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Abstract
A rising tide of exploits, in the recent years, following a steady discovery of the many vulnerabilities pervasive in
modern computing systems has led to a growing number of studies in designing systems-on-chip (SoCs) with security as
a first-class consideration. Following the momentum behind RISC-V-based systems in the public domain, much of this
effort targets RISC-V-based SoCs; most ideas, however, are independent of this choice. In this manuscript, we present a
consolidation of our early efforts along these lines in designing a secure SoC around RISC-V, named ITUS. In particular,
we discuss a set of primitive building blocks of a secure SoC and present some of the implemented security subsystems
using these building blocks—such as secure boot, memory protection, PUF-based key management, a countermeasure
methodology for RISC-V micro-architectural side-channel leakage, and an integration of the open keystone-enclaves
for TEE. The current ITUS SoC prototype, integrating the discussed security subsystems, was built on top of the
lowRISC project; however, these are portable to any other SoC code base. The SoC prototype has been evaluated on an
FPGA.
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1 Introduction

SoC security is emerging as a complex challenge across all
layers of abstraction, starting from security protocol anal-
ysis, all the way down to robust circuit and device imple-
mentation. Despite proclaimed security guarantees, current
commercial SoCs are routinely exposed with critical secu-
rity flaws and unforeseen information side-channels. Exam-
ples of such attacks include the following: Rowhammer [1]
(kernel access privilege escalation), Meltdown [2] (disclo-
sure of unauthorized memory regions), and Foreshadow [3]
(enclave attestation keys extraction). Such attacks can be
orchestrated with limited or no privilege such as through a
web browser script.

Researchers are working towards a robust and secure
SoC design, while keeping the performance constraints in
consideration. The performance overhead, when counter-
measures for these attacks were deployed, is non-negligible,
workload-, and platform-dependent [4]. Despite these con-
certed efforts towards mitigation, there are often newly
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discovered attacks on top of these countermeasures. For
example, kernel hardening can prevent Meltdown attack,
but exposes vulnerability to side-channel attacks [5]. It is
also conjectured that speculative execution side-channels
in modern CPU micro-architectures might be impossible
to patch through purely software techniques [6]. Naturally,
these concerns require a thorough revisit of design princi-
ples for secure SoC design. Designing with security as a
first class constraint [7] along with performance, resource,
and other considerations allows for a better management of
overheads of security, compared to security implemented
as an after-thought. Practices from cryptography to achieve
provable security through secure composition [8] are also
being explored.

Quite a few works have been done in recent times to
put these ideas into practice and develop a secure SoC
ground-up, based on a standard Instruction-Set Architecture
(ISA). Examples include AEGIS [9], from among the
earliest efforts from academia, to the more recent Sanctum
[10], Keystone [11], TIMBER-V [12], including security
enhancements to existing RISC-V SoCs (e.g., Shakti-T
[13]) (more in Section 6).

All of these works are based on the common principles
of analyzing the threat models, developing security building
blocks, establishing root-of-trust, which can be denoted as a
top-down pass. The subsequent bottom-up pass is to begin
with a side-channel-resistant implementation and establish
trust between layers of abstraction until the application
layer. In the following, we discuss the corresponding
terminologies, to be used throughout this manuscript.

Let H represents the set of all hardware components of an
SoC, and S the set of all software components. Furthermore,
let HI and HE refer to internal (on-chip, including any
microcode) and external (off-chip) components; and, let
SM , SS , and SU refer to software components executing
in privilege modes—Machine, Supervisor, and User, in the
order of decreasing privilege—respectively, such that S =
SM ∪ SS ∪ SU . Let N ⊂ H represent the set of all
interconnects (and related resources) of an SoC (including
IO / debug ports). The trusted computing base (TCB) of an
SoC is defined as the set, TCB ⊂ H∪S∪N, whose members
are either unconditionally trusted (to various degrees) or in
whom trust is ensured by design. It is also understood that
the degree of trust (to the extent one can assert the lack
of weaknesses) between members in TCB varies (e.g., for
e1, e2 ∈ TCB, size(e1)>size(e2) usually means trust in (e2)
is easier to assert, and e ∈ H is harder to attack compared to
e ∈ S).

A traditional presumption for TCB has been H ∪ SM

(i.e., hardware is implicitly trusted and so is the software
executing in the M-mode)—however, this presumption is
not sound and the TCB must strive to be smaller with

additional measures implemented to ensure trust by design
for each member of TCB.

Architecting a secure SoC begins with a declaration
or identification of the threat model (TM) considering
the target deployment scenarios. A list of potential
attack vectors (AVs) under this TM is then drawn up
including identification of corresponding entry-points and
enabling conditions for the attack vectors—the Attack
Surface. Integrating countermeasures (CMs) to “cover”
this Attack Surface is the next step. Implementations of
CMs can themselves introduce additional vulnerabilities
(e.g., a side-channel leakage). The attack surface could
be expected to expand during the lifetime of the device
so there must also be generic mechanisms in place to
introduce CMs to deal with certain classes of unknown
AVs. Once the attack surface is established, securing
an SoC would involve securing (or implementing CMs
corresponding to the AVs for) all individual components
of the TCB. While having a library of all possible
countermeasures for each component of H, S, and N,
in the TCB, pertaining to various attacks is a valuable
pursuit, routinely integrating such collections of CMs
would be an overkill. A measured approach to integrate
CMs would also include a clear understanding of “trust
delegation” between different abstraction layers, thereby
seeking a “minimum cover[age]” in terms of the individual
combination of countermeasures that are “necessary and
sufficient” to thwart the enumerated AVs. For instance, a
CM that plugs the cache-timing side-channel leakage would
obviate the need for several other countermeasures that are
otherwise implemented elsewhere (e.g., somewhere in (S)).
A systematic ontological study—relating weaknesses and
weakness chains1 in the system (the TCB in particular) and
how the CMs cover these weaknesses while also keeping
track of security properties—would help in arriving at an
optimal CM integration plan.

1.1 Contributions

In this manuscript, we present a consolidation of our work
towards developing a RISC-V-based secure SoC prototype,
ITUS [14].

1. A Secure Boot Protocol ensuring first-instruction-
integrity, supporting both classical [15] and post-
quantum public-key [16] signature schemes

2. A Key Management Framework around a PUF [17]
3. Memory Protection Unit to ensure confidentiality and

integrity properties [18]

1https://cwe.mitre.org/documents/glossary/index.html
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4. Integrating Keystone Enclaves [11] with the hardware
Root-of-Trust in ITUS

5. A new side-channel attack countermeasure (Section 5)
strategy proposal and evaluation of an instance of the
proposal with a RISC-V out-of-order core.

1.2 Organization

The manuscript is organized as follows. Section 2 discusses
some ways to approach SoC threat modeling in general
and identifies the specific model presumed for ITUS.
Section 3 lists some of the building blocks and elements of
a secure SoC while Section 4 discusses how these blocks
are implemented and integrated to form specific security
subsystems in ITUS. One of the major security subsystems
is the processor micro-architecture, and Section 5 discusses
countermeasure strategies at this level, with preliminary
independent evaluations using a RISC-V out-of-order core.
A listing of related works towards secure SoC design and
conclusion follow.

2 SoC Threat Models

An SoC being composed of heterogeneous components
has a vast attack surface due to wide range of potential
vulnerabilities. The varied nature of vulnerabilities prevents
the prospect of a one-solution-fit-all. Also, designing
a system which addresses all the vulnerabilities will
be close to impossible and impractical due to high
overheads. A commonly used approach is to define threat
models considering the application scenario and find
countermeasures which address those threats. For example,
Common Criteria evaluations require a security target
against which a product can be evaluated and certified.

The vulnerabilities in an SoC can be widely divided
into three level of abstraction: Component, Subsystem,
and System (or SoC). While component level and SoC
level vulnerabilities are self-explanatory, subsystem level
vulnerabilities are those which arise from a composition of
two or more components. The problem of designing a secure
composition of several trusted or untrusted components
remains an open research problem for several decades now.

An adversary has also several ways to exploit these vul-
nerabilities based on available resources and applications.
As mentioned before, these exploit can be triggered through
any effective combination of hardware, software, and inter-
connect level methods. For example, an AES accelerator,
a component in H ∩ TCB, providing confidentiality and
integrity to different components of the SoC can itself
be vulnerable to power-based side-channel attacks. This is
component level vulnerability exploited at hardware-level

and would require integration of side-channel countermea-
sures like masking. Similarly, a PUF-based key manage-
ment unit is a subsystem. An adversary with fault injection
capability can alter the PUF response leading to subsystem
level vulnerability resulting in denial of service (DoS) attack
which can be triggered either by external equipment like
laser or remotely through software using features like dyna-
mic voltage scaling. Furthermore, open debug interfaces
(N) can provide an attacker unrestricted access to internal
components resulting in a system level vulnerability.

In the following, we discuss the threat model with
respect to ITUS. ITUS is a RISC-V-based SoC designed
for security-oriented embedded applications in physically
hostile environment. It is expected to resist an attacker with
the following capabilities:

– Physical access to external ports including test/debug
ports further triggering privilege escalations through
software [19].

– Can read external memory through physical probing,
debug ports, or software privilege escalation [20].

– Can inject faults [21] into one or several components
(ex. AES, PUF, TRNG) through external means like
laser and glitching etc., or software [22].

– Can access side-channel leakage through physical
means like power, EM [23], or software methods like
cache-timing and speculative execution [19, 20].

– Can exploit existing vulnerabilities in the OS / SS .

While the protection mechanisms in the current version
of ITUS do not yet cover all the threats in the comprehensive
target threat model described above, the following sections
discuss the threat coverage due to the various building
blocks implemented so far.

3 Building Blocks of a Secure SoC

This section outlines some important building blocks (∈ TCB)
of a secure SoC under three groups: (1) Securing Roots-
of-Trust, (2) Micro-architectural Security, and (3) Trusted
Execution Environment. Implementation choices depend on
the presumed threat model, performance requirements, and
resource constraints. Implementation details of these, in
ITUS, will be discussed in Section 4 together with their role
in the larger security subsystems.

3.1 Hardware Roots-of-Trust

Root-of-trust (RoT), a term used with many connotations,
could be understood in two ways:

– RoT, fundamentally, as a relative notion—i.e., “trust in
A” is derived from B’ =⇒ ‘B is a RoT of A .
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– RoTs as distinct subsystems offering a range of security
services to a host/main system.

The fundamental RoTs of a secure SoC are the device
secret keys (perhaps derived from a PUF, or separately
provisioned) and their certifications as all members of
TCB ultimately derive their trust from them (RoT0,hardware).
For the software stack, the zero-stage bootloader could be
considered the smallest RoT (RoT0,software). The RoTs are
usually implemented ∈ HE—e.g., TPM [24], DesignWare
tRoot Vx HSMs, Rambus CryptoManager RoT, Google
Titan, Microsoft Cerberus (a hierarchical RoT structure).

Some of these RoTs could also be implemented within a
host SoC chip (∈ HI ), but as distinct subsystems, e.g., Open-
Titan silicon RoT, Rambus VaultIP RoT. These are small foot-
print resilient embedded systems that contain and offer, chiefly,
the services described in Sections 3.1.1, 3.1.2, and 4.1.

3.1.1 Cryptographic Primitives

While physical security measures, from access control
policies down to materials, form the first line of defense,
the sole other means to enforce a set of security policies is
through protocols built out of cryptographic primitives. For
reasons of performance and security, these are implemented
as specialized co-processors or as dedicated hardware
accelerators with controlled access.

Private-Key Cryptography: Used to ensure data encryp-
tion and integrity during storage, transmission, and even
prevent reverse engineering. To prevent a few side-channel
attacks, circuit-level techniques [25] and encoding schemes
[26] are used, and these incur non-negligible chip real-
estate. These schemes are not known to be quantum-unsafe.
Lightweight alternatives are available.

Public-Key Cryptography: Used in setting up authentica-
tion protocols such as in device and firmware provisioning,
secure boot, and software updates. However, robustness of
these implementations against stealthy side-channel attacks
is a major challenge (e.g., [27, 28]). Many classical schemes
are known to be quantum-unsafe. There has been active
recent work evaluating industrial use-cases of post-quantum
cryptography primitives [29] and also some hardware stud-
ies within RISC-V SoCs: pqsoc.com, [16, 30].

Unkeyed Primitives: This class includes hash/one-way
functions. TRNG and PUF (a physical one-way function)
primitives (Section 3.1.2) may also be placed under this
class.

3.1.2 Key Management

The security of public-/private-key primitives relies on
secure key management. Key management in a secure SoC
covers functions such as secure key generation (including

using unbiased entropy sources), distribution, storage, and
aiding key-based operations such as identification, authen-
tication, and cryptographic measurements/attestations as
needed in an RoT. While secure key storage in conventional
key managers contains non-volatile memories with protec-
tions such as tamper-proof or tamper-evident packaging, the
use of on-chip entropy sources to generate keys on-demand
obviates the need for key storage; however, there is still a
need for some one-time programmable (OTP) storage to
store certifications. Traditionally, this is done through RoT
chips such as TPM.

TRNG and PUF: A True Random Number Generator
(TRNG) and a Physical Unclonable Function (PUF) in a
digital system extract entropy from diverse physical phe-
nomena such as thermal noise and clock drift. Beyond key
management, a TRNG finds uses in many components of
the TCB as well as in construction of some countermeasures
(e.g., masking). A PUF [31] enables lightweight and secure
key management. Biases are inherent in their construc-
tions and a post-processing step (a “whitening” process) is
usually applied. Active attacks leading to denial-of-service
(DoS) or introduction of biases, either through fault injec-
tion or even hardware Trojans, are an attack vector.

3.2 Core Micro-architectural Security

Traditional software enforced security depends on some
basic mechanisms part of all modern processor specifica-
tions, e.g., the privilege modes M, S, and U. Security-related
additions to ISA specifications (such as the PMP and
IOPMP primitives in RISC-V) support building portable
trust solutions in S. Most privilege escalation vulnerabilities
are due to security bugs in S (e.g., memory safety bugs), and
hardware-assisted countermeasures have been proposed to
catch them (e.g., control-flow integrity, protected pointers).
However, even a bug-free S can be vulnerable to several
side/covert channels [32] made possible due to how the
processor micro-architecture is implemented. Even the safe
enclaves offered by TEE frameworks can be vulnerable to
side-channel leaks such as due to speculative execution [33].
Measures to ensure fault resiliency are another important
aspect in this context, e.g., DIVA [34], Sentry [35].

3.3 Trusted Execution Environment

A trusted execution environment (TEE) [36] can be seen
as an extension of capabilities in the secure execution
services offered by the discrete RoTs, under the TCB of
an SoC. A program executing in a TEE is said to enclaved.
A TEE offers an enclave (∈ SU ) isolation guarantees
on untrusted or vulnerable shared resources (e.g., the OS
/SS , main memory, caches). This protects the enclave from
security incursions (e.g., confidentiality, integrity) from
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untrusted components in SU ∪ SS—or even the other way
around, depending on the threat models. The enclaved
program may seek attestation certificates on the TCB of the
platform to verify its trust and the enclaved program itself is
measured to ensure it was not tampered during load. A TEE
framework builds on the hardware root-of-trust as described
in Section 3.1. TEEs also need side-/covert-channel CMs
[32]. Examples of TEE frameworks—RISC-V: Sanctum :
RISC-V—Sanctum [10], Keystone [11], TIMBER-V [12];
Others: Intel Others—Intel SGX, AMD SEV, ARM
TrustZone.

4 Security Subsystems

This section presents the security subsystems built using
specific implementations of the blocks described in the
previous section. Excluding Section 5 (which is evaluated
through RTL simulation of an out-of-order RISC-V core
[37]), the other components are part of ITUS RISC-V SoC
based on the low RISC project with Rocketchip RISC-V,
Fig. 1 and have been evaluated on Xilinx Kintex 705 FPGA
board.

4.1 Secure Boot

Secure boot, a fundamental protocol in a secure SoC, has
the responsibility to build a “chain-of-trust” (CoT) as it
verifies the integrity of components of the TCB during
the boot process. The chain starts from a root-of-trust
(RoT0, Section 3.1) of the TCB. The boot process is
aborted if the verification of any stage fails; otherwise,
the system is expected to be running in a trusted state.

Fig. 1 The ITUS Secure SoC

This definition of secure boot is widely accepted in the
security community [38]. The responsibility of maintaining
the integrity of the booted system, against time-of-check
to time-of-use (TOCTOU) attacks, rests with the other
security mechanisms such as in Sections 4.3 and 4.2. For
resource-constrained devices, private-key cryptography is
used for integrity checks (e.g., the automotive SHE [39]
module); however, secure management and provisioning of
keys and device firmware are more practical with public
key-based signature schemes.

Figure 2 illustrates a sketch of the boot sequence building
the CoT as ITUS boots . At power-on, the RoT0,hardware is
validated (device key generation and their verification of
their certification). The subsequent stages in the CoT are
the various bootloader stages (∈ S ∩ TCB). The public-
key (PK) signature on the computed hash-digest of each
stage is verified before moving to the next; the stage-wise
hash-digests are hash-extended (A ← hash(Aold||B)) into
a hardware register as a record, used to attest to integrity
of the CoT (or TCB) to a local/remote client. For the zero-
stage bootloader (ZSBL), the PK needs to be signed by a
trusted party whose PK is stored in an on-chip one-time-
programmable (OTP) memory.

4.1.1 Implementation Details

The signature verification unit (SVU), a hardware module in
Fig. 1, has been integrated as a memory-mapped peripheral
in the ITUS SoC to support the secure boot process (and
for potentially other uses during the lifetime of the device).
Two signature scheme options have been evaluated—(1)
the classical Elliptic Curve digital signature algorithm
(ECDSA), reported in [15]; (2) the post-quantum eXtended
Merkle signature scheme (XMSS), reported in [16]. Both
ECDSA and XMSS verification modules are implemented
fully as hardware.

The first instruction, a RISC-V core (say core0), executes
after power-on is from a boot ROM, located at the reset
address (32′h0). This zero-stage bootloader (ZSBL) has
instructions to jump to the first-stage BL located either in
an on-chip BRAM or in external memory. The ZSBL also
carries as a payload a device tree structure (here, encoded as
a string) that describes the peripheral devices, the memory

Fig. 2 Secure boot chain-of-trustFL
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Table 1 Secure boot: area, latency (verification time, cycles)

Secure boot with Slice LUTs FFs Latency

ECDSA (sect233r1) including SHA3 [43] 27170 (×1 = a) 6722 (×1 = b) 6720 (×1 = c)

XMSS (version 1) a (×2.3) b (×2.44) c (×25.0)

XMSS (version 2) a (×1.26) b (×4.16) c (×11.1)

map, and the cores and their capabilities. The first-stage BL
(FSBL) is a small program with limited capabilities and is
stored in an on-chip BRAM. It is able to locate a specific
file (boot.bin) in the first partition on the SD card.
This file contains the second and third stage bootloaders,
the Berkeley bootloader (BBL)—which also contains the
Security Monitor (SM) mentioned in Section 4.2—and
the linux kernel (vmlinux) respectively. The control is
transfered to BBL which then transfers control to the linux
kernel, while it continues executing at the machine level to
serve exceptions, traps, and as SM.

In conventional secure boot flows, the signature authen-
tication algorithms are implemented in software (∈ SM ),
e.g., SHA3 and ECDSA, executing on RISC-V such as in
Sanctum [40] and Keystone [11]. In ITUS, the authenti-
cation is fully delegated to dedicated hardware units (the
Boot Sequencer and the SVU). The main relative advan-
tages of a fully hardware implementation (in this case of
SHA3, ECDSA, XMSS, etc.,) are as follows: (1) perfor-
mance and energy-efficiency, and considering its general
usage frequency in a secure SoC; (2) helps to reduce the
size of S∩TCB, with the knowledge that attack surface for
hardware is smaller.

A note on attack vectors on secure boot: Fault-based
bypass attacks are common and very practical [41, 42] AVs
on secure boot. Countermeasures involve using redundancy
in space and time (with randomization)—making the
attacks hard to target. For secure boot, detection-based
countermeasures suffice as the boot can be aborted once a
fault attack is detected (as “availability” is not a concern at
this stage). Memory spoofing attack post a successful secure
boot is also an AV and can be detected through memory
integrity checks such as using the MPU (Section 4.3)
managed memory.

4.1.2 Evaluation

While more details are reported in [15, 16], the key observa-
tions are summarized here. Tables 1 and 2 compare secure
boot (SVU + signature scheme) resource usage and latency (to
verify ZSBL). Assuming a conservative 100 MHz clock, the
verification times range between 67 μs and 1.6 ms—suffi-
cient for most systems. Both these schemes (XMSS, ECDSA)
are able to re-use significant portion of the hardware instan-
tiated for verification operation for their corresponding
signature and key generation operations (which are often
more computationally expensive). This makes the hardware
implementation of these modules worthwhile considering
their use-cases in the lifetime of a secure SoC.

4.2 Secure Enclaves: Integrating Keystone

ITUS integrates the open source framework, Keystone [11],
for building customizable TEEs (see Fig. 3). Keystone
depends the physical memory protection (PMP) priv-1.10
specification of RISC-V to support memory isolation for its
enclaves.

The reader is referred to [11] for more details on
capabilities and threat coverage offered by Keystone. This
section re-states some essential details in order to discuss
its integration with ITUS. In Fig. 3, Enclave1 is an instance
of Keystone-based enclave running an enclave application
(EA) in SU . Every enclave has its own runtime (RT) which,
however, belongs in SS . RT and EA share the same enclave
virtual address space (EVAS), which is managed by the RT.
The physical address region corresponding to this EVAS
is isolated with enforcement using PMP configuration. The
untrusted components of S outside of the enclave do not
have access to this EVAS (including its page-tables). The

Table 2 ECDSA (binary curve sect233r1) implementation

Baseline SW Intel IVB Vectorized SW Intel IVB+AVX Our HW FPGA

Cycles 2,226,927 405,330 6,720

Frequency (MHz) 2,000 2,000 100

Time(ms) 1.11 0.22 0.067

Power (mW) 2,100 2,600 386

Energy (mJ) 2,331 572 0.025

Energy efficiency (mJ × ms) 2,587.4 125.84 0.0016
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Fig. 3 ITUS SoC and Keystone (Fig. based on [11])

security monitor (SM) executes in M-mode and is part
of the TCB. The address space used by SM has its own
PMP isolated region. SM is responsible to provide security
enforcement guarantees (runtime configuration of PMP
during enclave life-cycle), cryptographic computations such
as for measurements and attestations. SM exposes limited
API through SBI to the RT and the Linux kernel.

An EA needs to check the attestation to the TEE frame-
work’s integrity. This attestation record could be obtained
as a part of the ITUS secure boot (Section 4.1) flow.

As the enclave is created, the enclave memory space is
measured to ensure the EA-related binaries are loaded cor-
rectly by the OS. This involves a one-time computation cost
of hash-extending the enclave memory space and can be
accelerated by using the existing hashing modules in hardware.

The current state of integration with ITUS and the
planned tighter integration is inline with one of the design
goals as described for Keystone [11]. It helps to reduce the
size of SM ∩ TCB by leveraging other security subsystems
developed for ITUS.

4.3 Memory Protection Unit

Solutions such as a TEE framework (Section 4.2) do
not offer a complete threat coverage when dealing with
untrusted external storage. ITUS includes a Memory
Protection Unit (MPU), reported in [18], that offers con-
fidentiality and integrity properties on data in external
memory. To minimize the performance overhead, selec-
tive regions can be marked as secure. Further support for
dynamic and reconfigurable allocation of such regions is
feasible. The DRAM allocation is freed upon secure boot
and then repartitioned into non-trusted, trusted, and meta-
data regions. In compliance with the secure and trusted
boot-up sequence, such allocation of regions is protected
from interception and modification by software. Data reads
and writes to the trusted region are processed through

Fig. 4 Memory Protection Unit [18]

the MPU for authenticated encryption prior to and after
the encapsulation. This preserves the confidentiality and
integrity of sensitive data in the DRAM and at the same
time guarantees minimal leakage of the address/location
mapping of the memory data. In its implementation in
ITUS (Fig. 4), AES-GCM is used to achieve confidentiality
and integrity. The memory range partitioning is tracked by
Secure Memory Range Registers (SMRR). The proposed
MPU for ITUS has two main characteristics: (1) the authen-
ticated encryption implemented through AES-GCM offers
confidentially and integrity protections with the minimal
usage of hardware resources; (2) a simplified integrity tree
using Bonsai Merkle Tree (BMT) structure is proposed as a
measure to preserve the freshness of memory contents and
to thwart replay attacks.

The current MPU is vulnerable to micro-architectural
side-channels (e.g., LLC). It may be noted that if Keystone
were fortified through micro-architectural side-channel
attack countermeasures, ensuring its isolation guarantees
are strengthened, one could omit BMT and associated
overheads.

Beyond the common scheme used in MPU, other
countermeasure techniques such as Address Space Layout
Randomization (ASLR) and Oblivious RAM (ORAM),
have been reported.

Evaluation: The AES-GCM module in the MPU [18] con-
sumes 4205 slice LUTs. The implementation requires storing
only a 64 bytes of meta data on-chip (root of the integrity
tree) and only about 0.43% overhead in off-chip storage.

4.4 KeyManagement Unit

The key management unit (KMU) as implemented in ITUS
is shown in Fig. 5 and integrated as shown in Fig. 1.
ITUS uses the configurable response-length LFSR-based
PUF, reported in [17], with a lightweight and reliable key
extraction through sequential use of BCH error correcting
code BCH(15, 7, 2) operating on 7-bit segments at a time.
The component PUF, shown in Fig. 5, packages the raw PUF
together with BCH encoder and decoder modules to reliably
extract a key string from raw PUF responses for a given
challenge. It operates in two modes: in mode-1, it generates
the syndrome for a given challenge string (which are to
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Fig. 5 PUF-based KMU

be remembered/stored) and in mode-2, given a challenge
and the corresponding syndrome, the corresponding unique
response is regenerated. While the error correction2 and
other functions of the KMU may also be delegated to
software (∈ SM ⊂ TCB) depending on the threat model,
it is preferable and inexpensive to implement this module
completely in hardware.

KMU (Fig. 5) is integrated as a memory-mapped
peripheral, with access only to the security monitor (∈ SM ),
and also connected to MPU and SVU over dedicated point-
to-point channels. PUF as shown in Fig. 5 operates in two
modes. In one mode, it takes as input either a KeyID or a
challenge-syndrome pair and generates the corresponding
PUF response. KeyID refers to the handle for a PUF
response for a corresponding challenge string. In the other
mode (e.g., at power-on or on-demand), the ID-challenge-
syndrome table is populated for a chosen set of challenges
(passed through C portion of the CSP port) that are either
user supplied or sourced from the TRNG, which is a simple
RO TRNG based on [44]. The PUF response is whitened
by hashing it with sha256 .

The responses from PUF, corresponding to given
CSPs, form the seed material from which symmetric or
asymmetric keys are derived. Key derivation functions like
Ed25519 can further be used to obtain keys of required
strength/length. The ITUS KMU presently generates elliptic
curve (EC) (sect233r1) key pairs (SK, PK) with secret key
SK chosen as the hashed PUF response and public key PK is
computed as the point multiplication of SK with the public
base point of the curve.

2e.g., BCH(398, 128, 32) capable of correcting up to 32 bit errors
using 270 bits of helper data

The PUF-based KMUs undergo an enrollment phase
followed by provisioning the OTP storage certifying the
device (for devices without PUF, the device keys are
provisioned). As this work in its present form targets FPGA,
the following is one way to do this process for an FPGA.
Both the ZSBL and FSBL—the former implemented as
a bootrom and the latter implemented through an on-
chip blockram—are part of the bitstream/design. Both
ZSBL and FSBL are signed (using one of two public key
signature schemes) and the signatures on them are verified
in hardware without the involvement of software/cpu as
a part of our secure boot protocol. As FSBL is mutable
(edit the contents of BRAM in the bitstream) as long as
it is appropriately signed, it would be the place where
a CSPdev corresponding to the device root key (to be
used with the PUF-based KMU to re-generate the root
keys) is placed. As for the signer’s public key (important
to verify signer), it is to be stored in the eFUSES on
the FPGA (or alternatively, some recent FPGAs support
battery backed BRAM appropriate for this purpose)—the
FPGA used, KC705, does have eFUSES, but since they are
one-time programmable, we omit actually doing this. For
practical purposes, the signer’s public key could be stored
in the ZSBL instead. Fault-injection attacks here are indeed
possible. They could lead to a DoS attack (hard to prevent;
if injected during verification) or Signature forgery attack
(if the attacker is able to modify the signer’s public key;
preventable by also storing a section of hash of the public
key).

4.4.1 Evaluation

The PUF [17] used in KMU (Table 3) was configured
to accept 16 bit challenge strings to generate 128 bit
raw responses. The key extraction uses BCH(15,7,2)
encoder/decoder modules.

4.5 Physical Access Management

Hardware debug instruments are circuits added to the
design of a system-on-chip (SoC) to allow post-silicon
debugging of the chip. Hardware debug allow the debugger

Table 3 KMU resource usage (with sub-components)

Slice LUTs FFs

ECkeygen 21473 249

PUF 6965 2027

BCHenc 71 333

BCHdec 251 371

PUFraw 5554 364

KMU 29529 3344
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to capture real-time performance statistics, observe and
modify values of internal configuration registers, and
examine the instructions execution [45, 46]. Examples of
debug instruments used in commodity SoCs are internal and
boundary scan chains, hardware performance counters, and
JTAG [47]. The ability of debug hardware to observe the
internal components of the SoC can be used as a backdoor
for attacks. For example, Yang et al. [48] and Chiu et al. [49]
show how an attacker can use the boundary scan chains to
leak SoC secure keys.

Due to the high complexity of modern SoCs and the
importance of security, a balance between security of assets
and observability of a debug infrastructure should be made.
To guarantee high security level, we can permanently
disable the debug infrastructure after the silicon validation
process is completed, for example, by blowing fuses.
However, this approach violates the late variability and
reusability requirements of modern SoC because trace-
based debugging is needed throughout the SoC life cycle
[46]. A better approach is to consider a secure debug
port approach [47, 50]. The main idea is to lock the
debug access port (e.g., JTAG) and to only allow trusted
debuggers to access the debug infrastructure after successful
authentication. This approach provides either complete or
no access to debugging.

A more practical approach is to build a multi-level secure
debug [51, 52]. The multi-level privilege system allows
for in the field updates, and debugging of the firmware
while maintaining a high degree of protection for the
most sensitive intellectual property in the SoC. All security
privileges can be set dynamically by the developer post-
manufacturing.

The current ITUS prototype does not include the ideas
in this section, however, consider the following example.
Debug ports (including JTAG) are often accessible from
within software/firmware, as well as externally. A “first-
instruction-integrity secure boot,” as is our implementation,
ensures the former access path is authenticated. The latter
physical access path needs to be secured through a separate
authentication scheme. Instead of discussing this case for
JTAG, let us consider for simplicity, the case of UART
port, for which the following protocol can be implemented
in software (M-mode UART specific trap function). The
scenario would be that of the UART port, beyond a
point during the boot flow, not allowing any I/O access
over it except to offer an authentication protocol like the
following.

A Simple Protocol Between the “Device” and a “Debug
Host”: A debug host acquires a Kd <= PUF(Cd) for
a challenge Cd and stores this Kd securely and device
remembers Cd . A secure channel to do this over would be a
properly signed FSBL and secure boot. To authenticate the

debug host again to grant access, the device challenges the
host for a specific response. The device does X <= TRNG;
and computes R1 <= HMAC(X, PUF(Cd)), a hash-based
message authentication code, and sends X to host. The host
computes R2 <= HMAC(X, Kd) and sends it to device.
The device grants access if R1 == R2.

5 ProtectionMechanisms Against
Side-Channel Attacks

Modern SoC architectures are built to support a wide
range of usage models and applications, and they strive
to achieve the best power and performance. To achieve
this goal, systems optimize the execution of “common
execution paths” and widely use different speculative
micro-architectural mechanisms such as prefetching, out-
of-order execution, value prediction, and more. These
mechanisms have been shown [53–55] to leak information
side-channels leading to successful attacks. However, since
these mechanisms are essential to cope with the growing
demand for computing power, most SoC providers prefer to
compromise security over giving up power or performance.
This section tries to address the three important observations
we make regarding the security of SoC devices: (1)
protecting current complex systems has become a major
challenge, (2) the current proposed solutions are too
complicated, require too much power, and/or come with
major power and performance overheads, and (3) there is
no effective mechanism to protect the system against future,
unknown attacks—since many SoC systems, such as for the
automobile industry, presume to serve the products for 15–
20 years, it is unlikely that using existing security vectors
will be sufficient for the entire life of the such SoCs. Thus,
we believe that a new approach is required to meet these
new challenges of securing future SoC architectures.

In particular, we suggest the following two techniques:
(1) Introducing a new “security wrapper” that aims to pro-
vide another abstraction layer to the implementation; (2)
Using Dynamic Security Protection (DsP)-based mecha-
nisms. These are discussed in Sections 5.1 and 5.2, followed
by an example applying them to protect a system against
side-channel timing attacks in Section 5.3.

5.1 The Security Wrapper

In order to build a secure system without causing a
significant power or performance overhead, we propose
to add a security wrapper to the implementation. This
wrapper aims to separate actual “events” from the way we
expose it to the user. For example, to protect a system
against side-channel timing attacks, we present a different
view of timing events (such as commit times) to the
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user/attacker from the actual (based on execution times).
The suggested mechanism resembles the way modern
architectures implement out-of-order mechanisms, wherein,
instructions are fetched and committed in the program’s
order, allowing the user/tools to take advantage of a simpler
abstraction. But internally, the system executes instructions
out-of-order (dataflow style) and speculatively, allowing it
keep to the performance advantages. The security wrapper
(see Fig. 6) aims to achieve a similar goal: to present the
user a secure view on the way the system is executing, while
allowing the internal implementation to mainly focus on the
performance and power aspects, and worry less about their
impact on security.

The proposed new architecture aims to provide the
external world with a view that is different from the
actual execution characteristics and with minimal impact on
performance. As the attacker of the system can only observe
the “secure core,” the system must impose restrictions
only to make sure this abstraction is maintained, even if
the underlying architecture may not support it. Thus, the
internal core can execute code in a non-secure manner, as
long as an external observer gets a view of a secure core.

Attack vectors change and evolve together with the threat
model and further differ between different products and also
with newer attacks discovered over the lifetime of a project.
In order to dynamically tailor or maintain the secure view
of the system, we introduce the second principle of our
approach: Dynamic Security Protection (DsP) mechanism.

5.2 Dynamic Security Protection-BasedMechanisms

This technique is motivated by the way functional bugs are
handled in modern systems to avoid risking the prospect of
a mass recall of systems:

– Inserting hooks in the system with capabilities to
detect, bypass, and even resolve future bugs, e.g., many
Intel architectures include a mechanism for “dead-lock
breaker” that is able to (1) detect if a dead-lock occurs
and (2) restart the system from a stable point when it
happens.

– All complicated sequences that are tuned to functional
bugs are controlled by microcode and so can be
modified if a new bug found.

Fig. 6 High-level structure of a security wrapper of a core

– Bugs and malfunction behaviors are allowed as long as
they are not exposed to the outside world, e.g., a single-
bit flip of data is allowed as long as an error detection
and correction mechanism exists that can correct the
value during the read or write operation.

– Introducing redundancy at certain points of the system
to allow resolution of “malfunction behaviors.”

Adopting these principles to handle security attacks, we
suggest:

To consider all possible attack vectors (even attack vec-
tors that are not relevant to our product) and to add mecha-
nisms to (1) detect if such an attack happened and (2) to help
block the information leaks to the external world if such an
attack happens. Please note that if such mechanisms were
to cause performance or power overhead, we may decide
to operate them only for products that consider this
attack as part of their threat model.
To add a controller that controls the detection and
reaction sequence. Such a controller should be pro-
grammable, similar to microcode, so it could be changed
from one product to another, could be adjusted to the
needs and limitations of the product, and could be used
to address future requirements.
To consider having open interfaces for future sensors
that could be added, similar to accelerators, if needed.
This technique can be very efficient for the automotive
industry with 15–20-year product life.

5.3 Put It All Together—an Example: Protecting
Against Side-Channel Timing Attacks

This section demonstrates the newly proposed technique
by providing a detailed example of how it can be used
to protect a modern out-of-order (OOO) system against
timing side-channel attacks. Side-channel timing attacks
can occur if the time it takes to complete the execution
of a code segment depends on the value it manipulates
(A.K.A a “secret”). Countermeasures against timing attacks
are divided between software-based and hardware-based
techniques [56]. Among the Software techniques to protect
against timing side-channel attack is to pad the code with
NOPs of other “dummy instructions” so that the execution
time of all execution paths is balanced. The hardware-
based techniques add extra logic to balance the different
execution paths, so they are not dependent on the values
being computed. This task can be costly. The software
techniques require intensive work from the programmer
and must be re-balanced from one architecture to another.
The hardware implementations can be costly in terms of
performance and power, especially if they are implemented
for general-purpose execution units or require the use of
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Fig. 7 Core Internals. Time Prediction (TP)—Measure execution time
of a code segment. Indicates how much time the commit needs to be
postponed (if current execution time is shorter than the previous time)
or record the new execution time (otherwise). Scheduling Assistant
(SA)—Extends the functionality retirement (commit) mechanism by
delaying the time, the instruction will be committed

separate execution units for security purposes (e.g., AES
instruction set extension [57]).

The alternative solution presented here is based on the
observation that a user can only measure time with respect
to the time instructions are committed, while the overall
performance mainly depends on the time the instructions
were actually executed. Thus, we propose a mechanism that
delays the commit time, while keeping the execution time
untouched (see Fig. 7). For this example:

For the Security wrapper, we will add: (1) a mechanism
to indicate “begin” and “end” markers of the “secure
section’; (2) a Time Prediction unit (Fig. 7); (3) a
Scheduling Assistant unit (Fig. 7).

For the Dynamic Security Protection, we will add
a control unit that can be implemented as part of the
time prediction unit or as an independent controller. This
unit will be controlled by microcode that could update its
algorithm if needed or when new class of attacks were to

be discovered. This controller may be different from one
product to another. For example, for some products, it may
support only a single security segment at a time, for other
products, it may contain a cache that can support multiple
security regions and even nested regions.

5.4 A Proof-of-Concept with an OoO RISC-V Core

In order to check our basic assumption that delaying a
commit time has an only a minor impact on the overall
performance of the system, we modified the architecture
of the RISC-V-based out-of-order core, named Riscy-OOO
[37] and introduced a delay to instructions, ready to be
committed. We incorporate the delay logic within the
Riscy-OOO design and run it using different amount of
delay (for all ALU and FPU instructions.) The configuration
parameters used for this experiment and observations are in
Table 4.

Table 4 indicates that, for most of benchmarks, delaying ALL
instructions with a small number of cycles has almost no effect
on performance. More than that, other experiments we conduc-
ted showed that when increasing the size of the ROB, much
smaller performance loss was measured even for larger
delays. Please note that in our case, we are deferring only
instructions belonging to the secure paths and so, one may
assume that no noticeable performance or power loss will
be imposed on the system (also, delaying the commit time
causes no power implications). It may be noted that Table 4
provides sensitivity analysis of the impact of delayed
commits on the performance, to motivate the fact that the
impact is insignificant. As for the security analysis, at this
stage, we offer it “by construction” of the countermeasure.
A proper security analysis would be possible after we
implement the TP and SA mechanism indicated in Fig. 7.
Note also that we do not claim the proposed strategy works
if speculation operations are involved, e.g., with speculative
loads/stores, we need other ways to mask their effects.

TimeWarp [58] is a related work that proposes to fudge
the timestamp counter, used to measure time, by delaying

Table 4 Impact of delaying all instruction commits in the benchmark programs in terms of %-change in execution cycles (column heads: delay
amount)

4 8 16 32 64 128 256

dhrystone 0 0.1 -0.1 10.2 52.3 162.1 381.9

multiply 0 0.1 0.2 3.0 36.0 134.2 347.7

qsort 0 0 0.4 0.6 0.2 8.9 66.3

rsort 0 0 0.1 27.1 101.3 266.5 604.7

spmv 0.1 0.2 -0.5 2.6 30.0 113.1 303.0

RiscyOOO configuration: Superscalarity: 2; Branch predictor: Tournament; Size reservation-station (RS): 16; RS for FPU ops: 16; RS for
memory ops: 16; Reorder-buffer: 64 entries; L1 Cache: Size 32kB, Ways 8; LLC: Size 1 MB, Ways 16; DRAM latency: 120 cycles (constant);
BootROM: 4kB
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the commit of the rdtsc instructions (system wide or
within a process). It is a technique that can break some
critical software and also makes assumptions about how fine
the virtual timestamp counters can be constructed.

5.4.1 A Motivating Example:

The classic modular exponentiation could be one example
but let us consider the following case instead:

// message authentication code
compute+compare
START SECURE;
compareunsafe(MAC(key, msg), tag256 bytes);
END SECURE;

If compareunsafe is implemented as a byte-by-byte
compare in a loop, exiting early on a mismatched byte, it is
unsafe (attacker would be able to easily acquire a valid tag
for any message by measuring time). One countermeasure
is to implement compare as constant time, but such cost is
not necessary. If the TP/SA units choose instruction commit
delays such that if the attacker is only able to measure
tEND − tSTART as a uniformly random value between 1 and
256 (× a constant), we would have perfectly decorrelated
data from timing, nullifying the attack.

5.5 Conclusions and Discussion

This section presents a new design for security methodology
that allows considering security as a first-class citizen
among other design considerations. We demonstrate some
early evidence of the methodology for securing an out-of-
order architecture against side-channel timing attacks, but
we believe that the methodology can be extended to other
security domains as well.

6 Related works

While the development of secure implementations of
the basic primitives discussed in Section 3, including
countermeasures for the many perceived threat models,
has a much longer history (the bottom-up approach), there
have increasingly been significant contributions towards
building secure systems (top-down) from both commercial
and academic quarters.

Examples of these secure systems, of a smaller scale,
are known as Roots-of-trust modules, examples of which
are listed in Section 3.1. A recent notable system in this
category is OpenTitan silicon RoT3, built around a small
RISC-V core (Ibex).

3https://opentitan.org/

Examples of mainstream SoCs with hardware-assisted
security features include ARM TrustZone, Intel SGX,
AMD SEV. A few newer RISC-V-based commercial SoCs
also join this list, e.g., the SiFive Shield, Hex-Five Secu-
rity (MultiZone secure domains). These security features are
essentially TEE frameworks that guarantee different secu-
rity properties. Academic projects offering TEE solutions
include Sanctum [10], Keystone [11], Timber-V [12], MI6
[33], and AEGIS [9]. [36] discusses some of these TEEs.
AEGIS is a process to build computing systems secure
against physical and software attacks. In the threat model,
all the components external to the processor, such as mem-
ory, are considered to be untrusted. AEGIS provides a
tamper-evident, authenticated environments in which any
physical or software tampering by an adversary is guar-
anteed to be detected. Keystone initiated an open-source
project for building trusted execution environments (TEE)
with secure hardware enclaves, based on the RISC-V archi-
tecture. Sanctum introduces software-based secure boot and
remote attestation process. While Keystone strives to be
less dependent on hardware modifications (improving from
Sanctum), approaches like TIMBER-V use tagged memory
ideas to implement flexible isolation and involve signifi-
cant hardware changes4. Different in approach and scope
from the above containment strategies, TrustGuard [35]
presents a hardware-based containment strategy to “quar-
antine” any faulty or malicious behavior of untrusted com-
ponents using a gate-keeping hardware module they call a
“Sentry.”

Also receiving attention, and something with a signif-
icant impact on the threat surface of a system, are CPU
micro-architectural countermeasures, e.g., InvisiSpec [59]
(making speculation-associated leakage unobservable), [33]
(securing enclaves executing on a speculative CPU, same as
the one used in Section 5.4).

7 Conclusion

The manuscript presented ITUS, a RISC-V-based secure SoC
prototype that integrates a number of security subsystems
(Section 1.1). While the current version of ITUS has only
partial threat protection coverage with respect to the com-
prehensive target threat model set out in Section 2, it sets
a stage for exploration of more countermeasure strategies
(such as in Section 5); development of a security monitor-
ing/validation methodology to detect security policy viola-
tions through simulation/emulation; and, working towards
more effective integration of available countermeasures.

46.25% overhead, 2 bit-tag over every 32-bit word
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Schaumont P, Polian I (2020) Towards secure composition of
integrated circuits and electronic systems: on the role of eda

9. Suh GE, Clarke D, Gassend B, Van Dijk M, Devadas S
(2003) Aegis: architecture for tamper-evident and tamper-resistant
processing. In: Proceedings of the 17th annual international
conference on Supercomputing. ACM, pp 160–171

10. Costan V, Lebedev I, Devadas S (2016) Sanctum: minimal
hardware extensions for strong software isolation. In: USENIX
Security Symposium, pp 857–874

11. Lee D, Kohlbrenner D, Shinde S, Asanovic K, Song D (2020) Key-
stone: an open framework for architecting trusted execution envi-
ronments. In: Proceedings of the Fifteenth European Conference
on Computer Systems, ser. EuroSys ’20

12. Weiser S, Werner M, Brasser F, Malenko M, Mangard S, Sadeghi
A-R (2019) Timber-v: Tag-isolated memory bringing fine-grained
enclaves to risc-v. In: Proceedings 2019 - Network and Distributed
System Security Symposium (NDSS). Internet Society

13. Menon A, Murugan S, Rebeiro C, Gala N, Veezhinathan K
(2017) Shakti-t: a risc-v processor with light weight security
extensions. In: Proceedings of the Hardware and Architectural
Support for Security and Privacy, ser. HASP ’17. Association

for Computing Machinery, New York. [Online]. Available:
https://doi.org/10.1145/3092627.3092629

14. Kumar VBY, Chattopadhyay A, Haj-Yahya J, Mendelson A
(2019) Itus: a secure risc-v system-on-chip. In: 2019 32nd IEEE
International System-on-Chip Conference (SOCC), p 418–423

15. Haj-Yahya J, Wong MM, Pudi V, Bhasin S, Chattopadhyay A
(2019) Lightweight secure-boot architecture for risc-v system-
on-chip. In: 20th International Symposium on Quality Electronic
Design (ISQED), pp 216–223

16. Kumar VBY, Gupta N, Chattopadhyay A, Kasper M, Krauß C,
Niederhagen R (2020) Post-quantum secure boot. In: Design,
Automation & Test in Europe Conference & Exhibition. IEEE,
Grenoble

17. Srinivasu B, Pudi V, Chattopadhyay A, Lam K (2018) CoLPUF
: a novel configurable LFSR-based PUF. In: APCCAS. IEEE, pp
358–361

18. Wong MM, Haj-Yahya J, Chattopadhyay A (2018) Smarts:
Secure memory assurance of risc-v trusted soc. In: Proceed-
ings of the 7th International Workshop on Hardware and
Architectural Support for Security and Privacy, ser. HASP
’18. ACM, New York, pp 6:1–6:8. [Online]. Available:
https://doi.org/10.1145/3214292.3214298

19. Lipp M, Schwarz M, Gruss D, Prescher T, Haas W, Mangard S,
Kocher P, Genkin D, Yarom Y, Hamburg M (2018) Meltdown,
arXiv:1801.01207

20. Kocher P, Genkin D, Gruss D, Haas W, Hamburg M,
Lipp M, Mangard S, Prescher T, Schwarz M, Yarom Y
(2018) Spectre attacks: exploiting speculative execution, arXiv
preprint:1801.01203

21. Bar-El H, Choukri H, Naccache D, Tunstall M, Whelan C
(2006) The sorcerer’s apprentice guide to fault attacks. Proc IEEE
94(2):370–382

22. Murdock K, Oswald D, Garcia FD, Van Bulck J, Gruss D,
Piessens F (2020) Plundervolt: software-based fault injection
attacks against intel sgx. In: 2020 IEEE Symposium on Security
and Privacy (SP)

23. Kocher P, Jaffe J, Jun B (1999) Differential power analysis.
In: Annual International Cryptology Conference. Springer, pp
388–397

24. Group TC (2011) TPM main specification level 2 version 1.2,
revision 116

25. Ravi P, Bhasin S, Breier J, Chattopadhyay A (2018) Ppap and
ippap: Pll-based protection against physical attacks. In: 2018 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), pp
620–625

26. Gupta N, Jati A, Chattopadhyay A, Sanadhya SK, Chang D
(2017) Threshold implementations of gift: a trade-off analysis,
Cryptology ePrint Archive, Report 2017/1040, https://eprint.iacr.
org/2017/1040

27. Genkin D, Shamir A, Tromer E (2013) Rsa key extraction via
low-bandwidth acoustic cryptanalysis, Cryptology ePrint Archive,
Report 2013/857, https://eprint.iacr.org/2013/857

28. Bhattacharya S, Mukhopadhyay D (2016) Curious case of
rowhammer: flipping secret exponent bits using timing analysis,
Cryptology ePrint Archive, Report 2016/618, https://eprint.iacr.
org/2016/618

29. Niederhagen R et al Industrial use cases and requirements
for the deployment of post-quantum cryptography, volume
wp.1, Fraunhofer Institute for Secure Information Technology,
Technical Report. [Online]. Available: https://quantumrisc.org/
results/quantumrisc-wp1-report.pdf

30. Fritzmann T, Sharif U, Müller-Gritschneder D, Reinbrecht C,
Schlichtmann U, Sepulveda J (2019) Towards reliable and secure
post-quantum co-processors based on risc-v. In: 2019 Design,
Automation Test in Europe Conference Exhibition (DATE), pp
1148–1153

341J Hardw Syst Secur (2020) 4:329–342

https://www.green-ic.org/socure
https://doi.org/10.1145/2976749.2978321
http://arxiv.org/abs/1902.05178
http://www.sciencedirect.com/science/article/pii/S0141933118302229
http://www.sciencedirect.com/science/article/pii/S0141933118302229
https://doi.org/10.1145/3092627.3092629
https://doi.org/10.1145/3214292.3214298
http://arxiv.org/abs/1801.01207
http://arxiv.org/abs/1801.01203
https://eprint.iacr.org/2017/1040
https://eprint.iacr.org/2017/1040
https://eprint.iacr.org/2013/857
https://eprint.iacr.org/2016/618
https://eprint.iacr.org/2016/618
https://quantumrisc.org/results/quantumrisc-wp1-report.pdf
https://quantumrisc.org/results/quantumrisc-wp1-report.pdf


31. Gassend B, Clarke D, van Dijk M, Devadas S (2002) Silicon
physical random functions. In: Proceedings of the 9th ACM
Conference on Computer and Communications Security, ser.
CCS ’02. ACM, New York, pp 148–160. [Online]. Available:
https://doi.org/10.1145/586110.586132

32. Szefer J (2016) Survey of microarchitectural side and covert
channels, attacks, and defenses, Cryptology ePrint Archive,
Report 2016/479, https://eprint.iacr.org/2016/479

33. Bourgeat T, Lebedev I, Wright A, Zhang S (2018) Arvind, and
S. Devadas, MI6: secure enclaves in a speculative out-of-order
processor, CoRR, [Online]. Available: arXiv:1812.09822

34. Austin TM (1999) Diva: a reliable substrate for deep submicron
microarchitecture design. In: Proceedings of the 32nd Annual
ACM/IEEE International Symposium on Microarchitecture, ser.
MICRO 32. IEEE Computer Society, USA, p 196–207

35. Zhang H, Ghosh S, Fix J, Apostolakis S, Beard SR, Nagendra NP,
Oh T, August DI (2019) Architectural support for containment-
based security. In: Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’19. Association for
Computing Machinery, New York, pp 361–377

36. Jauernig P, Sadeghi A, Stapf E (2020) Trusted execution
environments: properties, applications, and challenges. IEEE
Secur Privacy 18(2):56–60

37. Zhang S, Wright A, Bourgeat T (2019) Composable building
blocks to open up processor design. IEEE Micro 39(3):47–55,
https://github.com/csail-csg/riscy-OOO

38. Sau S, Haj-Yahya J, Wong MM, Lam KY, Chattopadhyay
A (2017) Survey of secure processors. In: 2017 International
Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS), pp 253–260

39. Sau S (2009) SHE: secure hardware extension version 1.1
40. Lebedev I, Hogan K, Devadas S (2018) Secure boot and remote

attestation in the sanctum processor, Cryptology ePrint Archive,
Report 2018/427, https://eprint.iacr.org/2018/427

41. Timmers N, Spruyt A (2016) Bypassing secure boot using fault
injection, Blackhat Europe 2016

42. de Haas J (2013) 20 ways past secure boot, Hack in the Box
Security Conference

43. Wong MM, Haj-Yahya J, Sau S, Chattopadhyay A (2018) A new
high throughput and area efficient sha-3 implementation. In: 2018
IEEE International Symposium on Circuits and Systems (ISCAS),
pp 1–5

44. Wold K, Tan CH (2008) Analysis and enhancement of random
number generator in fpga based on oscillator rings. In: 2008
International Conference on Reconfigurable Computing and
FPGAs, pp 385–390

45. Vermeulen B, Goossens K (2014) Debugging systems-on-chip:
communication-centric and abstraction-based techniques. Springer

46. Orme W (2008) Debug and trace for multicore socs, ARM White
paper

47. Rosenfeld K, Karri R (2010) Attacks and defenses for jtag. IEEE
Des Test Comput 27(1):36–47

48. Yang B, Wu K, Karri R (2004) Scan based side channel attack on
dedicated hardware implementations of data encryption standard.
In: 2004 International Conferce on Test. IEEE, pp 339–344

49. Chiu G-M, Li JC-M (2010) A secure test wrapper design against
internal and boundary scan attacks for embedded cores. IEEE
Trans Very Large Scale Integr (VLSI) Syst 20(1):126–134

50. Pierce L, Tragoudas S (2012) Enhanced secure architecture for
joint action test group systems. IEEE Trans Very Large Scale
Integr (VLSI) Syst 21(7):1342–1345

51. Pierce L (2011) Multi-level secure jtag architecture. In: 2011
IEEE 17th International On-Line Testing Symposium. IEEE, pp
208–209

52. Das A, Da Rolt J, Ghosh S, Seys S, Dupuis S, Di Natale G,
Flottes M-L, Rouzeyre B, Verbauwhede I (2013) Secure jtag
implementation using schnorr protocol. J Electron Test 29(2):193–
209

53. Kocher P, Horn J, Fogh A, Genkin D, Gruss D, Haas W, Hamburg
M, Lipp M, Mangard S, Prescher T, Schwarz M, Yarom Y (2019)
Spectre attacks: exploiting speculative execution. In: 2019 IEEE
Symposium on Security and Privacy (SP), pp 1–19

54. Mcilroy R, Sevcik J, Tebbi T, Titzer BL, Verwaest T (2019)
Spectre is here to stay: an analysis of side-channels and
speculative execution

55. Maisuradze G, Rossow C (2018) Speculose: analyzing the security
implications of speculative execution in cpus

56. Ge Q, Yarom Y, Cock D, Heiser G (2018) A survey of microar-
chitectural timing attacks and countermeasures on contemporary
hardware. J Cryptogr Eng 8(1):1–27

57. Gueron S (2009) Intel’s new aes instructions for enhanced perfor-
mance and security. In: Fast software encryption, Dunkelman, O,
Ed. Springer, Berlin, pp 51–66

58. Martin R, Demme J, Sethumadhavan S (2012) Timewarp: rethink-
ing timekeeping and performance monitoring mechanisms to
mitigate side-channel attacks. In: 2012 39th Annual Interna-
tional Symposium on Computer Architecture (ISCA). IEEE,
pp 118–129

59. Yan M, Choi J, Skarlatos D, Morrison A, Fletcher CW, Torrellas
J (2018) Invisispec: making speculative execution invisible in the
cache hierarchy. In: Proceedings of the 51st Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-51.
IEEE Press, Piscataway, pp 428–441

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

342 J Hardw Syst Secur (2020) 4:329–342

https://doi.org/10.1145/586110.586132
https://eprint.iacr.org/2016/479
http://arxiv.org/abs/1812.09822
https://github.com/csail-csg/riscy-OOO
https://eprint.iacr.org/2018/427

	Towards Designing a Secure RISC-V System-on-Chip: ITUS
	Abstract
	Introduction
	Contributions
	Organization

	SoC Threat Models
	Building Blocks of a Secure SoC
	Hardware Roots-of-Trust
	Cryptographic Primitives
	Key Management

	Core Micro-architectural Security
	Trusted Execution Environment

	Security Subsystems
	Secure Boot
	Implementation Details
	Evaluation

	Secure Enclaves: Integrating Keystone
	Memory Protection Unit 
	Evaluation:

	Key Management Unit
	Evaluation

	Physical Access Management
	A Simple Protocol Between the ``Device" and a ``Debug Host":


	Protection Mechanisms Against Side-Channel Attacks
	The Security Wrapper
	Dynamic Security Protection-Based Mechanisms
	Put It All Together—an Example: Protecting Against Side-Channel Timing Attacks
	A Proof-of-Concept with an OoO RISC-V Core
	A Motivating Example:

	Conclusions and Discussion

	Related works
	Conclusion
	References


