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Abstract
Reconfigurable platforms such as field-programmable gate arrays (FPGAs) are widely used as an optimized platform with 
fast design time. New features such as dynamic reconfiguration make the bitstream vulnerable to clone/modification attacks 
which raise a security concern in today’s heterogeneous computing architecture. A widely adopted countermeasure is by 
providing a secure boot mechanism as root-of-trust to authenticate the unmodified firmware to prevent attackers from 
manipulating it. In this work, we propose an automated security-aware design flow scheme by integrating the logic-locking 
scheme for secure boot in Xilinx FPGAs. The proposed design implements FPGA-based logic obfuscation, with a pre-boot 
in-field device authentication scheme implemented using ARM TrustZone enabled with Trusted Platform Modules (TPM) 
key provisioning. This scheme constructs security features that can protect the IPs during the design process and integrates 
the primitives with FPGAs secure boot process and enhances bitstream security.
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1  Introduction

The semiconductor industry faces a major issue with the rise 
of counterfeit ICs in the global supply chain. This horizon-
tal semiconductor supply chain model also invites miscre-
ants with malicious intent to enter the supply chain [1]. The 
attacker can tamper and insert hardware trojans which poses 
a threat to the integrity of information stored in the ICs and 
FPGAs. FPGAs are vulnerable to attacks such as reverse 
engineering, bitstream cloning, and IP theft.

To mitigate these attacks, techniques such as IC camou-
flaging [2], split manufacturing [3], and logic locking [4] 
have been proposed for the ASIC and FPGAs. Reconfig-
urability and on-the-fly updates in FPGAs open a medium 
for attackers to have physical access to the device by modi-
fying the bitstream. One way to secure the bitstream is by 
implementing a secure boot process [5] with authentication 
which provides root of trust, but this can be circumvented by 

tampering with the device boot process as the bitstream can 
be modified at runtime using processor configuration access 
port (PCAP) or internal configuration access port (ICAP) 
port. The programmable logic (PL) can be replaced to per-
form an entirely different operation by replacing it with a 
malicious bitstream during boot or runtime. Cryptographic 
processors such as Trusted Platform Modules (TPM) [6] are 
used along with secure boot for key provisioning where the 
keys for authentication can be stored in nonvolatile memory 
to mitigate the attacker access to the keys via invasive attacks.

In the heterogeneous SoC design architecture, the 
ARM-centric processing system provides the hardware-
assisted TrustZone feature for secure implementation and 
the FPGA fabric holds the programmable logic which uses 
the Advanced Extensible Interface (AXI) bus to establish 
communication with the processing system [7]. This work 
focuses on designing the security features by implement-
ing logic locking and integrating them in the design flow 
by inserting key gates, and its application for secure boot, 
where the design/logic functions as intended only when the 
correct key combination is given. The TrustZone provides 
a secure authentication while booting up the logic-locked 
bitstream in the secure world. The TPM which is interfaced 
with the FPGA provides the key and is only accessible 
through the ARM TrustZone’s secure world.
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1.1 � Contributions

This paper makes the following contributions: 

1.	 A novel mechanism for implementing FPGA-based logic 
obfuscation that is intended to function correctly only 
for the correct key combination.

2.	 A pre-boot in-field device authentication scheme is 
extended to implement runtime secure boot and bit-
stream security.

3.	 A remote client-server authentication scheme is pro-
posed that uses ARM TrustZone to ensure a secure con-
figuration and secure boot mechanism.

4.	 TPM integration for key provisioning in a secure way 
by providing driver libraries for security functions are 
open-sourced.

1.2 � Paper Organization

The paper is organized as follows. Section 2 lists the related 
work for securing the reconfigurable logic with a logic-
locking-based design for trust techniques establishing the 
secure boot process. Section 3 discusses the security vul-
nerabilities in FPGAs. Section 4 describes the proposed 
framework, and Sect. 5 presents the experimental setup and 
results of the proposed framework and security analysis is 
discussed in Sect. 6.

2 � Related Works

2.1 � Secure Boot for FPGAs

SoC FPGAs have programmable logic and supports soft-
IP-based or hardwired microprocessors [8]. The reconfigur-
able fabric on FPGAs is programmed using bitstreams which 
configures the Look Up Tables (LUTs) in the logic fabric. 
Bitstreams also configure other fabric elements, e.g., on-chip 
memory, digital system processing (DSP), clocking blocks, 
and wire connections. An attack on the bitstream can affect 
the entire system operation of a device on the field.

The attacker can redirect the normal flow of execution 
to an unauthorized piece of code by hijacking the boot 
flow [9, 10]. In the reconfigurable computing domain, 
SRAM-based FPGAs allow modification in the field. The 
PL is programmed at boot time and this process is either 
performed by the Zeroth Stage Boot Loader software 
commonly referred to as BootROM or by the First Stage 
Boot Loader (FSBL) [11] depending on the type of FPGA 
configuration. If the FPGA is equipped with a Processing 
System (PS), it controls the loading of the PL bitstream, 
otherwise, BootROM takes care of the PL bitstream load-
ing process. Figure 1 shows the FPGA boot process.

Countermeasures such as reconfiguring during runt-
ime by dynamic partial configuration (DPR) and using 
physical unclonable function (PUF) for authentication and 
configuring the programmable logic secures the bitstream 
during secure boot [12]. The responses generated by the 
PUF acts as an authentication key which in turn allows the 
boot loader to boot up the application. Secure root of trust 
architecture with TPM drivers and over-the-air updates to 
identify malicious modifications in configuration files is 
implemented in [13].

A multilayered secure boot that updates the LUT frames 
by modifying the boot image with remote attestation 
using PUF for mutual authentication during runtime [14]. 
Another self-authentication secure boot mechanism [15] 
uses PUF-based authentication in which the secure boot 
process is protected such that any modification made to 
unencrypted bitstream results in key regeneration failure of 
the PUF. To secure open-source architectures a lightweight 
RISC-V-based secure boot framework with PUF and differ-
ent encryption standards with secure remote key attestation 
is implemented [16]. These schemes provide secure boot 
but are expensive to develop as the storage and communica-
tion cost are high. This paper focuses on the security of the 
bitstream during secure boot to eliminate modification of 
the bitstream by an adversary. A strong PUF is used to gen-
erate the authentication keys for a logic-locked bitstream in 
a client–server environment to provide mutual trust.

2.2 � Trusted Platform Module (TPM)

The Trusted Platform Modules are hardware-based crypto-
graphic processors that provide tamper-resistant non-volatile 
memory to hold the keys for different encryption functions. 

Fig. 1   FPGA Boot Process
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It has a true random number generator which along with dif-
ferent special registers called Platform Configuration Regis-
ters (PCR) can be configured to provide necessary security 
functions for a secure boot mechanism [6]. Authentication, 
key generation, and storage hierarchy for private sensitive 
applications with over the date updates are different features 
supported by TPM [17]. TPM integrated with FPGA boot 
process at the first stage boot loader for client–server key 
provisioning provides a bitstream verification scheme with 
secure features [13].

TPM-based key management system secures the recovered 
key from any leakage by implementing an algorithm to pro-
tect the key management module [18]. DFCloud which is a 
secure data access control mechanism with TPM key encryp-
tion management and key sharing for cloud storage services 
provides security features for data leakages [19]. TPM service 
functions along with TrustZone isolation provides a secure 
region and root of trust against different software attacks.

2.3 � Logic Obfuscation

Logic obfuscation is a design for trust technique that is 
used to lock the netlist by inserting key gates to the origi-
nal design. This technique hides the functionality of the 
design and only allows the correct key combination to 
unlock the design functionality. The locked design will 
produce corrupted outputs if an adversary tries to access 
or modify the design. Figure 2 shows the modified logic-
locked equivalent circuit with key gate insertion for the 
c17 circuit. An input sequence of 10011 and the corre-
sponding outputs X and Y are 01 where the correct key is 
(K0 and K1=11). If the key is 00 the output of the circuit 
is modified and leads to an erroneous output.

Attacks such as the Boolean satisfiability attack elimi-
nates wrong key combinations using the distinguished 
inputs effectively breaking the logic-locking techniques. 
The SAT resilient techniques such as SARLock and 
TTLock makes the attack iterations grow exponentially 

with increasing key size [20, 21], Anti-SAT that provides 
tuning flexibility for the key gate configurations [22], 
SFLL scheme that removes a functional logic block and 
restores the original logic using Hamming distance [23], 
and fault-based logic encryption which leverages EDA 
tools to insert key gates with fault impact metrics [24] are 
implemented. Logic-locking techniques are used for IP 
protection that can be extended to applications of secure 
boot. **We demonstrate an automated application frame-
work implementing SARLock and fault-based insertion 
schemes that are resilient to SAT attacks and develop its 
application for FPGA secure boot mechanism.

2.4 � ARM TrustZone

The TrustZone technology in ARM provides hardware isola-
tion and prevents software attacks by partitioning it into two 
worlds, where the secure world protects the critical data, and 
the non-secure world executes the normal operating system 
[25]. The secure monitor call acts as a bridge between both 
worlds. TrustZone enables a Trusted Execution Environment 
(TEE) where once the system boots, the processor enters the 
secure world and once all the privileged operations are com-
pleted it switches back to the normal world and yields control 
to the bootloader [26]. System operational modes and device 
configuration control the data routed to a specific world.

The TEE provides secure trusted services such as authen-
tication and remote attestation to protect the integrity of the 
application. Some approaches are the TEE enabled authen-
tication from a remote device to mitigate phishing attacks 
[27]. TrustZone architecture provides run-time authenti-
cation and data protection mechanism based on identity 
authentication to verify the private data and ensuring data 
access security by making use of the API calls [28]. By 
using the AXI interconnect signals the PL master dynami-
cally configures the data [29] and a secure authentication 
scheme can be achieved by using the secure slave key trans-
action with the master. We propose a secure mechanism in 
which once the secure boot process is authenticated, the 
logic-locked bitstream encryption key is sent from the server 
to the secure IP in the PL and further AES encryption is 
performed to protect the key from AXI attacks. The mas-
ter dynamically configures and authenticates the server and 
decryption is done in a secure environment.

3 � Attack/Threat Model

This section overviews the security threats of boot and 
runtime security of a reconfigurable device in the field. 
Bitstream spoofing is an attack that updates the FPGA 
device with an update that may seem to come from an 

Fig. 2   Logic-locked circuit with two new key gates added in C17 cir-
cuit
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authorized source by using relay and replay attacks [30]. 
This can gain control over the bitstream after authentica-
tion by obtaining the key for bitstream encryption.A bit-
stream can be modified at runtime using PCAP or ICAP 
port [31]. An attacker can either replace the PL logic to 
perform entirely different tasks, add or remove function-
ality (e.g., hardware trojan), or may even add a leakage 
side channel for secret information extraction. The points 
of attack for a reconfigurable device can be at boot or 
during runtime. At boot, before the bitstream is loaded, 
an attacker may replace the bitstream with a malicious 
bitstream. Whereas at runtime, once the bitstream has 
been loaded an attacker may target dynamic reconfigur-
able partitions or may want to target certain portions of 
the configuration.

Malicious code modification can be done during boot 
time or dynamically during runtime by the insertion of 
trojans directly on the FPGA configuration bitstream [32]. 
We focus on bitstream security to mitigate malicious code 
modification during the boot-up process and runtime. The 
device power’s on and the secure boot authentication is 
done using the PUF generated challenge-response pairs 
in a client-server environment. Once the authentication is 
done the logic-locked bitstream is programmed in the PL 
secure IP using the ARM TrustZone configurations where 
the key to unlock the logic-locked bitstream is securely 
stored in the TPM and through secure communication, it 
is used to unlock the bitstream.

4 � Implementation

We propose a multilayered secure boot mechanism in a 
client-server model in which authentication is done using 
PUF, and the correct configuration is unlocked by the 
logic-locking integrated at the boot process. First the 
authentication phase is completed, and once the device 
authenticates the server shares the logic-locked bitstream 
and loads on the PL’s secure IP using ARM TrustZone 
configurations. The logic-locks key to unlock the bit-
stream is stored securely in the TPM, that are accessed 
using drivers as the TPM calls are made before the system 
is loaded. Once the authentication is completed the logic-
locked key is used to successfully unlock the bitstream.

4.1 � Secure Boot Mechanism

In the boot process, the first stage acts as a secured encryp-
tion/decryption unit providing authentication for the bit-
stream with the unique key responses generated by the 
PUF following a second stage in which the logic-locking 
mechanism is applied to the application logic. A strong PUF 

is used to generate the per-device unique responses, based 
on the input challenges. Initially, in the PUF enrollment 
phase, the challenge-response pairs are generated between 
the verifier and the prover and to prevent the adversary from 
gaining access to these response pairs they are encrypted 
using AES core.

The client is enrolled with the server in a trusted envi-
ronment and receives the authentication bitstream which is 
loaded during the boot process. The HELPUF [33], is based 
on path delay variation, is used to generate the challenge-
response pairs for authentication. The server sends the input 
challenges to the client and the responses are gathered in the 
server which produces a unique key for authentication. The 
first stage bootloader loads the authentication bitstream on 
the PL fabric and the input challenge(c) is given to the PUF 
from the TPM to generate the response(r).

In the reconstruction phase, the authentication is done by 
using the unique per device key. Each time the PUF creates a 
new response for authentication using the unique challenge 
and response pairs. The PUF response is further processed to 
generate the secret key for decrypting the encrypted applica-
tion bitstream. The FSBL overwrites the authentication bit-
stream that constitutes a PUF and encryption engine with the 
application bitstream. This acts as a root of trust mechanism 
establishing secure communication between a client-server 
model. Figure 3 depicts the overall key exchange mechanism 
for authentication. TPM is used to securely store the keys 
generated during runtime and to mitigate malicious intru-
sion in gaining access to the keys. Custom device drivers 
are written to enable the device with TPM communication 
during the secure boot process [13].

4.2 � Obfuscation Framework

A logic-locking automation framework and its integration 
with the secure boot flow in FPGA is implemented, where 
the key gates can be inserted at the RTL, or netlist level. 

Fig. 3   Secure boot authentication and key exchange process
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In this scheme, the key gates are inserted in the gate-level 
netlist to protect the gate level IP. The key gate insertion 
scheme is shown in Fig. 4, in which the framework imple-
ments and generates the flow integrated with Synopsys tools 
(Design Compiler) and Vivado. The automated framework 
secures the IP reuse by integrating key gates in the design 
flow. Utilizing only the RTL code makes it vulnerable and 
easier for the adversary to reverse engineer the bitstream 
[34]. The framework is designed to change the method of 
implementation upon checking the input file type and the 
ABC tool [35] is used to convert the input file to Verilog. 
The test bench generator generates a test bench based on the 
input HDL and the generated output is a set of vectors to 
verify the design. During the synthesis process, the RTL is 
converted into a gate-level netlist using the Synopsys tool. 
A generalized TCL script is implemented to automate the 
framework along with the phyton script to insert the logic 
gates to the netlist.

The experiment includes SARLock and fault-based 
encryption-based logic locking and maybe further enhanced 
with the state of art logic-locking schemes resilient to SAT 
attacks. SARLock increases the key size exponentially to 
generate computational complexity ensuring that only a sin-
gle key yields a fault for any input pattern and fault-based 
encryption integrates fault impact metric [36] to determine 
the highest fault impact to insert the gates that maximizes 
the effectiveness of each gate inserted in the design. The 
key generated during logic locking is stored on the server. 
If the adversary tries to modify the bitstream, it produces 

a corrupted or wrong output which makes it unfeasible to 
clone the IP. During runtime, until the correct key is pro-
vided as input from the server, the application’s original 
functionality is unknown and difficult to break. Only after 
device authentication is successful, the correct key is sent 
from the server and stored in the device TPM.

4.3 � Secure IP Using ARM TrustZone

The ARM TrustZone configuration provides accessibility 
of MIO ports through the secure world. TPM is integrated 
with the FPGA using the SPI interface and key storage is 
done using the TPM driver library. The transfer functions are 
implemented to establish secure communication at the FSBL 
to perform the secure boot [13]. Register configuration by PS 
allows it to design a secure IP in the PL using AXI intercon-
nects. The IP security status is a parameter provided by the 
AXI interconnect.

Once the secure boot authentication is done the ARM 
TrustZone is used to load the logic-locked bitstream on the 
secure IP of the PL. If a non-secure master tries to access 
the secure IP an error signal is raised by the secure IP. The 
NS bits on the AXI bus is used for security transaction sta-
tus. The AXI bus consists of five communication signals as 
illustrated in Fig. 5, to establish communication between 
a master and the slave. The ARPROT and AWPROT are 
the two signals which are used for read/write access of 
secure and non-secure IPs. Depending on the NS bits the 
slave checks whether there is a security violation and the 
transaction is completed with a read or write signal. A core 
wrapper is implemented to monitor the AXI-transactions of 
the master–slave interface. The wrapper ensures authorized 
transactions and modification to the configuration raises an 
exception. Thus, the secure transaction is done in the secure 
IP of the PL using ARM TrustZone. The key to unlock the 
bitstream which is stored in the TPM is securely sent to the 
secure IP after device authentication.

Fig. 4   Key gate insertion flow Fig. 5   AXI communication signals
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5 � Experimental Results

The proposed framework has been implemented on Xilinx 
Zedboard FPGA which is equipped with Zynq-7000 
XC7Z020-CLG484. The ARM Cortex A9 processor is 
embedded with the FPGA and Fig. 6 shows the hardware 
setup integrated with the TPM SLB9670 module. The 
HELPPUF component which is used for generating unique 
key pairs is integrated into the existing hardware functions 
[33]. The PUF generates the device-unique encryption key 
for the authentication bitstream. This encryption key which 
is 128-bits is used by the AES cryptographic core to encrypt 
the bitstream and valid verification is completed. Figure 7 
shows the system block with PUF IP and the AES IP added 
as secure slave registers with a custom configured system 
wrapper. Each GPIO port is 32-bit wide, and the PL is pro-
grammed with the authentication bitstream and verified with 
the PUF generated keys. Once device authentication is done 
the logic-locked application bitstream is sent from the server 
to the device.

The obfuscated automated framework with SARLock 
and fault-based encryption consists of outputs generated 
by the unobfuscated circuit, the outputs generated by the 
obfuscated circuit on every possible key combination, and 
finally, an automated script is designed to insert the key 
gates. The framework is tested using circuits from bench-
marks that include the ISCAS-85 suite [37]. For the fault-
based encryption scheme, the is used to analyze the circuits 
for fault impacts along with the ABC tool [35] to gener-
ate the bench and Verilog files. By using the fault impact 

provided [38] in which using the stuck-at fault analysis 
the Fault impact = {(#test patterns detecting sa0) x (#out-
put bits affected by sa0) x (#test patterns detecting sa1) 
x (#output bits affected by sa1)} is calculated. Key gates 
are inserted for the highest calculated fault impact which 
protects the IP from reverse engineering. This design offers 
flexibility to the design to control the corrupt outputs and 
to maximize design complexity for the attacker by target 
50% Hamming distance with a smaller number of key gates 
which significantly reduces the area overhead.

Table 1 shows the fault impact summary for the ISCAS-
85 benchmarks with different sets of test patterns. This 
shows the fault coverage along with the faults detected 
at different gates to compute the fault impact for logic 
encryption. Based on the fault impact factor Table 2 shows 
the average Hamming distance calculated for the bench-
marks with a range of key sizes between correct and incor-
rect outputs to obtain a 50% Hamming distance with less 
number of keys to preserve the complexity of the locked 
design.

The whole framework is automated along with func-
tional verification for the generated netlist using input 
test vectors. The key generated during logic obfuscation 
is stored on the server and upon mutual authentication, it 
is sent to the secure IP and stored on the TPM. The secure 
IP and AXI interconnect implemented by using the TEE is 
used to eliminate non-secure transactions and other AXI 
attacks. By using isolation design flow, the isolated secure 
IP block will have separate resources and ports for trans-
actions. The master-slave ports with dedicated memory 
space are used for memory transactions (GP AXI Ports). 
The keys are stored in TPM with driver functions [39] 
and through authorized configuration, the application is 
unlocked.

Thus, unauthorized transactions and readback modifi-
cations are blocked by using the isolation technique. To 
secure the key from non-secure IP and AXI attacks, 128-
bit AES encryption is done to the logic-locked key in the 
Secure IP. If any non-secure IP tries to access the key, only 
the encrypted version of the key will be available which 
makes it more secure. Figure 8 shows the serial terminal 
in which the secure IP gets the key from the server for 
the logic-locked application and saves it in the TPM and 
does 128-bit AES encryption to the key to camouflage the 
original key. This model provides security policies such 
as authorization by the user to update the system once the 
verification is done. Transactions with the Secure IP is not 
possible by any Non-Secure IPs(master) which eliminates 
illegal memory access. The AXI wrapper with custom IP 
creates a bridge between the PS and the PL. Configuration 
registers for the AXI ports are defined for the security poli-
cies of the application.Fig. 6   Hardware setup

265Journal of Hardware and Systems Security  (2021) 5:260–268



Fig. 7   System block with secure IPs

Table 1   Fault Impact summary for ISCAS-85 benchmarks

C17 C432 C499

No of primary inputs 5 36 41
No of primary outputs 2 7 32
No of test patterns applied faults 224 224 224
No of detected faults 22 472 1271
No of undetected faults 0 28 83
Fault coverage 100 % 94.400% 93.9%

Table 2   Average Hamming Distance (50%) for the benchmark cir-
cuits with different key sizes

Range of Keys Size Benchmark Hamming 
Distance 
(%)

2-5 C17 50
17-20 C432 50
39-42 C499 50
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6 � Security Analysis

Secure boot is a root of trust process which holds all the keys 
used for cryptographic functions but if compromised leads 
to different malware attacks. Thus, implementing a secure 
boot with different security features for reconfigurable logic 
forms a resilient model against different attacks. The secu-
rity properties of the proposed framework are:

•	 PUF-based challenge–response pairs for mutual authen-
tication provides a unique set of key pairs or CRPS for 
authentication between the server and the device.

•	 PUF keys are used for decrypting the application bit-
stream, that is logic-locked. The logic-locking key is 
shared by the server after the authentication step is com-
pleted and are stored on a tamper-resistant memory of the 
device. The TPM module mitigates the invasive attacks 
to acquire the key.

•	 Logic-locked bitstream produces a corrupted output 
if the authentication fails which makes it unfeasible to 
clone the IP. The application’s original functionality is 
unknown and difficult to break during runtime.

•	 The fault impact metric and Hamming distance analy-
sis for fault-based encryption shows that with a smaller 
number of key gates the ambiguity of the locked design 
functionality is preserved, where any single incorrect key 
changes the functionality or the 50% of the outputs.

•	 IP isolation by TrustZone and wrapper implementation 
for secure IPs integrating AXI signals eliminates unau-
thorized transactions and readback modifications from 
FPGAs ICAP interface. AES encryption provides addi-
tional security by encrypting the keys and camouflages 
the original key hence protecting the keys from other 
access mediums.

7 � Conclusion

In this paper, we present a secure framework to implement 
logic-locking and extend its application of secure boot pro-
cess for FPGAs. The automated framework demonstrates the 
secure design flow to enable security functions such as RTL 
to secure bitstream, logic obfuscation, technology mapping, 
IP isolation, and support secure boot applications during 
runtime. The framework is tested using ISCAS 85, bench-
mark suite and is demonstrated on the Zynq 7000 family 
of Xilinx FPGAs. This framework is used for secure boot 
applications with authentication over the fly and secure IP 
transactions using TrustZone features.
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