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Abstract
The aim of this article is to propose an alternative approach to disaggregate data using sequential Gaussian simulation, consid-
ering the difficulty in obtaining disaggregated data and the fact that these data are more interesting for transportation planning
policies. The study area is the São Paulo Metropolitan Area (Brazil), and the 2007 dataset is associated to the number of transit
trips per each traffic analysis zone. The main advantages of the proposed method when compared to traditional simulation
methods for travel demand are (1) using less information, (2) including the spatial association of the variables, (3) mapping the
simulated value, (4) estimating values in non-sampled locations, and (5) mapping uncertainty parameters, such as conditional
variances and confidence interval. The main interest of this research for urban planning policies has been shown with the
advantage of mapping critical scenarios for travel demand using a spatially correlated variable. The benefit of providing a
map of transit trips associated to a disaggregated unit area, originated within an aggregated dataset, supports decision makers
to yield more efficient public transportation systems considering significant cost reduction.
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Introduction

Transport planning studies are based on forecasting future
travel demand. Analysts use travel demandmodels to evaluate
the sensitivities of demand to operational variables, such as
costs, charged prices, fleet, and frequency of public transport.
Transport planners also assess models to predict whether new
facilities should be implemented or if there should be an at-
tempt to better operate the existing ones (Kitamura and Fujii
1998; Ortúzar and Willumsen 2011). The need of using these
models is unquestionable as they aim to make the urban mo-
bility plan more efficient.

The classic approach for travel demand is the four-stage
model, also known as the trip-based model. Its basic unit
addresses origin-destination pairs (commonly) at an aggregate
form while it neglects the heterogeneity among different indi-
viduals (Zhang and Levinson 2004). This method was
outlined as a result of practices in the 1960s (Ortúzar and

Willumsen 2011) given the rapid growth of urban population
and motorization.

Evidently, it is reasonable to adapt former approaches to
suit present conditions. Planners have made efforts to develop
pioneer methods that overcome shortcomings seen in past
models, i.e., the fact that trip-based models present unrealistic
behavioral characteristics (for further information concerning
previous research on the mentioned issue, the authors recom-
mend reading Kitamura (1988), Ben-Akiva and Bowman
(1998)). To address this, human behavior was represented at
an individual level (Moeckel et al. 2003), especially due to
recent developments in computing technology and increased
data availability (Buliung and Kanaroglou 2007), which
allowed analysts to provide refined outcomes. This frame-
work, recognized as an activity-based model—and first
discussed by Recker et al. (1986a, 1986b))—requires disag-
gregated data that are not often available. Yagi and
Mohammadian (2010) point out that activity-based models
are more accepted in developed countries rather than in devel-
oping countries. On one hand, this is due to the great amount
of both dis- and aggregated information demanded in activity-
based models. On the other hand, this is due to the need for in-
depth econometric knowledge, as well as complex computa-
tional processes. Therefore, it can be said that the reasons for
developed countries accepting more activity models is due to
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the fact that they have more resources to invest in the criteria
mentioned. Despite the cost issues, data availability is also
linked to confidentiality matters, that is, even if the individual
data exist; in most cases, they are not accessible.

Activity-based models are applied using (1) econometric
based applications, (2) mathematical programming frame-
works, (3) computational process models, and (4) (micro)
simulation approaches (McNally and Rindt 2007). The spot-
light is on microsimulation as this article deals with disaggre-
gation in a large study area. Besides the benefits,
microsimulation models require a large amount of information
to be able to predict satisfactory outcomes. Among many dif-
ferent approaches of population synthesizers needed in
microsimulation, one aspect stands out: to date, none of the
approaches recognizes the spatial correlation of each variable
as an important input to reproduce travel behavior. In addition,
despite the observed advances in microsimulation associated
with using individual travel behavior data and land use data
(Landis and Zhang 1998; Arentze and Timmermans 2000;
Waddell 2000; Hunt et al. 2001; Moeckel et al. 2003;
Salvini and Miller 2005; Pendyala et al. 2012), the spatial
association of data was not addressed. Moreover, it should
be mentioned that travel and socioeconomic variables may
be spatially correlated (Lindner et al. 2016; Rocha et al.
2017; Lindner and Pitombo 2018). That is, by taking into
account spatial association, one could optimize the required
input variables in travel demand models.

Considering that it is difficult to obtain disaggregated data
and that they are more interesting for transport planning pol-
icies, the importance of this article is to contribute by propos-
ing an alternative approach in travel demand field to disaggre-
gate data using sequential Gaussian simulation. The main ad-
vantages of the proposed method when compared to tradition-
al methods are (1) using less information, (2) including the
spatial association of the variables, (3) mapping the simulated
values, (4) estimating values in non-sampled locations, and (5)
mapping uncertainty parameters, such as conditional vari-
ances and confidence interval.

Activity-based microsimulation models are able to disag-
gregate multiple variables, consider their correlations, and cre-
ate future scenarios. The method proposed here shows a dif-
ferent perspective that considers a single variable (along with
its spatial information) and does not cover dynamic simula-
tions. The authors do not intend to replace renowned and well-
accepted travel demand models, but rather propose
geostatistical simulation concepts that are conventionally used
in natural sciences to be considered in social science issues.

This research paper is divided into six sections. The
“Travel Demand Modeling: Simulation and Spatial
Analysis” section presents the literature review on travel de-
mand modeling, specifically concerning microsimulation and
spatial analysis. The “Geostatistics: Understanding the
Sequential Gaussian Simulation” section covers basic

geostatistical concepts required to fully understand the pro-
posed framework. The “Materials and Method” section out-
lines the proposed method and presents the study area and
dataset. The “Results and Discussions” section shows the re-
sults. Finally, the conclusions are drawn in the “Conclusions”
section.

Travel demand modeling: Simulation
and spatial analysis

Ballas et al. (2005) describe the steps for microsimulation as
(1) the construction of a disaggregated dataset (when not
available), (2) random sampling from the sample created in
the first step to generate a synthetic population, (3) what-if
simulations to evaluate alternative scenarios, and (4) dynamic
modeling to evaluate future scenarios or update a disaggre-
gated dataset.

Microsimulation models deal with the change of support in
a downscaling process and are widely applied to replicate
travel behavior patterns. Given that microsimulation models
require disaggregated data, researchers have been using pop-
ulation synthesizers to create disaggregated data associated to
households and individuals (Beckman et al. 1996; Moeckel
et al. 2003; Arentze et al. 2007; Guo and Bhat 2007; Müller
and Axhausen 2011; Barthelemy and Toint 2013; Farooq et al.
2013). Rahman (2009) classifies the techniques for creating
synthetic microdata as: reweighting methods and synthetic
reconstruction. Reweighting is carried out by generating data
using existing survey microdata rather than artificially creat-
ing them (Hermes and Poulsen 2012). On the other hand,
synthetic reconstruction is the most familiar approach to trans-
port planners and the most long-standing when compared to
reweighting techniques. It attempts to reproduce all known
constraints by random sampling using a set of conditional
probabilities. Synthetic reconstruction methods comprise data
matching and the iterative proportional fitting (IPF). Data
matching is performed by pairing datasets from different
sources. However, this approach may not be convenient as
the identification code of a variable, which is used to match
datasets, may not be released due to confidentiality issues. IPF
is a straightforward method to allocate individuals to zones. It
calculates the maximum likelihood for each combination of
zone and individual, which is described in the weight matrix
(Lovelace and Dumont 2016).

Microsimulation techniques involve the definition of
“agents,” i.e., populations of individuals or households, as
well as their interrelations, and are therefore the basis for
agent-based methods (Balmer et al. 1985). Regardless of spe-
cific denominations, traditional models for disaggregation in
travel demand mainly involve a large amount of socioeco-
nomic and travel variables and do not take into consideration
spatial associations.

J geovis spat anal (2019) 3: 151 Page 2 of 145



However, various transportation planning researchers have
suggested using spatial factors in deterministic travel demand
models, especially when observing technological advances
and how easy it is to obtain georeferenced databases (Bhat
and Zhao 2002; Miyamoto et al. 2004; Ben-Akiva et al.
2004; Páez and Scott 2005; Páez 2007; Bhat and Sener
2009; Antipova et al. 2011; Kamruzzaman et al. 2011;
Morency et al. 2011; Páez et al. 2013).

It is important to emphasize two main drawbacks of
adopting the aforementioned techniques concerning travel de-
mand issues. The first is that they do not take into account the
uncertainty involved in the development of future states as
they are conducted by deterministic models. The second point
is that the nature of the method is related to exploratory anal-
yses (Kamruzzaman et al. 2011; Páez et al. 2013) or to a
spatial point estimation—in spatial regression (Ben-Akiva
et al. 2004; Páez and Scott 2005), autocorrelated models
(Miyamoto et al. 2004), and different logit frameworks based
on spatial factors (Bhat and Zhao 2002; Bhat and Sener 2009;
Antipova et al. 2011), for instance.

The limitation of point-limited estimates can be tackled by a
recent approach applied to the transportation field: geostatistics,
which enables performing estimatedmaps and calculating values
in non-sampled points (or areas). Therefore, geostatistical tech-
niques are able to provide confirmatory analysis. Researchers
have recently explored and demonstrated the benefits of using
geostatistics, which is a well-established framework in natural
sciences (Lee et al. 2007; Pearce et al. 2009; Orton et al. 2016).
In the transportation planning field, some applications have been
developed in traffic modeling cases (Mazzella et al. 2011; Ciuffo
et al. 2011; Zou et al. 2012; Tong et al. 2013; Song et al. 2018),
traffic accidents (Gundogdu 2014; Molla et al. 2014; Manepalli
and Bham 2016), and travel demand (Pitombo et al. 2015a,
2015b; Lindner et al. 2016; Gomes et al. 2016; Rocha et al.
2017; Lindner and Pitombo 2018).

Pitombo et al. (2015a, 2015b), Lindner et al. (2016), Gomes
et al. (2016), Rocha et al. (2017), and Lindner and Pitombo
(2018) demonstrated (using semivariograms) that travel mode
choice variables and transit trip production are spatially correlat-
ed data. Kriging enabled the authors to evaluate spatial patterns
and to map both disaggregated and aggregated study variables.
Aggregated travel demand data have been proven to present
modifiable areal unit problems (MAUP), i.e., scale and zonation
issues (Lloyd 2014) as the information is associated to areas with
different shapes and sizes. On the other hand, disaggregated trav-
el demand data presented a great variability (high values of var-
iance) considering nearby observations. A third consideration to
be mentioned is that geostatistics is mostly applied to variables
with apparent spatial continuity, commonly seen in natural sci-
ences. Transportation databases normally have spatially discrete
variables and, despite this being a counterpoint to the traditional
geostatistical method, the kriging estimates, applied to model
spatially discrete phenomena, can be found in the literature on

health (Goovaerts and Jacquez 2004; Goovaerts 2005, 2006,
2008, 2009; Kerry et al. 2016). Given all of the mentioned con-
cerns involved in the field of transportation engineering, it may
well be argued that travel demand variables require specific ad-
justments when considered in geostatistical approaches, thus this
paper proposes prior variable adjustments to the geostatistical
application.

The second limitation seen (not only) in studied spatial
models for travel demand (but also in current kriging process-
es applied to travel demand), i.e., not considering random
processes, are addressed in this paper by adopting a
geostatistical simulation approach: the Sequential Gaussian
Simulation (SGS). That is, the presented approach provides
transportation analysts with an alternative tool to disaggregate,
map variables of interest, and to evaluate critical scenarios
leading to better decision making in transportation policies.

Geostatistics: Understanding the Sequential
Gaussian Simulation

Geostatistical techniques are spatial statistics methods that
were first developed by Matheron (1963, 1965, 1971). The
approach is relevant as it enables the characterization of the
spatial dispersion of a phenomenon by analyzing uncertainty
measures, determining the spatial variability, and creating a
continuous map of estimated (or simulated) values.

Geostatistical methods differ from other spatial techniques,
as the former use semivariograms (or covariances) as input to
kriging systems. Kriging can identify spatial anisotropy,
which may be seen as an advantage when compared to simple
interpolation methods. Thus, geostatistics allows researchers
to analyze aspects of the direction with greater spatial conti-
nuity. Moreover, the geostatistical approach is interesting for
this research as it enables mapping the study variable, using
less input data, i.e., it may use only the spatial association of
one variable, instead of a series of covariates needed in con-
ventional models for travel demand. In addition, the
Sequential Gaussian Simulation (SGS) is attractive to trans-
port planners as it creates different scenarios and maps critical
spots. In the following paragraphs, the applied geostatistical
concepts of variographic analysis, kriging and SGS are
introduced.

Matheron (1971) defines geostatistics with the regionalized
variable theory. Regionalized variables are those that are (reg-
ularly or irregularly) spatially distributed, present spatial struc-
ture, and may be considered as the result of a stochastic pro-
cess. Studying a regionalized variable involves, at least, two
geometric aspects: the domain in which the variable is defined
and the support to which each observation of a sample is
associated (Chilès and Delfiner 1999). The geometric domain
is the space where the variation of a regionalized variable is
considered relevant. The geometric support, on the other hand,
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is described byMatheron (1965) as the size, the geometry, and
the spatial orientation associated to the collected sample.

The first step of a variographic analysis is to model the
spatial structure of a regionalized variable by calculating an
experimental semivariogram, which graphically expresses the
spatial structure. Equation 1 presents the semivariogram func-
tion, formerly defined by Matheron (1963).

γ hð Þ ¼ 1

2N hð Þ ∑
N hð Þ

i¼1
Z xið Þ−Z xiþhð Þ½ �2 ð1Þ

where N(h) is the set of all pairwise data values z(xi) and
z(xi + h) at spatial locations i and i + h, respectively. Hence,
Eq. 1 may be plotted by setting an ordinate axis with the
expectation variance between pairs of observations (γ(h))
and an abscissa axis with the distance between these pairs,
also known as lag (h). The following step is to detect a theo-
retical model—an essential input for kriging—that best fits the
experimental semivariogram. Usually, researchers adopt cu-
bic, spherical, and/or exponential models.

Kriging is an estimation method applied in geostatistics.
The theory was formulated by Georges Matheron in the
1960s, based on research carried out by Daniel G. Krige in
the 1950s. The technique consists of a linear prediction pro-
cess as the estimated values are linear combinations weighted
by sampled data. The main concept embedded in kriging pro-
cesses lies in the fact that surrounding observations tend to
have similar values compared to points that are spread apart.
Kriging also differs from other interpolators as it recognizes
spatial anisotropy.

The theoretical model is, together with the sampled data,
used to set weights λi for the kriging system. The purpose of
assigning weights is to properly express the influence of the
sample data on the estimated values. The kriging system con-
sists of weights that aim at leading to unbiased estimates with
minimal variance (Journel 1986). One of the most usual
kriging types is simple kriging (SK), which is performed for
cases in which the population mean is known. This mean is
expected to be uniform in the entire sampled area.

Performing a SGS requires a Gaussian distribution of the
data, which is not usual considering practical cases. The pro-
cess of transforming the distribution of a variable in order to
meet this requirement is to firstly sort the data into ascending
order to classify the first observation (class) as k1 = 1 and the
nth-observation as kn = n. The second step is to calculate the
proportion of these classes by dividing each class by the total
number of observations (n) − or by n + 1, according to Eq. 2
(Journel and Huijbregts 1978). The quantiles of the study
variable are calculated using the latter division and the scores
of the standard normal distribution according to Eq. 2.

y kið Þ ¼ G−1 ki
nþ 1

� �
ð2Þ

where y(ki) is the score, G
−1 is the inverse Gaussian func-

tion and ki/n + 1 is the quantile for ki = 1,n (Deutsch and
Journel 1998).

Considering that the Gaussian transform leads to zeromean
and unit variance, the SK estimator to this case is shown in Eq.
3 (Chilès and Delfiner 1999).

z* x0ð Þ ¼ ∑
n

i¼1
λi � z xið Þ ð3Þ

where z*(x0) is the estimated value in a non-sampled loca-
tion x0; λ, i = 1,..., n are the assigned weights applied to n
observations and z*(xi) are the values of n observations.

The SGS is a stochastic simulation method that explores a
set of scenarios related to a phenomenon. The difference be-
tween Kriging and SGS lies in the fact that kriging concerns
local statistics—reproducing local means; whereas, SGS in-
volves global statistics—reproducing histograms and vari-
ances (Deutsch and Journel 1998). Thus, simulation ap-
proaches aim at generating a set of alternative outcomes that
replicate spatial patterns, not just by a single disaggregation,
as performed by kriging. Estimating a single scenario, calcu-
lated by kriging, has the effect of smoothing the results due to
the fact that it does not consider an error component. This
issue, on the other hand, is addressed in the SGS, whose for-
mulation is presented in Eq. 4.

z lð Þ x0ð Þ ¼ z *ð Þ x0ð Þ þ R x0ð Þ ð4Þ

where N[0,1]; z*(x0) is the kriging formulation—to which
the SK is preferred as it reproduces the semivariogram func-
tion (Deutsch and Journel 1998), and R(x0) is the associated
error. The SGS involves two stochastic aspects: (1) the simu-
lation of the random term in R(x0); and (2) the simulation
method to define the random path that must (once) visit each
point in the grid. These issues are addressed by the Monte
Carlo method.

The simulations are known as realizations in the
geostatistical field. By comparing different realizations, the
simulation methods calculate the associated uncertainty.
These realizations are then subject to statistical analyses by
evaluating the conditional variances, e-type (average of all
realizations) and the confidence interval.

This research paper uses a sequential approach that associ-
ates SGS to a proposed data transformation to deal with spe-
cific obstacles concerning the implementation of geostatistics
to a travel demand dataset. The proposed method allows dis-
aggregated realizations (simulations) to be obtained, so that at
the end of the process, it is possible to explore critical situa-
tions in the study area.

Furthermore, this paper tackles the change of support
(scale) to geostatistical models. Young and Gotway (2007)
assert that a new variable, with particular spatial and
statistical properties, is generated when changing the
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support. In the literature for geostatistics, Cressie (1996) and
Kyriakidis (2004) have formerly proposed dealing with the
change of scale using point-to-point, point-to-area, area-to-
area, and block kriging. These approaches enable calculating
aggregated unit areas in terms of disaggregated covariances.
However, the case study presented in this paper refers to ir-
regular unit areas and cannot, therefore, consider such kriging
techniques. To address this, this paper proposes data transfor-
mation in addition to the sequential Gaussian simulation.

Materials and Method

Study Area and Dataset

The study area is located in southeastern Brazil. The São
Paulo Metropolitan Area (SPMA) is the most vast and popu-
lated Brazilian metropolitan area and comprises 19 municipal-
ities, together with São Paulo, the main metropolis of the state
(Fig. 1). The SPMA, with an area of 7947 km2 and a popula-
tion of over 20 million inhabitants (Emplasa 2018), can be
subdivided into 460 traffic analysis zones (TAZ). TAZ bound-
aries were established by the São Paulo Metropolitan
Company (Metrô 2007) considering: the census track level
from 2000, the zoning map from 1997, urban installations,
physical barriers, protected areas, the municipality, and district
boundaries in the city of São Paulo.

The present study assesses an aggregate travel mode choice
dataset associated to TAZs, which was created on the basis of
the 2007 origin-destination (O/D) survey performed in the
SPMA by the urban subway planning company (Metrô
2007). The O/D survey consisted of selecting 30,000 house-
holds using a stratified sample based on the family income.

The disaggregated information of the O/D survey (originally
related to households) was extrapolated to give rise to an ag-
gregated dataset related to TAZs. Taking into account the ex-
pansion factor used by the Metrô (2007), a TAZ was defined
as the smallest unit for which the validity and statistics of the
data could be guaranteed. Given this context, this research
aims at handling even a smaller unit area by embedding
geostatistical concepts.

Figure 2 illustrates the TAZs and the corresponding values
for transit trip production, which, in the field of travel demand,
refers to the number of trips originating in a TAZ and is rep-
resented as the variable of interest in the current study.

Method

Figure 3 denotes the steps followed in this research.
As the aggregate variables of interest in travel demand

issues are associated to irregular unit areas, the first step of
the proposed method is to create variable adaptations in such
ways that (1) the change of support can be considered; and (2)
the transformed variable becomes consistent with the original
one as the former will represent a different disaggregated unit
area to which the sum of the values in the same area must
result in the total value of the aggregate variable.

The following steps adopt a conventional procedure
concerning using the sequential Gaussian simulation. That
is, firstly, it is essential to study the spatial patterns, e.g., the
spatial continuity/variability, to ensure the case is a regional-
ized variable. Secondly, in order to calculate different scenar-
ios using the Gaussian simulation, the Gaussian transform is
obtained according to Eq. 2.

Fig. 1 Localization map and the study area (SPMA and its municipalities)
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Once the Gaussian transform is calculated, the
semivariograms may also be calculated, following the
geostatistical approach presented in “Geostatistics:
Understanding the Sequential Gaussian Simulation” section.
The next step is to detect a suitable cell size (within a regular
support) to use for the change of support in the simulation pro-
cess. This research suggests analyzing themost frequent area unit
size, considering all records, and assigning weights based on
socioeconomic attributes that most affect travel behavior.

Having achieved the former steps, the SGS is then
performed—taking into account a sufficient number of
realizations that best represent the phenomenon, as well
as the previously set criteria (scale and semivariogram
parameters). The outcome must be back-transformed in-
to the non-parametric value, and then the results of the
minimum/maximum values, e-type and variance can be
mapped.

It should be noted that the SGS step deals with the
change of support; however, the originated variable would
still represent the original support (irregular unit areas) and
not the regular scale, which was defined afterwards. In
order to address the change of support and the inconsis-
tencies, this paper proposes a heuristic procedure in which

(1) each result should be treated as a density; (2) the sum of
the values in the same area must result in the total value of
the aggregate variable; and (3) a weighting—related to the
corresponding aggregate unit area—shall be assigned. In
order to calculate the weightings, each polygon was
outlined as an intersection between the unit areas (TAZs)
and the cells. Figure 4 outlines an illustration of the proce-
dure by defining three polygons belonging to TAZs 376,
377, and 378.

Finally, the maps for statistical measures of the confidence
interval, the minimum/maximum and average values of the
simulated maps can be derived. The confidence interval is
calculated considering that the population variance is un-
known, according to Eq. 5.

CI ¼ X �Δ
CI ¼ X � tα=2

sffiffiffi
n

p ð5Þ

where X is the average of all sampled values, tα/2 is the
critical value considering the significance value α, s is the
standard deviation, and n is the number of sampled values.

The computing applications used to calculate geostatistical
measures were the R package (maptools, geoR, gstat) and the

Fig. 2 Transit trip production per
TAZ

Fig. 3 Illustration of the proposed method
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SGeMS 3.0. The ArcGIS 10.1 was utilized to exhibit the map of
simulated values.

Results and discussions

The results adopting the proposed approach are presented in
this section. The scheme shown in Fig. 3 is depicted following
the subsections of “Variable Adjustments and Variographic
Analysis,” Change of Scale: Choosing a Regular Area
Support,” “Sequential Gaussian Simulation and Back-
Transformation”, and finally, “A Heuristic Procedure for
Data Transformation.”

Variable Adjustments and Variographic Analysis

The proposed method, unlike traditional methods for travel
demand, is not straightforward as it requires a few adjustments
of the variable throughout the procedure, given the fact that
there are changes of support issues and the MAUP.

Firstly, the geostatistical approach estimates values consid-
ering that the variable is associated to a point in space. The
study variable in the present research is associated to irregular
areas and represents the total number of transit trips in those
particular areas. However, it is known that the simulation pro-
cess deals with the change of support and thus the variable
must be adapted to fit new conditions, that is, the new support.
Adopting a variable of density could reasonably solve this;
however, dividing each record into the total area did not lead
to a satisfactory outcome, as the variable did not meet the
requirements of a regionalized variable. The adopted solution
was to use a rate that can be calculated according to Eq. 6.

rn ¼ Vn

VSPMA
ð6Þ

where r is the rate for transit trips in n; Vn is the total
number of trips in n; n is the TAZ ranging from 1 to 460 and
VSPMA is the total number of transit trips in the SPMA.

The variographic analysis is a geostatistical step that inves-
tigates the spatial structure of a variable. The first procedure is
to assure that a regionalized variable is involved, i.e., the var-
iable must be spatially distributed with a stochastic spatial
structure. Therefore, the variable transit trip rate is spatially
represented by the expected variances between pairs of obser-
vations in Fig. 5.

Figure 5 corroborates the hypothesis regarding the spatial
structure of the variable as the direction of 135° (SE-NW) has
greater spatial variability. Accordingly, it can be concluded
that the direction of 45° (NE-SW), designated as the main
direction, has greater spatial continuity and, therefore, the spa-
tial structure of the variable is anisotropic.

Figure 6 presents the semivariogram for the Gaussian trans-
form in the main and minor directions. The theoretical
semivariogram model was selected by visual inspection of
the empirical semivariogram model.

The semivariograms presented in Fig. 6 may induce the
reader to acknowledge that the data encompasses non-
stationarity characteristics. Nonetheless, a further investiga-
tion pointed out that the variances tend to remain constant
when considering a longer cutoff distance. Furthermore, a
variographic analysis using residual input revealed no trend.

The theoretical models (presented in the semivariograms of
Fig. 6) are the basis for the kriging (and SGS) processes,
according to Eq. 3.

Change of Scale: Choosing a Regular Area Support

Estimation methods often used for transportation planning
policies aim to reproduce travel behavior, based on socioeco-
nomic attributes, e.g., it is known that the smaller the aggre-
gation level, the greater the detail level. Thus, information
associated with individuals is convenient for traditional travel
demand methods. However, by considering spatial methods,
the ideal unit area is not necessarily the same. This is due to
the fact that each unit area must represent a unique value and,
conversely, the traditional travel demand methods may have

Fig. 4 Approach followed for defining each polygon
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different values associated to the same spatial position. In
addition, surrounding areas may show similar behaviors, mak-
ing the aggregation of information interesting. Despite caus-
ing loss of information, aggregation may provide advantages
to understanding the spatial phenomena or additional analyses
that overcome the negative effect. This topic is known in the
literature as the change of support (scale). In addition, consid-
ering that for different study areas the change of scale is ap-
plied, each case study has its own particularities and must be
meticulously studied in order to designate the support that best
suits the conditions.

In order to consider the change of support for the present
study case, it is essential to recognize the correlation between
socioeconomic features and trip generation (Ewing et al.
1996). Taking this into account, the method for choosing the
ideal support is based on identifying the most frequent area of
TAZs and evaluating the influence on the histogram when
assigning weightings based on attributes that affect the vari-
able of interest: transit trips. Figure 7 shows (a) the histogram
of the TAZ areas; (b) histograms considering weightings for

population density, car ownership, and trip production; and (c)
the mean histogram.

The simple histogram shows that TAZs with areas between
225 and 400 ha present more frequency. These areas are em-
phasized when designating the population density weighting.
On the other hand, when assigning weightings that consider
the number of cars or the number of trips per TAZ, the fre-
quency of TAZ with areas between 400 and 625 ha becomes
greater. Nonetheless, considering the average of the presented
histograms, it can be observed that areas between 225 and
400 ha are more frequent. Supposing that the support was a
regular square (instead of irregular TAZs with different shapes
and sizes), it would be equivalent to assert that the size should
be between 1500 and 2000 m. Thus, the support for this re-
search was set with a uniform spacing of 2000 m.

In this study, the spatial structure used for the Sequential
Gaussian Simulation is constant, i.e., regardless the spatial
support of the output, the semivariogram (used as input) is
based on the dataset associated with irregular areas of traffic
analysis zones. Thus, parametric techniques, such as Akaike

Fig. 5 Semivariogram maps considering (a) the entire study area and (b) a cutoff distance of 40 km
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and Bayesian information criteria are not applicable to vali-
date the selection of the adequate scale for the simulation step.

Sequential Gaussian Simulation
and Back-Transformation

Sequential Gaussian Simulation (SGS) is a stochastic simula-
tion method in which random numbers are generated to ex-
plore a field of possibilities of a phenomenon (Remy et al.
2009). Thus, the simulation aims to generate a set of alterna-
tive results (realizations) that reproduce spatial patterns. The
theoretical semivariogram presented in Fig. 6 was used for
simple Kriging as a procedure intrinsic to the Sequential
Gaussian Simulation method. In the same way, the selected
scale was used for the Sequential Gaussian Simulation
method.

In order to come up with a sufficient number of realizations
that best represents the phenomenon, the variance between the
realizations was evaluated. Figure 8 shows the variance be-
tween combinations of 1000 realizations.

It can be observed that the average variances between 2 and
approximately 100 realizations fluctuate significantly. Based
on a conservative decision, 500 realizations were chosen for
this research. As a conservative decision, the number of settled
for this research was of 500 realizations. The simulated sce-
narios were then back-transformed to take into account the
non-parametric variable. Figure 9 presents the e-type
(average) and variance from the 500 realizations, considering
the variable as the transit trip rate per TAZ. In addition, the
maximum and minimum values seen in the realizations are
presented in Fig. 10.

Despite the advantages of the method allowing researchers
to evaluate the uncertainties associated with the method, plan-
ners still have to solve problems related to the nature of the
transport variable. The spatial aggregation needs to be ad-
dressed in such way that each record is associated to the spec-
ified regular support.

A heuristic procedure for data transformation

The change of support was addressed by transforming the data
following Eq. 7.

Vc ¼ rcVSPMA∑
P

p

Ap

Ac
∑
z

Ap

AzVz

� �� �
ð7Þ

where Vc is the number of transit trips in cell c; rc is the
estimated (simulated) rate in c; VSPMA is the total number of
trips in the SPMA; Ap, Ac, and Az are the areas in p, c, and in z,
respectively; P is the total number of polygons belonging to c;
p is a polygon belonging to c; Vz is the number of trips in z and
z is the TAZ including the polygon p.

The process of using SGS together with the proposed heu-
ristic data transformation causes the method to no longer be

Fig. 7 Histogram for the TAZ areas and weighted histograms

Fig. 8 Average variances from the SGS between combinations of 1000
realizations
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fully stochastic. Despite this, the method is particularly suit-
able for social sciences issues, in which the land use and/or
human factors can be not only taken into account, but can also
be used as constraints in the simulation.

The considered constraints restricted the SGS realizations
to assign transit trips at cells belonging to TAZs in which the
original number of total trips was not null. In addition, the
cells belonging to each TAZ respected the corresponding total
number of trips. The maximum and minimum values detected
for all 500 simulations in each cell were mapped as presented
in Fig. 11.

Figure 12 shows the average of all simulations and the
delta (Eq. 5) associated to a 95% confidence interval.
Figures 11 and 12 show the critical spots for the number
of transit trips. It can be observed that São Paulo city
center has the highest values for transit trips. The given

results are consistent with the actual scenario in the
SMPA, as mobility rates are greater when individuals con-
sider using public transportation (especially the subway)
instead of private motorized transportation, mainly in the
center of São Paulo at peak hours. This is due to munic-
ipal transportation and circulation plans that have reduced
parking spaces and created car restriction policies. In con-
trast, it can be observed that the outskirts of the SMPA do
not present significant values for transit trips. This situa-
tion can be explained by the fact that outer TAZs do not
have an effective integrated transit system.

The results provided by the proposed sequential method
(Sequential Gaussian Simulation and data transformation)
may allow analysts to assess areas requiring intervention by
overlapping the critical spots for transit trips with the existing
public transportation network.

Fig. 9 SGS results—e-type and variance

Fig. 10 SGS results—minimum and maximum values
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Conclusions

The main interest of this research for urban planning policies
refers to the advantage of mapping critical scenarios for travel
demand using a spatially correlated variable. The benefit of
providing a map of transit trips associated to a disaggregated
unit area helps decision makers to provide a more efficient
public transportation system.

Furthermore, having travel variables with a spatial structure
is of great interest to the field of travel demand considering
that spatially correlated variables may lead to a reduction in
the amount of input data in conventional models. The
geostatistical analysis conducted in this paper showed that
the rate variable of transit trips per TAZ presented character-
istics of a regionalized variable, since an anisotropic spatial
structure was observed in the semivariogram representation.

The Sequential Gaussian Simulation was applied to the rate
variable and—with post-processing; e-type maps, variance,
maximum, andminimumwere generated. Despite not precise-
ly expressing the number of transit trips related to the current
unit area (2000 × 2000-m cells), the method has great potential
as it creates continuous maps of different scenarios only using
the variable of interest (and its spatial location). Other associ-
ated advantages are recognized as estimating values in non-
sampled locations and calculating uncertainty parameters. In
order to address problems associated to the change of support,
the proposed approach for transforming the rate variable was
considered, and its results reinforce the idea that the SGS may
be applied to social sciences.

Creating disaggregated maps of critical scenarios only
using a single variable is the main aim of this research, espe-
cially knowing that developing countries do not usually have

Fig. 12 Data transformation results: average and confidence interval for the number of transit trips per cell

Fig. 11 Data transformation results: minimum and maximum number of transit trips per cell
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refined information available due to high costs. Despite being
very straightforward, the proposed method is innovative and
intends to motivate future research aiming to produce practical
results for decisionmaking in transportation planning policies,
particularly taking into account cost reduction.
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