could sup-
port critical decision-making. The framework offers a unique
holistic perspective by linking crop, soil, and water dynam-
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ics using advance spatiotemporal integration approach and
Distributed High-Performance Computing.

As data availability and analytical capabilities continue
advancing, such holistic approaches will become increas-
ingly vital for ensuring productivity, sustainability, and
resilience for agricultural systems.
Supplementary Information The GIFs resulting from our
analysis and simulations are available for viewing. These
GIFs visually depict the multi-scale geospatial analysis con-
ducted for monitoring crop growth, land use/ vegetation
classification, and correlations for 2019 in Ohio, Texas, and
Florida Akanbi et al. (2023).

Appendices A, B, C, and D

This analysis was also conducted for Texas and Florida using
the same methodology and data sources described for Ohio.
The same analytical techniques were applied to characterize
regional crop patterns and phenology in these major agricul-
tural states based on MODIS NDVI time series data. These
appendices provide the key results for vegetation classifica-
tion and cropmonitoring in Texas and Florida to complement
the primary Ohio findings.

The supplementary results for these additional states are
presented here for reference.

Appendix A: Texas Vegetation Classification

Fig. 46 Winter: Seasonal vegetation density classification map for
Texas in 2019 based on MODIS NDVI analysis

Fig. 47 Spring: Seasonal vegetation density classification map for
Texas in 2019 based on MODIS NDVI analysis

Fig. 48 Summer: Seasonal vegetation density classification map for
Texas in 2019 based on MODIS NDVI analysis

Fig. 49 Fall: Seasonal vegetation density classification map for Texas
in 2019 based on MODIS NDVI analysis
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Appendix B: Texas CropMonitoring

Fig. 50 Winter: Crop-specific monitoring of corn growth in Texas dur-
ing 2019 using MODIS NDVI time series data

Fig. 51 Spring: Crop-specific monitoring of corn growth in Texas dur-
ing 2019 using MODIS NDVI time series data

Fig. 52 Summer: Crop-specific monitoring of corn growth in Texas
during 2019 using MODIS NDVI time series data

Fig. 53 Fall: Crop-specific monitoring of corn growth in Texas during
2019 using MODIS NDVI time series data

Fig. 54 Winter: Crop-specific monitoring of cotton growth in Texas
during 2019 using MODIS NDVI time series data

Fig. 55 Spring: Crop-specific monitoring of cotton growth in Texas
during 2019 using MODIS NDVI time series data
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Fig. 56 Summer: Crop-specific monitoring of cotton growth in Texas
during 2019 using MODIS NDVI time series data

Fig. 57 Fall: Crop-specificmonitoring of cotton growth in Texas during
2019 using MODIS NDVI time series data

Fig. 58 Average seasonal growth profiles of cotton and corn in Texas
during 2019 derived from MODIS NDVI

Appendix C: Florida Vegetation Classification

Fig. 59 Winter: Seasonal vegetation density classification map for
Florida in 2019 based on MODIS NDVI analysis

Fig. 60 Spring: Seasonal vegetation density classification map for
Florida in 2019 based on MODIS NDVI analysis

Fig. 61 Summer: Seasonal vegetation density classification map for
Florida in 2019 based on MODIS NDVI analysis
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Fig. 62 Fall: Seasonal vegetation density classification map for Florida
in 2019 based on MODIS NDVI analysis

Appendix D: Florida CropMonitoring

Fig. 63 Winter: Crop-specific monitoring of sugarcane growth in
Florida during 2019 using MODIS NDVI time series data

Fig. 64 Spring: Crop-specific monitoring of sugarcane growth in
Florida during 2019 using MODIS NDVI time series data

Fig. 65 Summer: Crop-specific monitoring of sugarcane growth in
Florida during 2019 using MODIS NDVI time series data

Fig. 66 Fall: Crop-specific monitoring of sugarcane growth in Florida
during 2019 using MODIS NDVI time series data

Fig. 67 Winter: Crop-specific monitoring of orange growth in Florida
during 2019 using MODIS NDVI time series data
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Fig. 68 Spring: Crop-specific monitoring of orange growth in Florida
during 2019 using MODIS NDVI time series data

Fig. 69 Summer: Crop-specificmonitoring of orange growth in Florida
during 2019 using MODIS NDVI time series data

Fig. 70 Fall: Crop-specific monitoring of orange growth in Florida
during 2019 using MODIS NDVI time series data

Fig. 71 Average seasonal growth profiles of sugarcane and oranges in
Florida during 2019 derived from MODIS NDVI

Acknowledgements This study was conducted in the SDLE Research
Center at Case Western Reserve University. This work made use of
the High-Performance Computing Resource in the Core Facility for
Advanced Research Computing at Case Western Reserve University.
The authors acknowledge Hendrik Hamann and IBM Environmental
Intelligence Suite for some of the data integrated for this study.

Funding This work is supported in part by the National Science Foun-
dation under Grant No. 2133576.

Data Availability The data used in this project are sourced exclusively
from open-access repositories. All data outputs generated during the
study are publicly available and properly referenced in this paper.

Declarations

Compliance with Ethical Standards The authors were compliant with
the ethical standards.

Ethics Approval All authors certify that no ethical approval was
required for the subject matter or materials discussed in this manuscript.
All authors certify that the research subject of this manuscript does not
raise any ethical concerns.

Informed Consent All authors provided informed consent. They were
fully informed about the study’s purpose, procedures, potential risks,
and benefits, and they voluntarily agreed to participate with a clear
understanding of their rights and the confidentiality of their data.

Competing Interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your

123

9 Page 36 of 40



Journal of Geovisualization and Spatial Analysis (2024) 8:9 

intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Abedinpour M (2015) Evaluation of growth-stage-specific crop coef-
ficients of maize using weighing lysimeter. Soil Water Res
10(2):99–104

AhmadM, Zeeshan M (2022) Validation of weather reanalysis datasets
and geospatial and techno-economic viability and potential assess-
ment of concentrated solar power plants. Energy Convers Manage
256:115366

Ai H, Zhang K, Sun J et al (2023) Short-term Lake Erie algal bloom
prediction by classification and regression models. Water Res
232:119710. https://doi.org/10.1016/j.watres.2023.119710

Akanbi O, Bhuvanagiri D, Barcelos E et al (2023) Integrating mul-
tiscale geospatial analysis for monitoring crop growth, nutrient
distribution, and hydrological dynamics in large-scale agricultural
systems. https://osf.io/z6cvh/. publisher: OSF

ArshadM, Lowery B, Grossman B (1997) Physical tests for monitoring
soil quality. Methods Assess Soil Qual 49:123–141

Azar D, Engstrom R, Graesser J et al (2013) Generation of fine-
scale population layers using multi-resolution satellite imagery
and geospatial data. Remote Sens Environ 130:219–232

Bartos M (2023) Mdbartos pysheds: Earth Americas simple and fast
watershed delineation in python. https://github.com/mdbartos/
pysheds

Batjes NH, Ribeiro E, van Oostrum AJM (2019) Standardised soil
profile data for the world (Wosis snapshot - September 2019).
Accessed 23 Jun 2023

BeeryM,WildingLP (1971)The relationship between soil pH and base-
saturation percentage for surface and subsoil horizons of selected
mollisols, alfisols, and ultisols in Ohio. Ohio J Sci 71(1):43–55.
https://kb.osu.edu/handle/1811/5590

Bosch NS, Allan JD, Selegean JP et al (2013) Scenario-testing of agri-
cultural best management practices in Lake Erie Watersheds. J
Great Lakes Res 39(3):429–436

Botte G, French RH, Hatzell M et al (2023) Center for advancing sus-
tainable and distributed fertilizer production (CASFER), and NSF
engineering research center. https://www.casfer.us

Bradley BA, Jacob RW, Hermance JF et al (2007) A curve fitting proce-
dure to derive inter-annual phenologies from time series of noisy
satellite NDVI data. Remote Sens Environ 106(2):137–145

Chen J (2018) Remote sensing of leaf area index and clumping index.
In: Comprehensive Remote Sensing. Elsevier, Oxford, pp 53–77.
https://doi.org/10.1016/B978-0-12-409548-9.10540-8

Chen J, Jönsson P, Tamura M et al (2004) A simple method for recon-
structing a high-quality NDVI time-series data set based on the
Uavitzky-Golay filter. Remote Sens Environ 91(3–4):332–344

Coffman VR, Jensen AS, Trabjerg BB et al (2021) Prenatal exposure
to nitrate from drinking water and markers of fetal growth restric-
tion: a population-based study of nearly one million Danish-born
children. Environ Health Perspect 129(2):027002. https://doi.org/
10.1289/EHP7331

Conrey GW (1941) The origin of Ohio soils. Ohio J Sci 41(3):201–206
Coughlan T (2020) The use of open data as a material for learning.

Education Tech Research Dev 68(1):383–411. https://doi.org/10.
1007/s11423-019-09706-y

DeFries RS, Townshend J (1994) NDVI-derived land cover classifica-
tions at a global scale. Int J Remote Sens 15(17):3567–3586

Demattê JAM, Fongaro CT, Rizzo R et al (2018) Geospatial soil sensing
system (geos3): a powerful data mining procedure to retrieve soil

spectral reflectance from satellite images. Remote Sens Environ
212:161–175

Ding LJ, An XL, Li S et al (2014) Nitrogen loss through anaerobic
ammonium oxidation coupled to iron reduction from paddy soils
in a chronosequence. Environ Sci Technol 48(18):10641–10647

Dragoni D, Rahman AF (2012) Trends in fall phenology across the
deciduous forests of the EasternUSA.Agric ForMeteorol 157:96–
105

Dragoni D, Schmid HP, Wayson CA et al (2011) Evidence of increased
net ecosystem productivity associated with a longer vegetated sea-
son in a deciduous forest in South-Central Indiana, USA. Glob
Change Biol 17(2):886–897

Dubrovsky NM, Hamilton PA (2010) Nutrients in the nation’s streams
and groundwater: national findings and implications. https://pubs.
usgs.gov/fs/2010/3078/

Easterly NW (1964) Distribution patterns of Ohio cruciferae. Castanea
29(3):164–173

Extension OSU (2023) Soil type and history. https://soilhealth.osu.edu/
soil-health-assessment/soil-type-history. Accessed 23 Jun 2023

Fang H, Liang S (2014) Leaf area index models. In: Reference Module
in Earth Systems and Environmental Sciences. Elsevier. https://
doi.org/10.1016/B978-0-12-409548-9.09076-X

Fisher A, Flood N, Danaher T (2016) Comparing Landsat water index
methods for automated water classification in Eastern Australia.
Remote Sens Environ 175:167–182

Fouli Y, Cade-Menun BJ, Cutforth HW (2013) Freeze-thaw cycles and
soil water content effects on infiltration rate of three Saskatchewan
soils. Can J Soil Sci 93(4):485–496

Gale ES, Sullivan DM, Cogger CG et al (2006) Estimating plant-
available nitrogen release from manures, composts, and specialty
products. J Environ Qual 35(6):2321–2332. https://doi.org/10.
2134/jeq2006.0062

Gao BC (1996) NDWI-a normalized difference water index for remote
sensing of vegetation liquid water from space. Remote Sens Env-
iron 58(3):257–266

Guo L, Wu G, Li Y et al (2016) Effects of cattle manure compost
combined with chemical fertilizer on topsoil organic matter, bulk
density and earthworm activity in a wheat-maize rotation system
in Eastern China. Soil Tillage Res 156:140–147

Hamdi A, Shaban K, Erradi A et al (2022) Spatiotemporal data mining:
a survey on challenges and open problems. Artif Intell Rev 1–48

Hatfield JL, Takle GR, Grotjahn R et al (2014) Agriculture. Climate
change impacts in the United States: the third national climate
assessment. US Global Change Research Program, Washington,
DC, pp 150–174

Heathwaite L, Sharpley A, Gburek W (2000) A conceptual approach
for integrating phosphorus and nitrogen management at watershed
scales. J Environ Qual 29(1):158–166

Hijmans RJ, Bivand R, Pebesma E et al (2023a) Terra: Spatial data
analysis

Hijmans RJ, van Etten J, Sumner M et al (2023b) Raster: Geographic
data analysis and modeling

Huang S, Tang L, Hupy JP et al (2021) A commentary review on the
use of normalized difference vegetation index (NDVI) in the era
of popular remote sensing. J For Res 32(1):1–6

HueteAR (1988)A soil-adjusted vegetation index (SAVI). Remote Sens
Environ 25(3):295–309

Hu Y, Hosain MA, Jain T et al (2013) Global SunFarm data acquisition
network, energyCRADLE, and time series analysis. In: 2013 IEEE
Energytech. IEEE, pp 1–5

Jackson TJ, Chen D, Cosh M et al (2004) Vegetation water content
mapping using Landsat data derived normalized difference water
index for corn and soybeans. Remote Sens Environ 92(4):475–482

JareckiMK, Lal R (2005) Soil organic carbon sequestration rates in two
long-term no-till experiments in Ohio. Soil Sci 170(4):280–291

123

Page 37 of 40 9

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.watres.2023.119710
https://osf.io/z6cvh/
https://github.com/mdbartos/pysheds
https://github.com/mdbartos/pysheds
https://kb.osu.edu/handle/1811/5590
https://www.casfer.us
https://doi.org/10.1016/B978-0-12-409548-9.10540-8
https://doi.org/10.1289/EHP7331
https://doi.org/10.1289/EHP7331
https://doi.org/10.1007/s11423-019-09706-y
https://doi.org/10.1007/s11423-019-09706-y
https://pubs.usgs.gov/fs/2010/3078/
https://pubs.usgs.gov/fs/2010/3078/
https://soilhealth.osu.edu/soil-health-assessment/soil-type-history
https://soilhealth.osu.edu/soil-health-assessment/soil-type-history
https://doi.org/10.1016/B978-0-12-409548-9.09076-X
https://doi.org/10.1016/B978-0-12-409548-9.09076-X
https://doi.org/10.2134/jeq2006.0062
https://doi.org/10.2134/jeq2006.0062


Journal of Geovisualization and Spatial Analysis (2024) 8:9 

Jenkins J, Richardson A, Braswell B et al (2007) Refining light-use
efficiency calculations for a deciduous forest canopy using simul-
taneous tower-based carbon flux and radiometric measurements.
Agric For Meteorol 143(1–2):64–79

Jiang Z, Huete AR, Didan K et al (2008) Development of a two-band
enhanced vegetation index without a blue band. Remote Sens Env-
iron 112(10):3833–3845

Johnson G, Raun W (2003) Nitrogen response index as a guide to fer-
tilizer management. J Plant Nutr 26(2):249–262

Jones R (2023) Algorithms for using a dem for mapping catchment
areas of stream sediment samples. https://www.sciencedirect.com/
science/article/pii/S0098300402000225?casa_token=bOqFqWz
A1mgAAAAA:NvV3YqvaxTkFjUfXU1Cp7wCLCgmLpu3ZN8
SqWKQoPkMmY5GcW3f193p3W-r22LP5rkwRDH_-iXbe

Jung JY, Lal R (2011) Impacts of nitrogen fertilization on biomass
production of switchgrass (panicum virgatum l.) and changes in
soil organic carbon in Ohio. Geoderma 166(1):145–152

Khalilnejad A, Karimi AM, Kamath S et al (2020) Automated pipeline
framework for processing of large-scale building energy time
series data. PLoS One 15(12):e0240461. https://doi.org/10.1371/
journal.pone.0240461

Klein LJ, Marianno FJ, Albrecht CM et al (2015) Pairs: a scalable
geo-spatial data analytics platform. In: 2015 IEEE International
Conference on Big Data (Big Data). IEEE, pp 1290–1298

Ko J, Piccinni G, Marek T et al (2009) Determination of growth-stage-
specific crop coefficients (kc) of cotton and wheat. Agric Water
Manag 96(12):1691–1697

Lindbo DL, Kozlowski DA, Robinson C et al (2012) Know soil know
life. Soil Sci Soc Am. https://doi.org/10.2136/2012.knowsoil.c1,
https://cir.nii.ac.jp/crid/1130282269040517248

Liptzin D, Norris C, Cappellazzi S et al (2022) An evaluation of carbon
indicators of soil health in long-term agricultural experiments. Soil
BiolBiochem172:108708. https://doi.org/10.1016/j.soilbio.2022.
108708

Liu Y, Yang W, Yu Z et al (2014) Assessing effects of small dams on
streamflowandwater quality in an agriculturalwatershed. JHydrol
Eng 19(10):05014015. https://doi.org/10.1061/(ASCE)HE.1943-
5584.0001005

Lnenicka M, Nikiforova A (2021) Transparency-by-design: what is the
role of open data portals? Telematics Inform 61. https://doi.org/
10.1016/j.tele.2021.101605

Lu X, Zhuang Q (2010) Evaluating evapotranspiration and water-use
efficiency of terrestrial ecosystems in the conterminous United
States using MODIS and AmeriFlux data. Remote Sens Environ
114(9):1924–1939

Lu S, Hamann HF (2021) IBM pairs: scalable big geospatial-temporal
data and analytics as-a-service. In: Handbook of Big Geospatial
Data. Springer International Publishing, cham, pp 3–34. https://
doi.org/10.1007/978-3-030-55462-0_1

Lu S, Shao X, Freitag M et al (2016) IBM pairs curated big data service
for accelerated geospatial data analytics and discovery. In: 2016
IEEE International Conference on Big Data (Big Data). IEEE, pp
2672–2675

Malhi S, Nyborg M (1991) Recovery of 15 n-labelled urea: influence
of zero tillage, and time and method of application. Fertilizer Res
28:263–269

Mallah S, Delsouz Khaki B, Davatgar N et al (2022) Predicting soil
textural classes using random forest models: learning from imbal-
anced dataset. Agronomy 12(11):2613

Manassaram DM, Backer LC, Messing R et al (2010) Nitrates in
drinking water and methemoglobin levels in pregnancy: a lon-
gitudinal study. Environ Health 9(1):60. https://doi.org/10.1186/
1476-069X-9-60

METI, NASA (2019) ASTER GDEM and ASTER water body dataset
(ASTWBD). https://www.jspacesystems.or.jp/ersdac/GDEM/E/

Michalak AM, Anderson EJ, Beletsky D et al (2013) Record-setting
algal bloom inLakeErie caused by agricultural andmeteorological
trends consistent with expected future conditions. Proc Natl Acad
Sci 110(16):6448–6452

MODIS N (2019) Modis aqua data. https://ladsweb.modaps.eosdis.
nasa.gov/. Accessed 23 Jun 2023

Mohammadpour P, Grady C (2023) Regional analysis of nitrogen flow
within the Chesapeake baywatershed food production chain inclu-
sive of trade. Environ Sci Technol 57(11):4619–4631

Navarro G, Caballero I, Silva G et al (2017) Evaluation of forest fire on
madeira island using Sentinel-2A MSI imagery. Int J Appl Earth
Obs Geoinf 58:97–106

OGC (2023) OGC GeoTIFF standard
Ooms [aut J, cre (2023) Magick: advanced graphics and image-

processing in R
Palmer MJ, Jamieson HE, Radková AB et al (2021) Mineralogical,

geospatial, and statisticalmethods combined to estimate geochem-
ical background of arsenic in soils for an area impacted by legacy
mining pollution. Sci Total Environ 776:145926

Peng YF, Tang JH, Yc Fu et al (2016) Analyzing personal happiness
from global survey and weather data: a geospatial approach. PLoS
One 11(4):e0153638

Peñuelas J, Pinol J, Ogaya R et al (1997) Estimation of plant water
concentration by the reflectance water index WI (r900/r970). Int J
Remote Sens 18(13):2869–2875

Pettorelli N, Vik JO,Mysterud A et al (2005) Using the satellite-derived
NDVI to assess ecological responses to environmental change.
Trends Ecol Evol 20(9):503–510

Piccinni G, Ko J, Marek T et al (2009) Determination of growth-stage-
specific crop coefficients (kc) of Maize and Sorghum. AgricWater
Manag 96(12):1698–1704

R Core Team (2023) R: the R project for statistical computing
Ritter N, Ruth M (1997) The GeoTiff data interchange standard for

raster geographic images. Int J Remote Sens 18(7):1637–1647.
https://doi.org/10.1080/014311697218340

Rouse JW, Haas RH, Deering DW et al (1974a) Monitoring the vernal
advancement and retrogradation (Green Wave Effect) of natural
vegetation. Technical Report E75-10354, NASA. https://ntrs.nasa.
gov/citations/19750020419

Rouse Jr JW, Haas RH, Schell JA et al (1974b) Monitoring vegetation
systems in the great plains with ERTS. In: Third Earth Resources
Technology Satellite-1 Symposium: The Proceedings of a Sympo-
sium Held by Goddard Space Flight Center at Washington, DC on
December 10-14, 1973: Prepared at Goddard Space Flight Cen-
ter, vol. 351. Scientific and Technical Information Office, National
Aeronautics and Space ..., Goddard,WashingtonDC,USA, pp 309

Russell E (1973) Plant nutrition and crop production. Plant Nutrition
and Crop Production. pp 11–28

Sakamoto T,WardlowBD,GitelsonAAet al (2010)A two-step filtering
approach for detecting maize and soybean phenology with time-
series MODIS data. Remote Sens Environ 114(10):2146–2159

Saxton KE, Rawls WJ (2006) Soil water characteristic estimates by
texture and organic matter for hydrologic solutions. Soil Sci Soc
Am J 70(5):1569–1578

Scavia D, Allan JD, Arend KK et al (2014) Assessing and addressing
the re-eutrophication of Lake Erie: central basin hypoxia. J Great
Lakes Res 40(2):226–246

Schlossberg T (2017) Fertilizers, a boon to agriculture. Pose Growing
Threat to U.S. Waterways, The New York Times

Service NRC, Cartography N, Center GIS (1997) Prime farmland dis-
tribution. https://www.loc.gov/resource/g4081j.ct011814/

Setiyono T,Weiss A, Specht J et al (2007) Understanding and modeling
the effect of temperature and daylength on soybean phenology
under high-yield conditions. Field Crop Res 100(2–3):257–271

123

9 Page 38 of 40

https://www.sciencedirect.com/science/article/pii/S0098300402000225casa_token=bOqFqWzA1mgAAAAA:NvV3YqvaxTkFjUfXU1Cp7wCLCgmLpu3ZN8SqWKQoPkMmY5GcW3f193p3W-r22LP5rkwRDH_-iXbe
https://www.sciencedirect.com/science/article/pii/S0098300402000225?casa_token=bOqFqWzA1mgAAAAA:NvV3YqvaxTkFjUfXU1Cp7wCLCgmLpu3ZN8SqWKQoPkMmY5GcW3f193p3W-r22LP5rkwRDH_-iXbe
https://www.sciencedirect.com/science/article/pii/S0098300402000225?casa_token=bOqFqWzA1mgAAAAA:NvV3YqvaxTkFjUfXU1Cp7wCLCgmLpu3ZN8SqWKQoPkMmY5GcW3f193p3W-r22LP5rkwRDH_-iXbe
https://www.sciencedirect.com/science/article/pii/S0098300402000225?casa_token=bOqFqWzA1mgAAAAA:NvV3YqvaxTkFjUfXU1Cp7wCLCgmLpu3ZN8SqWKQoPkMmY5GcW3f193p3W-r22LP5rkwRDH_-iXbe
https://doi.org/10.1371/journal.pone.0240461
https://doi.org/10.1371/journal.pone.0240461
https://doi.org/10.2136/2012.knowsoil.c1
https://cir.nii.ac.jp/crid/1130282269040517248
https://doi.org/10.1016/j.soilbio.2022.108708
https://doi.org/10.1016/j.soilbio.2022.108708
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001005
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001005
https://doi.org/10.1016/j.tele.2021.101605
https://doi.org/10.1016/j.tele.2021.101605
https://doi.org/10.1007/978-3-030-55462-0_1
https://doi.org/10.1007/978-3-030-55462-0_1
https://doi.org/10.1186/1476-069X-9-60
https://doi.org/10.1186/1476-069X-9-60
https://www.jspacesystems.or.jp/ersdac/GDEM/E/
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://doi.org/10.1080/014311697218340
https://ntrs.nasa.gov/citations/19750020419
https://ntrs.nasa.gov/citations/19750020419
https://www.loc.gov/resource/g4081j.ct011814/


Journal of Geovisualization and Spatial Analysis (2024) 8:9 

Shahandeh H, Wright A, Hons F et al (2005) Spatial and temporal
variation of soil nitrogen parameters related to soil texture and
corn yield. Agron J 97(3):772–782

Shaver T, Khosla R, Westfall D (2006) Utilizing green normalized
difference vegetation indices (GNDVI) for production level man-
agement zone delineation in irrigated corn. In: The 18th World
Congress of Soil Science

ShibayamaM, Akiyama T (1986) A spectroradiometer for field use: Vi.
radiometric estimation for chlorophyll index of rice canopy. Jap J
Crop Sci 55(4):433–438

Shrestha S, BrueckH, Asch F (2012) Chlorophyll index, photochemical
reflectance index and chlorophyll fluorescence measurements of
rice leaves supplied with different n levels. J Photochem Photobiol
B 113:7–13

Singh S, Anil AG, Kumar V et al (2022) Nitrates in the environment:
a critical review of their distribution, sensing techniques, ecologi-
cal effects and remediation. Chemosphere 287. https://doi.org/10.
1016/j.chemosphere.2021.131996

Sinha E, Michalak AM, Balaji V (2017) Eutrophication will increase
during the 21st century as a result of precipitation changes. Science
357(6349):405–408. https://doi.org/10.1126/science.aan2409

Smith DR, King KW, Johnson L et al (2015) Surface runoff and tile
drainage transport of phosphorus in theMidwestern United States.
J Environ Qual 44(2):495–502

Staff SS (2019) Web soil survey. https://websoilsurvey.nrcs.usda.gov/.
Accessed 23 Jun 2023

Subburayalu S, Jenhani I, Slater B (2014) Disaggregation of component
soil series on an Ohio county soil survey map using possibilistic
decision trees. Geoderma 213:334–345

Survey USG, Agency EP, Council NWQM (2019) Water quality data
home. https://www.waterqualitydata.us/#advanced=true

Survey USG (2019) USGS water data for the nation. https://waterdata.
usgs.gov/. Accessed 23 Jun 2023

Suyker AE, Verma SB (2012) Gross primary production and ecosys-
tem respiration of irrigated and rainfed maize-soybean cropping
systems over 8 years. Agric For Meteorol 165:12–24

Tachikawa T, Hato M, Kaku M et al (2011a) Aster global digital ele-
vation model version 2. https://www.jspacesystems.or.jp/ersdac/
GDEM/E/1.html. Accessed 23 Jun 2023

Tachikawa T, Hato M, Kaku M et al (2011b) The characteristics of
ASTER GDEM version 2. In: IGARSS

Tremblay N, Bouroubi YM, Bélec C et al (2012) Corn response
to nitrogen is influenced by soil texture and weather. Agron J
104(6):1658–1671

UnitedStatesDepartment ofAgriculture (2019)Historical crop planting
data. https://www.nass.usda.gov/Quick_Stats/. Accessed 23 Jun
2023

USDA (2022) Ohio - state agriculture overview - 2022. https://www.
nass.usda.gov/Quick_Stats/. Accessed 23 Jun 2023

Van Metre PC, Frey JW, Musgrove M et al (2016) High nitrate concen-
trations in some Midwest United States streams in 2013 after the
2012 drought. J Environ Qual 45(5):1696–1704. https://doi.org/
10.2134/jeq2015.12.0591

Wang J, Rich PM, Price KP (2003) Temporal responses of NDVI to
precipitation and temperature in the Central Great Plains, USA.
Int J Remote Sens 24(11):2345–2364

Wang T, Kang F, Cheng X et al (2017) Spatial variability of organic car-
bon and total nitrogen in the soils of a subalpine forested catchment
at Mt. Taiyue, China. Catena 155:41–52

Wardlow BD, Egbert SL, Kastens JH (2007) Analysis of time-series
MODIS 250 m vegetation index data for crop classification in the
US Central Great Plains. Remote Sens Environ 108(3):290–310

Waring R, Coops N, Fan W et al (2006) Modis enhanced vegetation
index predicts tree species richness across forested ecoregions in
the contiguous USA. Remote Sens Environ 103(2):218–226

Yaman B, Thompson K, Brennan R (2021) A SKOS taxonomy of the
UN global geospatial information management data theme. In:
4th International Workshop on Geospatial Linked Data at ESWC
2021. CEUR-WS, Hersonissos, Greece(Online). https://ceur-ws.
org/Vol-2977/paper11.pdf

Zhong L, Hu L, Yu L et al (2016) Automated mapping of soybean
and corn using phenology. ISPRS J Photogramm Remote Sens
119:151–164

Zhu J, Miller A, Lindsay C et al (2013) Modis NDVI products and
metrics user manual. Geographic Information Network of Alaska,
UAF

Zouboulis A, Tolkou A (2015) Effect of climate change in wastew-
ater treatment plants: reviewing the problems and solutions. In:
Shrestha S, Anal AK, Salam PA, et al (eds) Managing Water
Resources under Climate Uncertainty: Examples from Asia,
Europe, Latin America, and Australia. Springer Water, Springer
International Publishing, Cham, pp 197–220. https://doi.org/10.
1007/978-3-319-10467-6_10

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

Page 39 of 40 9

https://doi.org/10.1016/j.chemosphere.2021.131996
https://doi.org/10.1016/j.chemosphere.2021.131996
https://doi.org/10.1126/science.aan2409
https://websoilsurvey.nrcs.usda.gov/
https://www.waterqualitydata.us/#advanced=true
https://waterdata.usgs.gov/
https://waterdata.usgs.gov/
https://www.jspacesystems.or.jp/ersdac/GDEM/E/1.html
https://www.jspacesystems.or.jp/ersdac/GDEM/E/1.html
https://www.nass.usda.gov/Quick_Stats/
https://www.nass.usda.gov/Quick_Stats/
https://www.nass.usda.gov/Quick_Stats/
https://doi.org/10.2134/jeq2015.12.0591
https://doi.org/10.2134/jeq2015.12.0591
https://ceur-ws.org/Vol-2977/paper11.pdf
https://ceur-ws.org/Vol-2977/paper11.pdf
https://doi.org/10.1007/978-3-319-10467-6_10
https://doi.org/10.1007/978-3-319-10467-6_10


Journal of Geovisualization and Spatial Analysis (2024) 8:9 

Authors and Affiliations

Olatunde D. Akanbi1,2,3 · Deepa C. Bhuvanagiri2,3,4 · Erika I. Barcelos1,2,3 · Arafath Nihar2,4 ·
Brian Gonzalez Hernandez2,4 · Jeffrey M. Yarus1,2,3 · Roger H. French1,2,3,4

Olatunde D. Akanbi
oda10@case.edu

Deepa C. Bhuvanagiri
dcb117@case.edu

Erika I. Barcelos
eib14@case.edu

Arafath Nihar
axn392@case.edu

Brian Gonzalez Hernandez
brg62@case.edu

Roger H. French
rxf131@case.edu

1 Department of Material Science and Engineering, Case
Western Reserve University, Cleveland 44106, OH, USA

2 SDLE Research Center, Case Western Reserve University,
Cleveland 44106, OH, USA

3 Center for Advancing Sustainable and Distributed Fertilizer
Production, Case Western Reserve University, Cleveland
44106, OH, USA

4 Department of Computer and Data Sciences, Case Western
Reserve University, Cleveland 44106, OH, USA

123

9 Page 40 of 40

http://orcid.org/0000-0002-9331-9568

	Integrating Multiscale Geospatial Analysis for Monitoring Crop Growth, Nutrient Distribution, and Hydrological Dynamics  in Large-Scale Agricultural Systems
	Abstract
	Introduction
	Datasets
	Soil and Crop Datasets
	Water and Elevation Datasets


	Methodology
	Crop and Soil
	Data Acquisition and Integration
	Geospatial Analysis of Soil and Crop Parameters

	Acquisition of Water Data
	Geospatial Analysis of Water Parameters

	Improved Methodology
	Work Flow

	Results
	Vegetation Classification
	Crop Monitoring
	Soil Analysis
	Spatial Correlation
	Water Feature Analysis

	Discussion
	Interpretation of Vegetation Classification Results
	Implications of Crop Monitoring Results
	Significance of Soil Analysis Findings
	Discussion of Spatial Correlation Results
	Temporal Correlation Analysis
	One Time-Stamp Correlation Analysis

	Discussion of Water Feature Analysis

	Conclusion
	Appendices A, B, C, and D
	Appendix A: Texas Vegetation Classification
	Appendix B: Texas Crop Monitoring
	Appendix C: Florida Vegetation Classification
	Appendix D: Florida Crop Monitoring
	Acknowledgements
	References


