
Journal of Communications and Information Networks, Vol.2, No.3, Sept. 2017

DOI: 10.1007/s41650-017-0029-3

c© Posts & Telecom Press and Springer Singapore 2017

Special Focus on Future Internet

Research paper

An adaptive dynamic feedback load

balancing algorithm based on QoS

in distributed file system

Ming Wang*, Jianfeng Guan

Beijing University of Posts and Telecommunications, Beijing 100876, China

* Corresponding author, Email: wangmingbupt@163.com

Abstract: An adaptive dynamic load balancing algorithm based on QoS is proposed to improve the

performance of load balancing in distributed file system, combining the advantages of a variety of load

balancing algorithms. The new algorithm uses a tuple containing the number of files and the total file size as

the QoS measure for the requested task. The master node sets a threshold for the requested task based on

the QoS to filter storage nodes that meet the requirements of the task. In order to guarantee the reliability

of the new algorithm, we consider the impact of CPU utilization, memory usage, disk IO occupancy rate,

network bandwidth usage and hard disk usage on load balancing performance when calculating the real-time

load balancing of storage nodes. The heterogeneity of the network is considered when the master node

schedule task assignments to ensure the fairness of the algorithm. The comprehensive evaluation value is

determined based the performance load ratio, which is calculated from the real-time load value of the storage

node and a performance value after normalization. The master node assigns tasks to the storage node with

the highest comprehensive evaluation value. The storage nodes provide adaptive feedback based on changes

in the degree of connectivity, rather than periodic update of the load information. The actual distributed file

system environment is set up on the server cluster, the performance of the new algorithm is tested through

a contrast experiment. The experimental results show that the new algorithm can effectively reduce the

average response time of the system, improve throughput, and enable the system load to reach a good balance.

Keywords: distributed file system, load balancing, QoS, performance load ratio, adaptive dynamic feedback

- -

Citation: M. Wang, J. F. Guan. An adaptive dynamic feedback load balancing algorithm based on QoS in

distributed file system [J]. Journal of communications and information networks, 2017, 2(3): 30-40.

- -

1 Introduction

With the continuous improvement of the mobile

communication network environment and the rapid

popularization of smart phones, mobile Internet us-

age has risen rapidly, significantly increasing the pro-

duction of network data. Thus efficiently storing and

managing network data has become an urgent prob-

lem. Traditional single server storage systems have

long been unable to meet data demands. Solving the

problem of efficient storage and management of mas-

sive amounts of data in distributed file system[1,2] has

become a research hot spot.

Distributed file system refers to the file man-

agement system for physical storage resources that

are not necessarily directly connected to a local

node, but through a network of server clusters.

The servers can communicate with each other and

coordinate, forming a large-scale system that can

be used for shared storage space[3]. Distributed

Manuscript received May 29, 2017; accepted Jul. 19, 2017

This work was supported in part by the National Basic Research Program of China (“973” Program) (No. 2013CB329102).

An adaptive dynamic feedback load balancing algorithm based on QoS in distributed file system 31

file system largely uses the extensible Master-Slave

architecture[4-6], which consists of a master node and

multiple storage nodes. The master node is respon-

sible for system management and task scheduling

while storage node provides storage space. The mas-

ter nodes allocate the tasks to the storage nodes

through a certain load balancing algorithm[7,8]. Load

balancing is the process of redistributing the work

load among nodes of the distributed system to im-

prove both resource utilization and job response time

while also avoiding a situation where some nodes

are heavily loaded while others are idle or doing lit-

tle work[9]. Multiple storage nodes coordinate with

each other to share the system load, thus improv-

ing the overall access efficiency and reliability of the

distributed file system.

Distributed file system typically uses periodic dy-

namic feedback load balancing algorithm, but this

algorithm has some disadvantages[10]. In this algo-

rithm, the storage nodes collect their own load infor-

mation, generally considering only CPU utilization

and memory utilization. In a distributed file system,

the vast majority of operations are file accesses. Ac-

cess operations involving network data transmission

and disk data perform both reads and writes. Net-

work bandwidth and disk IO performance require-

ments are high for these operations, meaning the

collection of load information, disk IO occupancy

rate, and network bandwidth utilization must also

be considered. The storage nodes periodically send

their load information to the master node, but the

optimal feedback interval is difficult to determine.

When the feedback interval is short, information ex-

change between the master node and storage nodes is

too frequent, which requires additional network over-

head, increases network load, and affects the stabil-

ity of the system. When the feedback interval is too

long, the real-time accuracy of the load information

obtained by the master node is reduced, resulting

in an unbalanced allocation of tasks, which will re-

duce overall system performance. The master node

divides storage nodes into three queues based on the

load information of each storage node. The three

queues correspond to three load thresholds: light

load, moderate load and overload. The queues are

sorted by weight after partitioning. This algorithm

implementation is complicated, and the master node

handles a large number of requests from the client.

Additionally, the master node must maintain the

three queues in memory, which increases the load on

the master node. As the system expands, the number

of storage nodes increases and the queue length in-

creases, resulting in increased memory overhead. In

cases of large changes in load, the frequent changes

in the elements in the queues will further increase

the additional load on memory and CPU resources.

We propose an adaptive dynamic load balancing

algorithm based on QoS to solve the problems dis-

cussed above. We build the a real distributed file sys-

tem to verify the feasibility and efficiency of the new

algorithm through a comparison experiment. The

performance of the adaptive dynamic load balancing

algorithm based on QoS and the traditional periodic

dynamic load balancing algorithm are both tested.

The experimental results show that the new algo-

rithm can effectively reduce network overhead, re-

duce memory load on the master node, reduce the

average response time of the system, and improve

throughput. The major innovations of the proposed

algorithm are listed below and a visualization of the

proposed algorithm is presented in Fig. 1:

• We set a threshold value at the storage node,

and send load information to the master node adap-

tively, based on changes in the degree of accessibility,

rather than periodically updating the load informa-

tion.

• We fully consider the various dynamic factors

that affect the real-time load of the storage nodes,

including CPU utilization, memory usage, disk IO

occupancy rate, network bandwidth usage and hard

disk usage, improve the accuracy of real-time load.

• Distributed file system has network heterogene-

ity. In order to account for the influence of network

heterogeneity on the system, a comprehensive evalu-

ation value for storage nodes is characterized by the

performance load ratio. The new algorithm will cal-

culate the normalization performance of the storage

node, and the performance load ratio is calculated

32 Journal of Communications and Information Networks

from the real-time load value and the normalized

performance.

• The concept of QoS is introduced into the dis-

tributed file system. We use a tuple composed of the

number of files and total file size of requested the

task as a measure of QoS. The master node sets a

threshold based on the QoS of the requested task to

filter the set of storage nodes that meet the require-

ments of the task.

2 Related work

Load balancing is a higher-level load allocation strat-

egy than load sharing. It must distribute the system

load to each node, eliminate or avoid any load imbal-

ance problems, and optimize the overall performance

of the distributed file system. Load balancing algo-

rithms can be divided into two categories[11]: static

load balancing[12] and dynamic load balancing[9,13].

Static load balancing[14,15] is also known as state-

independent balancing. It determines a load allo-

cation strategy before a task is triggered, meaning

the master node does not consider the real-time load

status of each storage node while processing a re-

quest, but instead operates based on known sys-

tem static information to make decisions and assign

tasks. The advantages of static load balancing are

that the logic is simple, the overhead is small, and a

task request can be quickly allocated to each storage

node. However, it does not consider the real-time

load of the storage nodes or dynamic changes in the

system state. The task assignments are made blindly

and the accuracy is low, causing task allocation to

be uneven and limiting the system load balance[10].

Dynamic load balancing[10] focuses on the state

of information in the system, by analyzing the real-

time load of each storage node, tasks are allocated

to the storage nodes dynamically. The advantages

of dynamic load balancing are that it can adjust the

allocation of tasks in real time based on the load in-

formation of the storage nodes, adapt to changes in

the load state of the system, and that it has excellent

flexibility. However, it also has some disadvantages.

The master node must periodically collect the status

of the storage nodes necessitating, frequent informa-

tion exchange between the master node and storage

nodes to make network overhead, resulting in a waste

of network bandwidth[10].

The weighted rotation scheduling algorithm[16] is

an upgraded version of the round robin algorithm.

The round robin algorithm assigns all tasks in turn

to each storage node in the system. The round robin

algorithm causes all work for nodes to be handled in

a circular pattern. In other words, each node is fixed

with a time slice and performs a task at designated

time on its turn[17,18]. A scheduling and load balanc-

ing algorithm that considers the capabilities of each

VM, the task length of each requested job, and the

interdependency of multiple tasks was proposed[17].

As a result, some nodes may encounter heavy loads

while others may have no task requests. This is-

sue could be improved by using a weighted round

robin algorithm, where each node can to possess a

specific number of requests according to its assigned

weight[19,20]. The weighted rotation scheduling al-

gorithm sets different weighting factors for different

storage nodes based on their processing ability. The

assignment of tasks is based on the weights, and

higher priorities are assigned to storage nodes with

higher weight factors. The algorithm is more effi-

cient when dealing with requests with smaller time

spans, because the load becomes unbalanced when

handling tasks with large time spans.

In the minimum connection scheduling algo-

rithm[21], the master node of the distributed file sys-

tem detects and records the current number of active

connections of its storage nodes in real time. When

a new request arrives, the master node assigns it to

the storage node with the smallest number of active

connections, and increments the number of active

connections for that node by one. When the task

is completed, the number of active connections is

decremented by one. If the processing capacity of

all the storage nodes in the distributed file system

is the same, the minimum connection scheduling al-

gorithm will distribute requests with large loads to

each storage node in a balanced manner, which is

more efficient. However, the real environment of a

An adaptive dynamic feedback load balancing algorithm based on QoS in distributed file system 33

distributed file system storage node

dynamic factors

 hard disk usage

network band-
width usage

disk IO
occupancy rate

memory usage

CPU utilization
performance load

ratio

normalized
performance

real-time load
value

master node

load information

when the
changing degree
of the connect
ability exceeds
the threshold

value

storage
nodes
infor-

mation

QoS

the set
of

storage
nodes

meet the
qos

(file’s number
file’s size)

Figure 1 Visualization of the proposed algorithm

distributed file system is a heterogeneous network,

where the processing capacity of each storage node

is different. By allocating requests, solely on the ba-

sis of the current number of connections, high per-

formance storage nodes will have more tasks and a

shorter processing time; and storage nodes with low

performance will receive fewer tasks, but the process-

ing time for each task will be long, and the node will

continue to accept new tasks.

The periodic dynamic feedback load balancing al-

gorithm is a common load balancing algorithm in

current distributed file systems. In this algorithm,

storage nodes periodically send the real-time load

information to the master node. The master node

divides the storage nodes into light-load, moderate-

load and heavy-load queues based on this load infor-

mation, and then sorts the three queues by storage

node weight. The master node then assigns new re-

quests to storage nodes in the light-load queue in or-

der of their weight values. However, this algorithm

uses periodic updates to send load information to

the master node. If the information exchange be-

tween the storage nodes and the master node is too

frequent, it can lead to excessive message traffic and

inefficient bandwidth usage. Additionally, the mas-

ter node must maintain three queues in memory, in-

creasing its memory burden.

To avoid excessive message traffic, several schemes

were proposed[22,23]. A load balancing scheme with

an information exchange policy based on a random

sampling of packets for systems with a decentral-

ized nature was proposed in order to improve system

resource utilization while retaining a limited num-

ber of message exchanges [22]. Two message repli-

cation strategies were proposed to improve the effi-

ciency and scalability of unstructured P2P networks

while maintaining query performance[23]. A dynamic

replica technique for cloud storage that utilizes ac-

celeration was also studied to enhance reliability and

access latency[24]. The acceleration response is based

on the nature of speed trends, which can be used to

predict file access variations. Using this information,

this technique can identify hot spot data for the next

period and determine the best node in which to es-

tablish a replica.

3 Adaptive dynamic feedback load

balancing algorithm based on QoS

With the goal of solving the problems discussed

above, we propose an adaptive dynamic feedback

load balancing algorithm based on QoS by combin-

ing the advantages of multiple load balancing algo-

rithms. The core concept of our algorithm is to allo-

cate requests to storage nodes with small loads and

high performance, to realize the maximum poten-

tial performance of the system while ensuring load

balancing for each storage node. In the following

sections, the proposed algorithm is described in de-

tail from four viewpoints: load information collec-

tion strategy, load information processing strategy,

34 Journal of Communications and Information Networks

load information update strategy, and task assign-

ment strategy as follows.

3.1 Load information collection strategy

Through a multi-test of a distributed file system, it

was found that load changes in the storage nodes

have a strong correlation with changes in the num-

ber of active connections. The maximum number of

active connections that a storage node can establish

is limited, but the value is not equal to the num-

ber of threads available to the server and must be

determined. When the system is running, the stor-

age node real-time monitors the number of available

connections, and defines the ratio of the number of

available connections and the maximum number of

active connections to the connect ability degree of

the storage node.

The distributed file system is a heterogeneous net-

work, meaning there are performance differences be-

tween storage nodes. To ensure that the master node

assigns requests to storage nodes with low loads and

high performance, the following performance-related

dynamic factors must be considered: CPU utiliza-

tion, memory usage, disk IO occupancy, and network

bandwidth usage. To improve the overall resource

utilization of the system, hard disk space usage is

determined based on these dynamic factors and a

tuple composed of the available connections of the

storage node and the available storage space is used

as a storage node service quality metric.

3.2 Load information processing strat-

egy

Prior to starting the system, we obtain hardware

configuration information such as CPU performance,

memory capacity, maximum IO rate, network band-

width and hard disk space for each storage node.

Due to the different dimensions of various pieces of

hardware configuration information, the data must

be normalized. The maximum performance of each

storage node is calculated from the hardware config-

uration information following the normalization pro-

cess.

After performing real-time monitoring of the dy-

namic factors in the storage nodes, the connection

ability of the nodes is calculated from the current

number of available connections and the maximum

number of active connections. According to a for-

mula for all dynamic factors to calculate the real-

time load value of the storage node, the performance

load ratio of the storage node is calculated in com-

bination with the real-time load value of the storage

node and the maximum performance value normal-

ized. The calculation of the connect ability degree

and the performance load ratio is carried out at the

storage node, which can effectively reduce the bur-

den of the master node.

3.3 Load information update strategy

The new algorithm replaces the periodic update in

the traditional algorithm with adaptive feedback

based on the degree of connectivity. The connect

ability degree of the storage node is dynamically

changed during the operation of the system. When

the change degree of the connect ability degree ex-

ceeds the threshold value, the storage node sends the

performance load ratio as well as the service quality

evaluation value to the master node. Reduce the fre-

quency of the interaction between the storage node

and the master node, and reduce the network over-

head caused by the periodic update.

3.4 Task allocation strategy

The new algorithm introduces the concept of QoS,

which is represented by a tuple consisting of the num-

ber of files to be uploaded in an upload task and the

total size of the files. The master node selects the

storage nodes that satisfy the requirements based on

the QoS of the upload task and the quality of service

evaluation value of each storage node. The master

node then assigns the new task to the storage node

with the largest performance load ratio from the set

of selected nodes. The master node only needs to

maintain this set of nodes in memory, reducing total

memory overhead.

An adaptive dynamic feedback load balancing algorithm based on QoS in distributed file system 35

4 Determination and calculation of

relevant parameters

4.1 The QoS of the request task and the

service quality evaluation value

When the client initiates an upload task, the task

request information is sent to the master node. The

request information contains the number of files to

be uploaded and the total size of the files, denoted

FNUM and FSIZE respectively. The master node

uses the tuple (FNUM , FSIZE) to characterize the

QoS of the requested task. The storage nodes mon-

itor their number of available connections and avail-

able storage space. The number of available connec-

tions and the available storage space are denoted Ci

and ASi, respectively. The tuple (Ci,ASi) is used

as the service quality evaluation value for a storage

node.

4.2 Connect ability degree

A storage node denoted Ni, where i falls in the range

[1:n] and n is the total number of storage nodes. The

maximum number of available connections for stor-

age nodes Ni is CMAXi, which is obtained through

testing. During the operation of the system, the stor-

age node monitors the number of available connec-

tions Ci in real time. It calculates CMAXi and Ci

to get ACi, as shown in the formula below. Through

real-network testing, we determined that system per-

formance is best when the threshold value V to take

the golden ratio of 0.618.

ACi =
Ci

CMAXi
.

4.3 The real-time load value of the stor-

age node

The storage node monitors the dynamic factors asso-

ciated with the server load during system operation

in real time. The adaptive dynamic load balancing

algorithm based on QoS considers CPU utilization,

memory usage, disk IO occupancy, network band-

width usage, and hard disk usage as a dynamic fac-

tor after considering the characteristics of the actual

distributed file system to calculate the real-time load

value of the storage node Ni. Li is used to represent

the real-time load value obtained by the following

formula.

CPU utilization, memory usage, disk IO occu-

pancy, network bandwidth usage, and hard disk us-

age are denoted Rcpu, Rram, Rio, Rnet and Rhd

respectively. Wcpu, Wram, Wio, Wnet and Whd

are the coefficients of each dynamic factor. The size

of the coefficients represents the degree of influence

the dynamic factors have on the load. Because a

distributed file system is primarily used for file ac-

cess, the main operation of the system is file reading

and writing, which are IO-intensive tasks. There-

fore, the requirement for hard disk IO performance

is very high. There are many interactions between

the memory and the hard disk during the process of

file reading and writing, and memory performance

plays an important role in the system. The storage

node and the client must transfer files through the

network, meaning network transmission rate is the

key factor that affects transmission delay. Hard disk

IO, memory usage, and network bandwidth all play

a key role in the performance of the system. Thus,

the coefficients of these dynamic factors are higher.

We performed many experiments to boost the per-

formance of the distributed system through param-

eter optimization. The resulting coefficients for each

dynamic factor are: Wcpu = 0.15, Wram = 0.25,

Wio = 0.3, Wnet = 0.25, Whd = 0.05.

Wcpu+Wram+Wio+Wnet+Whd = 1,

Li = (Wcpu,Wram,Wio,Wnet,Whd)∗



Rcpu

Rram

Rio

Rnet

Rhd


.

4.4 Maximum performance of a storage

node

The performance of a storage node is determined by

its hardware configuration. The proposed algorithm

36 Journal of Communications and Information Networks

uses CPU performance, memory capacity, maximum

IO rate, network bandwidth and hard disk space

as the parameters for calculating maximum perfor-

mance, denoted Pcpu, Pram, Pio, Pnet, Phd re-

spectively. The values correspond to the dynamic

factors used for the calculated load value. The max-

imum performance of the storage node is denoted

PMAXi. The CPUs in the storage node are not

unique, and the CPU frequencies and core numbers

are not exactly the same. Thus, the product of CPU

core count and the frequency is used as a single CPU

performance value. The CPU performance of the

storage node is the sum of all CPUs in the node.

Due to the different dimensions and units for

each parameter, a direct calculation would result in

PMAXi being inaccurate, which would negatively

affect the performance of the algorithm. In order to

ensure the accuracy and reliability of the algorithm,

the parameters must be normalized. The proposed

algorithm uses the Z-score normalization method to

normalize the parameters through the following for-

mula:

X∗ =
x− µ

σ
,

Where x is the original data, X∗ is the normalized

data, is the mean value of all data, and is the stan-

dard deviation. P ∗ cpu, P ∗ ram, P ∗ io, P ∗ net,
P ∗ hd were obtained by normalizing Pcpu, Pram,

Pio, Pnet, Phd according to Z-score normalization

method, the maximum performance of the storage

node is calculated by the following formula.

PMAXi = (Wcpu,Wram,Wio,Wnet,Whd)

∗



P ∗ cpu

P ∗ ram

P ∗ io

P ∗ net

P ∗ hd


.

4.5 The performance load ratio of Stor-

age node

The real-time load and maximum performance of a

storage node have been obtained. The performance

load ratio of a storage node is denoted RPLi and is

obtained using the following formula:

RPLi =
PMAXii

Li
.

4.6 Pseudo code implementation

Storage nodes

1. while True

2. Calculates Li, calculates RPLi with PMAXi and Li

3. Collect quality of service evaluation (Ci,ASi)

4. Calculate the ACi

5. if change range of ACi > 0.618

6. Send (Ci,ASi) and RPLi to the master node

7. if get upload task

8. Ci-1

9. Connect with the client

10. Processing upload task

Master node

1. while True

2. Gets (Ci,ASi) and RPLi of each storage node

3. Sort all storage nodes by RPLi

4. if Received client’s upload request

5. Get the QoS of upload task

6. Filters out the set of storage nodes that meet

the requirements according to QoS

7. if set is not empty

8. Select the storage node i with largest

RPLi from the set

9. else

10. while set is empty

11. Wait 1 seconde

12. Filters out the set of storage nodes

13. Select the storage node i with largest

RPLi from the set

14. Send the IP and Port Number of the node

i to the client

15. else

16. continue

5 Algorithm performance test and

analysis

5.1 Test environment

In order to test the performance of the new algo-

rithm, the actual distributed file system is set up

An adaptive dynamic feedback load balancing algorithm based on QoS in distributed file system 37

storage nodesstorage nodesstorage nodesstorage nodesstorage nodesstorage nodesstorage nodesstorage nodesstorage nodesstorage nodesstorage nodesstorage nodesstorage nodesstorage nodesstorage nodesstorage nodesstorage nodes

node4

node2node1

node3

master2master1

client
servers

request task

download file

control information
storage information

upload file

status information

seamlessly
switch

Figure 2 System architecture

as the test environment on the server cluster while

system architecture shown in Fig. 2. Among which

four servers are the storage nodes, select two servers

as master node, one of the other can be seamlessly

switched when one breakdown in order to ensure

the reliability of the system. Select the other two

as client test servers, through multiple processes to

start multiple upload client, simulated multiple users

randomly initiated upload request.

5.2 Performance testing and results

analysis

In a distributed file system, the load balancing algo-

rithm’s test objectives include two aspects: on the

one hand from the system point of view, the utiliza-

tion of storage resources is the most important issue,

which can through the system throughput and hard

disk space utilization to express. On the other hand,

from the top application point of view, the user is

most concerned about the response time of the dis-

tributed file system to the request, which can be de-

scribed by the average response time of the system.

The periodic dynamic feedback load balancing al-

gorithm and the proposed adaptive dynamic load

balancing algorithm based on QoS are applied to the

distributed file system, and the comparison test is

carried out.

Experiments in the use of multi-threaded technol-

ogy to start a different number of upload services,

simulation of multiple users randomly issued upload

request, each “user” random upload 10 000 files, get

the experimental results shown in Figs. 2∼4.

the new algorithm
the periodic dynamic feedback
load balancing algorithm

h
a
rd

 d
is

k
 s

p
a
ce

 u
ti

li
za

ti
o
n

50%

40%

30%

20%

10%

0
node1 node2 node3 node4

storage node

Figure 3 Hard disk utilization

The periodic dynamic feedback load balancing

algorithm only considers the CPU utilization and

memory utilization when computing the storage

node load. In the new algorithm, the storage node

considers the dynamic factor of the hard disk usage

38 Journal of Communications and Information Networks

the new algorithm

the periodic dynamic feedback
load balancing algorithm

30 000

25 000

20 000

15 000

10 000

5 000

0

a
v
e
ra

g
e
 r

e
sp

o
n
se

 t
im

e
/
s

number of concurrent threads

50 100 150 200 250 300 350 400 450 500

Figure 4 Response time

30

25

20

15

10

5

0

th
ro

u
g
h
p
u
t/

M
B

. s
−

1

the new algorithm

the periodic dynamic feedback
load balancing algorithm

number of concurrent threads

50 100 150 200 250 300 350 400 450 500

Figure 5 Throughput

when calculating the performance load ratio. The

master node in the task allocation will inevitably be

affected by the hard disk usage, so the results can

be seen from the results of Fig. 3, the application of

the new algorithm for distributed file system stor-

age node hard disk load more balanced, hard disk

utilization is higher.

From the results shown in Figs. 4 and 5, it is found

that in the distributed file system to which the new

algorithm is applied, the average response time is

lower and the throughput is higher. Analysis of the

reasons can see that the new algorithm improves the

periodic feedback to the adaptive feedback based on

the threshold, which reduces the network overhead.

At the same time, the new algorithm fully considers

the dynamic factors that can affect the performance

of the distributed file system. The load condition

of the storage node obtained by the master node is

more accurate, the system load can be better allo-

cated, overall performance of the system is improved.

Through the experimental results in the two figures,

we can find that the performance improvement is not

obvious when the number of “users” is small. When

the number of “users” increases, the advantage of

the new algorithm is more and more obvious. This

shows that when the load is low, the two algorithms

can achieve the purpose of load balancing. When the

load of the server is large, the new algorithm can al-

locate the system task better and allocate the system

load to each storage node more reasonable, improve

the overall performance of the system.

6 Conclusion

Load balancing problem is an important topic in dis-

tributed file system research. Aiming at the short-

An adaptive dynamic feedback load balancing algorithm based on QoS in distributed file system 39

comings of periodic dynamic load balancing algo-

rithm, a new load balancing algorithm which named

adaptive dynamic feedback load balancing algorithm

based on QoS is proposed by analyzing various load

balancing algorithms in distributed file system. In-

troducing the concept of QoS into distributed file

system. The master node filters out the storage node

set satisfying the requirements according to the QoS

of the upload task and the quality of service eval-

uation value of each storage node, reduces the size

of the storage node queue and reduces the memory

cost. The load information of storage node is fed

back to the master node by the adaptive feedback

method based on the threshold, which not only real-

izes the real-time and reduces the network overhead.

The new algorithm takes full account of the dynamic

factors that affect the performance of distributed file

system, and considers the performance difference of

each storage node as well as network heterogene-

ity, performance load ratio is used to characterize

the evaluation values of each storage node, improve

the system throughput, reduce the average response

time, so that the overall system performance is im-

proved. In this algorithm, the threshold V is deter-

mined by the actual test in the current distributed

file system. When the system is dynamically ex-

panded, the threshold V needs to be adjusted. In the

future, we can introduce the machine learning algo-

rithm, so that the distributed file system can adap-

tively adjust according to the current state without

human intervention, so as to improve the ease of use

of the algorithm.

References

[1] E. Levy, A. Silberschatz. Distributed file systems: con-

cepts and examples [J]. ACM computing surveys, 1990,

22(4): 321-374.

[2] T. Z. Zhao, S. B. Dong, M. Verdi, et al. Performance

evaluation and relative predictive model of parallel file

system [J]. Journal of software, 2011, 22(9): 2206-2221.

[3] M. Satyanarayanan. Distributed file systems [J]. Dis-

tributed systems. Addison-Wesley and ACM Press,

1993, 821: 145-154.

[4] S. Ghemawat, H. Gobioff, S. T. Leung. The Google

file system [J]. ACM SIGOPS operating systems review,

2003, 37(5): 29-43.

[5] K. Shvachko, H. Kuang, S. Radia, et al. The hadoop dis-

tributed file system [C]//2010 IEEE 26th Symposium on

Mass Storage Systems and Technologies (MSST), IEEE,

2010: 1-10.

[6] X. Liu, Q. Yu, J. Liao. FastDFS: a high performance

distributed file system [J]. ICIC express letters, Part B,

2014, 5(6): 1741-1746.

[7] R. Achar, P. S. Thilagam, N. Soans, et al. Load balanc-

ing in cloud based on live migration of virtual machines

[C]//Annual IEEE India Conference (INDICON), IEEE,

2013: 1-5.

[8] D. R. Karger, M. Ruhl. Simple efficient load balancing

algorithms for peer-to-peer systems [C]//Proceedings of

the Sixteenth Annual ACM Symposium on Parallelism

in Algorithms and Architectures, ACM, 2004: 36-43.

[9] A. M. Alakeel. A guide to dynamic load balancing in dis-

tributed computer systems [J]. International journal of

computer science and information security, 2010, 10(6):

153-160.

[10] S. Sharma, S. Singh, M. Sharma. Performance analysis

of load balancing algorithms [J]. World academy of sci-

ence, engineering and technology, 2008, 38(3): 269-272.

[11] T. L. Casavant, J. G. Kuhl. A taxonomy of scheduling

in general-purpose distributed computing systems [J].

IEEE transactions on software engineering, 1988, 14(2):

141-154.

[12] A. N. Tantawi, D. Towsley. Optimal static load balanc-

ing in distributed computer systems [J]. Journal of the

ACM, 1985, 32(2): 445-465.

[13] J. Andonieh, A. Rahman. Dynamic feedback load bal-

ancing [P]. U.S. Patent Application 13/173,995, 2011-6-

30.

[14] T. Kunz. The influence of different workload descrip-

tions on a heuristic load balancing scheme [J]. IEEE

transactions on software engineering, 1991, 17(7): 725-

730.

[15] H. Rahmawan, Y. S. Gondokaryono. The simulation

of static load balancing algorithms [C]//International

Conference on Electrical Engineering and Informatics,

IEEE, 2009, 2: 640-645.

[16] D. Grosu, A. T. Chronopoulos. A truthful mech-

anism for fair load balancing in distributed systems

[C]//Second IEEE International Symposium on Net-

work Computing and Applications, IEEE, 2003: 289-

296.

[17] D. C. Devi, V. R. Uthariaraj. Load balancing in cloud

computing environment using improved weighted round

robin algorithm for nonpreemptive dependent tasks [J].

The scientific world journal, 2016, 2016: 3896065.

[18] A. Roy, D. Dutta. Dynamic load balancing: improve

efficiency in cloud computing [J]. International journal

of emerging research in management technology, 2013,

2(4): 78-82.

[19] N. S. Raghava, D. Singh. Comparative study on load

40 Journal of Communications and Information Networks

balancing techniques in cloud computing [J]. Open jour-

nal of mobile computing and cloud computing, 2014,

1(1): 18-25

[20] B. S. Rajeshwari. Comprehensive study on load balanc-

ing [J]. An international journal of advanced computer

technology, 2014, 3(6): 900-907.

[21] X. Qin, H. Jiang, Y. Zhu, et al. A dynamic load balanc-

ing scheme for I/O-intensive applications in distributed

systems [C]//International Conference on Parallel Pro-

cessing Workshops, IEEE, 2003: 79-86.

[22] T. Alam, Z. Raza. Load balancing with random infor-

mation exchanged based policy [C]//IEEE International

Advance Computing Conference (IACC), IEEE, 2014:

690-695.

[23] O. A. H. Hassan, L. Ramaswamy. Message replication

in unstructured peer-to-peer network [C]//International

Conference on Collaborative Computing: Networking,

Applications and Worksharing, IEEE, 2007: 337-344.

[24] M. X. Huang, X. L. Ye, S. P. Wei, et al. A strategy of

dynamic replica creation in cloud storage [C]//1st Inter-

national Workshop on Cloud Computing and Informa-

tion Security. Atlantis Press, 2013.

About the authors

Ming Wang [corresponding author] re-

ceived the B.E. degree in Communication

engineering from Jilin University. He is

currently working toward the master’s de-

gree in Beijing University of Posts and

Telecommunications. His current research

interests are in the areas of distributed

systems, mobile Internet and future net-

work. (Email: wangmingbupt@163.com)

Jianfeng Guan received his B.S. de-

gree from Northeastern University. He re-

ceived the Ph.D. degree in communica-

tions and information system from the

Beijing Jiaotong University. He is an

associate professor at Beijing University

of Posts and Telecommunications. His

main research interests focus around mo-

bile Internet, network security and future network. (Email:

jfguan@bupt.edu.cn)

	Introduction
	Related work
	Adaptive dynamic feedback load balancing algorithm based on QoS
	Load information collection strategy
	Load information processing strategy
	Load information update strategy
	Task allocation strategy

	Determination and calculation of relevant parameters
	The QoS of the request task and the service quality evaluation value
	Connect ability degree
	The real-time load value of the storage node
	Maximum performance of a storage node
	The performance load ratio of Storage node
	Pseudo code implementation

	Algorithm performance test and analysis
	Test environment
	Performance testing and results analysis

	Conclusion

