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Abstract
The new generation of dockless bike sharing systems has been deployed on a large scale around the world, successfully
promoting cycling activities. Analyzing cycling activity patterns can reveal people’s travel behavior and urban dynamics with
fine granularity. This paper aims to discover the spatiotemporal patterns and urban facilities determining cycling activities based
on dockless bike sharing data in the downtown area of Beijing. We collected approximately 1.5 million cycling trip records for
seven consecutive days. In urban spaces, roads are basic spatial elements for human movement. Thus, this study shifts the
analysis perspective to a road network perspective. We use network kernel density estimation (NKDE) to analyze the spatio-
temporal distribution of cycling activities. In the NKDE, the road unit is the analysis unit. The road unit is an approximate
decomposition of a block and can minimize the effect of the modifiable areal unit problem (MAUP). We then apply a colocation
mining method, network-distance-based global colocation quotient (GCLQ), which does not need to divide the study area into
analysis units and is not affected by theMAUP, to examine the association between cycling activities and four categories of urban
facilities, including transportation facilities, company and business facilities, residences, and scenic spots. Finally, taking spatial
heterogeneity into consideration, we apply network-distance-based local colocation quotient (LCLQ) to capture the variability of
association across areas. The result shows that cycling activity hot spot areas are within the Fourth Ring Road or near subway line
one and the Batong Line. In addition to exhibiting obvious morning and evening peaks, cycling activities exhibit a small peak at
noon on weekdays. On weekends, cycling activities show a relatively uniform temporal distribution. LCLQ performs better than
GCLQ. The results of LCLQ show the spatial variance of the association and identify the areas where cycling activities are
associated with different urban facilities at different times.
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Introduction

Bike sharing is a means of sustainable transportation. Since
the first public bike sharing system (BSS) was implemented in
1965, public bike sharing systems have developed rapidly.
The new generation of dockless BSSs (e.g., Ofo and
Mobike) originated in 2015 in China with the development
of information technology and the sharing economy (Xu et al.
2019) and has been deployed on a large scale around the
world. A user can unlock a shared bike through a mobile
application and then begin a trip. Once the trip is finished,
the user parks the shared bike on any suitable public city space
and pays for the trip through the mobile application. Without
docking stations, the new generation of dockless BSSs en-
ables users to use shared bikes anytime and anywhere, fully
unleashing the potential of shared bikes. Furthermore, BSSs
have positive social, environmental, and economic effects,
such as relieving traffic congestion (Wang and Zhou 2017),
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reducing public transportation travel times (Jäppinen et al.
2013), producing little air and noise pollution (Shaheen et al.
2010), solving the “last mile” problem (Garcia-Gutierrez et al.
2014; Yang et al. 2019), reducing energy consumption (Zhang
and Mi 2018), and increasing public transit use (Caulfield
et al. 2017). Because of its flexibility and various benefits,
the dockless BSS has been deployed on a large scale around
the world. As travel data describe people’s movement, they
can be used as proxies for urban flows. Compared with travel
card or taxi data, which are characterized by medium-long
distance travel, dockless bike sharing data record short-
distance travel and can reflect people’s micro-mobility
(Yang et al. 2019). Analysis of the spatiotemporal pattern of
bike sharing can help reveal people’s travel behavior and ur-
ban dynamics at a fine granularity. Additionally, knowledge
of the spatiotemporal pattern of bike sharing can help improve
the performance of BSSs (Alvarez-Valdes et al. 2016; Du
et al. 2019).

This study aims to analyze the spatiotemporal pattern and
urban facilities determinants of cycling activities in Beijing
from a road network perspective. Through data analysis, we
seek to describe the characteristics of people’s travel behavior
and the spatial-temporal distribution characteristics of shared
bikes, which can provide a reference for the optimization of
BBSs. First, we use network kernel density estimation
(NKDE) to analyze the spatiotemporal distribution of the or-
igins and destinations of dockless bike trips. Then, noting that
bike sharing activities are more flexible than other transporta-
tion modes, we explore the spatial-temporal characteristics of
bike sharing activities and their correlation with urban facili-
ties from a micro perspective. We use the network-distance-
based global colocation quotient (GCLQ) to examine the as-
sociation between dockless bike usage and urban facilities and
use the network-distance-based local colocation quotient
(LCLQ) to analyze the changes in the strength of association
in different places. We hope that the two approaches adopted
in this paper and the results can provide new ideas for other
bike sharing system–related researches.

Related Work

Discovering the Spatiotemporal Pattern of Shared
Bike Usage

Cluster methods are popular tools for analyzing the spatiotem-
poral pattern of bike sharing. For station-based BSS, cluster
methods can be used to group docking stations according to
usage patterns and to understand spatiotemporal causes of
imbalances (Vogel et al. 2011; Jiménez et al. 2016; Lathia
et al. 2012; Zhou 2015; Zhang et al. 2017a). For dockless
BSS, cluster methods can be used to group concerned areas

or shared bike usage hotspots based on time-series usage pat-
terns (Du et al. 2019).

In addition to cluster methods, other methods are also used.
For station-based BSS, Austwick et al. (2013) used commu-
nity detection tools to identify network subregions within
bikeshare flow networks. Zhou (2015) built a similarity graph
of cycling flows and used community detection algorithms to
find the spatial communities of cycling flows. Bordagaray
et al. (2016) proposed a data mining algorithm to classify
cycling trips into different usage types in Santander’s BSS.
Zhang et al. (2018) combined trip chain and transition activity
matrices to indicate bike usage patterns and potential bike
usage purposes and analyzed bike sharing users’ travel behav-
ior. For dockless BSS, Zhang et al. (2019) used percolation
theory to identify geographical areas of interest with a high
concentration of bike usage. Yang et al. (2019) used kernel
density estimation and graph-based analyses to examine travel
behavior, mobility patterns, and flows of bike usage over the
last mile before and after a new subway line was put into
operation.

Visualization methods can also help to understand the us-
age of shared bike systems, and flow maps are commonly
used. Flow maps have been used to analyze the spatial and
temporal patterns of bike sharing activities, as well as the
influence of weather conditions and calendar events on bike
usage (Du et al. 2019; Wood et al. 2014; Corcoran et al. 2014;
Zhao et al. 2015). In addition to flow maps, Oliveira et al.
(2016) coordinated pixel-oriented timelines with maps to
identify temporal and spatial patterns of bike usage. Yan
et al. (2018) designed a visual analytics system to extract
potential activity patterns of bike users based on tensor factor-
ization. Du et al. (2019) used a sliced spatial heatmap to visu-
alize the spatial distribution pattern of bike trip origins and
destinations and used a space-time cube to reveal the imbal-
ance usage pattern of BSSs.

To analyze and understand socioeconomic environments
from geospatial data at the individual level, spatial assembly
operations are needed (Liu et al. 2015). When analyzing the
cycling activities from dockless bike sharing data, existing
studies usually map individual bike usage data onto adminis-
trative areal or regular areal units. The assembly step may
affect the final analysis results, and this problem is referred
to as the modifiable areal unit problem (MAUP). In urban
spaces, human movement is usually constrained by roads,
and roads are basic spatial elements for human movement.
Shen and Karimi (2016) analyzed social media check-in data
from a street network perspective and proposed that urban
roads connect urban functions at physical and cognitive
levels. Zhu et al. (2017) suggested that the street unit is a
promising substitute for areal units and can help us uncover
hidden knowledge concealed under areas. Yu et al. (2017)
proposed a spatial colocation pattern mining method contain-
ing the network-constrained neighborhood and compared it
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with the traditional plane-space-based method through the
network cross k-function (Okabe and Yamada 2001). The
results showed that the network-constrained approach is more
effective than the traditional approach in a network-structured
space. As bike sharing activities are also constrained by the
street network, we need to take the above results into account.
Thus, this study shifts the analysis perspective to a road net-
work perspective. We use network kernel density estimation
(NKDE) to analyze the spatiotemporal distribution of the or-
igins and destinations of dockless bike trips. In the NKDE, the
road segment is used as the analysis unit. Compared with
traditional areal units, the road unit is an approximate decom-
position of a block and can minimize the effect of the MAUP
(Zhu et al. 2017).

Determinants of Cycling Activities

Some studies have focused on examining the correlation
between shared bike usage patterns and factors that may
affect bike sharing (e.g., the built environment and weather
conditions). For station-based BSS, regression analysis is
commonly used to examine the potential influencing factors.
Mateo-Babiano et al. (2016) employed Spearman’s correla-
tion coefficient and linear regression analysis to determine
the influence of cycling infrastructure, land use, and
topography on bike sharing. Zhang et al. (2017b) used a
multiple linear regression model to analyze the influence
of the built environment on bike use demand and the ratio
of demand to supply at bike stations. Rixey (2013) used a
regression model to examine the influence of demographic
and built environment characteristics near docking stations
on ridership levels. In addition to regression analysis, Wang
and Lindsey (2019) used linear mixed-effects models and
multinomial logistic models to examine the association be-
tween sociodemographic characteristics and bike sharing be-
havior. Faghih-Imani et al. (2014) employed a multilevel
linear model to analyze the impact of meteorological condi-
tions, bicycle infrastructure, temporal characteristics, built
environment, and land use on arrival and departure flows
at docking stations.

For dockless BSS, researchers usually divide a study area
into regular grid cells to assemble individual bike usage data
and then use appropriate methods to analyze the potential
influencing factors. Shen et al. (2018) used spatial
autoregressive models to explore the influence of access to
public transportation, bike fleet size, built environment,
weather conditions, and bicycle infrastructure on bike usage.
Du et al. (2019) used random forests to evaluate the contribu-
tion of land use, sociodemographic characteristics, number of
POIs, and cycling environment on bike usage. Xu et al. (2019)
used the eigendecomposition approach to find the built envi-
ronment indicators that are correlated with bike usage.

In existing studies, the spatial assembly process may cause
the MAUP. To eliminate the impact of the MAUP, we apply a
colocation mining method, network-distance-based
colocation quotient, to examine the association between cy-
cling activities and urban facilities, as colocation quotient
method does not need to divide the study area into analysis
units. Many existing studies have used colocation quotient
method to analyze the association of spatiotemporal
behavior with urban facilities. Leslie and Kronenfeld (2011)
first proposed a new metric labeled the colocation quotient
(CLQ), a measurement designed to quantify (potentially
asymmetrical) spatial associations between categories of a
population that may itself exhibit spatial autocorrelation.
Wang et al. (2017) developed a simulation-based statistical
test for the local indicator of colocation quotient (LCLQ) to
examine the association of land use facilities with crime pat-
terns. Chen et al. (2020) mined the colocation patterns (CPs)
of urban activities with point-of-interest (POI) data and iden-
tified nearly a thousand unique POI CPs for 25 cities.
Different from these existing studies, this paper applies the
network-distance-based colocation quotient and takes the
shared bike as the research object. Compared with other
modes of transportation, shared bikes exhibit moremicroscop-
ic travel behaviors. The network-distance-based colocation
quotient method takes the network road, which better reflects
reality, as the entry point and can not only detail the overall
characteristics of shared bike travel from a global perspective,
but also consider the spatial heterogeneity and use LCLQ to
capture the variability of association across areas within the
overall trend.

Study Area and Data Sources

Beijing is the capital of China. The study area is downtown
Beijing, including Chaoyang, Dongcheng, Xicheng, Haidian,
Shijingshan, and Fengtai Districts, and its total area is approx-
imately 1378 km2. The dockless bike usage data were from
Mobike, which include approximately 1,500,000 trips from
May 10th to May 16th in 2017 in the downtown area of
Beijing. The weather was sunny or cloudy with temperatures
of 15 to 30 °C, and the air quality was excellent or good in that
period; therefore, cycling activities were likely not affected by
extreme weather conditions and air quality. Each trip records
the following attributes: order ID, bike ID, bike type, start
time, start longitude, start latitude, end longitude, and end
lat i tude. Road network data were obtained from
OpenStreetMap. Dockless bike usage data reflect people’s
micro-mobility, so the road data must be detailed. The main
road in Beijing is shown in Fig. 1.

POI data came from Gaode Maps and can be found in the
Peking University Open Research Data Platform. The publi-
cation time of POI data was June or August 2017. In terms of
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the division and selection of POIs of urban facilities, we pre-
liminarily referred to the selection criteria of many existing
relevant studies. We combined the findings of several studies
on the influencing factors of shared bikes (Faghih-Imani et al.
2017; Zhang et al. 2017b; Du and Cheng 2018; Xu et al. 2019)
and finally extracted six types of urban facilities that are used
the most frequently: company and business, entertain-
ment, shopping, restaurant, transportation, and residence.
These types of urban facilities cover almost all aspects of
the city’s functions. Later, considering the excessive num-
ber of entertainment, shopping, and restaurant POIs, parks
were chosen to represent entertainment places. In addi-
tion, in order to better analyze the connection problem
of the “last mile” of shared bikes, we extracted and divid-
ed the transportation facilities into two categories: bus
station and subway station. However, dockless bike usage
data record short-distance travel, while the distance be-
tween a subway station entrance and the center point of
the subway station may be relatively long. Moreover,
shared bikes are not allowed to be ridden in many resi-
dential quarters and parks. Thus, we used subway station
entrances, residential quarter entrances, and park en-
trances to represent subway stations, residential quarters,
and parks, respectively. Finally, the classification adopted
is as follows: bus station, subway station entrance, park
entrance, residential quarter entrance, and office building
entrance.

Methodology

Network Kernel Density Estimation (NKDE)

KDE is commonly used to analyze the spatial distribution of
points (Bailey and T.C.G 1995; Silverman 1986). KDE takes
the distance decay impact of points into consideration and can
produce a comprehensible density surface of input points.
Based on the characteristics of road networks and road net-
work events, KDE is extended to NKDE (Xie and Yan 2008;
Okabe et al. 2009; Yu et al. 2015). We use NKDE to analyze
the spatial pattern of bike trip origins and destinations in dif-
ferent time periods. NKDE is defined as follows:

f sð Þ ¼ ∑n
i¼1

1

τ2
k

s−si
τ

� �
ð1Þ

where f(s) denotes the density value at location s, n represents
the number of point events, and s1,..., sn represent the corre-
sponding locations of the point events. s − si represents the
network distance between s and si, and τ denotes the band-
width. k() denotes the kernel function.

NKDE has two parameters: k() and τ. Existing studies have
found that k() has little impact on the results (Xie and
Yan 2008; Yu et al. 2015). In this study, we selected the quartic
kernel function (Eq. (2)). τ is a critical parameter (Xie and
Yan 2008). A larger τ produces a smoother density surface,
whereas a smaller τ produces a “spikier” density surface.

Fig. 1 Study area
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NKDE differs from traditional KDE in three aspects: (1)
the analysis context is network space instead of planar space,
(2) network distance rather than Euclidean distance is used in
the kernel function and bandwidth, (3) the analysis unit is
linear unit rather than area unit.

Colocation Quotient

Global Colocation Quotient (GCLQ)

GCLQ is a global point-based colocation metric (Leslie and
Kronenfeld 2011). In the realm of human geography, the spa-
tial patterns of the origin and destination of bike trips and
different types of POIs may be controlled by the overall pop-
ulation distribution and transportation infrastructure and tend
to be located in varying degrees of proximity to other human
activity centers. GCLQ can eliminate the effect of clustering
of a joint population on the results. Thus, we use network-
distance-based GCLQ to detect the association between bike
usage and the urban facilities of the city. The GCLQ is defined
as

CLQA→B ¼ NA→B=NA

NB= N−1ð Þ ð3Þ

where NA represents the number of A points (bike trips origins
or destinations), NB represents the number of B points (differ-
ent types of POIs, e.g., bus stations), N denotes the total num-
ber of A and B points, and NA→ B represents the number of A
points where a B point is the nearest neighbor of the A point. In
defining neighborhoods, road network distance is used rather
than Euclidean distance (Wang et al. 2017).

The expectation of GCLQ is 1 if different types of points
are randomly located given a fixed distribution pattern of
points (Leslie and Kronenfeld 2011). A CLQA→ B value great-
er than 1 suggests that A points are collocated with B points.
The larger the CLQA→ B value is, the stronger the colocation
pattern is. In contrast, a CLQA→ B value less than 1 indicates a
dispersed pattern between A points and B points. Monte Carlo
simulation is used for the significance test (Leslie and
Kronenfeld 2011).

Furthermore, Cromley et al. (2014) broadened the defini-
tion of neighborhood and proposed geographically weighted
CLQ. A point could have more than one neighbor within a
bandwidth. NA→ B is calculated as

NA→B ¼
∑NA

i¼1∑
nni
j¼1 j≠ið Þwijx j

∑NA
i¼1∑

nni
j¼1 j≠ið Þwij

ð4Þ

where nni denotes the number of nearest neighbors of the ith A
point and xj is a binary variable indicating whether the jth
point is type B (1 indicates yes and 0 otherwise). wij can be
different types of kernel density functions, such as the box
kernel density weighting function or Gaussian kernel density
weighting function.

Local Colocation Quotient (LCLQ)

GCLQ implicitly assumes that the association relationship
stays stationary over space and thus cannot detect changes in
the strength of association over space. Therefore, LCLQ was
proposed to address this limitation (Cromley et al. 2014). We
used LCLQ to reveal the spatial variability of the association
between bike usage and the urban facilities. The LCLQ is
formulated as

LCLQAi→B ¼ NAi→B

NB= N−1ð Þ ð5Þ

NAi→B ¼ ∑N
j¼1 j≠ið Þ

wijx j
∑N

j¼1 j≠ið Þwij

 !
ð6Þ

where Ai represents the ith A points. In defining neighbor-
hoods, we also use road network distance rather than the
Euclidean distance. Additionally, Monte Carlo simulation is
used for the significance test of LCLQ (Wang et al. 2017).

Results, Discussion, and Implications

Spatiotemporal Distribution of Bike Trip Origins and
Destinations

We used a heatmap to visualize the number of trips per hour
during the week, as shown in Fig. 2. Obvious bike usage
differences between weekdays and weekends can be observed
in Fig. 2. Bike usage is generally higher on weekdays.
Moreover, clear travel peaks can be observed at approximate-
ly 7 a.m.–9 a.m. and 5 p.m.–7 p.m. on weekdays, and small
travel peaks can be observed at approximately 12 a.m. on
weekdays, whereas there are no obvious travel peaks onweek-
ends. The differences may be related to residents’ travel pur-
pose. On weekdays, shared bikes may be mainly used for
commuting; on weekends, commuting is not the main purpose
for residents, and the choice of travel time and space is
flexible.

We used NKDE to visualize the spatial pattern of trip ori-
gins and destinations per hour on May 11 (Thursday) and 13
(Saturday). The bandwidth is set to 1000m, and the results are
shown in Appendix S1. On May 11 (Thursday), from 10 p.m.
to 5 a.m., the city is relatively “silent,” and only sporadic
“points of light” are observed in the maps, which is consistent
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with the general sleeping time of people. After 5 a.m., the city
gradually wakes up. The first “hot” area occurs in Muxiyuan,
Liujiayao, and Shiliuzhuang at 5 a.m.–6 a.m., as shown in
Fig. 3. The reason could be that wholesale markets gather
in these locations and open at 6 a.m. or 7 a.m.

The spatial distribution patterns of bike trip origins and
destinations are similar in the kernel density maps on
May 11 (Thursday). From 7 a.m. to 10 p.m., especially in
the morning and evening peak hours, people’s bike usage
patterns show distinct spatial distribution characteristics.
Bike usage hot spot areas have the shape of “ ”. The
bike usage hot spot areas are within the Fourth Ring Road (“

”) or near subway line 1 and the Batong Line, which run
east and west through the central city (“ ”). Some cold
spots are observed within the Fourth Ring Road. These areas
have very low kernel density, which is quite different from the
surrounding areas. The cold spots are near ancient buildings
and gardens, such as Tian’anmen Square, Jingshan Park, the
Forbidden City, Beihai Park, Temple of Heaven, and Longtan
Park, and this observation may be related to the strict control
measures of historical and cultural heritage and buffer areas
(Figs. 4 and 5).

Outside the “ ”, there are large areas with kernel
densities of zero or close to zero. Factors such as being far
from the city center, having a relatively low population den-
sity, and having a relatively sparse road network affect the use
frequency of shared bicycles. Outside the “ ”, there are
also some hot spots, as shown in Fig. 6. A large hot spot is
observed in the Wangjing-Jiuxianqiao business district (E in
Fig. 6), which may be related to the many Internet companies

gathered here. Taking the Beijing Olympic Games as an
opportunity, the Ya’ao business circle (D in Fig. 6), which
includes the low kernel density of Olympic Forest Park (e
in Fig. 6), has attracted a large number of permanent resi-
dents. With the completion of large residential areas and
metro lines, the Ya’ao business circle moved northward,
and the Beiyuan-Lishuiqiao area (C in Fig. 6) became the
new core area of the Ya’ao business circle. There are also
some small hot spot areas, such as Shangdi, Zhongguancun
Dongsheng Science and Technology Park, Fengtaiyuan of
Zhongguancun Science Park, and Wanyuan Road (A, B, F,
G in Fig. 6). These hot spot areas are other high-tech in-
dustrial cluster areas.

During morning peak hours, the number of bike trips in-
creases sharply. After 9 a.m., the intensity of trip origins and
destinations declines substantially and then begins to increase
at 11 a.m. At noon (11 a.m.–1 p.m.), there is a small peak in
bike usage: the hot spots are concentrated and the range is
small, as shown in Fig. 7. This peak may be related to the
lunch break, and the hotspots may reflect the employment
concentration area to some extent, such as Zhongguancun,
Wukesong, Financial Street, Guomao, Muxiyuan, and
Fengtaiyuan of Zhongguancun Science Park.

Compared to that of weekdays, overall usage is reduced on
weekends, and bike trip origins/destinations show a relatively
uniform spatial distribution pattern in different periods (7
a.m.–10 p.m.) on weekends. From 7 a.m. to 10 p.m., bike
usage hot spot areas still have the shape of “ ”.
Compared to weekdays, the active time for bike usage on
weekends is postponed. The first “hot” area still occurs in
Muxiyuan, Liujiayao, and Shiliuzhuang from 5 a.m. to 6
a.m. No obvious travel peaks occur on weekends, and only a
small travel peak is observed at dusk (5 p.m.–7 p.m.).

The Association Between Cycling Activities and Urban
Facilities

By analyzing the colocation quotient results from May 10 to
May 16, we found that there were obvious differences be-
tween the spatial patterns of weekdays and weekends, but
the patterns of each day were basically the same. Therefore,
we decided to take the results of May 11 (Thursday) and
May 13 (Saturday) as the representatives of weekdays and
weekends to analyze the relationship between bike sharing
trips and urban facilities.

We used GCLQ to analyze bike trip origin/destination and
different types of POIs per half hour during the morning and
evening peak hours on May 11 (Thursday) and the same time
period on May 13 (Saturday), and the bandwidth is set to the
ten nearest neighbors. The results are shown in Tables 1 and 2.
Many GCLQ values are below one, and the results show that
bike trip origins/destinations were significantly (at the 0.05
level) isolated from any of the POI types. GCLQ values for

Fig. 2 Heatmap representing the number of trips per hour during the
week

16    Page 6 of 18 J geovis spat anal (2021) 5: 16



trip destinations versus subway stations at 8 a.m.–8:30 a.m.
and 5 p.m.–5:30 p.m. on May 11 and 9 a.m.–9:30 a.m. on
May 13 are larger than 1, indicating that trip destinations
and subway stations were spatially colocated during these
periods. Some GCLQ values for bus station and subway

stations are not significant on May 13. In general, GCLQ
values for residential quarters on May 11 (Thursday) are
smaller than those on May 13 (Saturday). On May 11 and
13, GCLQ values for trip origins versus residential quarters
are larger than those for trip destinations during the morning

Fig. 3 First “hot” areas on
weekdays

Fig. 4 Basic pattern of bike usage
hot spot areas during the morning
and evening peak hours on
weekdays
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peak, indicating a spatial association of less dispersion be-
tween trip origins and residential quarters. In the evening
peak, the situation is reversed. GCLQ values for office build-
ings on May 11 (Thursday) are larger than those on May 13

(Saturday). This may be related to the difference between
travel purposes on weekdays and weekends, where travel for
commuting accounts for a larger proportion on weekdays than
on weekends.

Fig. 5 Cold spots inside the
Fourth Ring Road during the
morning and evening peak hours

Fig. 6 Hot spots outside the
Fourth Ring Road during the
morning and evening peak hours
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GCLQ assumes that the association relationship remains
stationary over space and hides the local association relation-
ship. For a complex geographic environment, LCLQ is more
useful. Over the course of a day, we chose several periods of
the most representative spatial pattern visualization results for
analysis of LCLQ. Some of these periods are the most typical
periods of the day in terms of spatial patterns. Others are
periods in which there is a significant difference in spatial
patterns between the weekday and the weekend or the periods
of the same day in which the spatial pattern is distinct. The
LCLQ results based on the bandwidth of 1000 m are shown in
Appendix S2.

Bus Stations

In general, half of the trip origin/destination points were sig-
nificant at the 0.05 level on the two days. Origin/destination
points with an LCLQ greater than 2 are scattered outside the
Fourth Ring Road, indicating a strong colocation pattern be-
tween origin/destination points and bus stations, as shown in
Fig. 8. The reason for the strong colocation pattern could be as
follows: (1) since road traffic congestion is serious within the
Fourth Ring Road, especially during rush hour, subways have
an advantage over buses in terms of travel time; (2) traffic
pressure outside the Fourth Ring Road is alleviated.

Fig. 7 Spatial pattern of trip
origins and destinations during
the small peak at noon

Table 1 Global colocation quotient of five kinds of POI on May 11

POI

Time slot Bus stations Subway stations Parks Residential quarters Office buildings

Origin Destination Origin Destination Origin Destination Origin Destination Origin Destination

7:00–7:30 *0.929 *0.846 *0.857 *0.868 *0.795 *0.719 *0.940 *0.803 *0.840 *0.814

7:30–8:00 *0.947 *0.892 *0.909 *0.957 *0.811 *0.770 *0.882 *0.832 *0.931 *0.895

8:00–8:30 *0.930 *0.946 *0.925 *1.051 *0.981 *0.880 *0.893 *0.735 *0.884 *1.052

8:30–9:00 *0.895 *0.812 *0.943 1.010 *0.807 *0.808 *0.870 *0.848 *0.915 *0.947

17:00–17:30 *0.958 *0.976 *0.985 *1.017 *0.840 *0.869 *0.900 *0.924 *0.962 *0.971

17:30–18:00 *0.948 *0.980 *0.854 0.987 *0.847 *0.861 *0.896 *0.927 *0.951 *0.964

18:00–18:30 *0.940 *0.972 *0.946 *0.886 *0.821 *0.838 *0.868 *0.918 *0.914 *0.919

18:30–19:00 *0.944 *0.977 *0.953 *0.980 *0.831 *0.849 *0.869 *0.921 *0.873 *0.888

Colocation quotient values with * are significant at the 0.05 level
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Meanwhile, the number of bus stations is much larger than the
number of subway stations.

There are also obvious differences in the spatial distribu-
tion patterns of LCLQ between May 11 (weekend) and
May 13 (weekday). On May 11, inside the Fourth Ring
Road, almost all the significant origin/destination points have
an LCLQ less than 1, indicating a significant dispersion rela-
tionship between trip origins/destinations and bus stations in
these areas (Fig. 8(a)). On May 13, most of the significant
origin/destination points are colocated with bus stations, and
they are concentrated in Pinganli, Wukesong business district,
Qianmen business district, Jiuxianqiao business district,
Lincui business district, and Qinghe business district, as
shown in Fig. 8(b). However, on May 13, the proportion of
points that have an LCLQ less than 1 near the Muxiyuan
business district is increased significantly in the evening com-
pared with the daytime. This may be related to the recreational
cycling behavior in the evening that has been observed in
previous studies.

Subway Stations

LCLQs detect areas where trip origins/destinations are
colocated with subway stations, and the areas are near the
subway stations on both 2 days, as shown in Appendix S2.
In general, the spatial distribution patterns of LCLQs are sim-
ilar onMay 11 (weekday) andMay 13 (weekend), as shown in
Fig. 9, except there are strong colocations between trip
origins/destinations and subway stations near subway inter-
change stations on May 11 (weekday), such as Xidan
Station and Guomao station (Fig. 9(a)). The difference in the
strength of colocation between trip origins/destinations and
subway stations on weekdays and weekends may be related
to commuting behavior. The need for subways during com-
muting may strengthen the colocation, and shared bikes are
likely to serve as a connecting vehicle for commuting.

Parks

In general, the spatial distribution patterns of LCLQ values in
different study periods on weekdays and weekends are simi-
lar. There are several areas where the LCLQs are greater than
2 in the result maps, indicating that trip origins/destinations
are highly colocated with parks in these areas. Among the
highly colocated areas, the area between the North Fourth
Ring Road and the North Second Ring Road is the largest
(a in Fig. 10(a)), likely because there are not only many
large parks, such as Olympic Park and Shichahai Park,
but also many small and micro urban parks. Another large
area (b in Fig. 10(a)) is in Shijingshan District, which has
the largest per capita public green space in Beijing. The
other highly colocated areas are distributed around the
Temple of Heaven, Chaoyang Park, Xinglong Country
Park, and many other medium-sized parks as shown in
Fig. 10(a).

Residential Quarters

In general, among the significant trip origin/destination points,
almost all have an LCLQ value greater than 1. The significant
trip origin/destination points with an LCLQ smaller than 1 are
concentrated in the southeast of the study region, indicating a
significant dispersion pattern here. Points colocated with res-
idential quarters are distributed in the central and western re-
gions. From a single-day perspective, there was little differ-
ence among the study periods.

Although the overall distributions of LCLQ on the two
days were consistent, more points on May 11 had an LCLQ
greater than 2, and they were concentrated in Shijingshan
District, around Guangqumen and near several small res-
idential quarters, as shown in Fig. 11. Considering that
the residences in Shijingshan District are far from the
center of the city, people may use shared bikes as

Table 2 Global colocation quotient of five kinds of POI on May 13

POI

Time slot Bus stations Subway stations Parks Residential quarters Office buildings

Origin Destination Origin Destination Origin Destination Origin Destination Origin Destination

7:00–7:30 0.993 *0.982 *0.908 *0.944 *0.785 *0.785 *0.949 *0.888 *0.760 *0.814

7:30–8:00 1.007 1.001 *0.939 1.004 *0.838 *0.831 *0.942 *0.903 *0.821 *0.842

8:00–8:30 *0.987 0.989 *0.968 1.008 *0.798 *0.800 *0.930 *0.914 *0.848 *0.869

8:30–9:00 0.990 0.991 *0.980 1.008 *0.797 *0.799 *0.943 *0.918 *0.854 *0.886

17:00–17:30 0.993 1.000 1.010 1.007 *0.849 *0.818 *0.912 *0.927 *0.880 *0.870

17:30–18:00 1.005 0.993 0.990 1.008 *0.840 *0.836 *0.928 *0.937 *0.874 *0.875

18:00–18:30 0.994 0.990 *0.976 *0.936 *0.843 *0.828 *0.910 *0.932 *0.858 *0.867

18:30–19:00 0.999 0.994 1.002 0.986 *0.876 *0.829 *0.910 *0.983 *0.867 *0.857

Colocation quotient values with * are significant at the 0.05 level

16    Page 10 of 18 J geovis spat anal (2021) 5: 16



connecting vehicles from their homes to subways or bus
stations, which could lead to a high LCLQ value of bike
sharing origin/destination.

Office Buildings

As shown in Appendix S2, trip origins/destinations are
colocated with office buildings inside the Third Ring Road

and near the Fourth North Ring Road on both May 11 and
May 13. The spatial distribution of LCLQ varies greatly over
the two days. Compared with May 11, the proportion of
points that have an LCLQ between 1 and 2 on May 13 is
considerably reduced. On May 11, the strong colocation
patterns (an LCLQ value larger than 2) are scattered
(Fig. 12(a)). However, on May 13, a strong colocation
pattern (an LCLQ value larger than 2) between trip

Fig. 8 LCLQ values for trip
origins versus bus stations. (a)
8:00–8:30 on May 11. (b) 8:00–
8:30 on May 13
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origins/destinations and office buildings is concentrated
around the north of the East Second Ring Road, in
Financial Street of Xicheng District and Zhongguancun
Software Park (Fig. 12(b)). Meanwhile, the proportion of
points that have an LCLQ between 1 and 2 slightly in-
creased in the evening on May 13 (Fig. 13).

Conclusions

The boom in BSSs has been driven by the development of
information technology and the sharing economy in recent
years. This paper analyzes the spatiotemporal pattern and ur-
ban facilities determinants of cycling activities in the

Fig. 9 LCLQ values for trip
origins versus subway stations.
(a) 7:30–8:00 on May 11. (b)
7:30–8:00 on May 13
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downtown area of Beijing. To the best of our knowledge, our
work distinguishes itself from existing studies in terms of the
analysis perspective and method. First, the analysis perspec-
tive is a road network. This perspective is highly suitable for
analyzing human movement, as human movement is usually
constrained by roads (Yu et al. 2017; Zhu et al. 2017) and
roads connect urban functions at physical and cognitive levels
(Shen and Karimi 2016). Furthermore, the analysis

perspective may minimize the effect of MAUP (Zhu et al.
2017). Second, different methods are used to examine the
determinants of cycling activities. Shared bike riding is a rel-
atively microscopic human activity in the city. Therefore, this
paper applies network-distance-based GCLQ and LCLQ to
reveal the spatial variability of the association between cycling
activities and urban facilities from the macro and micro per-
spectives. These methods are not affected by the MAUP. The

Fig. 10 LCLQ values for trip
origins versus parks. (a) 7:30–
8:00 onMay 11. (b) 7:30–8:00 on
May 13
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spatial and temporal characteristics of bike sharing trips and
the spatial and temporal patterns of the connection between
bike sharing trips and different urban facilities in Beijing rep-
resented by the research results can provide a reference for
future studies on bike sharing trip characteristics in big cities.

There are several implications for policy and planning that
arise from this study. First, the results show obvious temporal
differences in bike usage between weekdays and weekends

and during different periods of a single day: (1) Bike usage
is generally higher on weekdays. (2) Based on the differences
in travel peaks, we speculate that bike sharing may be mainly
used for commuting on weekdays, whereas on weekends,
travel time and space options are more flexible. Therefore,
these differences should be considered when scheduling bicy-
cles. Weekends are more suitable for the maintenance of
shared bikes, while on weekdays during peak hours, more

Fig. 11 LCLQ values for trip
origins versus residential quarters.
(a) 7:30–8:00 on May 11. (b)
7:30–8:00 on May 13
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shared bikes should be set up along popular commuting roads.
Second, the NKDE results of the origins and destinations of
bike trips reveal popular roads for cycling: (1) Roads in the
Muxiyuan, Liujiayao, and Shiliuzhuang regions have a large
number of shared bike trips between 5 a.m. and 6 a.m. (2)
During the morning and evening peak hours on weekdays
and from 7 a.m. to 10 a.m. on weekends, the bike usage hot
spot areas are within the Fourth Ring Road (“ ”) or near

subway line 1 and the Batong Line, which run east and west
through the central city (“ ”). (3) Outside the Fourth Ring
Road, there are also popular streets for bike sharing in the
Wangjing-Jiuxianqiao business district, Ya’ao business circle
except the Olympic Forest Park, and other small hot spot
areas. Thus, in the blocks with active bike sharing activities
mentioned above, relevant personnel can consider adding
parking areas and planning bike paths to regulate cycling

Fig. 12 LCLQ values for trip
origins versus office buildings. (a)
7:30–8:00 on May 11. (b) 7:30–
8:00 on May 13
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behavior and alleviate the road pressure. Third, network-
distance-based LCLQ detects changes in the association be-
tween trip origins/destinations and different types of POIs in
different regions: (1) During weekdays, there is a strong
colocation between trip origins/destinations and bus stations
outside the Fourth Ring Road, and there are strong colocations
between trip origins/destinations and subway stations near
multiple subway interchange stations within the Fourth Ring

Road. Taking this finding as a reference, we can increase the
number of shared bikes around the subway interchange sta-
tions within the Fourth Ring Road and provide more shared
bikes around the bus stations outside the Fourth Ring Road,
which can give full play to the role of shared bikes in the “last
mile.” (2) On weekdays, there are many trip origins/
destinations in Shijingshan District that are strongly related
to residential quarters. It is speculated that shared bikes may

Fig. 13 LCLQ values for trip
destinations versus office
buildings on May 13. (a) 8:00–
8:30. (b) 18:00–18:30

16    Page 16 of 18 J geovis spat anal (2021) 5: 16



serve as one of the transportation tools for residents to com-
mute long distances. This finding can be applied to design
bike fleet rebalancing strategies. Relevant personnel should
responsively adjust the number of shared bikes around resi-
dential communities that are slightly farther from bus and
subway stations.

There are also some limitations in this study, and several
issues should be explored further. (1) The work covers only a
7-day period, and calendar events and different weather con-
ditions are not captured. Future work will analyze the relative
long-term spatiotemporal patterns of bike sharing and the in-
fluence of calendar events and weather conditions. (2) In our
study, the analysis time period is sliced into subperiods, and
NKDE and network-distance-based CLQ are applied to each
subperiod. When analyzing the spatiotemporal pattern of
shared bike usage, we need to compare the results of different
periods. Moreover, the spatial and temporal dimensions are
not well integrated. Future work will seek more effective
methods that can integrate the spatial and temporal dimen-
sions, such as geographically and temporally weighted regres-
sion (Wu et al. 2019).
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