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Abstract
The sparse representation method has been successfully applied in the field of hyperspectral image target detection. It assumes
that target detection can be achieved by using target and background libraries to represent test pixels. Under this formulation, the
presentation of the target and background signatures can be solved by L1-norm minimization of the weight coefficient and the
target detection output is simply achieved by the difference between the two representation residuals. In this paper, a regularized
multiple sparse Bayesian learning (RMSBL) method for hyperspectral target detection is proposed, which is established by
Bayesian inference using the conditional posterior distributions of the model parameters under a hierarchical Bayesian model.
According to the cost function for multiple sparse Bayesian learning, the presentation of the target and background signatures can
be obtained by an L2,1-norm iterative minimization method. And the target detection result can be achieved with the difference
between the two representation residuals. Four groups of hyperspectral datasets are used for simulation experiments. The results
are comparedwith those of other common detection algorithms. The experimental results demonstrate that the RMSBL algorithm
has higher detection performance.

Keywords Hyperspectral imagery . Target detection . Sparse representation .Multiple sparse Bayesian learning

Introduction

Target detection, as an important research direction in the field
of hyperspectral imaging, aims to detect small objects or
anomalies in hyperspectral image (HSI). It has broad applica-
tion potential in military safety, environmental pollution mon-
itoring, geological exploration, agriculture and forest monitor-
ing, etc. (Matteoli et al. 2010; Li et al. 2017; Xie et al., 2019a,
b). HSI contains rich spectral information and spatial informa-
tion. Since spectral features differ among substances, it is pos-
sible to effectively distinguish objects in a scene using HSI.

Many target detection algorithms have been proposed and
applied to a HSI. The Reed-Xiaoli (RX) detector (Reed and
Yu, 1990; Xie et al., 2019a, b) obtains the detection result by
constructing the generalized likelihood ratio and estimating
the background covariance matrix. However, the RX algo-
rithm ignores the rich nonlinear information in a HSI,
resulting in poor detection accuracy. The collaboration repre-
sentation detector (CRD) (Li and Du 2015) is directly based
on the concept that each pixel in the background can be ap-
proximately represented by its spatial neighborhoods, while
anomalies cannot but it only considers the spectral features of
a HSI, ignoring the spatial features.

The combined sparse and collaboration representation de-
tector (CSCR) (Li et al. 2015) assumes that the representation
of known target signatures is sparse and can be solved by L1-
norm minimization of the representation weight vector.
However, the representation of background atoms is assumed
to be collaborative and can be solved by L2-norm minimiza-
tion. Finally, the decision can be made by computing the dif-
ference between the two representation residuals.

Support vector machines (SVM) (Zhao et al. 2012) are a
highly effective method for nonlinear signals. It maps the sig-
nals to a new feature space where it is easier to distinguish
among signals (Tan and Du 2008). The kernel method has
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yielded satisfactory results in HSI processing (Li et al. 2010;
Zhao et al. 2010). In addition, many algorithms use statistics
for hypothesis detection, such as spectral matched filter (SMF)
(MANOLAKIS and SHAW 2002), all of which must assume
the mathematical distribution of the pixel spectrum of
hyperspectral images (HSIs). The accuracy of the hypothesis
distribution model has a substantial impact on the detection
results.

In recent years, the sparse representation method has
attracted increasing attention (Chen et al., 2011a, b). It as-
sumes that target detection can be achieved by using target
and background libraries to represent test pixels. Under this
formulation, the presentation of the target and background
signatures can be solved by L1-norm minimization of the
weight coefficient. The target detection problem is thus trans-
formed into the optimization problem of solving for dictionary
atomic coefficients (Chen et al., 2011a, b). This algorithm
does not require assumptions regarding the mathematical dis-
tribution model of the background and target pixels, nor does
it require the atoms of the training sample dictionary to be
independent of one another. Because of the characteristics of
background and target pixel spectra, they belong to different
subspaces and the atoms that constitute their spectral dictio-
naries will differ.Whether the pixel belongs to the background
or the target can be determined according to the positions of
dictionary atoms with nonzero sparseness.

For solving the dictionary atomic optimization problem,
convex optimization methods typically use the L1-norm in-
stead of the L0-norm to solve the problem efficiently.
However, only under strict conditions do the two yield equiv-
alent solutions and the actual signal typically cannot be recov-
ered. In addition, due to the similarity of the endmembers in
the spectral library and the insufficient constraints of the opti-
mization function, the real solutions differ substantially from
the results of the abundance estimation. At the same time,
because of the large amount of hyperspectral image data, the
convex optimization algorithm is slow.

Another method is sparse Bayesian learning (SBL)
(Themelis et al. 2012) that models the unknown variables
based on Bayesian concepts and obtains sparse solutions by
Bayesian derivation (Wipf 2006; Zhang and Rao 2012, 2013;
Qiu and Dogandzic 2010; Zhang and Rao 2011; Kong et al.
2017). The core strategy of Bayesian theory is to obtain the
probability of an a posteriori unknown parameter by using the
sample prior information and the complete information. Wipf
and Rao (2004) proved that the SBL algorithm can obtain the
sparsest solution. SBL still performs reliably if the
endmembers in the spectral library are strongly correlated.
However, the expectation maximization (EM) algorithm is
used to update the parameters. This leads to a large amount
of computation and fails to consider the joint sparsity of the
endmember combinations in adjacent pixels, thereby resulting
in low efficiency of the algorithm.

To make better use of the spatial correlation of HSI, a
regularized multiple sparse Bayesian learning (RMSBL)
method for target detection in HSI is proposed, that is
established by Bayesian inference using the conditional pos-
terior distribution of the model parameters under a hierarchical
Bayesian model. According to the cost function for multiple
sparse Bayesian learning (MSBL), the presentation of the tar-
get and background signatures can be obtained by the L2,1-
norm minimization iterative method and the target detection
result can be achieved with the difference between the two
representation residuals. In the simulation experiment, com-
pared with other commonly used detection algorithms, the
RMSBL algorithm has superior detection performance.

Target Detection Based on Sparse
Representation

LetY be a set of hyperspectral image data and y ∈ RN × 1 be an
N-dimensional spectral vector inY. Vector y can be represent-
ed as follows (Zhang et al. 2017):

y ¼ ab1x
b
1 þ ab2x

b
2 þ⋯þ abNb

xbNb
þ at1x

t
1 þ at2x

t
2 þ⋯þ atN t

xtNt
þ n

¼ ab1a
b
2⋯abNb

h i
xb1x

b
2⋯xbNb

h iT
þ at1a

t
2⋯atN t

h i
xt1x

t
2⋯xtNt

h iT
þ n

¼ Abxb þ Atxt þ n ¼ AbAt½ � xb
xt

� �
þ n ¼ Axþ n

ð1Þ

where Ab and At are the background dictionary and the target
dictionary, respectively; x denotes the weight coefficients that
correspond to the dictionary; x is a sparse vector, of which
only a few coefficients are nonzero; and n represents the ob-
servation error.

In the sparse model, it is not necessary to assume the dis-
tribution characteristics of the target and the background be-
cause the spectral characteristics of the background and target
pixels differ and are distributed in different subspaces. The
sparse vector x is composed of background weight coefficient
xb and target weight coefficient xt. If y is a target pixel, then xb
is a zero vector and xt is a sparse vector; if y is a background
pixel, then xb is a sparse vector and xt is a zero vector.
Therefore, based on the nonzero position of the coefficient x
of pixel y, whether the pixel is a background or a target pixel
can be determined.

To obtain the weight coefficient x of the pixel y, one must
solve the optimization problem that is defined by the follow-
ing formula:

x ¼ argmin xk k1 subject toAx ¼ y ð2Þ

where argmin(x) represents the value of the variable when the
objective function takes the minimum value.
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Pixel y can be classified by comparing the values of the
reconstructed residuals after x has been obtained. Therefore,
the output of the detector is expressed as follows:

R yð Þ ¼ y−Abxbk k2− y−Atxtk k2 ð3Þ

where ‖y −Abxb‖2 and ‖y −Atxt‖2 are the background residu-
al and the target residual, respectively. For a specified thresh-
old δ, if R(y) > δ, then y is classified as a target; otherwise, y
belongs to the background.

The above is a target detection model that is based on
sparse representation. Because the adjacent pixels in
hyperspectral data contain similar information, they can be
linearly combined by mixing coefficients of the endmembers
in the spectral library. The spectral vector is extended to a
spectral matrix and the weight coefficient vector is expanded
to a weight coefficient matrix. Then, the mathematical model
of the multiple sparse representation is as follows:

Y ¼ AXþ N ¼ AtXt þ AbXb þ N ð4Þ

where Y ∈ RN ×M denotes the observed values of M pixels in
N bands; A ∈ RN × L represents the spectral library, which con-
tains the reflected values of L objects in N bands;X ∈ RL ×M is
the weight coefficient matrix; and N is the observation noise.

The key step in target detection is to find weight coefficient

X such that Y−AXk k2F is minimized under the constraint that
‖X‖2, 1 is also minimized. Therefore, the objective function is
as follows:

X ¼ argmin
X

Y−AXk k2F þ Xk k2;1 ð5Þ

The optimization formula of the L2,1-norm is typically
solved by a convex optimization algorithm. The representa-
tive algorithm for convex optimization is the collaborative
spectral unmixing by variable splitting and augmented
Lagrangian algorithm (CLSUnSAL) (Bioucas-Dias and
Figueiredo 2010).

The values of the target and the background under the
sparse representation can be obtained separately after solving
for the weight coefficients:

Yt ¼ AtXt ð6Þ

Yb ¼ AX−Yt ð7Þ

Then, the residuals of the pixels are calculated one by one,
and the target residual and background residual are calculated
as follows:

rt yð Þ ¼ y−ytk k22 ð8Þ

rb yð Þ ¼ y−ybk k22 ð9Þ

Pixel y is classified by comparing the values of the recon-
structed residuals. Therefore, the output of the detector is
expressed as follows:

R yð Þ ¼ rb yð Þ−rt yð Þ ð10Þ

For a specified threshold δ, if R(y) > δ, then y is classified
as a target; otherwise, y belongs to the background.

Regularized Multiple Sparse Bayesian
Learning for Target Detection

Multiple Sparse Bayesian Learning Model

Multiple sparse Bayesian learning is an efficient method for
solving the simultaneous sparse approximation problem in the
simultaneous sparse model. Based on the MMV model, the
prior distribution of the sparse coefficient matrix with joint
hyperparameters is established. Because the current pixels in
hyperspectral images and the surrounding pixels contain sim-
ilar information, the coefficient matrix should satisfy the row
sparsity characteristic. The prior distribution of each row vec-
tor is characterized by hyperparameters such that the matrix
satisfies the row sparsity characteristic. According to the cost
function of MSBL, an iterative method is obtained by theoret-
ical derivation, which effectively reduces the number of
iterations.

Let Y⋅j and X⋅j represent the jth columns of Y and X, re-
spectively. The likelihood function is obtained (Kong et al.
2016):

p Y: jjX: j
� � ¼ πσ2

� �−N
exp −

1

σ
Y: j−AX : j

�� ��2
2

� �
ð11Þ

The general method is to represent the sparsity of the abun-
dance matrix directly by Laplace a priori, which will cause the
likelihood function and prior distribution not to satisfy the
requirement of conjugation. Therefore, the hierarchical
Bayesian model is used to design the prior distribution.
Assume that the ith row Xi⋅ of the coefficient matrix X obeys
the Gaussian distribution p(Xi⋅; γi) =N(0, γiI) of the parameter
γi. Then, the prior distribution of the coefficient matrix is a
high-dimensional Gaussian distribution:

p X; γð Þ ¼ ∏
M

i¼1
p Xi:; γið Þ ð12Þ

where γ ¼ γ1; γ2;⋯; γM½ �T∈RM
þ ; γi is used to denote the

sparsity of each row of the coefficient matrix. If γi = 0, Xi. is
all zero rows, namely, the conditional probability p(Xi. = 0|
Y; γi = 0) = 1is satisfied. The parameter γi obeys the Gamma
distribution: p(γi| λi)~Γ(γi| 1, λi/2).
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According to Bayesian theory, a posterior distribution is
obtained:

p X: jjY: j; γ
� � ¼ p X: j;Y: j; γ

� �
∫p X: j;Y: j; γ
� �

dX: j

¼ N μ: j;∑
	 
 ð13Þ

The mean and variance can be expressed as follows:

M ¼ μ:1;μ:2;⋯;μ:L½ � ¼ E XjY; γ½ � ¼ ΓAT∑−1
Y Y ð14Þ

∑ ¼ Cov X: j;Y: j; γ
� � ¼ Γ−ΓAT∑−1

Y AΓ ;∀ j ð15Þ

where Γ = diag (γ) and ∑Y = σ2I +AΓAT.
The logarithmic form of the cost function of MSBL is

expressed as follows (Wang et al. 2013):

L γ;σ2
� � ¼ −2log∫p YjXð Þp X; γ;σ2

� �
dX

¼ Llogj∑Yj þ ∑L
j¼1Y

T
: j∑

−1
Y Y: j

ð16Þ

For parameter optimization, the EM method is commonly
used in sparse Bayesian learning. The EM method is divided
into two steps: In step E, the mean value is calculated via
formula (14) and in step M, the iterative update is carried
out by the following formula:

γi ¼ μ2
i þ ∑ii ð17Þ

The MacKay method obtains the parameter iteration for-
mula by calculating the extremum. This method is equivalent
to point estimation and has a faster iteration speed than for-
mula (17):

γi ¼
μ2
i

1−γ−1i ∑ii
ð18Þ

Optimal Solution

This paper proposes a new method for optimization. In Eq.
(16), the former term, namely, log ∣∑Y∣, is a smooth concave
function, which can be transformed by the property of conju-

gate functions, while the latter term, namely, YT
: j∑

−1
Y Y: j, is a

quadratic term. After deducing the two terms, the following is
obtained:

Lz X; γð Þ ¼ 1

σ2
min
X

Y−AXk k2F þ zTγ þ XTΓ −1X

¼ 1

σ2
min
X

Y−AXk k2F þ zTγ þ ∑M
i¼1γ

−1
i Xi:k k22 ð19Þ

where min(x) represents a function that takes the minimum
value of the objective function.

The optimal iteration of γi is obtained by using the deriva-
tion rule for Eq. (19):

γi ¼ z−1=2i

ffiffiffiffiffiffiffiffiffiffiffiffi
Xi:XT

i:

q
¼ z−1=2i Xi:k k2 ∀ið Þ ð20Þ

Formula (20) is substituted for formula (19) and the coef-
ficients of the regular terms are normalized:

X ¼ argmin
X

1

2
Y−AXk k2F þ ∑M

i¼1σ
2γ−1i Xi:k k22 ð21Þ

Let wi ¼ σ2z1=2i . The optimal expression for weight coef-
ficient estimation is as follows:

X ¼ argmin
X

1

2
Y−AXk k2F þ ∑M

i¼1σ
2z1=2i Xi:k k2

¼ argmin
X

1

2
Y−AXk k2F þ ∑M

i wi Xi:k k2 ð22Þ

Define the matrix norm:

Bk k2;1 ¼ ∑i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ j B2

ij

	 
r
¼ ∑i

ffiffiffiffiffiffiffiffiffiffiffi
Bi:BT

i:

q
¼ ∑i Bk k2 ð23Þ

Equation (22) can be rewritten as follows:

X ¼ arg min
X; W

1

2
Y−AXk k2F þ WXk k2;1 ð24Þ

where W = diag(wi) denotes a diagonal matrix with diagonal
elements wi. Equation (24) is an L2,1-regularization weighted
iterative problem. The results that are obtained by the alternat-
ing iteration method are globally convergent and are the spars-
est solution (Rakotomamonjy 2011).

In addition, since the noise variance only affects the con-
vergence speed, it does not affect the accuracy of the sparse
solution. To set the parameter value adaptively, we update the
calculation of the variance as follows (Wipf and Rao 2007):

σ2
� � ¼ Y−AXk k2F=L

N−M þ ∑M
i¼1∑ii=γi

ð25Þ

For problem (16), parameter learning can be performed by
alternate iteration; the expressions for which are listed in
Table 1.

The overall RMSBL algorithm is summarized as
Algorithm 1.

Experimental Results and Analysis

In this section, experiments are conducted on four datasets,
and we compare the results with five widely usedmethods: the
CRD, CSCR, RX, LRX, and RMSBL algorithms. The param-
eters of each algorithm are optimized in the experiment, and
the receiver operating characteristic (ROC) curve is typically
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employed to quantitatively evaluate the detection perfor-
mance. Then, we compute the area under the ROC curve
(AUC) to evaluate the performance of the RMSBL and other
algorithms.

Hyperspectral Data

The first experimental dataset, namely, airport2, uses a
portion of the hyperspectral image of Los Angeles
Airport that was collected by the airborne visible/infrared
imaging spectrometer (AVIRIS) sensor. This scene consists
of 100 × 100 pixels (as shown in Fig. 1a) and the spatial
resolution is 7.1 m. After removing the water absorption
and low-SNR bands, 205 bands remain, including 87 target
pixels to be detected. Figure 1 b shows the ground-truth
image of the target.

The second dataset, namely, Cuprite, was captured by
the AVIRIS sensor in 1997 over the Cuprite mine in
Nevada. Only a small part of the data is used in this exper-
iment. Figure 1 c and d show the color composites of
Cuprite and the ground-truth image of the target, respec-
tively. This scene consists of 250 × 191 pixels. After re-
moving the water absorption and low-SNR bands, 188
bands remain, including approximately 35 to 40 target
pixels to be detected.

The third dataset, San Diego, uses a portion of the
hyperspectral image of the San Diego Airport in the USA that
was collected by the AVIRIS sensor. This scene consists of
200 × 200 pixels (as shown in Fig. 1e) and the spatial resolu-
tion is 3.5 m. After removing the water absorption and low-
SNR bands, 189 bands remain, including approximately 132
target pixels to be detected. Figure 1 f shows the ground-truth
image of the target.

The fourth dataset, the HYDICE Urban scene, is a
hyperspectral image of a suburban residential area in Texas,
USA, that was captured by Hyperspectral Digital Imagery
Collection Experiment (HYDICE) sensor. Figure 1 g and h
show the color composites of the HYDICE Urban scene and
the ground-truth image of the target, respectively. This scene
consists of 80 × 100 pixels, and the spatial resolution is ap-
proximately 1 m. After removing the water absorption and
low-SNR bands, 162 bands remain, including approximately
21 target pixels to be detected.

Detection Performance

According to the existing theoretical knowledge, algo-
rithms RMSBL, CRD, CSCR, and LRX all use a back-
ground dictionary. In the actual target detection, the back-
ground dictionary is typically obtained via local and

Table 1 Parameter updating in each iteration

1. ∀i ; γ kþ1ð Þ
i ← z kð Þ

i

	 
−1=2
X kð Þ

i⋅

��� ���
2

2. ∀i; z kþ1ð Þ
i ←AT

i σ2I þ AΓ kþ1ð ÞAT
� �−1

Ai

3. σ2ð Þ kþ1ð Þ
←

Y−AX kð Þk k2

F
=L

N−Mþ∑M
i¼1∑

kþ1ð Þ
ii =γ kþ1ð Þ

i

4. ∀i;w kþ1ð Þ
i ← σ2ð Þ kþ1ð Þ z kþ1ð Þ

i

	 
1=2

(a) (b)

(c) (d)

 (e) (f)

(g) (h)

Fig. 1 The first column shows the color composites of four datasets and
the second column shows the ground-truth map of the target. a, b
Airport2. c, d Cuprite. e, f San Diego. g, h The HYDICE Urban scene
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adaptive methods. For algorithms CRD, CSCR, and LRX,
the sliding dual-window method is used to obtain the back-
ground dictionary; hence, the sizes of the inner and outer
windows will affect the performance of the algorithm.
Therefore, the performance of the algorithm is optimized

by adjusting the parameters during the simulation experi-
ment. The RMSBL algorithm obtains the dictionary via the
vertex component analysis (VCA) method; thus, the
RMSBL and RX algorithms are not affected by the dual-
window scheme.

 (a) (b) (c)

 (d) (e)

Fig. 2 Detection outputs for
dataset airport2. a RMSBL. b
CRD. c CSCR. d LRX. e RX

 (a) (b) (c)

(d) (e)

Fig. 3 Detection outputs for the
Cuprite dataset. a RMSBL. b
CRD. c CSCR. d LRX. e RX
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We conduct an experimental simulation on the four
datasets that are described above and analyze the results of
the RMSBL algorithm and the four comparison algorithms in
terms of their ROC curves and AUC values.

To optimize the performance of the algorithm for the air-
port2 dataset, the parameters of each algorithm are determined

after many experiments as follows: for the CRD algorithm, the
outer window size is wout = 11, the inner window size is win =
5, and the regularization parameter is λ = 10−6; for the CSCR
algorithm, the window sizes are (wout, win) = (11, 3), and the
regularization parameter is λ1 = 10−2, λ2 = 10−1; and for the
LRX algorithm, the window sizes are (wout,win) = (15, 3). The

(c) (a) (b)

 (d) (e)

Fig. 4 Detection outputs for the
San Diego dataset. a RMSBL. b
CRD. c CSCR. d LRX.. e RX

(c) (a) (b)

 (d) (e)

Fig. 5 Detection outputs for the
HYDICE Urban scene dataset. a
RMSBL. b CRD. c CSCR. d
LRX. e RX
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detection outputs of the algorithms are shown in Fig. 2. The
proposed RMSBL algorithm yields the best result. Figure 6 a
shows the ROC curves of the proposed algorithm and the
comparison algorithms. The detection rate of the RMSBL
algorithm is lower than those of the other algorithms if the

false-alarm rate is less than 10−2; however, it increases rapidly
if the false alarm rate exceeds 10−2, significantly higher com-
pared with the other algorithms; and it reaches 1 before those
of the other algorithms. On this dataset, the CRD algorithm is
inferior to the RMSBL but outperforms the other algorithms.
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Fig. 6 ROC performance of the proposed method. a Airport2 dataset. b Cuprite dataset. c San Diego dataset. d HYDICE dataset

Table 2 AUC (%) values for the proposed algorithm and the
comparison algorithms

Airport2 Cuprite San Diego HYDICE

CRD 95.55 87.08 95.12 96.41

CSCR 94.25 93.27 79.42 94.42

LRX 89.49 85.33 49.99 93.24

RX 88.95 99.74 88.64 97.63

RMSBL 97.47 99.95 99.18 99.75

Table 3 Execution times (in seconds) on all experimental datasets

Airport2 Cuprite San Diego HYDICE

CRD 94.57 398.92 625.90 63.52

CSCR 333.29 1236.83 1107.13 158.03

LRX 97.14 280.91 261.48 40.34

RX 0.18 0.68 0.46 0.09

RMSBL 26.32 195.58 90.80 17.31
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For the Cuprite dataset, the parameters of each algorithm
are as follows: for the CRD algorithm, the window sizes are
(wout, win) = (11, 5) and the regularization parameter is λ =
10−6; for the CSCR algorithm, the window sizes are (wout, w-
in) = (11, 5) and the regularization parameters are λ1 = 10−1

and λ2 = 10−2; and for the LRX algorithm, the window sizes
are (wout, win) = (13, 9). Figure 3 shows the outputs of the
proposed algorithm and the comparison algorithms. The
ROC curves of the algorithms are plotted in Fig. 6b. The
experimental results demonstrate that the RMSBL algorithm
far outperforms the other algorithms in terms of the detection
probability and when the false alarm rate is less than 10−2, the
detection rate has reached 1; hence, the RMSBL algorithm
performs well on this dataset and the RX algorithm is inferior
to the RMSBL algorithm but outperforms the other
algorithms.

For the San Diego dataset, the parameters of each algo-
rithm are as follows: for the CRD algorithm, the window
sizes are (wout, win) = (17, 9), and the regularization param-
eter is λ = 10−6; for the CSCR algorithm, the window sizes
are (wout, win) = (7, 5), and the regularization parameters
are λ1 = 10−2 and λ2 = 10−1; and for the LRX algorithm,
the window sizes are (wout, win) = (13, 7). Figure 4 shows
the outputs of the algorithms. Figure 6 c shows the ROC
curves of the algorithms, according to which the detection
probability of the RMSBL algorithm exceeds those of the
other algorithms. If the false alarm rate is close to 10−1, the
detection rate reaches 1. Under this set of data, the CRD
algorithm is inferior to the RMSBL algorithm but outper-
forms the other algorithms.

For the HYDICE dataset, the parameters of each algorithm
are as follows: for the CRD algorithm, the window sizes are
(wout, win) = (13, 7), and the regularization parameter is λ =
10−6; for the CSCR algorithm, the window sizes are (wout, w-
in) = (9, 5), and the regularization parameters are λ1 = 10−2 and
λ2 = 10−1; and for the LRX algorithm, the window sizes are
(wout, win) = (13, 7). Figure 5 shows the outputs of the algo-
rithms. The ROC curves of the algorithms are shown in Fig.
6d. If the false alarm rate is less than 10−3, the detection rate of
the RMSBL algorithm is low. If the false alarm rate exceeds
10−3, the detection rate increases rapidly and reaches 1 when
the false alarm rate is 10−2.

The AUC values of each algorithm are listed in Table 2.
From the data, we can judge the performance of each algo-
rithm more accurately. The AUC value of RMSBL is the
largest in the experimental results for each group of data,
namely, its performance is the best. For the Cuprite and
HYDICE datasets, the AUC value of RX algorithm is slightly
smaller than that of RMSBL; however, the RX algorithm does
not perform well on the airport2 and San Diego datasets. The
RMSBL algorithm performs well on all test datasets, especial-
ly the Cuprite and HYDICE datasets, onwhich the AUC value
is close to 1.

Finally, we report the computational complexities of the
compared detection methods with optimal parameters. All ex-
periments were conducted using MATLAB R2014a on an
Intel Core i5-3470 CPU machine with 12 GB of RAM. The
execution times (in seconds) for the experimental data are
listed in Table 3. All the other algorithms except the RX algo-
rithm have higher computational costs than RMSBL.

Conclusions

This paper proposes a hyperspectral target detection algorithm
that is based on RMSBL. The weight coefficient is calculated
by L2,1-norm regularization, and the target residual and back-
ground residual are obtained. Finally, target detection is
achieved by evaluating the difference between the two resid-
uals. The proposed method is compared with the CRD,
CSCR, LRX, and RX methods. Experiments are performed
on four datasets and the results demonstrate that our proposed
method outperforms the state-of-the-art methods. In the future
research, we will try to use the deep learning method to solve
for the weight coefficient in order to achieve better results.
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