
https://doi.org/10.1007/s41635-021-00123-3

A Secure Boot Framework with Multi‑security Features
and Logic‑Locking Applications for Reconfigurable Logic

Geraldine Shirley Nicholas1 · Ali Shuja Siddiqui1 · Sam Reji Joseph1 · Gregory Williams1 · Fareena Saqib1

Received: 1 March 2021 / Accepted: 4 November 2021
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract
Reconfigurable platforms such as field-programmable gate arrays (FPGAs) are widely used as an optimized platform with
fast design time. New features such as dynamic reconfiguration make the bitstream vulnerable to clone/modification attacks
which raise a security concern in today’s heterogeneous computing architecture. A widely adopted countermeasure is by
providing a secure boot mechanism as root-of-trust to authenticate the unmodified firmware to prevent attackers from
manipulating it. In this work, we propose an automated security-aware design flow scheme by integrating the logic-locking
scheme for secure boot in Xilinx FPGAs. The proposed design implements FPGA-based logic obfuscation, with a pre-boot
in-field device authentication scheme implemented using ARM TrustZone enabled with Trusted Platform Modules (TPM)
key provisioning. This scheme constructs security features that can protect the IPs during the design process and integrates
the primitives with FPGAs secure boot process and enhances bitstream security.

Keywords  Hardware Security · FPGA · Secure boot · ARM trustZone · Logic obfuscation · Bitstream security · TPM

1  Introduction

The semiconductor industry faces a major issue with the rise
of counterfeit ICs in the global supply chain. This horizon-
tal semiconductor supply chain model also invites miscre-
ants with malicious intent to enter the supply chain [1]. The
attacker can tamper and insert hardware trojans which poses
a threat to the integrity of information stored in the ICs and
FPGAs. FPGAs are vulnerable to attacks such as reverse
engineering, bitstream cloning, and IP theft.

To mitigate these attacks, techniques such as IC camou-
flaging [2], split manufacturing [3], and logic locking [4]
have been proposed for the ASIC and FPGAs. Reconfig-
urability and on-the-fly updates in FPGAs open a medium
for attackers to have physical access to the device by modi-
fying the bitstream. One way to secure the bitstream is by
implementing a secure boot process [5] with authentication
which provides root of trust, but this can be circumvented by

tampering with the device boot process as the bitstream can
be modified at runtime using processor configuration access
port (PCAP) or internal configuration access port (ICAP)
port. The programmable logic (PL) can be replaced to per-
form an entirely different operation by replacing it with a
malicious bitstream during boot or runtime. Cryptographic
processors such as Trusted Platform Modules (TPM) [6] are
used along with secure boot for key provisioning where the
keys for authentication can be stored in nonvolatile memory
to mitigate the attacker access to the keys via invasive attacks.

In the heterogeneous SoC design architecture, the
ARM-centric processing system provides the hardware-
assisted TrustZone feature for secure implementation and
the FPGA fabric holds the programmable logic which uses
the Advanced Extensible Interface (AXI) bus to establish
communication with the processing system [7]. This work
focuses on designing the security features by implement-
ing logic locking and integrating them in the design flow
by inserting key gates, and its application for secure boot,
where the design/logic functions as intended only when the
correct key combination is given. The TrustZone provides
a secure authentication while booting up the logic-locked
bitstream in the secure world. The TPM which is interfaced
with the FPGA provides the key and is only accessible
through the ARM TrustZone’s secure world.

 *	 Geraldine Shirley Nicholas
	 gnichola@uncc.edu

	 Fareena Saqib
	 fsaqib@uncc.edu

1	 University of North Carolina at Charlotte, Charlotte,
North Carolina, USA

/ Published online: 29 November 2021

Journal of Hardware and Systems Security (2021) 5:260–268

http://crossmark.crossref.org/dialog/?doi=10.1007/s41635-021-00123-3&domain=pdf

1.1 � Contributions

This paper makes the following contributions:

1.	 A novel mechanism for implementing FPGA-based logic
obfuscation that is intended to function correctly only
for the correct key combination.

2.	 A pre-boot in-field device authentication scheme is
extended to implement runtime secure boot and bit-
stream security.

3.	 A remote client-server authentication scheme is pro-
posed that uses ARM TrustZone to ensure a secure con-
figuration and secure boot mechanism.

4.	 TPM integration for key provisioning in a secure way
by providing driver libraries for security functions are
open-sourced.

1.2 � Paper Organization

The paper is organized as follows. Section 2 lists the related
work for securing the reconfigurable logic with a logic-
locking-based design for trust techniques establishing the
secure boot process. Section 3 discusses the security vul-
nerabilities in FPGAs. Section 4 describes the proposed
framework, and Sect. 5 presents the experimental setup and
results of the proposed framework and security analysis is
discussed in Sect. 6.

2 � Related Works

2.1 � Secure Boot for FPGAs

SoC FPGAs have programmable logic and supports soft-
IP-based or hardwired microprocessors [8]. The reconfigur-
able fabric on FPGAs is programmed using bitstreams which
configures the Look Up Tables (LUTs) in the logic fabric.
Bitstreams also configure other fabric elements, e.g., on-chip
memory, digital system processing (DSP), clocking blocks,
and wire connections. An attack on the bitstream can affect
the entire system operation of a device on the field.

The attacker can redirect the normal flow of execution
to an unauthorized piece of code by hijacking the boot
flow [9, 10]. In the reconfigurable computing domain,
SRAM-based FPGAs allow modification in the field. The
PL is programmed at boot time and this process is either
performed by the Zeroth Stage Boot Loader software
commonly referred to as BootROM or by the First Stage
Boot Loader (FSBL) [11] depending on the type of FPGA
configuration. If the FPGA is equipped with a Processing
System (PS), it controls the loading of the PL bitstream,
otherwise, BootROM takes care of the PL bitstream load-
ing process. Figure 1 shows the FPGA boot process.

Countermeasures such as reconfiguring during runt-
ime by dynamic partial configuration (DPR) and using
physical unclonable function (PUF) for authentication and
configuring the programmable logic secures the bitstream
during secure boot [12]. The responses generated by the
PUF acts as an authentication key which in turn allows the
boot loader to boot up the application. Secure root of trust
architecture with TPM drivers and over-the-air updates to
identify malicious modifications in configuration files is
implemented in [13].

A multilayered secure boot that updates the LUT frames
by modifying the boot image with remote attestation
using PUF for mutual authentication during runtime [14].
Another self-authentication secure boot mechanism [15]
uses PUF-based authentication in which the secure boot
process is protected such that any modification made to
unencrypted bitstream results in key regeneration failure of
the PUF. To secure open-source architectures a lightweight
RISC-V-based secure boot framework with PUF and differ-
ent encryption standards with secure remote key attestation
is implemented [16]. These schemes provide secure boot
but are expensive to develop as the storage and communica-
tion cost are high. This paper focuses on the security of the
bitstream during secure boot to eliminate modification of
the bitstream by an adversary. A strong PUF is used to gen-
erate the authentication keys for a logic-locked bitstream in
a client–server environment to provide mutual trust.

2.2 � Trusted Platform Module (TPM)

The Trusted Platform Modules are hardware-based crypto-
graphic processors that provide tamper-resistant non-volatile
memory to hold the keys for different encryption functions.

Fig. 1   FPGA Boot Process

261Journal of Hardware and Systems Security (2021) 5:260–268

It has a true random number generator which along with dif-
ferent special registers called Platform Configuration Regis-
ters (PCR) can be configured to provide necessary security
functions for a secure boot mechanism [6]. Authentication,
key generation, and storage hierarchy for private sensitive
applications with over the date updates are different features
supported by TPM [17]. TPM integrated with FPGA boot
process at the first stage boot loader for client–server key
provisioning provides a bitstream verification scheme with
secure features [13].

TPM-based key management system secures the recovered
key from any leakage by implementing an algorithm to pro-
tect the key management module [18]. DFCloud which is a
secure data access control mechanism with TPM key encryp-
tion management and key sharing for cloud storage services
provides security features for data leakages [19]. TPM service
functions along with TrustZone isolation provides a secure
region and root of trust against different software attacks.

2.3 � Logic Obfuscation

Logic obfuscation is a design for trust technique that is
used to lock the netlist by inserting key gates to the origi-
nal design. This technique hides the functionality of the
design and only allows the correct key combination to
unlock the design functionality. The locked design will
produce corrupted outputs if an adversary tries to access
or modify the design. Figure 2 shows the modified logic-
locked equivalent circuit with key gate insertion for the
c17 circuit. An input sequence of 10011 and the corre-
sponding outputs X and Y are 01 where the correct key is
(K0 and K1=11). If the key is 00 the output of the circuit
is modified and leads to an erroneous output.

Attacks such as the Boolean satisfiability attack elimi-
nates wrong key combinations using the distinguished
inputs effectively breaking the logic-locking techniques.
The SAT resilient techniques such as SARLock and
TTLock makes the attack iterations grow exponentially

with increasing key size [20, 21], Anti-SAT that provides
tuning flexibility for the key gate configurations [22],
SFLL scheme that removes a functional logic block and
restores the original logic using Hamming distance [23],
and fault-based logic encryption which leverages EDA
tools to insert key gates with fault impact metrics [24] are
implemented. Logic-locking techniques are used for IP
protection that can be extended to applications of secure
boot. **We demonstrate an automated application frame-
work implementing SARLock and fault-based insertion
schemes that are resilient to SAT attacks and develop its
application for FPGA secure boot mechanism.

2.4 � ARM TrustZone

The TrustZone technology in ARM provides hardware isola-
tion and prevents software attacks by partitioning it into two
worlds, where the secure world protects the critical data, and
the non-secure world executes the normal operating system
[25]. The secure monitor call acts as a bridge between both
worlds. TrustZone enables a Trusted Execution Environment
(TEE) where once the system boots, the processor enters the
secure world and once all the privileged operations are com-
pleted it switches back to the normal world and yields control
to the bootloader [26]. System operational modes and device
configuration control the data routed to a specific world.

The TEE provides secure trusted services such as authen-
tication and remote attestation to protect the integrity of the
application. Some approaches are the TEE enabled authen-
tication from a remote device to mitigate phishing attacks
[27]. TrustZone architecture provides run-time authenti-
cation and data protection mechanism based on identity
authentication to verify the private data and ensuring data
access security by making use of the API calls [28]. By
using the AXI interconnect signals the PL master dynami-
cally configures the data [29] and a secure authentication
scheme can be achieved by using the secure slave key trans-
action with the master. We propose a secure mechanism in
which once the secure boot process is authenticated, the
logic-locked bitstream encryption key is sent from the server
to the secure IP in the PL and further AES encryption is
performed to protect the key from AXI attacks. The mas-
ter dynamically configures and authenticates the server and
decryption is done in a secure environment.

3 � Attack/Threat Model

This section overviews the security threats of boot and
runtime security of a reconfigurable device in the field.
Bitstream spoofing is an attack that updates the FPGA
device with an update that may seem to come from an

Fig. 2   Logic-locked circuit with two new key gates added in C17 cir-
cuit

262 Journal of Hardware and Systems Security (2021) 5:260–268

authorized source by using relay and replay attacks [30].
This can gain control over the bitstream after authentica-
tion by obtaining the key for bitstream encryption.A bit-
stream can be modified at runtime using PCAP or ICAP
port [31]. An attacker can either replace the PL logic to
perform entirely different tasks, add or remove function-
ality (e.g., hardware trojan), or may even add a leakage
side channel for secret information extraction. The points
of attack for a reconfigurable device can be at boot or
during runtime. At boot, before the bitstream is loaded,
an attacker may replace the bitstream with a malicious
bitstream. Whereas at runtime, once the bitstream has
been loaded an attacker may target dynamic reconfigur-
able partitions or may want to target certain portions of
the configuration.

Malicious code modification can be done during boot
time or dynamically during runtime by the insertion of
trojans directly on the FPGA configuration bitstream [32].
We focus on bitstream security to mitigate malicious code
modification during the boot-up process and runtime. The
device power’s on and the secure boot authentication is
done using the PUF generated challenge-response pairs
in a client-server environment. Once the authentication is
done the logic-locked bitstream is programmed in the PL
secure IP using the ARM TrustZone configurations where
the key to unlock the logic-locked bitstream is securely
stored in the TPM and through secure communication, it
is used to unlock the bitstream.

4 � Implementation

We propose a multilayered secure boot mechanism in a
client-server model in which authentication is done using
PUF, and the correct configuration is unlocked by the
logic-locking integrated at the boot process. First the
authentication phase is completed, and once the device
authenticates the server shares the logic-locked bitstream
and loads on the PL’s secure IP using ARM TrustZone
configurations. The logic-locks key to unlock the bit-
stream is stored securely in the TPM, that are accessed
using drivers as the TPM calls are made before the system
is loaded. Once the authentication is completed the logic-
locked key is used to successfully unlock the bitstream.

4.1 � Secure Boot Mechanism

In the boot process, the first stage acts as a secured encryp-
tion/decryption unit providing authentication for the bit-
stream with the unique key responses generated by the
PUF following a second stage in which the logic-locking
mechanism is applied to the application logic. A strong PUF

is used to generate the per-device unique responses, based
on the input challenges. Initially, in the PUF enrollment
phase, the challenge-response pairs are generated between
the verifier and the prover and to prevent the adversary from
gaining access to these response pairs they are encrypted
using AES core.

The client is enrolled with the server in a trusted envi-
ronment and receives the authentication bitstream which is
loaded during the boot process. The HELPUF [33], is based
on path delay variation, is used to generate the challenge-
response pairs for authentication. The server sends the input
challenges to the client and the responses are gathered in the
server which produces a unique key for authentication. The
first stage bootloader loads the authentication bitstream on
the PL fabric and the input challenge(c) is given to the PUF
from the TPM to generate the response(r).

In the reconstruction phase, the authentication is done by
using the unique per device key. Each time the PUF creates a
new response for authentication using the unique challenge
and response pairs. The PUF response is further processed to
generate the secret key for decrypting the encrypted applica-
tion bitstream. The FSBL overwrites the authentication bit-
stream that constitutes a PUF and encryption engine with the
application bitstream. This acts as a root of trust mechanism
establishing secure communication between a client-server
model. Figure 3 depicts the overall key exchange mechanism
for authentication. TPM is used to securely store the keys
generated during runtime and to mitigate malicious intru-
sion in gaining access to the keys. Custom device drivers
are written to enable the device with TPM communication
during the secure boot process [13].

4.2 � Obfuscation Framework

A logic-locking automation framework and its integration
with the secure boot flow in FPGA is implemented, where
the key gates can be inserted at the RTL, or netlist level.

Fig. 3   Secure boot authentication and key exchange process

263Journal of Hardware and Systems Security (2021) 5:260–268

In this scheme, the key gates are inserted in the gate-level
netlist to protect the gate level IP. The key gate insertion
scheme is shown in Fig. 4, in which the framework imple-
ments and generates the flow integrated with Synopsys tools
(Design Compiler) and Vivado. The automated framework
secures the IP reuse by integrating key gates in the design
flow. Utilizing only the RTL code makes it vulnerable and
easier for the adversary to reverse engineer the bitstream
[34]. The framework is designed to change the method of
implementation upon checking the input file type and the
ABC tool [35] is used to convert the input file to Verilog.
The test bench generator generates a test bench based on the
input HDL and the generated output is a set of vectors to
verify the design. During the synthesis process, the RTL is
converted into a gate-level netlist using the Synopsys tool.
A generalized TCL script is implemented to automate the
framework along with the phyton script to insert the logic
gates to the netlist.

The experiment includes SARLock and fault-based
encryption-based logic locking and maybe further enhanced
with the state of art logic-locking schemes resilient to SAT
attacks. SARLock increases the key size exponentially to
generate computational complexity ensuring that only a sin-
gle key yields a fault for any input pattern and fault-based
encryption integrates fault impact metric [36] to determine
the highest fault impact to insert the gates that maximizes
the effectiveness of each gate inserted in the design. The
key generated during logic locking is stored on the server.
If the adversary tries to modify the bitstream, it produces

a corrupted or wrong output which makes it unfeasible to
clone the IP. During runtime, until the correct key is pro-
vided as input from the server, the application’s original
functionality is unknown and difficult to break. Only after
device authentication is successful, the correct key is sent
from the server and stored in the device TPM.

4.3 � Secure IP Using ARM TrustZone

The ARM TrustZone configuration provides accessibility
of MIO ports through the secure world. TPM is integrated
with the FPGA using the SPI interface and key storage is
done using the TPM driver library. The transfer functions are
implemented to establish secure communication at the FSBL
to perform the secure boot [13]. Register configuration by PS
allows it to design a secure IP in the PL using AXI intercon-
nects. The IP security status is a parameter provided by the
AXI interconnect.

Once the secure boot authentication is done the ARM
TrustZone is used to load the logic-locked bitstream on the
secure IP of the PL. If a non-secure master tries to access
the secure IP an error signal is raised by the secure IP. The
NS bits on the AXI bus is used for security transaction sta-
tus. The AXI bus consists of five communication signals as
illustrated in Fig. 5, to establish communication between
a master and the slave. The ARPROT and AWPROT are
the two signals which are used for read/write access of
secure and non-secure IPs. Depending on the NS bits the
slave checks whether there is a security violation and the
transaction is completed with a read or write signal. A core
wrapper is implemented to monitor the AXI-transactions of
the master–slave interface. The wrapper ensures authorized
transactions and modification to the configuration raises an
exception. Thus, the secure transaction is done in the secure
IP of the PL using ARM TrustZone. The key to unlock the
bitstream which is stored in the TPM is securely sent to the
secure IP after device authentication.

Fig. 4   Key gate insertion flow Fig. 5   AXI communication signals

264 Journal of Hardware and Systems Security (2021) 5:260–268

5 � Experimental Results

The proposed framework has been implemented on Xilinx
Zedboard FPGA which is equipped with Zynq-7000
XC7Z020-CLG484. The ARM Cortex A9 processor is
embedded with the FPGA and Fig. 6 shows the hardware
setup integrated with the TPM SLB9670 module. The
HELPPUF component which is used for generating unique
key pairs is integrated into the existing hardware functions
[33]. The PUF generates the device-unique encryption key
for the authentication bitstream. This encryption key which
is 128-bits is used by the AES cryptographic core to encrypt
the bitstream and valid verification is completed. Figure 7
shows the system block with PUF IP and the AES IP added
as secure slave registers with a custom configured system
wrapper. Each GPIO port is 32-bit wide, and the PL is pro-
grammed with the authentication bitstream and verified with
the PUF generated keys. Once device authentication is done
the logic-locked application bitstream is sent from the server
to the device.

The obfuscated automated framework with SARLock
and fault-based encryption consists of outputs generated
by the unobfuscated circuit, the outputs generated by the
obfuscated circuit on every possible key combination, and
finally, an automated script is designed to insert the key
gates. The framework is tested using circuits from bench-
marks that include the ISCAS-85 suite [37]. For the fault-
based encryption scheme, the is used to analyze the circuits
for fault impacts along with the ABC tool [35] to gener-
ate the bench and Verilog files. By using the fault impact

provided [38] in which using the stuck-at fault analysis
the Fault impact = {(#test patterns detecting sa0) x (#out-
put bits affected by sa0) x (#test patterns detecting sa1)
x (#output bits affected by sa1)} is calculated. Key gates
are inserted for the highest calculated fault impact which
protects the IP from reverse engineering. This design offers
flexibility to the design to control the corrupt outputs and
to maximize design complexity for the attacker by target
50% Hamming distance with a smaller number of key gates
which significantly reduces the area overhead.

Table 1 shows the fault impact summary for the ISCAS-
85 benchmarks with different sets of test patterns. This
shows the fault coverage along with the faults detected
at different gates to compute the fault impact for logic
encryption. Based on the fault impact factor Table 2 shows
the average Hamming distance calculated for the bench-
marks with a range of key sizes between correct and incor-
rect outputs to obtain a 50% Hamming distance with less
number of keys to preserve the complexity of the locked
design.

The whole framework is automated along with func-
tional verification for the generated netlist using input
test vectors. The key generated during logic obfuscation
is stored on the server and upon mutual authentication, it
is sent to the secure IP and stored on the TPM. The secure
IP and AXI interconnect implemented by using the TEE is
used to eliminate non-secure transactions and other AXI
attacks. By using isolation design flow, the isolated secure
IP block will have separate resources and ports for trans-
actions. The master-slave ports with dedicated memory
space are used for memory transactions (GP AXI Ports).
The keys are stored in TPM with driver functions [39]
and through authorized configuration, the application is
unlocked.

Thus, unauthorized transactions and readback modifi-
cations are blocked by using the isolation technique. To
secure the key from non-secure IP and AXI attacks, 128-
bit AES encryption is done to the logic-locked key in the
Secure IP. If any non-secure IP tries to access the key, only
the encrypted version of the key will be available which
makes it more secure. Figure 8 shows the serial terminal
in which the secure IP gets the key from the server for
the logic-locked application and saves it in the TPM and
does 128-bit AES encryption to the key to camouflage the
original key. This model provides security policies such
as authorization by the user to update the system once the
verification is done. Transactions with the Secure IP is not
possible by any Non-Secure IPs(master) which eliminates
illegal memory access. The AXI wrapper with custom IP
creates a bridge between the PS and the PL. Configuration
registers for the AXI ports are defined for the security poli-
cies of the application.Fig. 6   Hardware setup

265Journal of Hardware and Systems Security (2021) 5:260–268

Fig. 7   System block with secure IPs

Table 1   Fault Impact summary for ISCAS-85 benchmarks

C17 C432 C499

No of primary inputs 5 36 41
No of primary outputs 2 7 32
No of test patterns applied faults 224 224 224
No of detected faults 22 472 1271
No of undetected faults 0 28 83
Fault coverage 100 % 94.400% 93.9%

Table 2   Average Hamming Distance (50%) for the benchmark cir-
cuits with different key sizes

Range of Keys Size Benchmark Hamming
Distance
(%)

2-5 C17 50
17-20 C432 50
39-42 C499 50

266 Journal of Hardware and Systems Security (2021) 5:260–268

6 � Security Analysis

Secure boot is a root of trust process which holds all the keys
used for cryptographic functions but if compromised leads
to different malware attacks. Thus, implementing a secure
boot with different security features for reconfigurable logic
forms a resilient model against different attacks. The secu-
rity properties of the proposed framework are:

•	 PUF-based challenge–response pairs for mutual authen-
tication provides a unique set of key pairs or CRPS for
authentication between the server and the device.

•	 PUF keys are used for decrypting the application bit-
stream, that is logic-locked. The logic-locking key is
shared by the server after the authentication step is com-
pleted and are stored on a tamper-resistant memory of the
device. The TPM module mitigates the invasive attacks
to acquire the key.

•	 Logic-locked bitstream produces a corrupted output
if the authentication fails which makes it unfeasible to
clone the IP. The application’s original functionality is
unknown and difficult to break during runtime.

•	 The fault impact metric and Hamming distance analy-
sis for fault-based encryption shows that with a smaller
number of key gates the ambiguity of the locked design
functionality is preserved, where any single incorrect key
changes the functionality or the 50% of the outputs.

•	 IP isolation by TrustZone and wrapper implementation
for secure IPs integrating AXI signals eliminates unau-
thorized transactions and readback modifications from
FPGAs ICAP interface. AES encryption provides addi-
tional security by encrypting the keys and camouflages
the original key hence protecting the keys from other
access mediums.

7 � Conclusion

In this paper, we present a secure framework to implement
logic-locking and extend its application of secure boot pro-
cess for FPGAs. The automated framework demonstrates the
secure design flow to enable security functions such as RTL
to secure bitstream, logic obfuscation, technology mapping,
IP isolation, and support secure boot applications during
runtime. The framework is tested using ISCAS 85, bench-
mark suite and is demonstrated on the Zynq 7000 family
of Xilinx FPGAs. This framework is used for secure boot
applications with authentication over the fly and secure IP
transactions using TrustZone features.

References

	 1.	 Zhang Jiliang, Gang Qu (2019) Recent attacks and defenses on
FPGA-based systems. ACM Trans Reconfigurable Technol Syst
12:1–24. https://​doi.​org/​10.​1145/​33405​57

	 2.	 Rajendran J, Sam M, Sinanoglu O, Karri R (2013) Security analysis
of integrated circuit camouflaging. In: ACM/SIGSAC Conference
on Computer and Communications Security, pp 709–720

	 3.	 Jarvis RW, McIntyre MG (2007) Split manufacturing method for
advanced semiconductor circuits. US Patent 7(195):931

	 4.	 Chakraborty RS, Bhunia S (2009) HARPOON: an obfuscation-
based SoC design methodology for hardware protection. IEEE
Trans Comput Aided Des Integr Circuits Syst 28(10):1493–1502

	 5.	 Xilinx Inc. (2014) Zynq-7000 all programmable SoC secure
boot. https://​www.​xilinx.​com/​suppo​rt/​docum​entat​ion/​user-​guides/​
ug1025-​zynq-​secure-​boot-​gsg.​pdf

	 6.	 Trusted Computing Group (2017) TCG PC client platform TPM
profile (PTP) specification family ‘2.0’ TCG public review

	 7.	 Benhani EM, Bossuet L, Aubert A (2019) The security of ARM Trust-
Zone in a FPGA-based SoC. IEEE Trans Comput 68(8):1238–
1248. https://​doi.​org/​10.​1109/​TC.​2019.​29002​35

	 8.	 Xilinx (2017) Understanding FPGA architecture. https://​www.​
xilinx.​com/​html-​docs/​xilin​x2017-2/​sdacc​el-​doc/​topics/​devic​es/​
con-​fpga-​archi​tectu​re.​html/

	 9.	 Cowan C, Pu C, Maier D, Hintony H, Walpole J, Bakke P, Beattie S,
Grier A, Wagle P, Zhang Q (1998) StackGuard: Automatic adaptive
detection and prevention of buffer-overflow attacks. In: Usenix, p 5

	10.	 Prandini M, Ramilli M (2012) Return-oriented programming, pp
84–87

	11.	 Xilinx (2013) Zynq-7000 All Programmable SoC Software
Developers Guide. Tech Rep. https://​www.​xilinx.​com/​suppo​rt/​
docum​entat​ion/​user-​guides/​ug821-​zynq-​7000s​wdev.​pdf

	12.	 Xilinx and Inc. (2017) Using encryption and authentication to
secure an ultraScale/ultraScale+ FPGA bitstream application note
(XAPP1267), XAPP1267

	13.	 Siddiqui AS, Gui Y, Saqib F (2020) Secure boot for reconfigur-
able architectures. Cryptography 4(4):26. https://​doi.​org/​10.​3390/​
crypt​ograp​hy404​0026

	14.	 Siddiqui AS et al (2019) Multilayer camouflaged secure boot for
SoCs. In: 2019 20th international workshop on microprocessor/
SoC test, security and verification (MTV), pp 56–61

	15.	 Pocklassery G, Che W, Saqib F, Areno M, Plusquellic J (2018)
Self-authenticating secure boot for FPGAs. In: 2018 IEEE Inter-
national Symposium on Hardware Oriented Security and Trust
(HOST). IEEE, pp 221–226

Fig. 8   Design using AXI GPIO Ports for Secure IP

267Journal of Hardware and Systems Security (2021) 5:260–268

https://doi.org/10.1145/3340557
https://www.xilinx.com/support/documentation/user-guides/ug1025-zynq-secure-boot-gsg.pdf
https://www.xilinx.com/support/documentation/user-guides/ug1025-zynq-secure-boot-gsg.pdf
https://doi.org/10.1109/TC.2019.2900235
https://www.xilinx.com/html-docs/xilinx2017-2/sdaccel-doc/topics/devices/con-fpga-architecture.html/
https://www.xilinx.com/html-docs/xilinx2017-2/sdaccel-doc/topics/devices/con-fpga-architecture.html/
https://www.xilinx.com/html-docs/xilinx2017-2/sdaccel-doc/topics/devices/con-fpga-architecture.html/
https://www.xilinx.com/support/documentation/user-guides/ug821-zynq-7000swdev.pdf
https://www.xilinx.com/support/documentation/user-guides/ug821-zynq-7000swdev.pdf
https://doi.org/10.3390/cryptography4040026
https://doi.org/10.3390/cryptography4040026

	16.	 Haj-Yahya J, Wong MM, Pudi V, Bhasin S, Chattopadhyay A
(2019) Lightweight secure-boot architecture for RISC-V system-
on-chip. In: 20th International Symposium on Quality Electronic
Design (ISQED), pp 216-223. https://​doi.​org/​10.​1109/​ISQED.​
2019.​86976​57

	17.	 Hosseinzadeh S, Sequeiros B, Inácio PR, Leppänen V (2020) Recent
trends in applying TPM to cloud computing. Secur Priv 3: n. pag

	18.	 Zuo X, Liu W (2007) TPM based key backup and recovery. Int
Conf Mach Learn Cybern 2007:2164–2167. https://​doi.​org/​10.​
1109/​ICMLC.​2007.​43705​03

	19.	 Shin J, Kim Y, Park W, Park C (2012) DFCloud: A TPM-based
secure data access control method of cloud storage in mobile
devices. In: 4th IEEE International Conference on Cloud Com-
puting Technology and Science Proceedings, pp 551–556. https://​
doi.​org/​10.​1109/​Cloud​Com.​2012.​64276​06

	20.	 Yasin M, Mazumdar B, Rajendran JJ, Sinanoglu O (2016) SAR-
Lock: Sat attack resistant logic locking. In: 2016 IEEE Inter-
national Symposium on Hardware Oriented Security and Trust
(HOST), pp 236–241

	21.	 Yasin M, Mazumdar B, Rajendran JJ, Sinanoglu O (2017) TTLock:
Tenacious and traceless logic locking. In: 2017 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), p 166

	22.	 Xie Y, Srivastava A (2018) Anti-sat: Mitigating sat attack on
logic locking. IEEE Trans Comput Aided Des Integr Circuits Syst
38(2):199–207

	23.	 Yasin M, Sengupta A, Nabeel MT, Ashraf M, Rajendran J, Sinanoglu
O (2017) Provably-secure logic locking: From theory to practice. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp 1601–1618

	24.	 Rajendran J, Pino Y, Sinanoglu O, Karri R (2012) Logic encryp-
tion: A fault analysis perspective. In: 2012 Design, Automa-
tion and Test in Europe Conference and Exhibition (DATE), pp
953–958

	25.	 Ngabonziza B, Martin D, Bailey A, Cho H, Martin S (2016) Trust-
Zone explained: architectural features and use cases. In: 2016
IEEE 2nd International Conference on Collaboration and Internet
Computing (CIC). Pittsburgh, PA, pp 445–451. https://​doi.​org/​10.​
1109/​CIC.​2016.​065

	26.	 Pinto S, Santos N (2019) Demystifying arm trustZone: a compre-
hensive survey. ACM Comput Surv 51(6):1–36. https://​doi.​org/​
10.​1145/​32910​47

	27.	 Balisane RA, Martin A (2016) Trusted execution environment-
based authentication gauge (TEEBAG). In: Proceedings of the 2016
New Security Paradigms Workshop (NSPW ’16). Association for
Computing Machinery. New York, NY, USA, pp 61–67. https://​doi.​
org/​10.​1145/​30118​83.​30118​92

	28.	 Zhao B, Xiao Y, Huang Y, Cui X (2017) A private user data
protection mechanism in trustzone architecture based on identity
authentication. Tsinghua Sci Technol 22(2):218–225. https://​doi.​
org/​10.​23919/​TST.​2017.​78896​43

	29.	 Gross M et al (2019) Breaking trustzone memory isolation
through malicious hardware on a modern FPGA-SoC. Proceedings
of the 3rd ACM Workshop on Attacks and Solutions in Hardware
Security Workshop

	30.	 Zhang J, Lin Y, Qu G (2015) Reconfigurable binding against
FPGA replay attacks. ACM Trans Des Autom Electron Syst
20(2):1–20

	31.	 Xilinx Inc., UG 470 - 7 Series FPGAs Configuration. https://​www.​
xilinx.​com/​suppo​rt/​docum​entat​ion/​user-​guides/​ug470-​7Seri​es-​
Config.​pdf. Accessed 20 Aug 2018

	32.	 Chakraborty RS, Saha I, Palchaudhuri A, Naik GK (2013) Hardware
trojan insertion by direct modification of FPGA configuration bit-
stream. IEEE Des Test 30(2):45–54

	33.	 Aarestad J, Ortiz P, Acharyya D, Plusquellic J (2013) HELP:
a hardware-embedded delay PUF. IEEE Des Test 30(2):17–25.
https://​doi.​org/​10.​1109/​MDT.​2013.​22474​59

	34.	 Zhang T, Wang J, Guo S, Chen Z (2019) A comprehensive FPGA
reverse engineering tool-chain: from bitstream to RTL code. IEEE
Access 7:38379–38389. https://​doi.​org/​10.​1109/​ACCESS.​2019.​
29019​49

	35.	 Berkeley Logic Synthesis and Verification Group (2005) ABC: a
system for sequential synthesis and verification

	36.	 Hyung Ki Lee and Dong Sam Ha (1996) HOPE: an efficient paral-
lel fault simulator for synchronous sequential circuits. IEEE Trans
Comput Aided Des Integr Circuits Syst 15(9):1048–1058. https://​
doi.​org/​10.​1109/​43.​536711

	37.	 Hansen MC, Yalcin H, Hayes JP (1999) Unveiling the iscas-85
benchmarks: A case study in reverse engineering. IEEE Des Test
Comput 16(3):72–80

	38.	 Rajendran J et al (2015) Fault analysis-based logic encryption.
IEEE Trans Comput 64(2):410–424. https://​doi.​org/​10.​1109/​TC.​
2013.​193

	39.	 Siddiqui AS, Saqib F. HEADS-UNCC/TPM-Baremetal-Drivers:
TPM Baremetal for FPGAs and other Embedded Systems. https://​
github.​com/​HEADS-​UNCC/​TPM-​barem​etal-​drive​rs. Accessed 30
Sept 2020

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

268 Journal of Hardware and Systems Security (2021) 5:260–268

https://doi.org/10.1109/ISQED.2019.8697657
https://doi.org/10.1109/ISQED.2019.8697657
https://doi.org/10.1109/ICMLC.2007.4370503
https://doi.org/10.1109/ICMLC.2007.4370503
https://doi.org/10.1109/CloudCom.2012.6427606
https://doi.org/10.1109/CloudCom.2012.6427606
https://doi.org/10.1109/CIC.2016.065
https://doi.org/10.1109/CIC.2016.065
https://doi.org/10.1145/3291047
https://doi.org/10.1145/3291047
https://doi.org/10.1145/3011883.3011892
https://doi.org/10.1145/3011883.3011892
https://doi.org/10.23919/TST.2017.7889643
https://doi.org/10.23919/TST.2017.7889643
https://www.xilinx.com/support/documentation/user-guides/ug470-7Series-Config.pdf
https://www.xilinx.com/support/documentation/user-guides/ug470-7Series-Config.pdf
https://www.xilinx.com/support/documentation/user-guides/ug470-7Series-Config.pdf
https://doi.org/10.1109/MDT.2013.2247459
https://doi.org/10.1109/ACCESS.2019.2901949
https://doi.org/10.1109/ACCESS.2019.2901949
https://doi.org/10.1109/43.536711
https://doi.org/10.1109/43.536711
https://doi.org/10.1109/TC.2013.193
https://doi.org/10.1109/TC.2013.193
https://github.com/HEADS-UNCC/TPM-baremetal-drivers
https://github.com/HEADS-UNCC/TPM-baremetal-drivers

	A Secure Boot Framework with Multi-security Features and Logic-Locking Applications for Reconfigurable Logic
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Paper Organization

	2 Related Works
	2.1 Secure Boot for FPGAs
	2.2 Trusted Platform Module (TPM)
	2.3 Logic Obfuscation
	2.4 ARM TrustZone

	3 AttackThreat Model
	4 Implementation
	4.1 Secure Boot Mechanism
	4.2 Obfuscation Framework
	4.3 Secure IP Using ARM TrustZone

	5 Experimental Results
	6 Security Analysis
	7 Conclusion
	References

