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Abstract: As an important service model for advanced computing, SaaS uses a defined protocol that

manages services and applications. The popularity of advanced computing has reached a level that has led to

the generation of large data sets, which is also called Big data. Big data is evolving with great velocity, large

volumes, and great diversity. Such an amplification of data has brought into question the existing database

tools in terms of their capabilities. Previously, storage and processing of data were simple tasks; however,

it is now one of the biggest challenges in the industry. Experts are paying close attention to big data.

Designing a system capable of storing and analyzing such data in order to extract meaningful information

for decision-making is a priority. The Apache Hadoop, Spark, and NoSQL databases are some of the core

technologies that are being used to solve these issues. This paper contributes to the solutions to the issues

of big data storage and processing. It presents an analysis of the current technologies in the industry that

could be useful in this context. Efforts have been focused on implementing a novel Trinity model, which is

built using the lambda architecture with the following technologies: Hadoop, Spark, Kafka, and MongoDB.
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1 Introduction

Owing to the popularity of advanced computing, big

data is growing. Big data refers to a very high vol-

ume of data that cannot be handled using traditional

database methods. Traditional database practices

have reached their limits in terms of performance

and are not capable of processing such data with

good results. Several new storage techniques have

emerged with the increase in data volumes. The ma-

jority of the database practitioners have only em-

phasized on structured data, but the standard ex-

pansion of such huge data comprises 80% of un-

structured and semi-structured data[1] including pic-

tures, videos, and texts. Big data has influenced

several real-world fields such as banking, medica-

tion, and education. The three vital elements to be

considered while defining big data are volume, va-

riety, and velocity[2,3]. The volume of big data will

be enormous. The scalability of the databases and

their capability of processing such big data would

be a prime requirement for any application, includ-

ing data-driven cloud applications, large-scale mo-

bile cooperative web applications, and user-oriented

big-data-driven systems. In particular, multi-copy

data dissemination and delay-constrained data query

in large-scale mobile networks have become the fo-

cus of many studies[4,5]. Furthermore, the storage,
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security, and processing of big data are major con-

cerns; this study addresses these challenges. Aca-

demic and industrial experts are paying close atten-

tion to these issues. Currently, with the speed at

which big data is growing, its size will soon reach the

zettabyte[2]. New technologies and techniques are

emerging: Apache Spark, Hadoop, Apache Storm,

and NoSQL databases. There are some disadvan-

tages of using RDBMSs (Relational Database Man-

agement Systems). The mass generation of data in

the big data era would require a relational database

for storing millions of records and processing them in

real time. However, the RDBMS is not sufficiently

efficient[6-8]. In addition to this, the RDBMS is also

not suited to working in a distributed manner. This

has led to the emergence of NoSQL databases that

provide better data accessibility for unstructured or

semi-structured data. There are multiple NoSQL

databases, and we analyze the MongoDB and Cas-

sandra databases in this study. Cost is also an aspect

that drives our research[9]. Big data is obtained on

using digitalized media or any data-intensive tech-

nologies. It is impossible to process such huge data

using traditional database technologies. This is be-

cause the relational databases were developed at a

time when different software and hardware specifi-

cations were used and to be associated often with

structured data[8]. In this study, we provide a deep

analysis of current technologies and select the best

one. We have envisioned a new architecture, the

Trinity model, for solving the storage and process-

ing issues of big data. It is not only more prac-

tical but also more affordable. It is practical be-

cause the Trinity model delivery is based on cer-

tain open-source middleware; it is affordable because

the data storage does not incur any monetary cost.

Our proposed model takes into consideration two im-

portant aspects: scalability and processing perfor-

mance. We demonstrate the validity of our solu-

tion through our evaluation. The contributions of

this paper are as follows: 1) We propose a novel big

data processing solution, called the Trinity model.

To the best of our knowledge, such a model has not

been previously proposed. 2) We conduct a system-

atic analysis of the existing big data processing so-

lutions in order to provide a better understanding

of the state-of-the-art big data technology. 3) We

present a complete justification of our proposed so-

lution and demonstrate its utility through an evalu-

ation. The remainder of this paper is organized as

follows: section 2 presents the background and moti-

vation for this study; section 3 discusses various big

data processing platforms; section 4 illustrates our

proposed solution; section 5 presents the evaluation

of the model; section 6 presents the related works;

and section 7 presents the conclusions of this study

and our future work.

2 Background and motivation

The big data technologies are first categorized as

database solutions and processing solutions that

are available in the market: MongoDB, Cassan-

dra, Apache Hadoop, Apache Spark, and Apache

Kafka. NoSQL databases are undoubtedly the fu-

ture in terms of improving data accessibility for un-

structured data. They are categorized as document-

based, key-value-based, graph-based, and column-

based[10,11]. They are becoming the preferred choice

in the industry for storing big data[11]. They are

designed while keeping in mind the best possible

method of scalability for unstructured data. This

study analyzes such NoSQL databases with their

pros and cons. The MongoDB, as a document

database, is selected for the Trinity model for im-

proved storage. The advantageous features of the

MongoDB are the use of a schema-less data model,

elastic scalability, and data replication[12,13]. Apache

Hadoop is the defacto standard that is being used

by the majority of the industry as a base for any

big data application[14,17]. It is one of the open-

source tools available to the community for in-depth

research. We found that Apache Hadoop still has

flaws that will be discussed in later sections, which

can be overcome by using external fundamentals.

The analysis of such big technologies provided us

with an understanding of the success of hybrid so-

lutions, as no single technology is capable of dealing
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with such big data alone[6,9,14]. Attempts at com-

bining Hadoop and several other technologies (such

as Apache Kafka) lead us to this successful novel

project. The design of the Trinity model is based

on the lambda architecture that provides a platform

for processing both batch and real-time data simul-

taneously. This study claims that, if the Trinity

model is implemented, it would be capable of solv-

ing the major issues of big data. Apache Kafka[15]

on Hadoop, another open-source tool for distributed

data, exhibits a highly desirable performance. It has

a promising future in real-time applications. It helps

our model in the queuing of the incoming data into

the memory, which can further be used by Spark for

better results. The lambda architecture[8,16] is being

used to incorporate the suitable technologies. There

exists extensive debate regarding the incorporation

of the right technology on the lambda architecture

for improved workflow. Our literature review and

in-depth analysis allow us to choose the best tech-

nology for batch processing (MapReduce) and real-

time processing (Apache Spark). Storage is always

a requirement of any big data application[11,14]. The

application should have scalable data storage that

allows it to save as much data of all types as it re-

quires.

3 Analysis of big data platforms

In this section, we conduct an in-depth analysis of

existing big data systems and platforms.

3.1 Hadoop

Apache Hadoop is a Java-based programming frame-

work that is used for processing huge sets of data[14].

The advantage of Hadoop is that it processes data

that is placed in a distributed computer environ-

ment. The Hadoop architecture is used by several

large companies such as Facebook, Google, Yahoo,

and IBM[6,14]. Fig. 1 shows the two core compo-

nents of Hadoop[17]. Hadoop has its own file system,

i.e., the HDFS (Hadoop Distributed File System),

which facilitates fast data transfers and prevents sys-

tem failure with the help of its core function called

MapReduce. The MapReduce algorithm breaks the

big data into small chunks, distributes it on multiple

servers/nodes, and then performs operations[17,18].

Hadoop

HDFS                  MapReduce

Figure 1 Components of Hadoop

The HDFS is considered as highly fault-tolerant

and is designed for special deployment in minimum-

cost hardware[17,18]. It has similarities with other

currently used file systems but its unique features are

sufficiently significant to make it a giant architecture

in today’s industry. Fig. 2 depicts the architecture of

the HDFS. The HDFS stores file system meta data

and application data separately[17]. The HDFS uses

the master/slave scheme. The Hadoop cluster is di-

vided into the NameNode and DataNodes. The Na-

meNode is treated as a master node, the function of

which is to manage the namespaces and accesses on

file. There will always be only one NameNode but

there could be innumerable DataNodes, at least one

per node in a given cluster. DataNodes are treated

as slaves in the architecture that contains the ac-

tual application data. However, a file is internally

divided into numerous blocks that are stored in a

DataNode[18].

The operations handled by the NameNode include

opening, closing, and renaming files or directories[18].

DataNodes are given the responsibility of handling

read and write operations. They are also allowed to

manage replication[18].

MapReduce is a core functionality of Hadoop. It

was first introduced by Google in 2004[18] with the

sole objective of supporting the distributed comput-

ing of large data. It is one of the popular pro-

gramming models for processing large sets of data

located on several servers[6,17]. The users are re-

quired to specify a map function that processes a

key/value pair in order to obtain another intermedi-
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Figure 2 Architecture of Hadoop distributed file system

ate key/value pair. Reduce functions are required to

be defined as well so that it merges all intermediate

values for a single key in the end[18].

3.2 Spark

In 2009, a team of a few researchers and devel-

opers of the University of California, Berkley ini-

tiated a project for designing a unified engine for

processing distributed data[19]. Spark is a process-

ing model that is similar to MapReduce but has

some major features for processing real-time data[19].

The function of Spark extends over that of MapRe-

duce in terms of one of its major functionalities:

RDDs (Resilient Distributed Datasets), which is

the primary data abstraction in Apache Spark[19,20].

Through the use of RDDs, Spark is capable of cap-

turing a broader workload of processing tools that

includes SQL support, streaming, machine learning,

and graph processing[21]. Spark has some important

features[19]: 1) it would be easy to develop appli-

cations using Spark because of its unified API. 2)

Spark has the combined support of machine learn-

ing, graph processing, and streaming, which was not

possible with previous tools. 3) It processes data in

its memory, which makes its processing performance

superior to that of other processing models.

Spark streaming[22] is an extension of Spark that

provides high scalability, throughput, and fault-

tolerant streaming of real-time data. Data can have

inputs from multiple sources such as Apache Kafka,

TCP sockets, or Apache Flume. The input is an-

alyzed well and processed via complex algorithms

that contain high-level functions. These high-level

functions involve mapping, reducing, joining, and

windowing[22]. However, once the data is processed,

it is scattered well in a file system or database.

The streaming requires a great amount of time for

processing[23]. However, Spark saves the currently

used data into HDFS and then builds new results

by working on these saved historical data. The in-

tegration of powerful tools for addressing big data

problems with high performance and which have

easy access to unified programming APIs (includ-

ing Python, Scala, and Java) is what has made

Spark one of the major projects in Apache[19-24].

In order to provide greater ease of use, the Apache

Spark has released its own SQL-like programming

API for the users who feel uncomfortable with other

languages[23].

3.3 Apache Storm

Apache Storm is considered as another real-time

data processing system that is fault-tolerant and has

a distributed architecture[25]. It uses directed acyclic
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graphs, which are also called topologies, for its core

workflow. The process of abstraction of data is called

a Stream, which has a continuous and sequencing

working nature with tuples[25]. Streaming is car-

ried out by Spouts, which gets data into the Storm

ecosystem from external sources. Then, there are

entities responsible for transforming the incoming

data streams, called Bolts. Bolts consist of MapRe-

duce, filtering, and aggregation-like functionalities

for dealing with data. Bolts is also designed to com-

municate with external databases if necessary[25].

Fig. 3 shows Strom Trident. This is a pro-

cess of abstraction inside Storm that is responsi-

ble for performing micro-batching. This also facil-

itates high-level operations such as group by, ag-

gregate, and count. The micro-batching in Storm

is achieved by breaking up the incoming data into

smaller batches of tuples[25]. Some important fea-

tures are as follows[19]: 1) The applications would

be easy to develop with Spark because of its unified

API. 2) Spark has the combined support of machine

learning, graph processing, and streaming, which

was not possible with previous tools. 3) It processes

data in its memory, which makes its processing per-

formance superior to that of other processing models.

3.4 Lambda architecture

Apache Hadoop and MapReduce are widely used

for storing and processing big data. Hadoop is the

defacto ecosystem for designing any architecture in

terms of big data over multiple servers. Hadoop

is very popular for handling the volume trait[16].

MapReduce focuses on batch processing and aims at

processing long running background processes[14,26].

Therefore, we still require better techniques for han-

dling the velocity of acting on continuous recent

data. The requirement for processing batch and real-

time data in parallel and adding the real-time com-

putation to the batch-processing systems resulted in

a framework called the lambda architecture. The

main objective of the lambda architecture is to pro-

vide a generic approach for processing big data with

high scalability and fault tolerance[16,26]. He devel-

oped this idea based on his experience in dealing with

distributed data processing systems in the case of

Twitter. The lambda architecture has three layers:

the batch layer, speed layer, and serving layer.

3.5 NoSQL databases

NoSQL databases are the preferred choice among ex-

perts and developers in the industry nowadays[27].

The major issue for them is that the rapidly grow-

ing data requires an appropriate design for storage

in terms of efficient data analysis[10,27]. Owing to

such requirements, the traditional databases became

obsolete, and NoSQLs were taken into consideration

while keeping properties such as a schema-less data

model, elasticity, and scalability in mind[12]. Re-

lational databases were designed in a different era

for different software and hardware requirements[6].

They were not designed for handling extra scalabil-

ity. Most of the data is noisy or unstructured and

cannot be handled by RDBMSs. Therefore, these

systems are not able to cope with such challenges.

The NoSQLs are popular in maintaining consistent

models in contrast to the RDBMS in the case of oper-

ations such as retrieval and collection of data[8]. As

previously mentioned, the NoSQL is the preferred

choice when the storing and processing of large data

is a prime requirement. The simplicity of the data

model design, horizontal scalability, and prior avail-

ability are some of the important features of NoSQL.

Indrawan-Santiago mentioned in Ref. [6] the use of

NoSQLs as a compliment to RDBMSs, which re-

sulted in the improvement of the organization’s data

management capabilities. In addition to this, the

authors in Ref. [7] compared the NoSQL database

with the SQL database and found that owing to the

large number of records in SQL, the inserting time

is one of the major problems that must be solved.

NoSQL databases are required in the application ar-

eas of e-commerce, web application, location-based

services, social media, Internet-of-Things data stor-

age, etc. These areas require predictive analytics

and real-time data processing and are characterized

by huge data sets from various sources. NoSQL
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Figure 3 Architecture of Apache Storm

is capable of meeting these requirements[7]. The

NoSQL database is divided into four major cate-

gories: column-based, document-based, key-value-

based, and graph-based[7]. The best practices in-

volve the selection of the best NoSQL database as

per their application requirements depending on the

data model, performance (read and write), runtime,

and throughput[7,10,27].

4 Our solution: Trinity model

The Trinity model is designed to overcome the issue

of storing and processing big data. Its structure is

illustrated in Fig. 4. It consists of three components:

the data model, RDBMS, and NoSQL. These three

components cooperate with each other and work as

an ecosystem. The structure and characteristics of

the data that are formulated in the data model de-

termine whether the data should be stored and pro-

cessed in the RDBMS or in NoSQL. The RDBMS

is more suitable for storing and processing struc-

tured data, while NoSQL is more convenient for stor-

ing and processing unstructured or semi-structured

data.

data
model RDBMS

NoSQL

Figure 4 Trinity model

The data model is a core pillar that identifies the

type of data to be stored by the application. This

would also indicate how the data would be trans-

ferred between the databases for operations such as

retrieval. Once the data passes this layer and the

decision is made, the storage and processing will de-

pend on the database handling rules. This process

is shown in Fig. 5.
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The data model in our architecture has resolved

the issue of handling data efficiently. There exists a

problem of storing large sets of data in the case of

big data. The majority if the data is in the form

of semi-structured or unstructured data instead of

structured data. The data that can be organized

and easily searched is referred to as structured data.

It is stored and organized at a high level. In contrast,

semi-structured and unstructured data do not follow

any defined data model and are difficult to operate

with. The first operation performed using the Trin-

ity model is the organization of such data before it

is stored or processed. However, the data is meant

to reside either in the RDBMS or NoSQL. The re-

lational database is responsible for handling trans-

actional data and can only store structured data.

In addition to this, NoSQL is responsible for stor-

ing semi-structured or unstructured data. Relational

databases are well designed for handling OLTP (On-

line Transaction Processing). This is because of the

properties of the RDBMS, i.e., ACID (Atomicity,

Consistency, Isolation, Durability) properties, which

are a few of the pre-requisites for OLTP. Once the

data is stored in the RDBMS; it also gets replicated

in NoSQL. This provides high availability to the

system. The unstructured or semi-structured data

would directly surpass this layer of the Trinity model

and reside in the NoSQL database. NoSQL would

also look after the OLAP (Online Analytical Process-

ing). These systems are designed to facilitate deci-

sion making. These decisions form the basis for mak-

ing operational decisions. Manipulation of the data

allows the analysis of the measurement hierarchy and

execution of operations such as classifications and

predictions. NoSQL databases are beneficial owing

to their ability to manage huge data[6] and flexibility

over relational databases. There have been multiple

instances in which experts have questioned the lack

of data modeling for OLAP in RDBMSs and have

suggested migrating it to NoSQL databases. Efforts

have also been made to explain the proposed model.

The proposed model is one of the major promising

frameworks that aim for efficient storage and faster

processing for the SaaS (Software as a Service) appli-

cations that involve the handling of big data. Fig. 6

shows a block diagram of our proposed model.

SaaS
application RDBMS

batch layer

speed layer

serving
layer

Figure 6 Block diagram of proposed model

The block diagram clearly shows the movement of

data in the simplest manner. The data is collected

via a SaaS application interface and is transferred

to the RDBMS. The data is analyzed by the data

model that is imposed as the core functionality of

our model, which will determine whether the data is

required to be stored in the RDBMS. If the data is

structured, it will directly reside in the RDBMS; if

the data is unstructured or semi-structured, it will

directly be transferred to the NoSQL database after

passing through the batch layer. Such a separation

increases the data-processing efficiency. This archi-

tecture also includes the three layers of the lambda

architecture. A complete description of the proposed

model is shown in Fig. 7.

The diagram shown above clearly shows some ma-

jor components of the architecture: 1) RDBMS; 2)

Apache Kafka; 3) batch layer; 4) speed layer; and

5) serving layer. The SaaS application interface is

at the start of the workflow. The application has

the ability to collect and transfer data to the inter-

nal architecture. The function of data modeling lies

ahead of this interface and is given the responsibility
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Figure 7 Proposed model for storage and processing of big data

of determining whether the data is structured or un-

structured. If the data modeling is unavailable, the

analytics would not work. Apache Kafka is taken

into consideration and any process can put data on

it, can store data into it, and it will be used as a

data transportation pipeline for all three lambda lay-

ers. Kafka is also used to publish both models and

model updates for consumption by the speed and

serving layers. The core functionality of Kafka leads

this architecture in terms of activity tracking, queu-

ing the data stream in a message-like fashion, fast

and live streaming, and log aggregation. Kafka pro-

vides the system with high reliability. It replicates

the incoming data and its strength lies in support-

ing and distributing for the batch, speed, and serving

layers. In the case of any failure, it also looks after

the restoration of the lost data. Kafka maintains a

log table of the data streaming. Kafka also enhances

the performance of the proposed model. It delivers

a high rate of throughput for both the SaaS API

and RDBMS (acting as a producer) and the lambda

layers (subscribers). The RDBMS is included in or-

der to look after the OLTP. The ACID properties

granted by the relational databases form the plat-

form for our architecture. The batch layer is de-

signed while keeping in mind the offline processing

of big data. This is implemented with Hadoop and

its MapReduce functionality. It has been configured

in a manner that facilitates the reading of the data

from Kafka, which acts as a data pipeline for the en-

tire architecture. Thereafter, the architecture is also

responsible for processing data in several iteration

methods. This would certainly provide accurate and

well-managed data. The input of the batch layer can

be either structured, semi-structured, or unstruc-

tured. The structured data would also be handled by

the RDBMS for transactional operations and must

be stored in NoSQL. However, the data must also be

passed through the batch layer. The output of the

batch layer would be the batch views. The speed

layer is well implemented in Spark. Spark streaming

is the extension of Spark that led the position of best

player for processing the real data stream. However,

Spark streaming is implemented for processing the

streaming of the incoming real data. This real data

stream is directed from Kafka. As the process of this

layer is aimed at real-time data, the computation is

required to be of a short time interval. However, the

performance of this layer depends on the speed of the

incoming data. The only aim of this layer is to per-

form the algorithm on the data, irrespective of the

degree of accuracy it generates. As the time interval

is required to be small, the accuracy of the data can

be neglected. The output of this layer is real-time

views. The serving layer is the final stage of our

proposed model. This layer listens to the queries to

be executed in the memory. It processes the batch

views and real-time views as per the query being
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asked. Several of these types of architectures are de-

ployed for scalability. Hence, the NoSQL databases

are the preferred choice of such a layer. These are re-

sponsible for writing the results back to Kafka where

both of the other layers can again see new data.

5 Evaluation

This section presents the evaluation of the novel ar-

chitecture in terms of its resilient nature, consistency,

and storage structure.

5.1 Resilience

In the case of the correct implementation of an archi-

tecture, all possible human errors and hardware fail-

ures that would corrupt the data could be neglected.

This is because the inclusion of the lambda architec-

ture does not allow updating existing data sets. In

addition to this, even if the speed layer (real-time

processing layer) fails, there will not be any loss of

data. As the write operations are directed and prop-

agated in the batch layer, the updating data would

easily be tracked and chased in the case of the failure

of the real-time processing layer. Hence, the data in

the batch layer would still be accurate, and the re-

sults will be synchronized automatically.

5.2 Consistency

The data results processed via the batch layer under

the lambda architecture and with the best selected

technology will be highly consistent.

5.3 Storage structure

Under the lambda architecture, the data is allowed

to be stored under a normalized nature in the batch

layer data stores. These data are also meant to be

de-normalized according to the requirement of the

batch and real-time views. The data required from

the application is not directly retrieved from the data

stores, instead it is retrieved and fine tuned from all

the other layers in the proposed architecture.

6 Related work

A zettabyte of data has been uploaded on the In-

ternet in past year[2]. However, owing to the speed

at which the data is being generated, the data is

becoming noisier[1-3]. Technologies such as complex

event processing and real-time processing are gain-

ing more importance in the industry[2] for the objec-

tive of solving big data issues because, as previously

mentioned, traditional computation sources lack the

desired storage and processing capabilities. The au-

thor of Ref. [9] has provided an in-depth analysis

of four major research challenges in the field of big

data. The aforementioned study also included a con-

ceptual framework requiring at least four categories

for all big data applications.

The authors of Refs. [1-3] have attempted to de-

velop a system that can store such big data and ana-

lyze such data for decision-making. In terms of archi-

tecture, using nanotechnology, they have attempted

to design a system that would have a high storage

capacity as compared to traditional hard disks and

any other extended hard disks[2]. For such a sys-

tem, a file system is also required. It should thus

be noted that there has been a paradigm shift in

terms of the migration of the traditional file sys-

tem to the DFS (Distributed File System). A DFS

is a system that allows several candidates to access

a file through the same network[2]. In addition to

this, an online survey was conducted by the database

engine[28] in the context of data management. The

DbaaS (Database as a Service) has become popular

for cases in which the clients do not want to invest

large sums of money to obtain their own data man-

agement structure. Instead, they are willing to pay

DbaaS providers[10,27]. The DbaaS providers man-

age the data in their own data centers while allowing

the clients to be free of the data management. The

chart given below shows the popularity of DbaaS

among users for data management. The objective

of DbaaS is to charge clients via subscription de-

pending on the data limits the client is willing to

use. Some of the big players in the DbaaS market

are MS Azure, IBM Cloudant, Google BigTable, and
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Amazon Relational Database[29-32]. The authors of

Ref. [2] successfully reviewed the current file systems

(including the Google file system, IBM general par-

allel file system, HDFS, and Blobseer & Andrew file

system) and found that their scalability, fault toler-

ance, and availability are still some of the major con-

cerns. A distributed file system is required to have

an extendable nature with a low cost[2]. However,

using a DFS on multiple OSs (Operating Systems)

could be more advantageous. These are also being

used by the DbaaS providers for improving the scal-

ability of their databases[2].

The authors of Ref. [33] have also discussed the

importance of data deduplication, compression for

efficient data storage, and the utilization of band-

width. Recent studies have shown that experts have

attempted to develop deduplication and compres-

sion strategies based on the concept of Hashing using

MapReduce[10]. He et al. in Ref. [10] made a note

regarding several deduplication techniques in which

one copy of the duplicate data is maintained and all

other nodes are allowed to access that copy. The

same paper also discussed a novel method for over-

coming the issue of slow performance by traditional

storage devices (e.g., hard-disks) using deduplica-

tion. Balachandran et al. worked on another tech-

nique called compression. He found that if hashes

occur more than once in any file, only the first hash

value is kept for simplicity[10].

The authors of Ref. [34] have focused their ef-

forts on designing efficient storage techniques for

NoSQL databases. Their design comprised several

layers inside Hadoop. Data is fetched from the

HDFS and stored in flat text files. The dedupli-

cation operation is first performed using MapRe-

duce, the output is then stored in a key-value

pair, which further creates a pointer table in Mon-

goDB. Compression is then applied in order to re-

alize more efficient storage. Moreover, John Klein

and the authors in Ref. [12] compared the perfor-

mance of MongoDB, Cassandra, and Riak (a key

value database). The benchmarking operations used

for comparing these three databases are categorized

as read-only, write-only, and read-write operations.

The results are differentiated depending on the sin-

gle node configurations. The study reported that

the Cassandra performance showed a strong capa-

bility of processing 3 200 operations/s, Riak pro-

cessed 480 operations/s, and MongoDB processed

225 operations/s[12]. The security was and will al-

ways be a concern in terms of databases[35,36]. The

data pattern is changing rapidly with the rapid de-

velopment of applications[35,36]. However, there ex-

ists a myth that the NoSQL databases are immune

to injections[35]. Companies are deploying big data

architectures according to their requirements and are

very well aware of the security concerns involved. It

was stated in Ref. [35] that company repositories are

being targeted in order to obtain access to their most

valuable information. A US-based retail company

faced a loss of $1.1 billion[36], the reason for which

was a loophole in their application design that let the

attacker perform operations on their database. The

loss could have been much higher if this had hap-

pened to a financial organization. Although NoSQL

databases have been proven to be a compliment to

the RDBMS, SQL language should not be used for

processing the data. In addition to this, one of the

major advantages of these databases is that they

are able to change their attributes owing to their

weak structure. This also results in the provision of

convenient modification while developing interactive

applications[35].

7 Conclusion and future work

The era of big data has several more opportunities

to offer. The opportunities in the direction of best

possible data analytics will result in great benefits in

terms of decision-making. The data emerging every

second gives rise to some new challenges. The stor-

age and processing of such big data are currently ma-

jor challenges. There are new techniques and tech-

nologies emerging every day that could be used to

address these issues. This paper appropriately ad-

dresses the aforementioned challenges of big data.

This paper presents an in-depth analysis of the ma-

jor technologies and techniques for the storage and
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processing of big data that are currently in use or

are new. We discussed the processing tool and data

storage process of the various technologies. The pro-

cessing technologies like Apache Hadoop, Kafka, and

Spark are approaching the saturation point of their

development as their usage are getting more popu-

lar and attracting many more users. Furthermore,

data storage has been the key requirement in any

application development. The adaption of NoSQL

databases has provided an efficient method of storing

big data. The MongoDB and Cassandra databases

are the most advantageous. This study has also gone

the extra mile to propose a novel model for address-

ing the issue of storing and processing big data de-

pending on the lambda architecture. The lambda

architecture has strengthened the model used to pro-

cess the batch and real-time data simultaneously.

The analysis of the technologies allowed us to pick

the best one and develop the proposed architecture.

8 Conclusion and future work

Academician Yu made a summary. During the con-

ference, the journal organization works have been

well addressed, while the target of the journal in

2016 has been determined. The journal in 2016 will

be edited and published quarterly, where 4 issues are

defined. A digital periodical platform will be estab-

lished.

References

[1] Gazal, P. D. Kaur. A survey on big data storage strate-

gies [C]//International Conference on Green Computing

and Internet of Things (ICGCIoT), IEEE, 2015: 280-

284.

[2] A. Elomari, A. Maizate, L. Hassouni. Data storage in

big data context: A survey [C]//International Confer-

ence on Systems of Collaboration (SysCo), IEEE, 2016:

1-4.

[3] A. A. Tole. Big data challenges [J]. Database systems

journal, 2013, 4(3): 31-40.

[4] Y. Liu, F. Li, Y. Wang. Incentives for delay-constrained

data query and feedback in mobile opportunistic crowd-

sensing [J]. Sensors, 2016, 16(7): 1138.

[5] Y. Liu, A. E. Bashar, F. Li, et al. Multi-copy data dis-

semination with probabilistic delay constraint in mobile

opportunistic device-to-device networks [C]//IEEE 17th

International Symposium on World of Wireless, Mobile

and Multimedia Networks (WoWMoM), IEEE, 2016: 1-

9.

[6] X. B. Chen, S. Wang, Y. Y. Dong, et al. Big data storage

architecture design in cloud computing [C]//National

Conference on Big Data Technology and Applications,

Springer, 2015: 7-14.

[7] P. P. Srivastava, S. Goyal, A. Kumar. Analysis of var-

ious nosql database [C]//International Conference on

Green Computing and Internet of Things (ICGCIoT),

IEEE, 2015: 539-544.

[8] H. L. Zhang, Y. Wang, J. H. Han. Middleware de-

sign for integrating relational database and nosql based

on data dictionary [C]//International Conference on

Transportation, Mechanical, and Electrical Engineering

(TMEE), IEEE, 2011: 1469-1472.

[9] R. Ranjan. Streaming big data processing in datacenter

clouds [J]. IEEE cloud computing, 2014, 1(1): 78-83.

[10] K. Grolinger, W. A. Higashino, A. Tiwari, et al. Data

management in cloud environments: Nosql and newsql

data stores [J]. Journal of cloud computing: advances,

systems and applications, 2013, 2(1): 22.

[11] Mongodb bringing online big data to business in-

telligence and analytics [EB/OL]. https://www.

mongodb.com/collateral/mongodb-bringing-online-big-

data-to-bi-and-analytics, 2017.

[12] H. H. Shahraki, T. J. Gandomani, M. Z. Nafchi. A novel

method for evaluation of nosql databases: A case study

of cassandra and redis [J]. Journal of theoretical and

applied information technology, 2017, 95(6): 1372-1381.

[13] R. Kanwar, P. Trivedi, K. Singh. Nosql, a solution for

distributed database management system [J]. Interna-

tional journal of computer applications, 2013, 67(2): 6-

9.
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