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Abstract
Green urban infrastructure is of key importance for many aspects of urban life and urban planning. Valid and comprehensive
databases with very high spatial and temporal resolution are needed to monitor changes and to detect negative trends. This paper
presents an approach to assess urban indicators such as green volume and soil sealing with very high accuracy and based on a
wide range of different sensors (aerial stereo images, QuickBird, WorldView 2 and 3, Sentinel 2, HRSC, LIDAR). A framework
using regression tree methods was developed and successfully applied in a case study (the city of Potsdam, Germany) resulting in
a long time series dating back 25 years. The methodology offers the opportunity to analyze urban development in detail and to
understand the functional relationships of urban planning processes. Demands for effective climate change adaptation, especially
in terms of reducing heat stress, can thus be better defined.
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Introduction

By 2050, more than two thirds of the world population will live
in urban areas; thus, one of the United Nations sustainable de-
velopment goals (SDG 11) is dedicated to cities and their com-
munities (UNDP 2019). To manage and monitor sustainable
development, fine-scaled information on the city level is needed,
such as maps of built-up areas, urban green infrastructure, and
soil sealing. The availability of such data in a tight temporal
update cycle is very important for the timely assessment of
changes and trends. Green infrastructure and soil sealing play
also a key role in achieving EU policy objectives. Creating and
improving a valid and comprehensive knowledge base remains
one of the strategic developments for the implementation of the
EU Strategy on green infrastructure (EEA 2015).

A useful indicator to assess green urban infrastructure is the
green volume per area unit (GVA). GVA comprises the above-
ground volume of the urban green in m3/m2 (Schulze et al.

1984). It plays a major role for the quality of life and the envi-
ronmental quality in cities and therefore for urbanmanagement.
Urban green volume has strong positive effects on air quality
(e.g., Roy et al. 2012; Maher et al. 2013) and has a massive
impact on urban micro-climate, such as a cooling effect during
heat waves (e.g., Susca et al. 2011). Green volume is of partic-
ular importance for recreation and the well-being of citizens.

Soil sealing describes the covering of natural soil with solid
impervious materials such as concrete and tarmac. Soil sealing
has various strong negative impacts on the urban environment.
Increased runoff and higher surface temperatures (e.g., Fokaides
et al. 2016) are only two of the unfavorable aspects. Soil sealing
is often described as percentage of impervious area.

Both green volume and soil sealing are very useful indica-
tors with regard to urban planning. They can be applied as an
input for modeling (urban climate, water balance) as well as
for evaluation processes (e.g., soil protection measures). A
long time series of both indicators can reveal patterns of
favorable/unfavorable urban development.

Federal and local authorities increasingly apply remote sens-
ing for urban monitoring and change detection. Traditionally,
urban remote sensing is based on very high–resolution (VHR)
sensors. A large number of studies assessing urban green infra-
structure or soil sealing are based on digital airborne ortho-
images (e.g., Meinel and Netzband 1997; Eichberger and
Sulzer 2004); VHR satellite sensors such as QuickBird,
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WorldView, or GeoEye (e.g., Hofmann et al. 2011; Frick et al.
2007); or LIDAR data (e.g., Hodgson et al. 2003; Hecht et al.
2008). Drawbacks of those sensors are the small footprint, the
high acquisition costs, and the scarcity of captures.

Stereo remote sensing plays a key role in environmental
monitoring, as 3D information is essential for biotope type
interpretation, the mapping of houses, and the assessment of
green volume. LIDAR data are very popular for the creation of
digital surface models (DSM). A very interesting approach is
the application of voxels based on full waveform lidar or ter-
restrial lidar (Casalegno et al. 2017).

However, the time intervals of such surveys are often in-
sufficient. Thus, the extraction of DSM from stereo remote
sensing images has become more and more important. The
development of powerful area-based matching algorithms
(e.g., Hirschmüller 2008; Haala and Rothermel 2012) has pro-
moted this tendency.

New and outstanding opportunities arise with the
Copernicus program of the European Union. The Sentinel sat-
ellites (especially Sentinel 1 and 2) provide free and spatially
high-resolution data in tight repeat cycles and with wide
swaths, thus representing a great potential especially for the
monitoring of green urban infrastructure. Several recent

studies demonstrate the vast spectrum of applications;
Kopecká et al. (2017) successfully classified urban green
spaces and their ecosystem services in several Slovakian
cities with Sentinel 2 data. Krüger et al. (2018) derived urban
vegetation structure with Sentinel 2 data. Haas and Ban (2018)
investigated changes in urban land cover and ecosystem ser-
vices using Sentinel 2 and Landsat TM data, though Landsat
data have a lower spatial resolution which can result in lower
classification accuracy compared with Sentinel 2 (Labib and
Harris 2018).

The main challenge in the development of processes to
monitor urban green volume or soil sealing is that the error
rate of these assessments must be extremely low. The annual
change in land cover often accounts for only a small propor-
tion of the total area, so that overall accuracies of 85% usually
rated as Bvery good^ are insufficient. The high temporal and
spatial resolution of Sentinel 2 data and the integration of
multi-sensor approaches including VHR data and 3D infor-
mation represent a great potential for achieving these very low
error rates (e.g., Matikainen and Karila 2011).

Numerous exemplary studies demonstrate the capability
of multi-temporal and multi-sensor approaches for urban
monitoring; Haas and Ban (2017) successfully applied

Fig. 1 Sentinel-2 scenes used for the environmental monitoring in Potsdam (RGB: Band 8, 4, 3)

Table 1 Remote sensing data used for the modeling of urban green volume and soil sealing in the city of Potsdam

Year Spatial resolution in m Sensor

1992 0.25 Scanned stereoscopic aerial images (CIR)

1998 5.8 (pan) and 23 (ms) IRS-LISS III satellite images

0.25 Scanned stereoscopic aerial images (CIR)

2004 0.6 (pan) and 3.7 (ms) QuickBird satellite images

2006 0.5 High Resolution Stereo Camera (HRSC) aerial images

2010 0.5 (pan) and 2.4 (ms) WorldView-2 satellite images

3 points per m2 LIDAR data

2015 0.2 Stereoscopic aerial images (Vexcel)

2016 0.5 (pan) and 2.4 (ms) Stereoscopic WorldView-3 satellite images

20 Sentinel-2 NDVI (April, May, August)
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Sentinel 1 and 2 data for the mapping of ecologically
important urban areas and Griffiths et al. (2010) combined
Landsat and ERS-1/ASAR data to map the development of
megacities. The combination of deep learning algorithms
(e.g., Audebert et al. 2017), symbolic machine learning
(Pesaresi et al. 2016, 2018), and model-driven approaches
for the automated classification of complex data
(parametric and non-parametric) is a suitable tool to pro-
cess those large amounts of data with high accuracies.

Still, most studies concentrate on one aspect of urban mon-
itoring; the assessment of several important indicators such as
soil sealing and green volume within one operational
workflow and with very high spatial and temporal resolution
is rare. Following these findings, the research objectives of our
study were to:

1. Develop a methodological framework for the assessment
of urban indicators (green volume and soil sealing) that
results in very high accuracies

2. Investigate a long time series dating back 25 years and apply
a wide range of different sensors to accurately map changes

Methods

Study Area

The study area is the city of Potsdam (comprising 180 km2)
located in Germany very close to Berlin. It is classified as a
forest city according to the city typology of EEA (2019). This
city type is characterized by a high proportion of urban forests,
a high to very high proportion of green urban areas, and low soil
sealing degrees. Nevertheless, Potsdam is a growing city with
thousands of new inhabitants commuting to Berlin, thus in-
creasing the land consumption for new housing sites.
Reacting to this pressure, Potsdam established an environmen-
tal monitoring system based on remote sensing. Indicators such
as biotope type, degree of surface sealing, green volume, and
biotope quality are updated comprehensively in a repeated cy-
cle (Tervooren and Frick 2010). These indicators are used to
document urban development every 6 years, so far for 1992,
1998, 2004, 2010, and 2016. They also serve as input for fur-
ther modeling (e.g., urban climate, water balance) as well as for
evaluation processes (e.g., soil protection, development trends).

Fig. 2 Detail showing Sanssouci castle, left: DSM from Stereo-WorldView-3 2016; right: DSM from Stereo-aerial images 2015 (source: LUP)

Table 2 Additional information used for validation

In situ data and additional information Source

Surface sealing assessment for waste water billing (2002) Water supply company Potsdam

Surface sealing and sealing type recorded for the road register (2007) City administration of Potsdam

German automated land register (various years) State Agency for land survey and geo-information

Digital terrain model (2010) State Agency for land survey and geo-information
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The monitoring is based on high- or very high–resolution
optical aerial and satellite imagery. For the 2016 evaluation
cycle, multi-temporal Sentinel-2 data was used for the first
time (Fig. 1).

Remote Sensing Data

Remote sensing data sources for the urban monitoring in
Potsdam changed with every monitoring cycle (see Table 1).
All satellite scenes were pre-processed following the same
standards for atmospheric correction and geo-coding. RMSE
values for geo-coding stayed below one pixel (referring to the
panchromatic resolution in case of multi-spectral sensors).

Clouds and cloud shadows were masked. All aerial and
satellite image data were then used to derive various first-
and second-order texture measures, ratios, and indices in
order to be applied as parameters for regression tree
models (see Table 3).

Stereo matching

Digital surface models can be extracted from stereoscopic
aerial or satellite images through automated matching. For
the environmental monitoring in Potsdam, a semi-global
algorithm was used (Hirschmüller 2008). The image qual-
ity is of great importance. Due to large patches of haze on

Fig. 3 Detail showing Sanssouci castle. Left: biotope blocks (background: Orthofoto 2015); right: biotope blocks and surface sealing assessment based
on waste water billing and road register. The summarized surface sealing percentage is shown in yellow for three example blocks (source: LUP)

Table 3 Settings used for the
calculation of green volume in the
training and validation blocks

Supervised class Vegetation height (m) Green volume (m3)

1 Water 0.00 Pixel size × vegetation height

2 Sealed/open soil 0.00 Pixel size × vegetation height

3 Grassland 0.50 Pixel size × vegetation height

4 Reed 1.50 Pixel size × vegetation height

5 Arable land 1.00 Pixel size × vegetation height

6 Shrubs < 5 m nDSM Pixel size × nDSM

7 Shrubs and trees 5–9 m nDSM Pixel size × nDSM − 10%
8 Trees > 9 m nDSM Pixel size × nDSM − 25%
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the WorldView-3 satellite imagery of 2016, the matching
result was patchy and unsatisfactory (Fig. 2 left), so that,
in addition, a matching of the stereo aerial images from
2015 was performed (Fig. 2, right).

The digital surface model based on LIDAR data (2010)
was created through a linear interpolation of the classified
point cloud. The final normalized digital surface models
(nDSM) were created by substracting the ground from all
objects through a simple difference calculation:

nDSM ¼ DSM–Digital Terrain Model DTMð Þ ð1Þ

Training and Validation Data

In situ data were recorded for every monitoring cycle.
Additionally, various external data sources were employed
for accuracy assessment (see Table 2). For every monitoring
cycle, at least 1000 biotope blocks were prepared as training
and validation data for surface sealing: every block was visu-
ally checked for changes, and if no change was obvious, the

accurate surface sealing percentage was calculated from the
waste water billing and road register datasets (see Fig. 3). All
surface sealing materials were summarized according to their
sealing potential (e.g., tarmac seals to 100% whereas rubble
only seals to 75%).

For the green volume per area unit, at least 8000 biotope
blocks per monitoring cycle were prepared as training and
validation data. In situ data for the height of trees and
shrubs were collected either through field measurements
or through 3D stereo information (e.g., normalized digital
surface models nDSM). The final green volume per bio-
tope block was then calculated based on a supervised re-
gression tree classification of the remote sensing datasets
(see Table 3 and Fig. 4). For shrubs and trees smaller than
9 m, 10% was substracted to account for the woody parts.
Green volume for trees bigger than 9 m was decreased by
25% to account for tree trunks.

The training and validation datasets were then split
randomly into training and testing subsets (70% training,
30% testing).

Fig. 4 Detail showing Sanssouci castle. Left above: WorldView 2010; right above: supervised classification result; left below: nDSM from LIDAR
2010; right below: final green volume per area unit for a subset of the training and validation blocks (source: LUP)
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Methodological Framework

Since the spatial and spectral properties of remote sensing data
can change dramatically with the years, the choice of methods is
very important in order to achieve comparable results at all
times. To guarantee high-quality analytical outcomes and to take
into account different data characteristics, robust processing
methods and standards are required to guarantee consistency.
Non-parametric regression tree models are a good choice to
handle very different data sources. Regression trees such as
RandomForest (Breimann 2001) or Cubist (Quinlan 1993) are
widely used for remote sensing applications (Belgiu and Drăguţ
2016). Regression tree classifiers are less sensitive than other
classifiers to the quality of training samples and to overfitting;

this is mainly due to the large number of decision trees produced
by randomly selecting a subset of training samples and a subset
of variables for splitting at each tree node (Belgiu and Drăguţ
2016). Thus, it was our choice to use a regression tree classifi-
cation approach in order to derive stable results.

Figure 5 depicts the general framework for the model set-
up. To achieve comparability over a long time span, the geo-
metrical base for analytical assessment is of utmost impor-
tance. For urban monitoring, the use of land parcels, biotopes,
or blocks is the most promising approach, since management
and urban planning refer to such features. Every single feature
(more than 20,000 biotope blocks) for the whole city is filled
with various parameters derived from optical remote sensing
data for every time step. The parameters used for modeling

Table 4 Parameters used for modeling calculated for every feature for every single optical band

Parameter Description Reference/tools

Zonal statistics Variance, standard deviation, mean, maximum, minimum Zonal operator/Erdas Imagine
2nd-order texture in a 5 × 5 window,

distance 1 pixel, 8 directions
Homogeneity, entropy, correlation, second moment,

contrast, dissimilarity, mean, variance
Haralick et al. 1973

NDVI Normalized vegetation index Rouse et al. 1973
Simple ratios for every band combination Depending on the spectral resolution of the sensor Band Math/Erdas Imagine
Zonal statistics for every classification
(supervised and unsupervised)

Majority, majority fraction, variety Zonal operator/Erdas Imagine

Feature information Area, perimeter, biotope type ArcGIS

Fig. 5 Framework for the model setup
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were first- and second-order textures, spectral indices calcu-
lated from all remote sensing data, and additional information
like biotope type and classification results (see Table 4).

The supervised classification is based on a simple land cover
model (see Fig. 4). The unsupervised classification is built with
10maximum iterations and a 10% threshold. The final model is
created with a regression tree approach using the training data
and validated with the testing data. The next step is the predic-
tion for all features, all indicators, and all time steps.

Results and Validation

The framework was applied to all time steps for Potsdam
(1992, 1998, 2004, 2010, and 2016). It resulted in a long time
series showing the change in soil sealing and green volume for
every feature.

In Table 5, all validation results for the models to predict
green volume per area unit (GVA) are listed.

With the years, the spatial, spectral, and temporal resolu-
tion improves, leading to a constant rise in accuracy. The
integration of multi-temporal Sentinel 2 NDVI data resulted
in a substantial refinement (see Table 6 and Fig. 6). A regres-
sion tree model based only on multi-temporal zonal statistics
from Sentinel 2 NDVI data explained more than 85% of the
variance in green volume. A regression tree model based only
on the very high–spatial resolution WorldView-3 parameters
(zonal statistics for all bands as well as texture measures)
explains 91% of the variance in green volume. The best model
fit with R2 0.93, and the lowest standard error is obtained by
an integration of both sensors.

The modeling results show in detail important develop-
ments in the city (see Figs. 7 and 8). The development of

GVA shows a slight decrease since 1992 until 2016. A more
pronounced decrease is evident when the development is re-
lated only to the built-up areas (see Table 7). The phase of
lesser dynamics until 2004 and 2010 (see Fig. 7) even pro-
duced a slight increase in green volume values, which was
interrupted between 2010 and 2016. As a result, the fairly
balanced development changed after 2010.

The mean soil sealing in the built-up areas increases from
38.5 to 51.2% from 1992 to 2016 in total, which is a rise based
on the 1992 values of 33%, with high dynamics from 1992 to
1998 and 2010 to 2016 (see Fig. 6).

Discussion

The developed framework was successfully applied to
various remote sensing sensors. A long time series dating
back 25 years was realized that enables the accurate map-
ping of changes. The geometric focus on biotope features
was a valuable base to achieve consistent results. With the
regression tree approach, it was possible to use such dif-
ferent image data as scanned aerial photographs and mul-
tispectral satellite sensors. Crucial for the whole process is
the availability of 3D stereo information for the derivation
of training data to predict urban green volume. The stereo
matching of optical images proved to be a very good way
to retrieve such information. One limitation is the neces-
sity for images captured in the growing season for green
volume assessment whereas soil sealing is best estimated
with leafless images. The integration of multi-temporal
Sentinel 2 data can help overcome this problem. Still,
VHR imagery and 3D information are needed to satisfy
the request for very high accuracy as has also been shown
by other studies (e.g., Matikainen and Karila 2011; Huang
et al. 2013). Multi-temporal Sentinel 2 NDVI data alone
do not achieve the necessary precision on biotope level,
the integration of all spectral bands should be further in-
vestigated. Another limitation is the need for cloud-free
images. Even the occurrence of haze can be of great im-
pact on assessment accuracy. Stereo matching with hazy
WorldView 3 data did not lead to useful results. As with

Table 6 Difference in model
results for green volume per area
unit 2016

Model R2 Standard error

Only Sentinel NDVI parameters (zonal statistics: variance,
standard deviation, mean, maximum, minimum)

0.85 2.11

Only WorldView-3 parameters ((1) Zonal statistics for every band
and NDVI: variance, standard deviation, mean, maximum, minimum;
(2) 2nd-order texture in a 5 × 5 window, distance 1 pixel, 8 directions
for every band: homogeneity, entropy, correlation, second moment, contrast,
dissimilarity, mean, variance; (3) Simple ratios for every band combination)

0.91 1.60

Combination of Sentinel NDVI and WorldView-3 0.93 1.41

Table 5 Model results
for green volume per
area unit for the 30% test
data

Year R2 Standard error

1992 0.89 1.89

2004 0.90 1.68

2010 0.91 0.34

2016 0.99 0.42
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most remote sensing–based evaluations, the quality and
quantity of training data are crucial. The presented frame-
work largely depends on very accurate and representative
in situ information; thus, the amount of visual interpreta-
tion and manual work is very high.

Main Trends in Urban Development

The results for every biotope feature in the city were subse-
quently examined to create trend classes for urban develop-
ment. Four main types were identified:

Fig. 7 From left to right: aerial images 1992, WorldView-2 2010, WorldView-3 2016, and respective green volume results

Fig. 6 Left: only Sentinel NDVI parameters; middle: only WorldView-3 parameters; right: combination of both
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1. Type A: green volume increases, soil sealing decreases.

This type stands for ecological improvement of the living
environment and active urban greening processes.

2. Type B1: green volume increases, soil sealing increases.

This type characterizes green urban development, consid-
ering sustainability aspects in urban planning processes.

3. Type B2: green volume decreases, soil sealing decreases.

This type characterizes active demolition and dismantling
or change of land use.

4. Type C: green volume decreases, soil sealing increases.

Type C finally stands for Bgray urban development^, areas
of urban development without/with limited consideration of

environmental issues or with the lack of implementation of
sustainability measures.

In Fig. 9, main trends in Potsdam are illustrated; after the
Fall of the Wall, an intense urban development started (mainly
type C) which attenuated between 2004 and 2010 due to a
decrease in population and the reconsideration of sustainable
urban development (mainly type B1). After 2010, the popula-
tion trend reversed and a massive expansion and densification
of built-up areas followed (mainly type C). In most of the
cases, no compensation for the increase in surface sealing
via green volume was made. The percentage of built-up areas
with very low green volume and very high soil sealing in-
creased from 7.2% in 1992 over 11.9% in 2004 and 2010 to
over 16.5% in 2016.

Applications in Climate-Change Modeling

The environmental monitoring results for Potsdam were fur-
thermore used to determine the potential of urban green and
unsealing for climate change adaptation. The climate change
postulated for Potsdam from 2.5 to 3.0 °C from 2013 to 2050
(Gerstengarbe et al. 2014) with pronounced heat events jus-
tifies the investigation of the effect of the two core indicators
for urban monitoring. They provide information on the search
for adaptation options and can act as parameters for the reduc-
tion of stress: green volume as a Bpositive indicator^ for ad-
justment (cooling option) and sealing as a Bnegative
indicator^ (warming risk).

For the analysis, land surface temperatures determined on
the basis of thermal Landsat data were linked with the param-
eters of the environmental monitoring (Tervooren 2015). In

Table 7 Change in GVA and soil sealing from 1992 to 2016

1992 2004 2010 2016 1992–
2016

Green volume per area unit (m3/m2)

Mean for the whole city 5.12 4.98 5.18 5.04 − 0.08
Mean for the built-up areas 3.13 2.73 3.17 2.48 − 0.65

Soil sealing (%)

Mean for the whole city 9.3 11.0 11.2 12.6 + 3.3

Mean for the built-up areas 38.5 47.3 47.6 51.2 + 12.7

Fig. 8 Time series showing the soil sealing for a subset of the study area from 1992 to 2016
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addition to the development of temperature values, the deci-
sive factor is their spatial distribution in the urban area. Thus,
statements are possible as to whether certain areas can act as
buffer zones for heat in the city center. The following guide-
line values were found suitable to address local conditions:

& 1 m3 additional green volume per m2 area leads to a tem-
perature reduction of approx. 0.3 °C

& 1% additional sealing (e.g., 1 m2/100 m2) causes a tem-
perature increase of about 0.03 °C (Tervooren 2015)

These values emphasize the importance of urban green
volume and the need for the consideration of sustainable de-
velopment in urban planning processes.

Conclusion

In this study, a methodological framework for the assessment
of urban indicators (green volume and soil sealing) was de-
veloped. We investigated a long time series dating back
25 years and successfully applied a wide range of different
sensors to accurately map changes. The coefficient of deter-
mination for the GVA models ranged from 0.86 to 0.99 with
standard errors between 1.89 and 0.42. They were constantly
improving with spatial, spectral, and temporal resolution of
the input data.

In addition to the climate assessment, regular environmen-
tal monitoring data help to analyze the effect of small-scale
structures in the development of settlement areas. The tempo-
ral documentation of the development, in Potsdam since 1992,
enables the better understanding and steering of development
processes. Green volume and soil sealing are increasingly
easy to assess due to new air- and spaceborne sensors. The
assessment methodology can be standardized for cross-
regional use. The given indicators form a good base to discuss
and qualify arguments addressing urban development, for ad-
ministration, politicians, and citizens.

Limitations to acquire suitable data to establish a similar
monitoring for other European cities can be at least partly
overcome using recently available Sentinel 2 data. The use
of all Sentinel 2 spectral bands should be further investigated
since, especially, the red edge bands promise to be very valu-
able for the assessment of urban green. The integration of
Sentinel 1 should further enhance and improve the model
accuracy; several recent studies demonstrated the suitability
for urban monitoring (e.g., Lehner et al. 2017). Future re-
search should also focus on automated change detection
methods to minimize visual and manual work in updating
the training datasets.
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