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Abstract
Crop classification plays a crucial role in ensuring food security, agricultural policy development, and effective land manage-
ment. Remote sensing data, particularly Sentinel-1 and Sentinel-2 data, has been widely used for crop mapping and clas-
sification in cloudy regions due to their high temporal and spatial resolution. This study aimed to enhance the classification 
accuracy of grain crops, specifically barley and wheat, by integrating Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 
multispectral instrument (MSI) data. The study utilized two classification models, random forest (RF) and classification and 
regression trees (CART), to classify the grain crops based on the integrated data. The results showed an overall accuracy (OA) 
of 93%, and a Kappa coefficient (K) of 0.896 for RF, and an OA of 89.15% and K of 0.84 for the CART classifier. The integra-
tion of both radar and optical data has the potential to improve the accuracy of crop classification compared to using a single-
sensor classification technique. The significance of this study is that it demonstrates the effectiveness of integrating radar and 
optical data to improve crop classification accuracy. These findings can be used to support crop management, environmental 
monitoring, and policy development, particularly in areas with cloud cover or limited optical data. The study’s implications 
are particularly relevant in the context of global food security, where accurate crop classification is essential for monitoring 
crop health and yield estimation. Concisely, this study provides a useful approach for crop classification using Sentinel-1 and 
Sentinel-2 data integration, which can be employed to support sustainable agriculture and food security initiatives.
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Introduction

Agriculture is widely acknowledged as the fundamental pil-
lar of human existence, exerting significant control over the 
economy (Ennouri & Kallel, 2019). Wheat (Triticum ssp.) 

and barley (Hordeum vulgare L.), two of the approximately 
30 types and 360 species that comprise the Triticeae tribe 
(subfamily Pooideae, family Poaceae), are among the most 
economically significant temperate cereal crops (Schnur-
busch, 2019). Hence, it is crucial for both the public and 
private sectors to have reliable agricultural information at 
their disposal in order to make informed decisions on agri-
cultural policies, provide crops at minimum cost, and ensure 
food security (Lira Melo de Oliveira Santos et al., 2019).

The monitoring of agricultural areas is crucial to mitigate 
the challenges facing the world such as population growth, 
increased food demand, climate change (Heupel et al., 2018), 
and changes in consumption habits (Lira Melo de Oliveira 
Santos et al., 2019). Addressing these challenges requires 
temporal and spatial information on crop distribution, as 
well as location-based crop classification maps to predict 
crop harvest forecasts during the growing season (Hütt & 
Waldhoff, 2018). Crop maps provide comprehensive tem-
poral and spatial information on agricultural fields, which 
are developed and managed through diverse social or policy 
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activities that significantly impact biochemical, hydrologi-
cal, climatic, biological, economic, and human health cycles.

While some local governments still rely on manual labor 
to implement social policies, identify farm characteris-
tics, and estimate the amount and type of crops harvested 
in a given area (Kobayashi et al., 2020), new techniques 
are essential for more efficient and accurate agricultural 
monitoring.

In the past 10 years, the remote sensing field has made a 
significant progress in the development of spectral-spatial 
classification techniques (Du et al., 2020). Remote sensing 
is a crucial agricultural practice for crop classification and 
acquiring information about farmlands, both locally and 
globally. It plays a vital role in designing and implement-
ing agricultural policies, managing crops, and ensuring food 
security (Arias et al., 2020). Precision agriculture has greatly 
benefited from the widespread use of remote sensing in the 
last few decades. Crop identification and categorization 
enable the estimation of the geographical variation covered 
by different crops, which is a significant factor in field map-
ping (Khaliq et al., 2018). Although field mapping provides 
exceptional precision, it requires a substantial amount of 
time and effort. The availability of opportunities for field 
studies is limited by high mountain vegetation, which has 
a shorter vegetation season and is less accessible than low 
lands. The development of technology has led to the fre-
quent use of remote sensing data, which are characterized 
by increased objectivity and spatial coverage (Wakulińska 
& Marcinkowska-Ochtyra, 2020).

Remote sensing is a widely used and effective technique 
for creating crop distribution maps, providing fast and effi-
cient mapping of agricultural land cover for various global 
applications (Remelgado et al., 2020). By utilizing remote 
sensing data spanning large areas and multiple time and spa-
tial resolutions, crop types can be identified through changes 
in their reflectance properties throughout the year, with 
emphasis on the temporal aspect (Heupel et al., 2018). Mul-
tispectral and multi-temporal remote sensing data have been 
employed to generate crop maps, showcasing their ability 
to assess vegetation status across different periods (Khaliq 
et al., 2018). Remote sensing–based approaches have proven 
to be an efficient method for crop classification and assess-
ment of crop areas, surpassing conventional ground-based 
surveys which are expensive and time-consuming (Baidar, 
2020).

Satellite land monitoring offers information about bio-
diversity, surface characteristics, and spatial differences at 
a given time, which are very rich sources of information 
for identifying crop species and can be utilized to monitor 
them throughout the growth cycle (Arias et al., 2020). Aerial 
imagery is one of the most valuable sources of information 
for automated land classification and the development of var-
ious crops grown in different agricultural areas worldwide. It 

can estimate the area of certain crops, monitor their health, 
and predict their production (Crnojević et al., 2014). The 
classification is performed using a variety of spectral bands 
from multispectral time-series data. Along with time-series 
data, several vegetation indices produced from multispectral 
images have also been utilized to augment the information 
and more accurately distinguish areas of vegetation and non-
vegetation (Khaliq et al., 2018). Visible and infrared sensors 
have been widely used for crop type classification and crop 
area assessment (McNairn et al., 2002).

Sentinel-2 data can be regarded as revolutionary in this 
situation because, in addition to having a short revisit period 
(5 days), it also offers the best possible spectral and spatial 
resolution. Due to the physiognomic changes occurring in 
vegetation, the larger amount of data gathering allows for 
the creation of multi-temporal compositions, i.e., images 
consisting of information collected at various times during 
the growing season. This may have a discernible effect on 
the classification outcomes (Wakulińska & Marcinkowska-
Ochtyra, 2020). Recently, the availability of free Sentinel 
images with high spatial and temporal accuracy has provided 
ample opportunities for agricultural activities (Baidar, 2020).

Supervised classifiers that employ the maximum-likeli-
hood method are the key components of conventional clas-
sification. However, these traditional classifiers are no longer 
able to comprehend the intricacy of such important data, 
since fine resolution data has recently become more acces-
sible (Palchowdhuri et al., 2018). Moreover, the radiation 
reflectance in wheat and barley is very similar. Thus, it is 
necessary to use Sentinel-1 and Sentinel-2 to make the clas-
sification results more accurate. Therefore, the classification 
methods employed in this study are based on the classifica-
tion and regression tree (CART) and random forest (RF) 
algorithms. The selection of these classification methods is 
based on their wide-ranging use in land use categorization.

Synthetic aperture radar (SAR) data offers the capabil-
ity to meet the strict data requirements for effective crop 
monitoring. It is unaffected by clouds or haze and can collect 
data during both day and night. Additionally, microwaves 
in SAR data can penetrate plants more deeply compared 
to Sentinel-2 wavelengths. The SAR signal is significantly 
impacted by plant water content (Beriaux et al., 2021). The 
frequency and polarization of SAR data provide a complex 
depiction of topography, surface roughness, soil moisture, 
and canopy structure. On the other hand, optical data utilizes 
the visible, near-infrared, and shortwave infrared range of 
electromagnetic radiation, enabling researchers to gather 
vital information about water content, leaf pigments, and 
overall vegetation health (Orynbaikyzy et al., 2020).

This study aims to bridge the gap between optical and SAR 
data by demonstrating how their combination can enhance 
crop mapping accuracy. Specifically, the study seeks to 
achieve three main objectives: (1) showcase the effectiveness 
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of combining Sentinel-1 and Sentinel-2 data in improving 
classification accuracy, (2) identify crop type classes with 
high accuracy resulting from the integration of different sen-
sors, and (3) evaluate different methods for crop mapping. 
The significance of this research lies in its contribution to the 
ongoing efforts to improve classification approaches in crop 
mapping. The findings of this study will provide valuable 
insights to efficiently classify crop fields, thereby enhancing 
our understanding of the agricultural landscape.

Data and Methodology

Study Area

The Harir plain in the northeastern part of Iraqi Kurdistan 
is the focus of this study, covering an area of 4742.6 ha 
located between latitudes 36° 23′ 17″ N and 36° 40′ 05″N 

and longitudes 44° 8′ 1″ E and 44° 29′ 15″E, approximately 
47.3 km away from Erbil city. The study area shares a bound-
ary with Soran district from the north and northeast, Ranyah 
from the south, and Akre in the northwest (Fig. 1). The cli-
mate in the region is semi-arid, similar to that of the Medi-
terranean region, with hot and dry summers and cold and 
rainy winters, according to Köppen classification (Koeppe & 
Ridgley, 1958). The annual average rainfall is 543 mm, with 
inadequate precipitation during October and November (Hus-
sein et al., 2017). The study area consists of four types of soil, 
which are a mixture of lithology with limestone, brown soils 
with medium thickness, and deeply covered with lucky dust 
stone, according to the soil classification (Buringh, 1960).

Data Source and Preprocessing

The Sentinel-1 and Sentinel-2 satellite programs place a 
strong emphasis on land use and land cover monitoring, 

Fig. 1  Illustration of the location of the study area (Harir plain)
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particularly in regions experiencing rapid changes (Stein-
hausen et al., 2018). In this study, optical and SAR image-
ries from the two sensors Sentinel-2 and Sentinel-1 were 
utilized. The selection of these two sensors was primarily 
based on their availability, as well as the high spatial, spec-
tral, and temporal resolutions they provide. Both Sentinel-1 
and Sentinel-2 data were obtained from the Google Earth 
Engine (GEE) platform, taking into account the Sentinel-2 
product’s cloudy coverage of less than 10%, and the differ-
ence between both images is only 2 days.

Sentinel-1 is equipped with a C-band in four imaging 
modes (EW, IW, SM, and WV) with various spatial resolu-
tions (10, 20, 60 m) and covers an antenna that transmits 
microwave signals to an exact region of the Earth’s surface 
for synthetic aperture radar (SAR) imaging. It is possible to 
measure the microwave energy reflected to the spacecraft. 
The radar concept is used to produce SAR images, which 
use the time delay of backscattered signals to produce an 
image. SAR images are appropriate and valuable for evalu-
ating alterations on the Earth’s surface caused by the SAR 
system’s operation at all times and in all-weather situations 
(Moumni & Lahrouni, 2021a).

The present study depends on SAR data Interferometric 
Wide (IW) swath mode in dual polarization mode (VV, VH) 
from 19 April 2022 (Table 1). Additionally, the SAR data 
had to be preprocessed after they were acquired to extract 
useful information for the classification procedure. SAR 
data are created by the coherent interaction of the emit-
ted microwave with the targets, unlike optical images. As 
a result, they are impacted by speckle noise, which results 
from the coherent addition of signals scattered by ground 
scatters dispersed at random among the pixels. The fluc-
tuation of pixel values around a mean that corresponds to 
the target’s intended backscattering coefficient is referred 
to as speckle (Mahdavi et al., 2018). A SAR image appears 
visually noisier than an optical one. Speckle is caused by 
the interference waves reflected from numerous elemen-
tary scatters, which appear as grainy noise in SAR images. 
To reduce radar speckle, a smoothing filter with the func-
tion focal mean and a smoothing radius of 50 m was used. 
The process of speckle filtering improves image quality 
by removing speckles (Filipponi, 2019). A considerable 
body of study has been done on modeling and eliminating 
speckle (Ashok & Patil, 2014; Touzi, 2002; Yuan et al., 

2018). Therefore, a speckle noise removal filter is necessary 
before display and further analysis.

Sentinel-2 is the second dataset that was used in this study 
which was gained from 21 May 2022. Sentinel-2A is equipped 
with high-resolution optical equipment with spatial resolutions 
of 10 m, 20 m, and 60 m, and 13 bands with a wavelength 
range of 443 to 2190 nm. To identify crop types, ten spectral 
bands in addition to normalized difference vegetation index 
(NDVI) were employed, including blue, green, red, red edge 1, 
red edge 2, red edge 3, NIR, red edge 4, SWIR1, and SWIR2. 
Bands 1 (coastal aerosol), 9 (water vapor), and 10 (SWIR-cir-
rus) were removed from the analysis since crop type mapping 
was not relevant to them. Each of the bands of vegetation red 
edge (5, 6, 7, 8A) and SWIR (11, 12) was resampled from 20 to 
10 m spatial resolution. In addition, the normalized difference 
vegetation index (NDVI) was generated in Sentinel-2 using 
bands NIR (8) and red (4) and was combined with Sentinel-2 
bands to improve the classification technique.

Methodology

The methodology used in this study consisted of four key 
steps: data collection, preprocessing, classification, and 
accuracy assessment. Figure 2 illustrates the sequence of 
these steps. Since the first two steps have already been dis-
cussed, the third and fourth stages will be discussed in detail 
in the following section.

Sampling Strategy

The reference polygons were divided into training polygons 
(70%) and testing polygons (30%) based on crop type and 
field size. The study separated training and testing polygons 
to evaluate how well models performed across different crop 
types and field sizes. The polygons used for training were 
sampled using stratified random sampling, resulting in 182 
polygons (57,883 pixels) for all crop types. The study gath-
ered different random samples according to class sizes, such 
as wheat (70 polygons, 26,499 pixels), barley (18 polygons, 
7281 pixels), uncultivated land (63 polygons, 17,708 pix-
els), airport and residential areas (33 polygons, 1546 pixels), 
bare land (16 polygons, 1311 pixels), grassland (14 poly-
gons, 3538 pixels), and random samples. In addition, 30% 
of the samples were used as testing points for validation. 

Table 1  Main attributes of the 
synthetic aperture radar (SAR) 
dataset Sentinel-1

Operation Since Imaging date 19/04/2022

Orbit height 693 km Swath width 250 km
Inclination 98.18° SAR sub-swaths 3
Wavelength (C-band) 3.75–7.5 cm Polarization Dual (VV, VH)
Spatial resolution 5*20 m (single look) Temporal resolution 6 days
Pixel spacing 2.3*17.4 m
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Furthermore, 92 polygons (24,786 pixels), which is 30% of 
all samples for all crop types, were used for testing (Table 2). 
The study employed a random forest and classification and 
regression trees (CART) classifier. Classified images were 
exported from GEE to Google Drive and then downloaded.

Image Classification

Google Earth Engine (GEE), a cutting-edge cloud-based 
platform for the processing of remote sensing data, was 
used for image classification. Remote sensing images (Sen-
tinel-1 and Sentinel-2) are available in GEE. The choice of 
an appropriate classification technique is a crucial step in the 
effective synergetic classification of crop classes, together 
with the accurate selection and preprocessing of satellite 
input data. In this study, random forest and CART classifica-
tion were used.

Random forest is a novel approach to developing deci-
sion trees. Each tree is constructed by replacing each fixed 
design with a distinct group of existing patterns. The total 
number of available methods is used to determine the size 
of the selected class (Felegari et al., 2021). The nonparamet-
ric RF technique proposed by Breiman (2001) was used to 
classify digital images into crop types using Google Earth 
Engine (GEE). These algorithms were chosen for their reli-
ability and accuracy in classification (Denize et al., 2019), 
as well as their consistently excellent performance, ease of 
parameterization, and robustness (Belgiu & Drăguţ, 2016). 
Numerous studies that focused on crop type mapping have 
shown that RF results are often reliable (Balzter et al., 2015; 
Inglada et al., 2015; Onojeghuo et al., 2018).

RF is a classification algorithm that consists of several 
decision trees. Each tree is created from randomly selected 
training pixels (Bouslihim et al., 2022; Nguyen et al., 2021). 
The RF method is a flexible ensemble learning approach that 
combines K binary classifications. Each tree is generated 
by applying a unique learning algorithm to subsets of the 
input variable sets that were divided using the Gini index as 
one of the attribute value tests (Akbari et al., 2020; Pelletier 
et al., 2016). To build a prediction model, the RF classi-
fier only requires the determination of two parameters: the 

Fig. 2  The flowchart of crop type classification using Sentinel-1 and 
Sentinel-2 data

Table 2  Description of the 
training and validation samples

Operation Training poly-
gons

Validation poly-
gons

Training pixels Validation pixels

Wheat 70 30 26,499 14,337
Barley 18 7 7281 403
Uncultivated land 63 27 17,708 7681
Airport and roads 33 14 1546 886
Bare land 16 7 1311 740
Grassland 14 7 3538 653
Overall 214 92 57,883 24,700
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desired number of classification trees (k) and the number 
of prediction variables (m), which are used in each node 
to grow the tree (Rodriguez-Galiano et al., 2012). Further-
more, the RF classifier operates effectively with large data-
sets. Recent research has demonstrated that RF can integrate 
several remote sensing characteristics with categorical land 
use data to improve classification performance and distin-
guish between forests and other ground covers (Tatsumi 
et al., 2015).

CART is a sophisticated method based on a decision tree 
(DT) classifier that is created from a collection of training 
data. It is a nonparametric modeling technique that may be 
used to interpret reactions of a dependent variable using a 
collection of independent continuous or categorical vari-
ables (Zheng et al., 2009). CART is a binary multivariate 
statistical method that can process continuous and categori-
cal variables as targets and predictors. No binning is nec-
essary or advised, and data are handled in their raw state 
(Steinberg and Colla, 2009). Hartfield et al. (2013) showed 
that the CART classifier was not only precise but also pro-
cessed a huge quantity of data in a very short amount of 
time. The benefit of CART is that it is easy to comprehend, 
visualize, and interpret. CART can handle both categori-
cal and numerical data (Ray, 2019). CART analysis has 
another advantage, which is a mostly automated “machine 
learning” technique. In other words, the analyst needs little 
to no input based on the complexity of the study (Lewis, 
2000).

Accuracy Assessment

A confusion matrix was used to calculate the overall accu-
racy (OA), Kappa coefficient, producer’s accuracy (PA), 
and user’s accuracy (UA) of the classification results (Stein-
hausen et al., 2018). The confusion matrix is a tabulation 
of categorized map and reference data for sample computa-
tion. Qualitative assessment of the classification results can 
be done by comparing the images, while statistical tools 
such as the confusion matrix and the Kappa index allow 
for quantitative assessment of the land use and land cover 
classification accuracy (Moumni & Lahrouni, 2021a). The 
overall accuracy (OA) is defined as the percentage of cor-
rectly classified sampled pixels (Eq. 1), while the Kappa 
coefficient is a measure of classification performance that 
takes into account the chance agreement between the pre-
diction and reference data (Eq. 2). UA denotes the likeli-
hood of accurately categorizing a certain labeled sample, 
while PA denotes the percentage of a given reference class 
that is correctly classified. In this study, 30% of the 182 
samples were used, and the error matrix of each categorized 
image was used to calculate Kappa and overall accuracy for 
accuracy assessment (Table 2).

Xii = number of diagonal pixels (correctly classified)
N = total number of pixels.

A0 The obtained OA or the actual percentage of classi-
fied land

Ac Probability of obtaining a correct classification.

Results

Image Classification

The random forest and CART classifiers were used to produce 
the crop type map in the study area. The total area of concern 
is about 4742.6 ha as shown in Table 3 and Fig. 3, and the 
exact areas of the crop types in this study are listed in the table. 
According to the random forest classification, wheat covers the 
largest area with a total of about 1812.5 ha (38.2%), while the 
area of the same category with the CART classification is 1741 
ha (36.7%). Barley, uncultivated land, and grassland occupy 
the largest areas with 9.4%, 37.6%, and 8.5%, respectively, 
according to the random forest classification. Meanwhile, 
according to the CART classification, the largest areas are 
occupied by uncultivated land (34%) and grassland (9.4%). It 
was also observed that the areas of bare land, residential land, 
and airport are the lowest, with 3.9% and 2.3%, respectively, 
according to the random forest classification, and 4.1% and 
2.7%, respectively, according to the CART classification.

Accuracy Assessment

In addition, using Sentinel-1 (SAR) data, the RF and 
CART classification achieved overall accuracies (OA) of 
72.79% and 65.04%, respectively, with Kappa coefficients 
of 0.58 and 0.49 (Table 4). The highest producer’s accura-
cies (PA) for both algorithms were obtained for unculti-
vated land (83% and 81.7%), followed by airport and road 
(79.3%) in the RF classification, then wheat (74.8% and 
74.6%), bare land (59.5% and 50.8%), barley (38.4% and 
27.5%), and grassland (18.4% and 12.6%), respectively. 
The PAs for uncultivated, airport and road, wheat, and 
bare land are relatively high. The PA rate for uncultivated 
land is 84.48% because out of a total of 6683 wheat pixels, 
294 pixels were classified as wheat, 460 pixels as barley, 
52 pixels as airport and roads, 273 pixels as bare land, and 
149 pixels as grassland in the RF classifier. In the CART 

(1)OA =

∑k

i=1
xii

N
,

(2)K =

A0 − Ac

1 − Ac
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classifier, the PA rate for uncultivated land is 81.38% due 
to 528 barley pixels, 50 airport and road pixels, 231 bare 
land pixels, and 156 grassland pixels being misclassified 
out of a total of 6661wheat pixels (Table 5). The PAs for 

grassland and barley are less than 35%, indicating a sig-
nificant omission error.

In addition, the user’s accuracies (UA) are highest for 
uncultivated land (88.86% and 81.5%), followed by wheat 

Table 3  Shows the number of 
crop types and other land use 
classes over the study area

Classes Area hectares (RF) Area (%) (RF) Area hectares 
(CART)

Area (%) (CART)

Wheat 1812.5 38.2 1741 36.7
Barley 447.67 9.4 620.48 13.1
Uncultivated land 1783.5 37.6 1610.9 34.0
Airport and resident area 108.32 2.3 129.66 2.7
Bare land 187.06 3.9 193.93 4.1
Grassland 403.5 8.5 446.58 9.4
Total 4742.6 100.0 4742.6 100.0

CART classifier 

Fig. 3  Crop type map classification obtained from RF and CART classifier
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(86.75% and 72.8%), airport and road (52.39% and 53.2%), 
bare land (34.7% and 31.79%), barley (27.13% and 28.6%), 
and grassland (6.89% and 14.1%) for both RF and CART 
classifiers, respectively. The UA rate for uncultivated land is 
88.86% because 376 pixels are classified as wheat, 272 pixels 
are classified as barley, 19 pixels are classified as airport and 
roads, 106 pixels are classified as bare land, and 65 pixels are 
classified as grassland in RF, while the rate of UA for uncul-
tivated land is 81.5% in CART classifier due to 484 pixels 
being classified as wheat, 480 pixels classified as barley, 54 
pixels classified as airport and road, 213 pixels classified as 
bare land, and 160 pixels classified as grassland (Table 5). 
The PAs for barley, airport and road, and bare land are less 
than 60%, which indicates a significant omission error.

The Sentinel-2 classification image showed lower omis-
sion and commission errors as well as higher overall and 
Kappa values compared to Sentinel-1. The overall accu-
racy and Kappa values for RF and CART classification 
were 89.6801, 0.84532 and 85.093, 0.7808, respectively 
(Table 6). According to these findings, Sentinel-1 SAR data 

were found to determine land cover types less accurately 
than Sentinel-2 data at the same spatial resolution. The pro-
ducer’s accuracy was high for the airport and roads (99.34% 
and 96.63%), uncultivated land (92.03% and 95.60%), wheat 
(90.66% and 91.93%), and bare land (81.25% and 68.94%), 
but it decreased for the classes of barley and grassland (less 
than 70%). The user’s accuracy for all classes was quite 
high except for barley in the RF algorithm. The highest 
user’s accuracy was observed for airport and road (99.34% 
and 96.63%), followed by uncultivated land (92.03% and 
95.60%), wheat (90.66% and 91.93%), bare land (81.25% 
and 68.94%), and grassland (78.99% and 72.17%) for both 
RF and CART classifiers, respectively (Table 7). The low-
est user’s accuracy was observed for barley (61.46% and 
71.91%) for both algorithms, respectively. When the clas-
sification results of Sentinel-1 were compared with those 
of Sentinel-2, it was observed that the overall accuracy and 
Kappa of Sentinel-2 were much higher than those of Senti-
nel-1, and the classification accuracy of Sentinel-2 classes 
was also much better than that of Sentinel-1.

Table 4  Confusion matrix of the classification results using the SAR (RF classifier)

Classes Wheat Barley Uncultivated land Airport and road Bareland Grassland Total User's accuracy

Wheat 9821 903 294 59 13 231 11321 86.75
Barley 1661 855 460 25 1 150 3152 27.13
Uncultivated land 376 272 6683 19 106 65 7521 88.86
Airport and road 182 57 52 340 9 9 649 52.39
Bareland 72 16 273 8 179 15 563 31.79
Grassland 1035 197 149 1 9 103 1494 6.89
Total 13147 2300 7911 452 317 573 24700
Producer's accuracy 74.70 37.17 84.48 75.22 56.47 17.98
omission error
Overall accuracy 72.7975709
Kappa 0.57880938

Table 5  Confusion matrix of the classification results using the SAR (CART classifier)

Classes Wheat Barley Uncultivated land Airport and road Bareland Grassland Total User's accuracy

Wheat 8331 1449 528 174 71 885 11438 72.8
Barley 1392 880 433 70 27 280 3082 28.6
Uncultivated land 484 480 6110 54 213 160 7501 81.5
Airport and road 169 57 50 347 14 15 652 53.2
Bareland 60 23 231 20 189 22 545 34.7
Grassland 821 266 156 14 16 209 1482 14.1
Total 11257 3155 7508 679 530 1571 24700
Producer's accuracy 74.01 27.89 81.38 51.10 35.66 13.30
Omission error
Overall accuracy 65.04453441
Kappa 0.485546233
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Improving Classification Accuracy

This study aimed to improve the pixel-level classification 
results by combining Sentinel-1 SAR data with Sentinel-2 
(optical) data. Two Sentinel-1 bands were merged with Sen-
tinel-2 multi-spectrum image bands, and the RF and CART 
classifiers were used for integrating SAR data and optical 
data. The results showed that combining Sentinel-1 and 
Sentinel-2 images produced a more accurate product. The 
overall map accuracy for the combined Sentinel-1 and Sen-
tinel-2 in the study area was 93.044% and 89.153% for OA 
and 0.896 and 0.840 for Kappa, respectively, for both RF and 
CART classifiers (Tables 8 and 9). In contrast, the Sentinel-1 
image alone produced the lowest accuracy of all the analyses 
(72.79% and 65.04% of OA and 0.57 and 0.48 of Kappa).

When comparing the classification maps obtained from 
Sentinel-1 and Sentinel-2 with those obtained from the com-
bined optical and SAR Sentinel data, it was observed that the 
crop type maps had greater overall map accuracy. All classes 

demonstrated improved accuracy when compared to the Sen-
tinel-1 or Sentinel-2 classification alone. The improved class 
accuracies resulted in fewer errors of both PA and UA, espe-
cially in the wheat, barley, bare land, and grassland classes. 
The highest PA was obtained for airport and road (98.77% 
and 96.63%), followed by uncultivated land (96.53% and 
95.60%), wheat (93.92% and 91.93%), bare land (97.02% 
and 90.13%), and grassland (89.30% and 72.17%) for both 
RF and CART classifiers, respectively. These increased class 
accuracies resulted in lower errors of UA and PA, especially 
in the airport and roads (Tables 8 and 9).

Discussion

Sentinel‑1 Images

The classification applied to the Sentinel-1 image demon-
strates that Sentinel-1 SAR data can discriminate between 

Table 6  Confusion matrix of the classification results using the optical Sentinel-2 (RF classifier)

Classes Wheat Barley Uncultivated land Airport and road Bareland Grassland Total User's accuracy

Wheat 10883 201 140 2 14 133 11373 95.22
Barley 847 1898 250 0 6 87 3088 41.15
Uncultivated land 93 126 7178 0 37 76 7510 95.65
Airport and road 0 0 17 611 9 0 637 98.02
Bareland 0 3 112 2 468 0 585 83.81
Grassland 181 108 102 0 3 1113 1507 73.95
Total 12004 2336 7799 615 537 1409 24700
Producer's accuracy 90.10 64.87 92.12 97.57 88.05 81.04
Omission error
Overall accuracy 89.6801619
Kappa 0.84532817

Table 7  Confusion matrix of the classification results using the optical Sentinel-2 (CART classifier)

Classes Wheat Barley Uncultivated land Airport and road Bareland Grassland Total User's accuracy

Wheat 10098 869 181 4 9 213 11374 88.78
Barley 698 1969 297 1 7 122 3094 63.64
Uncultivated land 195 281 6858 11 83 112 7540 90.95
Airport and road 2 1 12 662 17 0 694 95.39
Bareland 5 9 94 7 385 2 502 76.69
Grassland 199 141 110 0 0 1046 1496 69.92
Total 11197 3270 7552 685 501 1495 24700
Producer's accuracy 90.18 60.21 90.81 96.64 76.85 69.97
Omission error
Overall accuracy 85.09311741
Kappa 0.780815694
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different crop types. Several conditions affect the backscat-
tering of different surface covers, and the microwave’s ability 
to detect surface roughness aids in classifying different types 
of crops. Figure 4 presents the analysis of discrete classes 
using polarization (VV, VH), with the highest mean values 
in airport and roads, while grassland has the lowest mean 
values. Polarization VH is weaker for all six classes com-
pared to VV polarization. In the box plot, it can be observed 
that VV and VH bands are much more suitable for separating 
wheat and uncultivated land, grassland, and bare land, which 
have a very slight ability to separate wheat and barley due to 
their backscatters being very similar. The overall accuracy 
for wheat and barley is 86.6% and 27%, respectively. There-
fore, using Sentinel-1 alone is not able to separate wheat and 
barley properly (Table 4). The results show that the backscat-
ter of wheat and barley is very similar. When Sentinel-1 is 
used alone, wheat and barley have nearly identical backscat-
ter information.

Spectral Reflectance Values of Sentinel‑2 Bands

The study also observed that some classes tend to overlap 
when their spectral responses are relatively similar in dif-
ferent wavelengths for the bands investigated in the study 
of variation by the spectral response (surface reflectance) 
of each class (Fig. 5). The best way to separate classes 
is by using the green band to separate wheat, bare land, 
and almost all classes. The red wavelength is also suitable 
for separating wheat, uncultivated land, airport, grass-
land, and barley, while the near-red and red edge bands 
are largely similar in terms of separating wheat, barley, 
and grassland.

Crop Classification

To ensure the protection and management of cereal crops, 
agricultural land must be regularly monitored. Additionally, 

Table 8  Confusion matrix of the classification results using the SAR and Sentinel-2 (RF classifier)

Wheat Barley Uncultivated land Airport and road Bareland Grassland Total User's accuracy

Wheat 11115 173 80 3 1 78 11450 97.07
Barley 661 2298 110 1 0 55 3125 73.54
Uncultivated land 56 47 7492 0 11 14 7620 98.32
Airport and road 1 0 8 645 2 0 656 98.32
Bareland 0 1 38 4 456 0 499 91.38
Grassland 1 89 33 0 0 1227 1350 90.89
Total 11834 2608 7761 653 470 1374 24700
Producer's accuracy 93.92 88.11 96.53 98.77 97.02 89.30
Omission error
Overall accuracy 94.0607287
Kappa 0.91088766

Table 9  Confusion matrix of the classification results using the SAR and Sentinel-2 (CART classifier)

Wheat Barley Uncultivated land Airport and road Bareland Grassland Total User's accuracy

Wheat 10476 720 108 3 2 222 11531 90.85
Barley 600 2186 116 6 1 131 3040 71.91
Uncultivated land 105 123 7155 5 41 52 7481 95.64
Airport and road 2 1 10 631 9 0 653 96.63
Bareland 4 3 47 7 484 1 546 88.64
Grassland 209 138 48 1 0 1053 1449 72.67
Total 11396 3171 7484 653 537 1459 24700
Producer's accuracy 91.93 68.94 95.60 96.63 90.13 72.17
omission error
Overall accuracy 89.00809717
Kappa 0.837355883



Journal of Geovisualization and Spatial Analysis (2023) 7:22 

1 3

Page 11 of 15 22

Fig. 4  Box plot that represents 
the backscatter coefficient 
values land cover classes

Fig. 5  Wavelength analysis by crop type class of Sentinel-2 bands
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information on crop types can be used to assess crop acre-
age and yield, which is crucial for ensuring food security. 
This study aimed to investigate the capability of the widely 
accessible Sentinel-1 and Sentinel-2 satellites to detect six 
important classes (wheat, barley, uncultivated land, airport 
and road, bare land, and grassland) across the study area. 
The RF and CART methods, which have been shown to pro-
vide high classification accuracy in previous studies (Akar & 
Gungor, 2012; Bayas et al., 2022; Delalay et al., 2019; Firas 
Mohammed Ali et al., 2015; Kaszta et al., 2016), were used 
in this study for both Sentinel-1 and Sentinel-2 data. The 
study confirmed that the application of optical and radar data 
is commonly recognized as a means to improve RF (De Luca 
et al., 2022; Manakos et al., 2020; Tavares et al., 2019) and 
CART classification (Thamilselvan & Sathiaseelan, 2015; 
Zheng et al., 2009). The results of the study showed that RF 
is more precise than the CART method.

Improving Classification Accuracy

These results indicate that the SAR image–derived data did 
not have a significant impact on the classification, while the 
optical data improved the classification compared to Senti-
nel-1 (Tables 4 and 5). The OA of Sentinel-1A was 72.79% 
and 65.04%, while the OA for Sentinel-2 was 89.68% and 
85.09%, which is consistent with the results of previous stud-
ies (De Luca et al., 2022; Manakos et al., 2020; Rao et al., 
2021). The study accurately mapped crop types, particularly 
when employing both sensors. The highest accuracy was 
recorded for uncultivated land, airport and residential areas, 
and wheat, while the lowest accuracy was recorded for bar-
ley, which was consistent across sensor combinations. The 
combination of Sentinel-1 and Sentinel-2 images improved 
the overall accuracy of cereal crop classification for both 
methods (RF, CART) compared to the results obtained using 
only optical or radar single sensitivity (Fig. 6).

When utilizing the RF method for optical and radar data, 
173 pixels of wheat were categorized as barley, 80 pixels as 
uncultivated land, 3 pixels as an airport and road, 1 pixel as 
bare land, and 78 pixels as grassland. As a result, when the 
RF algorithm was applied, the PA for the wheat region was 
93.92%, and the UA was 97.07%, while the PA for wheat 
was 90.18, and the UA was 88.78 when the CART algorithm 
was applied.

Additionally, combining Sentinel-1 and Sentinel-2 
images and adding the Sentinel-2 NDVI layer increased the 
overall accuracy and Kappa coefficient of the classification 
(Fig. 6). The overall accuracy for RF was 94.03%, and the 
Kappa coefficient was 0.91, while the overall accuracy for 
CART classifier was 89.00%, and the Kappa coefficient was 
0.83, which is consistent with other findings in different 
geographical areas that rely on combining optical and radar 
data. Despite increased visit times and enhanced spatial 
resolutions of Sentinel systems, combining Sentinel-2 MSI, 
Sentinel-1 bands, and NDVI provides a workable alternative 
for routine crop categorization and monitoring. The study 
concluded that this combination of sensors provides a ver-
satile and attractive approach.

Despite the high accuracy achieved in this study, some 
misclassifications were observed in certain classes. For 
example, some wheat pixels were classified as barley or 
uncultivated land, and some grassland pixels were classi-
fied as airport area. This could be due to factors such as 
similar spectral characteristics and land use changes in the 
study area. Additionally, the accuracy of classification may 
be affected by the quality of the input data, especially in 
areas with cloud cover or other atmospheric conditions. 
The integration of Sentinel-1 SAR data and Sentinel-2 
optical data has been shown to significantly improve the 
accuracy of land cover classification in the study area. 
The results of this study could be used to support deci-
sion-making and policy development related to land use 

Fig. 6  Improving classifica-
tion accuracy using different 
methods
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planning and natural resource management. In addition, 
the methodology and techniques used in this study could 
be applied to other regions and areas facing similar chal-
lenges related to land use change and crop monitoring.

In summary, the research on improving crop classification 
accuracy with integrated Sentinel-1 and Sentinel-2 data offers 
the potential for enhanced accuracy, improved feature extrac-
tion, and reduced sensitivity to environmental conditions. 
However, it also faces challenges related to data availability, 
complexity of data integration, computational requirements, 
and generalizability to different crops and regions. These fac-
tors should be carefully considered when interpreting and 
applying the findings of this research in practical applications.

Conclusions

In conclusion, this study highlights the importance of popu-
lation diversity and effective planning to meet the demands 
of farmed crops. Remote sensing technology, particularly the 
use of satellite images, has become an essential tool for crop 
monitoring and management. The integration of Sentinel-1 
SAR and Sentinel-2 optical data through the RF and CART 
classifiers improved the accuracy of crop type classification. 
RF produced the highest OA, and CART produced the high-
est Kappa value, demonstrating that combining SAR and 
optical data yields more accurate classification than using 
either one alone. However, some misclassifications were 
observed, which could be due to several factors, such as the 
spectral similarity of some classes in some pixels.

The findings of this study have significant implications 
for crop monitoring and management, providing a more 
accurate and efficient approach for identifying crop types 
and their respective characteristics. This method can be use-
ful for policymakers, agricultural researchers, and farmers in 
making informed decisions regarding crop management and 
improving the productivity of farmed crops. Furthermore, 
the method developed in this study can be extended to other 
areas to improve crop monitoring and management in vari-
ous regions of the world. Future research should focus on 
refining the classification method to further improve accu-
racy and reduce misclassifications. Overall, the results of 
this study demonstrate the potential of remote sensing tech-
nology for crop monitoring and management, providing a 
valuable tool for sustainable agriculture practices.
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