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Abstract
This study aims to demarcate landslide susceptible zones using methods of analytical hierarchy process (AHP) and frequency 
ratio (FR) to find the most influencing factors and to compare their prediction capability. Ten causative factors (slope angle, 
elevation, lithology, land use/land cover types, normalized difference moisture index, road buffer, normalized difference built-
up index, water ratio index, stream power index, and soil) are used in the study. The area of the landslide susceptibility was 
grouped into five classes. According to the landslide susceptibility maps prepared using the AHP and FR methods, 11.14% 
and 6.57% of the area are very highly susceptible to landslides. Finally, the receiver operating characteristic (ROC) curves 
for the landslide susceptibility maps prepared using both AHP and FR methods were plotted, and the area under the ROC 
curve (AUC) values were estimated to validate the results. AUC values of 0.69 and 0.81 were estimated for the landslide 
susceptible zone maps prepared using AHP and FR, respectively. From the AUC values, it is confirmed that the FR method 
is more effective in predicting the landslide susceptible zones in Idukki district. The landslide susceptibility maps are helpful 
for land use planners and policy makers in adopting suitable mitigation measures to minimize the impacts of landslides and 
thereby reduce loss of life and property.
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Introduction

A landslide is the downslope movement of debris, rock, or 
earth material under the influence of gravity (Cruden 1991). 
Landslides are the most common geohazards occurring in 

the hilly and mountainous regions and occur when the slope 
becomes unstable (Chawla et al. 2018). A landslide disaster 
is a result of intrinsic factors and external (or triggering) 
factors (Raghuvanshi et al. 2015; Hamza and Raghuvanshi 
2017). The intrinsic factors define the favorable or unfa-
vorable stability conditions within the slope (Raghuvanshi 
et al. 2014). The most common intrinsic factors are slope 
geometry, slope material, land use and land cover, ground 
water, and structural discontinuities (Anbalagan 1992). The 
triggering factors include seismicity (Aimaiti et al. 2019; 
Nakamura et al. 2014; Sassa et al. 1996), rainfall (Cardinali 
et al. 2006; Lee et al. 2014; Senthilkumar et al. 2018), and 
the activities of humans. Excavation of a slope or its toe, 
loading of the slope or its crest, mining, deforestation, arti-
ficial vibration, irrigation, and water leakage from utilities 
are all examples of human-induced activities (United States 
Geological Survey 2004).

Landslide disasters lead to thousands of fatalities and 
cost billions of dollars in property damage worldwide 
annually (Hong et al. 2007). Landslides play a crucial role 
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in landscape evolution (Guzzetti et al. 2012). It may also 
lead to water pollution that destroys fish habitat; alters soil 
texture, porosity, and density; and destroys farmland and 
forest cover (Geertsema et al. 2009). In India, about 12.6% 
of the land area is prone to landslides (Geological Survey 
of India: https://​www.​gsi.​gov.​in). The most landslide-
prone areas in India are the Himalayan region (Sarkar et al. 
1995; Kaur et al. 2017) and the Western Ghats and Nilgiri 
range (Kaur et al. 2017). Therefore, there is a need for 
mapping the landslide susceptible zones so that appropri-
ate mitigation measures for effective disaster management 
can be implemented.

GIS techniques can be effectively used to delineate 
landslide susceptible zones. Various methods adopted for 
delineating landslide susceptible zones include neuro-fuzzy 
(Pradhan et al. 2010; Oh and Pradhan 2011), artificial neural 
networks (Lee 2007; Shahri et al. 2019), index of entropy 
(Pourghasemi et al. 2012a; Jaafari et al. 2014), decision 
tree models (Zhang et al. 2017; Park et al. 2018), fuzzy 
logic (Rostami et al. 2016; Aghda et al. 2018), weights of 
evidence (Kayastha et al. 2012; Elmoulat and Ait Brahim 
2018), support vector machine (Pourghasemi et al. 2013; 
Kumar et al. 2017), and logistic regression (Kouhpeima 
et al. 2017; Hemasinghe et al. 2018).

The analytical hierarchy process (AHP) is a multi-criteria 
decision-making approach that allows the user to arrive at 
a preference scale drawn from a set of alternatives (Semlali 
et al. 2019). The AHP method enables opinions to be quanti-
fied and converted into a consistent decision model, thereby 
helping solve complex problems (Cancela et al. 2015). The 
AHP techniques have been effectively used to demarcate the 
landslide susceptible zones (El Jazouli et al. 2019; Semlali 
et al. 2019; Dahoua et al. 2018; Sharma and Mahajan 2018; 
Achour et al. 2017; Chen et al. 2016; Kumar and Anbalagan 
2016; Myronidis et al. 2016; Wu et al. 2016; Althuwaynee 
et al. 2014).

The frequency ratio (FR) method has also been effectively 
used in demarcating landslide susceptible zones (Oh et al. 
2017; Khan et al. 2019; Silalahi et al. 2019; Shano et al. 
2021). The FR method is a simple method utilized to deter-
mine the correlation between landslide locations and each 
causative factor (Rasyid et al. 2016).

The objectives of this study are to prepare the landslide 
susceptible zone maps of Idukki district in Kerala using 
the AHP and the FR methods, to analyze the influence of 
landslide causative factors, and to compare the prediction 
capability of both AHP and FR methods. To prepare the 
susceptible zone maps, ten causative factors are selected, 
namely slope angle, elevation, lithology, land use/land cover 
types, normalized difference moisture index (NDMI), road 
buffer, normalized difference built-up index (NDBI), water 
ratio index (WRI), stream power index (SPI), and soil.

Materials and Methods

Study Area

Idukki is the second largest district in Kerala and is situ-
ated in the southern Western Ghats (Abraham et al. 2019). 
The district lies between longitudes of 76˚ 35′ 0ʺ E and 77˚ 
25′ 0ʺ E and latitudes of 9˚ 15′ 0ʺ N and 10˚ 25′ 0ʺ N and 
spans an area around 4358 km2. This district is bordered by 
the Tamilnadu state in the North and East, Ernakulam and 
Kottayam districts in the West, and Pathanamthitta district 
and Tamilnadu state in the South. The major rivers flowing 
through this district are Periyar, Thodupuzhayar, Muthirap-
puzhayar, and Thalayar. The district’s 14 mountain peaks 
exceed a height of 2000 m (Ramachandran and Reddy 2017). 
Anamudi, the highest peak in the Western Ghats, and the 
Idukki Dam, one of the highest arch dams in Asia, are in 
Idukki district (Abraham et al. 2021). The Western Ghats 
region of India is also prone to landslides and was severely 
affected by landslides during the 2018 southwest monsoon 
(Kanungo et al. 2020). A total of 47 landslide deaths were 
reported, and more than 1000 landslides have occurred in 
Idukki district during the 2018 southwest monsoon. The 
catastrophic Pettimudi landslide which resulted in the death 
of 66 residents is the major landslide reported (in number 
of deaths) in the Idukki district and in the state (Achu et al. 
2021). The exact location of the study area is shown in 
Fig. 1.

Data used

The study area falls over the Survey of India topographic 
maps numbered 58 B/16, 58 C/9, 58 C/13, 58 C/14, 58 
C/15, 58 F/3, 58 F/4, 58 F/7, 58 F/8, 58 G/1, 58 G/2, 58 
G/3, 58 G/5, 58 G/6, and 58 G/7 at 1:50,000 scale. The 
data used for this modelling includes Survey of India (SoI) 
topographic maps, Kerala State Land Use Board (KSLUB) 
soil data, Geological Survey of India (GSI) geological map 
of Kerala, Landsat 8 OLI (Operational land imager) sat-
ellite images, SRTM (Shuttle radar topography mission) 
DEM (Digital elevation model), and Google Earth Pro 
data. ERDAS Imagine 8.4 and ArcGIS 10.8 were used 
to create the thematic layers of the selected factors. The 
thematic layers of slope angle, elevation, NDMI, NDBI, 
WRI, and SPI were then classified using the ArcGIS natu-
ral breaks classification method. After assigning weights 
calculated by AHP and FR techniques, the thematic layers 
were then integrated with the map algebra tool of ArcGIS 
to derive the landslide susceptible zones. The prepared 
susceptible zone maps were validated using the landslide 
incidence data collected from the Bhukosh portal (https://​
bhuko​sh.​gsi.​gov.​in/​Bhuko​sh/​Public) of GSI. The RStudio 
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Fig. 1   Idukki district: the study area
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software package was used to plot the ROC curves and to 
estimate the AUC values for the susceptible zone maps 
prepared using the AHP and the FR models. The flowchart 
of landslide modelling is shown in Fig. 2.

Causative Factors

Slope angle  In general, shear stress in soil generally 
increases with the angle of the slope (Lee et al. 2004). The 
shear stress results in the downslope movement of earth 
materials. Therefore, the chance of landslides is greater 
in areas with higher slope angles. The slope was gener-
ated from the DEM using ArcGIS spatial analyst (surface 
analysis) tools. The slope of the Idukki district is catego-
rized into five classes: 0–8.90°, 8.90–16.89°, 16.89–25.18°, 
25.18–35.93°, and 35.93–78.32° (Fig. 3).

Elevation  Landslides generally occur at intermediate ele-
vations, because slopes of that terrain usually contain thin 
layers of colluviums that are susceptible to landslides (Dai 

and Lee 2002). A DEM has been used to derive the eleva-
tion of the district using ArcGIS spatial analyst tools. The 
study area’s elevation is divided into five classes: 13–457 m, 
457–904 m, 904–1306 m, 1306–1802 m, and 1802–2685 m 
(Fig. 4).

Lithology  Stronger rocks give the driving forces more 
resistance, which makes them less susceptible to landslides 
(Kanungo et al. 2006). Factors such as the genetic type of 
rock, the nature and existence of discontinuities such as 
joints or other fractures, and the degree of weathering influ-
ence the strength of a rock (Ajin et al. 2016). The lithol-
ogy of this district was extracted from the geological map 
of Kerala at 1:50,000 scale using ArcGIS tools. The rock 
types present in the study area are charnockite, granite, 
pink granite gneiss, hornblende gneiss, and garnet-biotite 
gneiss (Fig. 5). Around 52.42% of the district is comprised 
of gneissic rock types.

Land use/land cover types  The land use/land cover of 
an area is one of the major factors responsible for slope 

Fig. 2   The flowchart of the landslide modelling

21   Page 4 of 27 Journal of Geovisualization and Spatial Analysis (2021) 5: 21



1 3

Fig. 3   Slope angle
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Fig. 4   Elevation
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Fig. 5   Lithology
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instability. Forested areas are less prone to landslides com-
pared to barren land. This is because vegetation with a 
strong root system stabilizes the slopes (García-Rodríguez 
et al. 2008) by binding the soil mass and thus increasing the 
shear strength of the soil (Turrini and Visintainer 1998). 
Areas with a high density of vegetation are able to sustain 
high water pressure during heavy precipitation (Oh et al. 
2018), while barren and sparsely vegetated areas are vulner-
able to weathering and instability in the slope (Anbalagan 
1992). Land use plays a major role in the behavior of slopes 
by affecting the rate of infiltration of surface water during 
the rainy season (Ajin et al. 2016). Land cover change in the 
areas with higher slopes can result in landslides (Kanungo 
et al. 2009; Karsli et al. 2009).

Land use and land cover types were derived from the 
Landsat 8 OLI satellite image of 30-m spatial resolution. 
The supervised classification approach in the ERDAS 
Imagine software was used to classify the satellite image. 
The maximum likelihood (ML) classification method was 
applied to classify the land use/land cover types present in 
the district. The land use/land cover types present in the 
Idukki district are evergreen forest, deciduous forest, built-
up area, water body, scrubland, cropland, plantation, and 
barren land (Fig. 6).

NDMI  NDMI was derived from the Landsat 8 OLI satellite 
image using Eq. (1) (Gao 1996). The NDMI value ranges 
between − 1 and + 1 (Zhang et al. 2016). The higher NDMI 
indicates higher soil moisture, and lower NDMI indicates 
lower soil moisture content (Sar et al. 2015). The NDMI 
of the study area ranges from − 0.38 to 0.37 (Fig. 7) and 
is grouped into five classes: − 0.38 to − 0.02, − 0.02–0.05, 
0.05–0.12, 0.12–0.17, and 0.17–0.37.

The chance of landslides is high in areas with higher 
NDMI. This is because moisture can increase the pressure 
of the pore water and thus reduce the strength of the soil 
(Ray and Jacobs 2007).

Road buffer  Roads are another important factor which 
causes instability on the slopes (Ortiz and Martínez-Graña 
2018; Xie et al. 2018). The undercutting or excavation of 
slopes for road construction and the additional loads caused 
by the movement of vehicles can affect the slope equilib-
rium (Pourghasemi et al. 2012b). A road cutting can serve 
as a barrier, a net sink, a net source, or a water flow corri-
dor (Pradhan and Lee 2010). This, in turn, may cause slope 
instability. The physiographic divisions of Kerala include 
the lowlands (< 7 m), the midlands (7–75 m), and the high-
lands (> 75 m) (Resmi et al. 2016). In this study, only the 

(1)NDMI =
(NIR − SWIR)

(NIR + SWIR)

road networks within the highlands of Idukki district were 
selected. Road networks were digitized from the topographic 
maps and Google Earth Pro, and with ArcGIS Spatial Ana-
lyst (proximity) tools, the 100-m buffer distance was gener-
ated (Fig. 8). About 17% of the study area falls within the 
100-m buffer distance from roads.

NDBI  NDBI is used to extract impervious surface (Shah-
fahad et al. 2020). NDBI was extracted from the Land-
sat 8 OLI satellite image using ArcGIS tools and Eq. (2) 
(Zha et al. 2003). The NDBI ranges between − 1 and + 1 
(Ibrahim 2017). The NDBI of the study area is grouped 
into five classes: − 0.37 to − 0.18, − 0.18 to − 0.12, − 0.12 
to − 0.05, − 0.05–0.01, and 0.01–0.38 (Fig. 9).

NDBI represents impervious surfaces such as roads and 
settlements, influencing water runoff (Pham et al. 2020) and 
these structures can decrease the stability of slopes. Hence, 
the chance of landslides is high in areas with high NDBI.

WRI  WRI was derived from the Landsat 8 OLI satellite 
images using ArcGIS tools and Eq. (3) (Shen and Li 2010). 
The WRI of this district ranges from 0.07 to 1.33 (Fig. 10) 
and is grouped into five classes (0.07–0.60, 0.60–0.64, 0.64–
0.69, 0.69–0.86, and 0.86–1.33).

The WRI above 1 represents water (Shen and Li 2010). 
Hence, the likelihood of landslides is more on slopes with 
WRI below 1, as these slopes will be more saturated.

SPI  SPI is an erosive water flow power measurement and 
was calculated using Eq. (4) (Moore et al. 1991). The SPI 
of this area has been generated from the DEM using spa-
tial analyst tools, and the value ranges between − 31.32 and 
14.84 (Fig. 11):

where α is the specific catchment area (A = A/L, catchment 
area (A) divided by contour length (L)] and β is the local 
slope.

The probability of landslides is high in areas with higher 
SPI. This is because streams can negatively affect the stabil-
ity of the slope (Ortiz and Martínez-Graña 2018) by under-
cutting and eroding the slopes (Chen et al. 2018; Elmoulat 
and Ait Brahim 2018; Sifa et al. 2019) or saturating the 
lower part of slopes (Chen et al. 2018). The increase in the 
pore water pressure due to water infiltration reduces the 

(2)NDBI =
(SWIR − NIR)

(SWIR + NIR)

(3)WRI =
(Green + Red)

(NIR + SWIR)

(4)SPI = �tan�
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Fig. 6   Land use/land cover types
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Fig. 7   Normalized difference moisture index

21   Page 10 of 27 Journal of Geovisualization and Spatial Analysis (2021) 5: 21



1 3

Fig. 8   Road buffer
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Fig. 9   Normalized difference built-up index
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Fig. 10   Water ratio index
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Fig. 11   Stream power index
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Fig. 12   Soil texture

Page 15 of 27    21Journal of Geovisualization and Spatial Analysis (2021) 5: 21



1 3

soil’s shear strength and leads to slope failure (Chawla et al. 
2018; Sifa et al. 2019).

Soil  Clay is the soil type with high porosity and low perme-
ability and hence holds more water. The increase in pore 
water pressure decreases the soil’s shear strength and results 
in a slope failure (Chawla et al. 2018). Thus, clay acts as 
the potential slip zone causing landslides (Sartohadi et al. 
2018). The shape file of soil data at 1:250,000 scale was 
collected from the KSLUB. The soil types present in the 
study area are clay, gravelly clay, loam, and gravelly loam 
(Fig. 12). Clayey soil makes up approximately 88% of the 
study area.

AHP Modelling

The AHP method (Saaty 1980) is a decision-making tool 
developed to evaluate complex multi-criteria alternatives 
(Emrouznejad and Marra 2017). AHP can hierarchically cal-
culate and synthesize a variety of factors of a complex deci-
sion and making it simple and easy to integrate (Russo and 
Camanho 2015). This method assigns reasonable weights to 
variables under consideration owing to its unique consist-
ency test (Devara et al. 2021).

The processes involved in the AHP modelling include 
construction of a pair-wise comparison matrix, calculation 
of eigen vector, and weighting coefficient (Table 1), and 
calculation of eigen value, consistency index, and consist-
ency ratio (Table 2). Equations (5) and (6) determined eigen 
vector (Vp) and weighting coefficient (Cp) (Danumah et al. 
2016). Equations (7), (8), and (9) were used to determine the 
eigen value (λmax), consistency index (CI), and consistency 
ratio (CR) (Danumah et al. 2016). The major steps involved 
in AHP modelling are included in Fig. 13.

where Slp. = slope angle; Ele. = elevation, Litho. = lithol-
ogy, and RB = road buffer.

where k = number of factors and W = ratings of the factors.

where RI is the random index (Table 3).
According to Saaty (1980), the CR should not exceed 

10% (0.1). If the CR exceeds 10%, the judgments are 
inconsistent and the subjective judgments need to be 
revised.

The landslide susceptible zones were derived using 
Eq. (10).

FR Modelling

The FR model shows the correlation between the landslide 
locations and the factors, based on the relationship found 
between landslide distribution and each causative factors 
(Lee and Pradhan 2006). To calculate the frequency ratio 

(5)Vp =
k
√

W1x…Wk

(6)Cp =
Vp

Vp1 +…Vpk

(7)�max =
[E]

k

(8)CI = (�max − k)∕(k − 1)

(9)CR =
CI

RI

(10)

LSZ = (0.291 × Slp.) + (0.216 × Ele.)

+ (0.155 × Litho.) + (0.110 × LULC)

+ (0.077 × NDMI) + (0.054 × RB) + (0.038 × NDBI)

+ (0.027 ×WRI)

+ (0.019 × SPI) + (0.014 × Soil)

Table 1   Pairwise comparison 
matrix

Slp Ele Litho LULC NDMI RB NDBI WRI SPI Soil Vp Cp

Slp 1 2 3 4 5 6 7 8 9 10 4.529 0.291
Ele 1/2 1 2 3 4 5 6 7 8 9 3.356 0.216
Litho 1/3 1/2 1 2 3 4 5 6 7 8 2.414 0.155
LULC 1/4 1/3 1/2 1 2 3 4 5 6 7 1.707 0.110
NDMI 1/5 1/4 1/3 1/2 1 2 3 4 5 6 1.196 0.077
RB 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 0.836 0.054
NDBI 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 0.586 0.038
WRI 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 0.414 0.027
SPI 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 0.298 0.019
Soil 1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 0.221 0.014
∑ 2.93 4.83 7.72 11.59 16.45 22.28 29.08 36.83 45.50 55.00 15.56 1.00
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for each class of the causative factors, the following equa-
tion (Ehret et al. 2010) was used:

where Mi is the number of landslide pixels for each factor 
class, M is the number of landslides within the study area, 
Ni is the number of pixels for each factor class, and N is 
the number of pixels in total for the study area. (Ehret et al. 
2010). When the FR value is more than 1, a high likelihood 
of landslides and higher correlations is inferred, whereas 
values less than 1 imply a lower correlation (Lee and Talib 
2005). The frequency ratio of each class is shown in Table 4.

The landslide susceptible zones were derived using 
Eq. (12).

Validation Using the ROC Curve Method

The ROC curve method was used to validate the land-
slide susceptibility maps created using the AHP and FR 
methods. For validating the maps, the landslide incidence 
data collected from the Bhukosh portal of GSI was used. 
A total of 1304 landslide incidences have been recorded 
in this district. These incidences have been randomly split 
into a training dataset with 913 landslides (70% of the inci-
dences) and a validation dataset consists of 391 landslides 
(30% of the incidences). The validation dataset was used to 
validate the results using the ROC curve method. RStudio 
was used to plot the ROC curves and to estimate the AUC 
values. The value of the AUC varies from 0.5 to 1.0, where 
the lowest value indicates random classification, while the 
highest value represents an excellent classification (Melo 
2013). The AUC value ranges and corresponding discrimi-
nations are included in Table 5.

Results and Discussion

This study demarcated landslide susceptible zones in the 
Idukki district using the AHP and FR methods. The very 
high susceptible zone covers 11.14% of the study area using 
the AHP model, and 6.57% using the FR model. The area 
of the district is grouped into five susceptible zones, and 
the area of each susceptible zone is mentioned in Table 6. 
The number and percentage of landslide incidences in each 
susceptible zone are shown in Table 7.

(11)FR = (
Mi

M
)
/

(
Ni

N
)

(12)

LSZ = Fr(Slp.) + Fr(Ele.)

+ Fr(Litho.) + Fr(LULC) + Fr(NDMI)

+ Fr(RB) + Fr(NDBI) + Fr(WRI) + Fr(SPI) + Fr(Soil)
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About 71% of the landslides occurred in the high and very 
high susceptible zones for the AHP method, whereas 77.75% 
occurred in those zones for the FR method. The prepared 
landslide susceptibility maps are depicted in Figs. 14 and 
15. This study confirmed that gravelly loam soil, followed 

by NDBI ranging between 0.01 and 0.38, elevation rang-
ing between 457 and 904 m, hornblende gneiss rock type, 
built-up and plantation areas, slope ranging between 16.89 
and 35.93°, road cuttings, and WRI ranging between 0.69 
and 0.86 are the major landslide-inducing factors in Idukki 

Fig. 13   Flowchart of the AHP 
modelling

Table 3   Random index (Saaty 
1980)

Number of factors 2 3 4 5 6 7 8 9 10 11

RI 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51
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Table 4   The frequency ratio of each classes

Sl. No Factors Class No. of pixels 
in the class

Class (%) Number of landslide 
pixels within the class

Landslide inci-
dences (%)

Frequency ratio

1 Slope 0–8.90° 1,210,793 24.96 58 6.35 0.25
8.90–16.89° 1,522,708 31.39 211 23.11 0.73
16.89–25.18° 1,202,061 24.78 405 44.36 1.79
25.18–35.93° 739,767 15.25 226 24.75 1.62
35.93–78.32° 175,604 3.62 13 1.42 0.39

2 Elevation 13–457 m 722,304 14.89 68 7.45 0.50
457–904 m 1,413,077 29.13 627 68.67 2.36
904–1306 m 1,735,179 35.77 136 14.89 0.41
1306–1802 m 608,307 12.54 77 8.43 0.67
1802–2685 m 372,066 7.67 5 0.55 0.07

3 Lithology Charnockite 2,259,565 46.58 144 15.77 0.34
Granite 48,509 1 18 1.97 1.97
Pink granite gneiss 826,598 17.04 96 10.51 0.61
Garnet-biotite gneiss 102,356 2.11 18 1.97 0.93
Hornblende gneiss 1,613,905 33.27 637 69.77 2.10

4 LULC Water body 125,639 2.59 0 0 0.00
Evergreen forest 1,543,082 31.81 157 17.19 0.54
Deciduous forest 772,269 15.92 99 10.84 0.68
Scrubland 300,273 6.19 69 7.56 1.22
Barren land 172,693 3.56 12 1.31 0.37
Cropland 48,994 1.01 2 0.22 0.22
Built-up area 173,178 3.57 61 6.69 1.87
Plantation 1,714,805 35.35 513 56.19 1.59

5 NDMI  − 0.38 to − 0.02 400,688 8.26 44 4.82 0.58
 − 0.02–0.05 669,429 13.8 246 26.94 1.95
0.05–0.12 911,005 18.78 349 38.22 2.03
0.12–0.17 1,473,713 30.38 212 23.22 0.76
0.17–0.37 1,396,098 28.78 62 6.79 0.23

6 Road buffer 0–100 m 824,644 17 247 27.05 1.59
More than 100 m 4,026,289 83 666 72.94 0.88

7 NDBI  − 0.37 to − 0.18 1,184,598 24.42 242 26.5 1.08
 − 0.18 to − 0.12 1,628,458 33.57 50 5.47 0.16
 − 0.12 to − 0.05 939,141 19.36 47 5.15 0.26
 − 0.05–0.01 660,697 13.62 219 23.98 1.76
0.01–0.38 438,039 9.03 355 38.88 4.3

8 WRI 0.07–0.60 862,012 17.77 163 17.85 1
0.60–0.64 1,853,541 38.21 309 33.84 0.88
0.64–0.69 1,565,396 32.27 320 35.05 1.08
0.69–0.86 489,459 10.09 121 13.25 1.31
0.86–1.33 80,525 1.66 0 0 0

9 SPI  − 31.32 to − 4.80 38,807 0.8 3 0.33 0.41
 − 4.89 to − 2.35 355,088 7.32 94 10.29 1.4
 − 2.35 to -0.72 809,136 16.68 83 9.09 0.54
 − 0.72–0.53 2,852,349 58.8 523 57.28 0.97
0.53–14.84 795,553 16.4 210 23 1.4

10 Soil Gravelly loam 31,046 0.64 27 2.96 4.62
Loam 240,606 4.96 4 0.44 0.09
Gravelly clay 306,579 6.32 48 5.26 0.83
Clay 4,272,702 88.08 834 91.35 1.03
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district. The study area’s middle portion shows very high 
susceptibility to landslides due to steeper slopes, proximity 
to streams, and the presence of roads with vertical cuts. Most 
of the landslides occurred on this portion of the district.

The FR of 1.79 and 1.62 confirmed that the probability of 
landslide occurrences is high in areas with moderate slopes 
ranging between 16.89–25.18° and 25.18–35.93°. The lower 
FR (0.39) indicates lower landslide probability in areas with 
slopes above 35°. In their study, Nakileza and Nedala (2020) 
also found slopes ranging between 15 and 25° as the most 
influencing factor in landslide occurrence. Huang et al. 
(2018) found that the high and very high landslide suscepti-
ble zones in the Nantian area of China are mainly distributed 
in areas with slopes ranging from 7.68 to 34.70°. Most of the 
landslides (627) occurred in areas with an elevation ranging 
from 457 to 904 m with a FR of 2.36. Also, the number of 

landslides significantly decreases as the elevation increases 
above 904 m. This was confirmed after analyzing the num-
ber of landslides recorded within higher elevation classes 
(904–1306 m, 1306–1802 m, and 1802–2685 m).

Nakileza and Nedala (2020) found that most of the land-
slides occurred between elevations ranging from 1500 to 
1800 m. Around 70% of the landslides occurred in areas 
with hornblende gneiss rock type. More than 500 landslides 
have been recorded in plantation areas. Among the land 
use land cover types, the built-up area (with a FR of 1.87) 
followed by plantation area (FR = 1.59) has a high correla-
tion with landslide occurrences. The hill-toe modified for 
infrastructure development without any lateral support and 
slopes modified for monoculture plantations without proper 
drainage provisions are the causes of landslides in the Idukki 
district (Abraham et al. 2019).

Road cuttings with a FR of 1.59 indicate a higher prob-
ability of landslides. The vertical cuts along the hilly 
roads in Idukki district make these roads susceptible to cut 
slope failures (Abraham et al. 2019). Sujatha and Sridhar 
(2021) found that around 74% of the landslides occurred in 
Coonoor due to road cuttings. The areas with positive NDBI 
(0.01–0.38) have the highest correlation with the landslide 
occurrence (FR = 4.3). Like this study, Huang et al. (2018) 
also found that landslide occurrence is high in areas with 
high NDBI.

Table 5   AUC values and discrimination ( Source: Li and He 2018)

Sl. No AUC value Discrimination

1. 0.9–1.0 Excellent
2. 0.8–0.9 Good
3. 0.7–0.8 Fair
4. 0.6–0.7 Poor
5. 0.5–0.6 Fail

Table 6   Area and percentage of landslide susceptible zones

Susceptible zones AHP method FR method

Area of susceptible 
zones (Sq. km)

Percentage of the area of the land-
slide susceptible zones

Area of susceptible 
zones (Sq. km)

Percentage of the area of 
the landslide susceptible 
zones

Very low 468.49 10.75 872.47 20.02
Low 1035.46 23.76 1296.50 29.75
Moderate 1315.68 30.19 1143.98 26.25
High 1052.89 24.16 758.73 17.41
Very high 485.48 11.14 286.32 6.57
Total 4358 100 4358 100

Table 7   Number and percentage 
of landslide incidences in each 
susceptible zone

Susceptible zones AHP method FR method

Number of land-
slide incidences

Percentage of land-
slide incidences

Number of land-
slide incidences

Percentage of 
landslide inci-
dences

Very low 3 0.77 5 1.28
Low 38 9.72 26 6.65
Moderate 72 18.41 56 14.32
High 146 37.34 135 34.53
Very high 132 33.76 169 43.22
Total 391 100 391 100
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Fig. 14   Landslide susceptible zones: AHP method
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Fig. 15   Landslide susceptible zones: FR method
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Landslide occurrence in this district is highly correlated 
with the soil saturation. The FR (1.31) of the WRI class 
ranging between 0.69 and 0.86 confirmed this correlation. 
Though the number of landslides occurred in areas with 
clayey soil is 834 (91.34%), the FR (1.03) is much less 
than that of gravelly loam with a FR of 4.62. This is due to 
the fact that clayey soil accounts for approximately 88% of 
the district’s land area. In their study, Roy and Saha (2019) 
found 15.79% of landslide areas in gravelly loam soil.

The AUC values estimated through the ROC curve method 
(Fig. 16) confirmed that the FR method is more effective in 
identifying landslide susceptible zones than the AHP method 
(Li and He 2018). The AUC value for the FR method is 0.81, 
which is considered good, while the AUC value for the AHP 
method (0.69) is considered poor. Thus, it is confirmed that the 
FR method is more suitable for landslide susceptibility mod-
elling in the Idukki district and has thus been chosen as the 
best method. In their study, Kumar and Annadurai (2015), and 
Demir et al. (2013) also found the FR method as more effective 
than the AHP method in landslide susceptibility modelling. 
The geological structures (joints, faults, and shear zones) were 
not considered in this study due to the non-availability of data. 
This is a limitation of this study.

Conclusions

In this study, landslide susceptible zones in the Idukki district, 
the most landslide-prone district in Kerala, were delineated 
using the AHP and FR methods. The factors used to model 

landslide susceptibility were slope angle, elevation, lithology, 
LULC, NDMI, road buffer, NDBI, WRI, SPI, and soil.

It was found that the gravelly loam soil, higher NDBI, eleva-
tion ranges between 457 and 904 m, hornblende gneiss rock types, 
built up areas, moderate slopes, road cuttings, and higher WRI 
were most strongly associated with landslides in this district. This 
study found that the FR model has greater prediction capability 
than the AHP model. According to the FR model, 6.57% area of 
Idukki district is very highly susceptible to landslides.

The landslide susceptibility maps will be extremely useful 
to researchers and to the agencies/departments dealing with 
landslides for implementing suitable mitigation strategies and 
to develop projects with the objective of landslide risk reduc-
tion. The result of this study will help policy makers, planners, 
and local government to identify the settlements and roads in 
the high and very high susceptible zones, thereby reducing the 
risk of landslides in the future.
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