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Abstract
Several successful cache-based attacks have provided strong impetus for developing side channel resistant software
implementations of AES. One of the best-known countermeasures—use of a “minimalist” 256-byte look-up table—has
been employed in the latest (assembly language) versions. Software and hardware pre-fetching and out-of-order execution
in modern processors have served to further shrink the attack surface. Despite these odds, we devise and implement two
strategies to retrieve the complete AES key. The first uses adaptively chosen plaintext and random plaintext in a 2-round
attack. The second strategy employs only about 50 blocks of random plaintext in a novel single round attack. The attack can
be extended to spying on table accesses during decryption in a ciphertext-only attack. We also present an analytical model
to explain the effect of false positives and false negatives and capture various practical tradeoffs involving number of blocks
of plaintext, offline computation time for key retrieval and success probability.

Keywords AES · Side channel · Cache · Lookup table · 2-round attack

1 Introduction

AES is the most widely used secret key cipher and is known
to be hard to crack even with highly advanced cryptanalytic
techniques such as those described in [1–4]. However, its
software implementation, while extremely efficient, has
been shown to be susceptible to various side channel
attacks. Not surprisingly, “hardened” implementations have
been developed. One of these, included in cryptographic
libraries such as OpenSSL [5], is now the default software
version. The primary goal of this work is the design and
implementation of a cache-based side channel attack that
makes even the latest OpenSSL version vulnerable.
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Each round of AES uses field operations in GF(28).
Because field operations are computationally expensive,
look-up tables are employed to greatly improve perfor-
mance. The most efficient implementation of AES uses four
1 KB tables. During encryption, the tables typically reside
in cache and occupy 64 lines or blocks (assuming a 64 byte
block size as in most x86 machines). Based on even par-
tial knowledge of the sequence of blocks accessed during
encryption, it has been shown that the entire AES key may
be retrieved [6]. In the sequel, we confine usage of the terms
block and line to “block of plaintext” and “line of cache”
respectively.

Various measures have been put in place to thwart
cache-based attacks. Beginning with OpenSSL-1.0.0a, for
example, a single 256-byte S-Box table has been employed.
Such a table occupies only 4 lines of cache and so
accesses to the table cause 2 bits of each byte of the
AES key to be leaked (rather than 4 bits as in the four
table implementation). This “minimalist” look-up table
architecture has been acknowledged to be very hard to
compromise in [7–11]. Indeed, almost all cache attacks on
AES have targeted the 4 table [8, 12–15] or a “compressed”
2KB table implementation [10] rather than the single 256-
byte table. The latter was intended to provide resistance to
side channel attacks at the expense of reduced performance.
To partly offset the performance hit, it was coded in x86
assembly and is commonly referred to as the “assembly”
version.

Journal of Hardware and Systems Security (2020) 4:86–97

/ 5 2019Published online: December

http://crossmark.crossref.org/dialog/?doi=10.1007/s41635-019-00082-w&domain=pdf
http://orcid.org/0000-0002-7242-1520
mailto: ashokkumar@cse.iitb.ac.in
mailto: bholanath@cse.iitb.ac.in
mailto: bhargav@cse.iitb.ac.in
mailto: bernard@cse.iitb.ac.in


To further defend against cache attacks, the default
software implementation (OpenSSL Version 1.0.0a and
beyond) pre-fetches the S-Box table at the start of each
round of encryption. Thus, the attacker or spy is unable
to distinguish between a line pre-fetched and one actually
accessed as part of encryption resulting in false positives.
Another source of false positives is the out-of-order
execution in all modern processors. In the event of a stall
caused by, for example, a cache miss, the processor attempts
to execute instructions further upstream from the current
instruction. This results in an even larger number of false
positives as explained in Section 3. Finally, aggressive
hardware pre-fetching further increases the rate of false
positives.

The principal contribution of this work is the design of
two attacks on the side channel resistant version of the
OpenSSL implementation of AES. Both of these attacks
leak out the complete 128-bit AES key. The first (called
the Two Round Attack) uses information obtained by
the spy about cache-resident table accesses made by the
victim during the first two rounds of encryption. It uses
adaptively chosen plaintexts for the first round attack
and random plaintexts for the second round attack. The
second attack (called the Single Round Attack) uses a less
restrictive attack scenario based only on table accesses in
the second round with random plaintexts. We demonstrate
experimentally that we require fewer than 50 blocks of
plaintext to recover the entire AES key. We also develop
an analytical model to predict the number of plaintexts
required and compare these estimates with experimentally
obtained values. While the attacks described here use known
plaintext, the second attack could also be adapted to work
by snooping on the decryption of known ciphertext.

The paper is organized as follows. Section 2 introduces
background material and describes the operation of the
spy software. Section 3 explains the details of the First
and Second Round attacks. It also contains an analytical
model and a comparison between experimental and model
results. Section 4 outlines our strategy to obtain the AES key
in a less restrictive attack scenario. Section 5 summarizes
related work and Section 6 concludes the paper. For ready
reference, the notations used in this paper are summarized
in Table 1.

2 Background

We first review the basics of AES and cache. Various cache-
based attacks and scenarios are summarized. Finally, we
outline the experimental setup used to test our key retrieval
approaches.

2.1 AES Basics

AES is a substitution-permutation network. It supports a
key size of 128, 192, or 256 bits and block size = 128 bits.
A round function is repeated a fixed number of times (10
for key size of 128 bits) to convert 128 bits of plaintext
to 128 bits of ciphertext. The 16-byte input or plaintext
P = (p0, p1, ..., p15) may be arranged column wise in a
4×4 array of bytes. This “state array” gets transformed after
each step in a round. At the end of the last round, the state
array contains the ciphertext.

All rounds except the last involve four steps—Byte
Substitution, Row Shift, Column Mixing, and a Round Key
operation (the last round skips the Column Mixing step).
The round operations are defined using algebraic operations
over the field GF

(
28

)
. For example, in the Column Mixing

step, the state array is pre-multiplied by the matrix B given
below.

B =

⎛

⎜
⎜
⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞

⎟
⎟
⎠

The original 16-byte secret key K = (k0, k1, ..., k15)

(arranged column wise in a 4×4 array of bytes) is used to
derive 10 different round keys to be used in the round key
operation of each round. The round keys are denoted K(r),
r = 1, 2, ... 10. Each element in P, K, C, and B belongs to
the field GF

(
28

)
and is represented as two hexadecimal

characters. Let x(r) = (x
(r)
0 , . . ., x(r)

15 ) denote the input
to round r (i.e. the state array at the start of round r).
The initial state x(1) = (x

(1)
0 , . . ., x(1)

15 ) is computed by

x
(1)
i = pi ⊕ ki, 0 ≤ i ≤ 15.

In a software implementation, field operations are
replaced by relatively inexpensive table lookups thereby
speeding encryption and decryption. In the version of
OpenSSL targeted in this paper, a single 256-byte S-Box
table is used. The ith entry (byte) of the table contains S(i)

where S is the AES substitution function.

2.2 Cache Basics

All modern processors have multiple levels of cache
intended to bridge the latency gap between main memory
and the CPU. The machines targeted in this paper are Intel
Core i3-2100 and Intel Core i7-3770. These have three
levels of cache (private L1 32KB I-cache and 32KB D-
cache, 256KB L2 cache and 3MB L3 cache shared between
all cores).

The granularity of data transfer between different levels
of cache is a block or line. On our targeted machines, the
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Table 1 Notations

Notation Explanation

K, K(i) AES Key or ith round key represented as 4×4 byte array (column wise)

k i ith byte of AES key

P 128-bit plaintext represented as 4×4 byte array

pi ith byte of plaintext

πi ith byte of adapted plaintext

x
(r)
i ith byte of the input to round r

b Number of blocks of plaintext used to retrieve key

x′ Most significant two bits of byte x, called twit here

x′′ Least significant 6 bits of byte x

li ith last access in Round 1 (R1)

ri Relation with various AES subkey attributes

ri �� rj Join of ri and rj

ri × rj Cartesian product relation of ri and rj

s Initial number of tuples in a relation

P(A) Probability of event A

f
(i)
p False positive rate corresponding to Eqn. i

f
(i)
n False negative rate corresponding to Eqn. i

ni Number of top subkey values picked from ri

pc(pin) Probability that the score of correct (incorrect) subkey is incremented after considering a block of plaintext

line size = 64 bytes. The lines of a cache are grouped into
sets—a line from main memory is mapped to exactly one set
though it may occupy any position in that set. The number of
lines in a set is the associativity of the cache. In the machines
we worked with, L1 and L2 caches are 8-way set associative
while L3 is 12-way set associative.

To speed up AES encryption, the S-Box table is typically
cache resident. It contains 256 entries and each entry
occupies 1 byte. So the table fits into only 4 lines of cache.
The first two bits of the table index specify the cache line
number and the remaining 6 bits specify the element within
the line.

2.3 Types of Attacks and Attack Scenarios

Cache-based side channel attacks belong to several cat-
egories. Timing-driven [13] attacks measure the time to
complete an encryption. Trace-driven [16] attacks create
profiles of a cache hit or miss for every access to memory
during an encryption. Access-driven [12] attacks need infor-
mation only about which lines of cache have been accessed,
not their precise order. The attacks presented in this paper
belong to the last category.

Various techniques are used to determine which cache
lines have been accessed by a victim process. In the
Prime+Probe approach [12], the attacker fills the cache with
its own data. It waits for the victim to perform an encryption

whereby some of the attacker data is evicted. The attacker
then probes each cache line—a higher reload time for a
cache line indicates that the cache line was evicted by the
victim. In the Evict and Time method [12], the attacker first
measures the time (T1) to complete an encryption, evicts a
specific cache set, and then again measures the time (T2)
taken to complete an encryption on the same plaintext. If T2

is greater than T1, it concludes that the evicted line is used
in encryption.

In the Flush+Reload technique [10, 17], the attacker first
flushes a line from all levels of cache, then waits for the
victim to perform the encryption, and finally calculates the
reload time of the previously flushed line. A lower reload
time indicates that the line is in cache and was brought by
the victim.

We consider two possible attack scenarios. In the
first, a victim process runs on behalf of a data storage
service provider who securely stores documents from
multiple clients and furnishes them on request after due
authentication. The same key or set of keys is used to
encrypt documents from different clients prior to storage.
In the second scenario, two entities, A and B, exchange
encrypted messages. The victim, on B’s machine, decrypts
blocks of ciphertext received from A. Thus, in the first
scenario, the spy attempts to obtain the cache line numbers
during encryption of plaintext while in the second scenario,
it obtains the line numbers during decryption of ciphertext.
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2.4 Experiment Setup

To test our key retrieval algorithms, we used the following
experiment setup. The victim, V, performs AES encryptions
using the assembly version of OpenSSL (v-1.0.2p). A
multithreaded spy, co-located on the same core as the
victim, attempts to infer the line numbers of the AES
table accessed. The experiments were performed on Intel(R)
Core(TM) i3-2100 CPU @ 3.10GHz and Intel(R) Core(TM)
i7-3770 CPU @ 3.40GHz running Debian 8.0 with kernel
version 3.18.26.

The spy program creates a high-resolution POSIX timer
(used by all the spy threads) and an array of binary
semaphores—sem[i] is the semaphore associated with
T hreadi . All but one of the semaphores are initialized to
0. So all threads are blocked on their respective semaphores
except for the one that is initialized to 1.

The following is the sequence of events involved in
probing the cache lines accessed by V.

(1) The unblocked thread say T hreadi

(a) probes each of the four cache lines of the table to
determine which has/have been accessed by V.

(b) it flushes all four lines of the cache-resident table
(c) it initializes a timer to ∼850 ns in Core i7 (∼1100

ns in Core i3) and then blocks on its semaphore.

(2) At this point, all spy threads are blocked on their
semaphores and V is scheduled next (its resumes
performing encryptions).

(3) On expiration of the timer, the kernel sends a signal
to a signal handler which unblocks T hreadi+1. V is
preempted and T hreadi+1 begins execution.

The spy code spawns about 200 threads which execute
in round robin fashion. Between two successive threads, V
runs for about 850–1100 ns. Due to the large number of
cache misses encountered by V, it is able to complete only

about
(

1
160

)th

of an encryption during this time. Thus, V

should be scheduled roughly 160 times for it to complete a
single encryption.

A cache miss results in the next (or previous) line [18]
being pre-fetched causing the spy to wrongly infer that the
latter was accessed in the previous run of the victim. To
defeat the effect of lines pre-fetched during the execution
of the victim process, the number of accesses made by
the victim during each of its runs was minimized. This
was accomplished by limiting the POSIX timer interval to
∼ 850/1100 ns.

The Intel Core i3/i7 incorporates aggressive prefetchers
which track and remember the forward and backward strides
of the 16 most recently accessed 4KB pages [19]. So, we
programmed the spy to access 32 randomly selected pages
between two consecutive accesses to the AES tables. Each
spy thread receives about 20000 ns of CPU time.

3 Strategy I - Two Round Attack

The first attack strategy involves two steps. The first step
determines which lines of the AES table were accessed by
the victim in the first round to obtain the first two bits of
each of the 16 bytes of the AES key. The second round
attack snoops on the accesses made in the second round
to obtain the remaining six bits of each byte of the AES
key.

3.1 First Round Attack

Table 2 shows the bytes of a block of plaintext, P, in the
order that they are processed by the OpenSSL software. The
next row lists the bytes of the key, K, in the same order. This
is followed by two rows containing the two most significant
bits of each byte of the plaintext and the key. For brevity,
we refer to the two most significant bits of a byte, x, as a
twit and denote it x′. The remaining six bits of the byte are
denoted x′′.

The sequence of cache line numbers accessed during the
first round (R1) of encryption is shown in the sixth row
and is the XOR of the corresponding twits of P and K. The
sequence of cache line numbers accessed in round 2 (R2) is
shown in the last row.

Table 2 Plaintext, key, and cache accesses (First Two Rounds)

Position 0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

P B3 C9 8D 23 F9 B6 C5 82 CA 6F 18 E4 80 53 4C D5

K 9A 15 E6 A7 46 58 F0 07 B7 63 AE 3C D9 4A 29 71

p′
i 10 11 10 00 11 10 11 10 11 01 00 11 10 01 01 11

k′
i 10 00 11 10 01 01 11 00 10 01 10 00 11 01 00 01

p′
i ⊕ k′

i 00 11 01 10 10 11 00 10 01 00 10 11 01 00 01 10

(R1 access) (0) (3) (1) (2) (2) (3) (0) (2) (1) (0) (2) (3) (1) (0) (1) (2)

R2 access 0 1 2 3 2 2 3 2 2 1 2 0 0 3 2 0
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A spy thread attempts to infer the line or lines of the
AES table accessed by V during its previous run. Table 3
indicates that the first 20 threads observe all four lines
accessed. Lines 0, 1, and 2 are reported as accessed by the
next two scheduled threads while only lines 1 and 2 are
reported as accessed by the next thread and so on. (L1 =
{0, 1, 2, 3}, L2 = {0, 1, 2}, and L3 = {1, 2}). In virtually
all of our measurements, |L1| = 4, |L2| = 3, |L3| = 2,
and |L4| = 1. Also, L1 ⊃ L2 ⊃ L3 ⊃ L4. Another
observation is that the cardinalities of the Li’s exhibit a
periodicity which helps identify the end of a round and the
beginning of the next round.

The OpenSSL software pre-fetches all four lines of the S-
Box table at the start of each round. Hence, the first thread
scheduled in a round sees all four lines accessed. A spy
thread flushes all four lines of the table before it is blocked.
Further, the design of the spy code ensures that a run of the
victim is sufficiently small so that only one or two lines are
accessed. Yet, the next scheduled thread and indeed many
more also see all four lines accessed. This is attributed to the
out of order execution in modern processors.

When a cache miss occurs, the execution of the
instruction causing the miss is suspended. To maximize
CPU utilization, the processor looks for an opportunity
to execute instructions further upstream from the stalled
instruction. Some of those instructions also cause a cache
miss due to the need to access cache lines flushed out by the
previously executing spy thread. So, at a given point in time,
there could be several outstanding requests for data transfer
from main memory to cache. While these requests are being
serviced, the victim is suddenly pre-empted. This causes the
next spy thread to see more table accesses made during the
previous run than were actually consumed during that run.

During the execution of a round, 16 byte-sized table
elements are first accessed and loaded into the CPU
registers. This is followed by a computation phase
wherein field multiplications and additions involved in the
MixColumn step are performed. Consider the last access
to an element in a round. As before, while this element is
being fetched, the processor attempts to execute instructions
upstream from the current instruction. These instructions
involve only computation, not memory access. So the spy
thread scheduled next sees a solitary access to the table
(|L4| = 1). So the last (or last few) accesses in a round will
be unambiguously reported by spy threads but there exists
considerable ambiguity in identifying the lines accessed
early on in each round.

The goal of the First Round Attack is to deduce the twit
of each byte of the AES key. For this purpose, we need the
complete set of cache line accesses. However, as shown in
Table 3, successive spy threads report that all four lines have
been accessed—in effect revealing no useful information
about the first eight or so accesses. We next devise a strategy
whereby we can still obtain the twits of all 16 bytes of the
AES key.

Starting with a random block of plaintext, we construct
a set of 16 blocks such that the encryption of the ith block
results in all of the last i cache accesses to the same line
of the lookup table. From the line number of the (i − 1)th

access, the twit of the (i − 1)th byte of the AES key is
obtained and the next block of plaintext to be encrypted is
crafted. We exemplify our approach with the same initial
random plaintext and random key from Table 2.

Table 4 shows the cache access patterns as reported by the
spy during an encryption of successive blocks of plaintext.
The first row shows that the last access is to line 2 (l1 = 2).

Table 3 Cache lines accessed as reported by spy

Round Sets of cache lines accessed Count (number of times

( i ) (as reported by spy threads) same accesses reported

by successive spy threads)

1 L1 = [0, 1, 2, 3] 20

1 L2 = [0, 1, 2] 2

1 L3 = [1, 2] 1

1 L4 = [2] 1

2 L5 = [0, 1, 2, 3] 12

2 L6 = [0, 1, 2] 2

2 L7 = [0, 1] 1

2 L8 = [0] 1

3 L9 = [0, 1, 2, 3] 8

3 L10 = [0, 2, 3] 1

. . . . . . . . .
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Table 4 Adaptively choosing plaintext for Round 1 attack

Row Byte position Access pattern Computed New value of

number in plaintext reported by spy twit of key twit in plaintext

(j ) (i) k′
i = p′

i ⊕ lj π ′
i = k′

i ⊕ 11

1 11 (0123)20 (012)2 (12)1 (2)1 01 = 11 ⊕ 10 10 = 01 ⊕ 11

2 6 (0123)19 (013)3 (13)1 (3)1 00 = 01 ⊕ 01 11 = 00 ⊕ 11

3 1 (0123)19 (013)2 (03)1 (3)2 01 = 01 ⊕ 00 10 = 01 ⊕ 11

4 12 (0123)18 (123)1 (13)2 (3)3 11 = 10 ⊕ 01 00 = 11 ⊕ 11

5 7 (0123)15 (023)1 (23)1 (3)5 00 = 11 ⊕ 11 11 = 00 ⊕ 11

6 2 (0123)15 (023)1 (23)1 (3)5 10 = 00 ⊕ 10 01 = 10 ⊕ 11

7 13 (0123)16 (013)1 (03)1 (3)6 01 = 01 ⊕ 00 10 = 01 ⊕ 11

8 8 (0123)13 (123)1 (13)1 (3)7 10 = 11 ⊕ 01 01 = 10 ⊕ 11

9 3 (0123)11 (023)4 (23)1 (3)8 00 = 10 ⊕ 10 11 = 00 ⊕ 11

10 14 (0123)12 (023)2 (03)2 (3)9 11 = 11 ⊕ 00 00 = 11 ⊕ 11

11 9 (0123)12 (023)2 (03)2 (3)11 01 = 10 ⊕ 11 10 = 01 ⊕ 11

12 4 (0123)12 (023)2 (23)2 (3)11 01 = 11 ⊕ 10 10 = 01 ⊕ 11

13 15 (0123)8 (123)2 (23)1 (3)12 10 = 00 ⊕ 10 01 = 10 ⊕ 11

14 10 (0123)7 (013)2 (13)2 (3)13 11 = 10 ⊕ 01 00 = 11 ⊕ 11

15 5 (0123)4 (023)2 (03)3 (3)15 00 = 11 ⊕ 11 11 = 00 ⊕ 11

16 0 (0123)4 (023)2 (03)3 (3)15 10 = 10 ⊕ 00 01 = 10 ⊕ 11

The twit of eleventh byte of the key is computed as k′
11 =

p′
11 ⊕ l1 = 11 ⊕ 10 = 01. We wish all accesses to be

eventually to line 31. For this purpose, we modify the twit of
eleventh byte of the plaintext to π ′

11 = k′
11⊕11 = 01⊕11 =

10.
Row 2 shows the access pattern during encryption of the

modified plaintext. The last access is to line 3 (as desired)
but the 2nd last access is to line 1 (l2 = 1). Row 2 shows
the derivation of k′

6 and the value of π ′
6 (the new twit value

of p6).
As shown in Table 4, each successive plaintext is chosen

so that the number of accesses to the last cache line within a
row increases with row number. The twits of all 16 bytes of
the key are obtained with fewer than 16 blocks of plaintext
and encryptions. In practice, however, this may not be the
case. Experimental error could cause an unexpected pattern
to occur. In that event, we rollback and proceed from an
earlier row. On average, roughly 6 errors occur per sample.
Overall, we require approximately 15 distinct plaintexts to
obtain the twits of each of the 16 key bytes. Due to the
rollbacks, the number of encryptions performed is about
21.5 on average per sample.

1When we targeted lines 0, 1, or 2, we observed that lines 1, 2, or 3
respectively would be pre-fetched by the hardware causing ambiguity.
But, when we targeted line 3, we noticed that line 4 was pre-fetched.
That, however, did not affect our results since line 4 is not part of the
lookup table.

3.2 Second Round Attack

3.2.1 Algorithm and Description

Inputs to a round expressed as a 4×4 byte matrix are indices
to the AES table (S-Box). This matrix is also the output of
the previous round. Based on the transformations that the
state array undergoes in the first round, we can relate each
element of the input of the second round to bytes of the
plaintext and key.

Given that it is easiest to identify the line accesses made
at the end of a round, we focus on expressions for the
indices of the last 4 table accesses, i.e., x

(2)
11 , x

(2)
6 , x

(2)
1 , and

x
(2)
12 (Eqs. 1–4). Collectively, these equations involve all 16

bytes of the AES key. The known variables on the RHS of
these equations are bytes of the plaintext and twits of the
bytes of the AES key. The first two bits of the table index
(LHS) comprise the cache line number obtained (with some
ambiguity) from the spy input.

x
(2)
11 = 03 • s(p8 ⊕ k8) ⊕ 01 • s(p13 ⊕ k13) ⊕ 01 • s(p2 ⊕ k2)

⊕ 02 • s(p7 ⊕ k7) ⊕ s(k12) ⊕ k3 ⊕ k7 ⊕ k11 (1)

x
(2)
6 = 01 • s(p4 ⊕ k4) ⊕ 01 • s(p9 ⊕ k9) ⊕ 02 • s(p14 ⊕ k14)

⊕ 03 • s(p3 ⊕ k3) ⊕ s(k15) ⊕ k2 ⊕ k6 (2)

x
(2)
1 = 01 • s(p0 ⊕ k0) ⊕ 02 • s(p5 ⊕ k5) ⊕ 03 • s(p10 ⊕ k10)

⊕ 01 • s(p15 ⊕ k15) ⊕ s(k14) ⊕ k1 (3)

x
(2)
12 = 02 • s(p12 ⊕ k12) ⊕ 03 • s(p1 ⊕ k1) ⊕ 01 • s(p6 ⊕ k6)

⊕ 01 • s(p11 ⊕ k11) ⊕ s(k13) ⊕ k12 ⊕ k0 ⊕ k4 ⊕ k8 ⊕ 01

(4)
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Our strategy is to compute the two most significant bits of
the byte value of the RHS as a function of known quantities
and the minimum possible number of unknown bits of the
key. Algorithm 1 outlines the procedure to obtain a set of
candidate keys containing the correct key with very high
probability.

Algorithm 1 creates four relational schema each with five
attributes. The first four attributes are the least significant
six bits of different bytes of the AES key. The fifth attribute
comprises the two most significant bits of the output of the

S-Box applied to a byte of the key (for example s(k12)
′

in Eq. 1). Four relations are created which are instances
of the four schema. Each is populated with all possible
combinations of bit values of the attributes; thus, there are a
total of 226 tuples in each relation. Each tuple is associated
with a score (initially zero).

For each tuple in relation ri and for a given plaintext, the
RHS of Eqn. i is evaluated by substituting values from the
tuple, the plaintext, and bits of the key obtained from the
Round 1 attack. The score of the tuple is incremented if the
most significant two bits of the computed byte (RHS) match
one of the line numbers reported by the spy for the specific
cache line access during encryption of that plaintext. This is
repeated for each tuple and for all the blocks of plaintext.

After scores are computed for all tuples in the four
relations, the top ni tuples in relation ri are selected. A
relational join is performed on the surviving tuples between
relations r1 and r4 and also between the reduced r2 and r3.
Each join output includes eight 6-bit attributes. Together,
the two join outputs contain possible values of the least
significant six bits of all 16 bytes of the AES key.

Each tuple in r1 �� r4 is paired with a tuple in r2 ��

r3 which, together with the bits obtained in the Round 1
attack, form a possible AES key. These potential keys are
each tested for correctness by a verification program which
produces a sequence of cache line numbers accessed during
encryption of successive blocks of plaintext. In particular,
the last two accesses in rounds 3–10 are matched against
those provided by the spy. The correct key will be inferred
because only in that case will the inputs provided by the
spy match those provided by the verification program in
all/most cases.

The join predicate is actually the conjunction of two sub-
predicates. Consider for example, r1 �� r4. To join a tuple,
t1 from r1 with a tuple, t2 from r4, we assemble k12 from
k′′

12 (in t2) and k′
12 (from the First Round Attack). We then

compute s(k12)
′ and compare it with the value of the fifth

attribute in t1. To check for a match of the second sub-
predicate, compute s(k13)

′ and compare it with the value
of the fifth attribute in t2. Only if both sub-predicates are
satisfied is the tuple formed by concatenating t1 and t2
included in r1 �� r4. A similar computation is performed to
compute r2 �� r3.

3.2.2 Experiments and Results

A basic strategy is to select only the top scoring tuples from
each relation and perform the joins and Cartesian product on
these reduced relations. Table 5 shows the overall success
probability of this strategy. It also shows the number of
subkeys with the top score in each relation ri , 1 ≤ i ≤ 4 for
different number of plaintexts, b encrypted with the same
key. The reported results are averaged over 1000 samples.

J Hardw Syst Secur (2020) 4:86–9792



The numbers in parentheses represent the probability that
the correct subkey appears in the set of top scorers.

The number of top scorers is highest in r4 across all
values of b. In each relation, the number of top scorers
decreases with increasing b. Also, the probability of getting
the correct key in the set of top scorers increases with b.
Thus, it is mostly possible to find the correct subkeys in r1

and r2 with only about 30 blocks of plaintext but it requires
about 50 and 70 plaintexts respectively to harvest the correct
subkeys from r3 and r4.

After picking the top scorers in r1 and r4, we found that
r1 �� r4 returned zero tuples in some samples (Table 5
shows that the cardinality of r1 �� r4 is less than 1 for
b = 30, 40, ...). Another interesting observation is that the
probability of the correct subkey appearing in the set of
top scores is close to the overall success probability and
hence is the key factor in the overall success of obtaining
the complete AES key.

The probability of successfully retrieving the AES key is
directly related to the quality of inputs provided by the spy
threads. False positives (spurious cache line accesses) and
false negatives (failing to report the correct line accesses)
both have a detrimental effect. Further, the above strategy
of selecting subkeys with the top scores yields very limited
success. To improve the success probability of finding
the correct key, we should include many more subkeys
especially from r4.

The false positive and false negative rates are dependent
on noise-induced experimental error and a host of design
parameters such as the number of spy threads and the
timer setting (Section 2). The model presented next provides
insight into the dependence of success probability on false
positive/false negative rate and also on ni—the number of

top-ranking subkeys collected from each relation ri (prior to
the join).

Let Xc and X
(k)
in , 1 ≤ k ≤ s − 1, s = 226, respectively

denote the random variables associated with the scores of
the correct and incorrect subkey values and let pc and
pin denote their respective success probabilities. These
variables are binomially distributed, i.e., Xc ∼ B(pc, b) and
X

(k)
in ∼ B(pin, b), 1 ≤ k ≤ s − 1 where b is the number

blocks of plaintexts used.
Let f

(i)
n , f

(i)
p respectively denote the experimentally

determined average rates of false negatives and false
positives corresponding to Eqn. i. Where understood, we
drop the superscript for brevity. The rate of false negatives
may be interpreted as the probability of occurrence of a false
negative. The occurrence of a false negative and the correct
subkey receiving a boost are events that are complements of
each other. Hence,

pc = 1 − fn (5)

Each line number reported by the spy contributes to an
increase by 1 of the scores of roughly 25% of the incorrect
subkeys (since the number of cache line numbers is 4). In the
event of a false negative, the number of reported accesses
on average is fp while it is fp + 1 in the absence of a false
negative. So,

pin = fn

(
fp

4

)
+ (1 − fn)

(
1 + fp

4

)

pin = 1 + fp − fn

4
(6)

In Algorithm 1, we pick the top ni scorers. We are interested
in the probability of the correct subkey being one among the
top ni scorers. This is equivalent to having, at least s − ni

Table 5 Average number of top scorers and success probability

Number of blocks, b

Relation 15 20 25 30 40 50 60 70

r1 3 1.75 1.48 1.31 1.13 1.04 1.03 1.01

(0.76) (0.83) (0.87) (0.89) (0.93) (0.96) (0.98) (0.99)

r2 5.13 2.27 1.6 1.5 1.14 1.08 1.04 1.02

(0.63) (0.77) (0.84) (0.88) (0.93) (0.95) (0.97) (0.98)

r3 50.73 5.49 2.98 2.04 1.47 1.25 1.11 1.06

(0.22) (0.42) (0.6) (0.69) (0.81) (0.88) (0.94) (0.95)

r4 1148.4 74.91 8.31 4.05 2.29 1.74 1.41 1.26

(0.16) (0.18) (0.29) (0.42) (0.64) (0.76) (0.82) (0.86)

r1 �� r4 287.28 15.74 1.16 0.76 0.78 0.83 0.84 0.88

(0.14) (0.17) (0.29) (0.42) (0.64) (0.76) (0.82) (0.86)

r2 �� r3 54.6 1.87 0.9 0.88 0.88 0.91 0.94 0.96

(0.2) (0.41) (0.59) (0.68) (0.81) (0.88) (0.93) (0.95)

Overall success probability 0.06 0.11 0.25 0.39 0.62 0.74 0.81 0.85
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incorrect subkeys scoring less than the correct subkey. Let
Y

(k)
in denotes the random variable associated with the score

of kth lowest scorer among incorrect subkey values. So,

Y
(1)
in ≤ Y

(2)
in ≤ · · · ≤ Y

(k)
in ≤ · · · ≤ Y

(s−1)
in

Y
(1)
in , Y

(2)
in , . . . , Y

(k)
in , . . . , Y

(s−1)
in are called order statistics of

X
(1)
in , X

(2)
in , . . . , X

(k)
in , . . . , X

(s−1)
in . The following result from

order statistics is used in our model.

Lemma 1 Let X(1), . . . , X(s−1) be s − 1 random samples
from a discrete distribution with cumulative mass function,
FX(n) = P(X ≤ n) = Pn. Let Y (1), . . . , Y (s−1) denote the
order statistics of the sample. Then,

P(Y (j) ≤ n) =
s−1∑

k=j

(
s − 1

k

)
P k

n (1 − Pn)
s−1−k

To have the correct subkey value among top ni scorers when
Xc = n+1, we should have Y

(s−ni)
in ≤ n. So, the probability

of the correct subkey value being among ni top scorers is

b−1∑

n=0

{
P(Xc = n + 1) × P

(
Y

(s−ni)
in ≤ n

)}

Substituting from Lemma 1 into above expression yields the
following.

Theorem 1 After scoring s = 226 candidate subkey values
using b blocks of plaintext, the probability of the correct
subkey ending up as one of the top ni scorers is

b−1∑

n=0

⎧
⎨

⎩
P(Xc =n + 1)×

⎡

⎣
s−1∑

k=s−ni

(
s − 1

k

)
P k

n (1 − Pn)
s−1−k

⎤

⎦

⎫
⎬

⎭

where Pn = P(Xin ≤ n).

Success in finding the correct key is limited by the
difficulty in finding the correct subkey in r4. So we studied
the effect of f

(4)
n , f

(4)
p , and n4 on the success probability

of the latter. We generated 1000 samples—each sample
comprises a random key and 100 randomly generated blocks
of plaintext. We created two subsets of samples using only
the first 25 blocks for each sample. Each sample in the first
had resulted in success when n4 = 100 and each sample
in the second resulted in success when n4 = 10000 but
failed when n4 = 100. The average values of f

(4)
n for the

subsets were 0.08 and 0.18 respectively while the average
values of f

(4)
p were 0.81 and 0.94 respectively. Based on the

analytical model, success probability versus n4 for each set
of false positive and false negative rates was plotted (Fig. 1).

To obtain a reasonable subset of samples with low f
(4)
n ,

we selected samples with f
(4)
n between 0.04 and 0.12

(average value = 0.08). Our preliminary findings indicated

Fig. 1 Variation of success probability in r4 with f
(4)
n , f

(4)
p , and n4 at

b = 25

that the success probability is not highly correlated with
f

(4)
p , so it was not used as a filter in selecting the subset. We

plotted the number of samples resulting in success with n4

equal to each value on the x-axis of Fig. 1. A similar plot was
obtained for samples with f

(4)
n in the higher range between

0.16 and 0.24. As shown in Fig. 1, the graphs for the
two subsets are well separated with a close match between
model and experimental results. The model estimates tend
to be generally conservative and especially so in the case of
higher false negatives at higher values of n4.

We conducted a limited investigation on the effect of
individual success probabilities (in r1, r2, r3, r4) on the
overall success probability. To achieve individual success
probability = 0.9 for each ri , at b = 30, we required n1 =
n2 = 10, n3 = 103, and n4 = 105 (Fig. 2a). For these values,
we succeeded in retrieving the correct key in about 80%
of 1000 samples under consideration. This overall success
probability is considerably higher than the successes in the
four relations were independently distributed. In the latter
case, the success probability would have been (0.9)4 or
65%. This is explained by the observation that the false
negatives (and false positives) in the four relations are
correlated across a large number of samples. For b = 40
and with the same choice of ni values (Fig. 2b), the overall
success probability is about 90%.

4 Strategy II - Single Round Attack

The next attack is both simpler and more realistic compared
with to the attack of the previous section. It is simpler
because it relies on the cache line accesses occurring in
only the second round of encryption and that too only the
last four accesses. It is more realistic since it obviates the
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Fig. 2 Variation of success
probability in ri with ni for 30,
40 blocks

need to craft plaintext based on cache accesses made during
encryption of the previous block of plaintext.

As in strategy I, we create four relations, each with five
attributes. However, unlike the Round 2 Attack in strategy
I, we need to determine all eight bits (not just six) of each
byte of the AES key. So the relational schema employed are

r1(k8, k13, k2, k7, a1), a1 = (s(k12) ⊕ k3 ⊕ k7 ⊕ k11)
′

r2(k4, k9, k14, k3, a2), a2 = (s(k15) ⊕ k2 ⊕ k6)
′

r3(k0, k5, k10, k15, a3), a3 = (s(k14) ⊕ k1)
′

r4(k12, k1, k6, k11, a4), a4 = (s(k13) ⊕ k12 ⊕ k0 ⊕ k4 ⊕ k8 ⊕ 01)′

The initial number of the tuples in each relation is now 234

(unlike 226 in round 2 of Approach I). Otherwise, the steps
in this approach are very similar to those of Algorithm 1.

We generated a total of 145 samples. An experiment
involved scoring the 234 tuples in each relation for varying
number of plaintexts. Figure 3a and b respectively show
plots of the rank of the correct subkey in r3 and r4 as a
function of the number of blocks of plaintext used (for 6
samples).

With 40 blocks, individual success probability of 0.9 is
achieved in each relation, with n1 = n2 = 1, n3 = 103,

n4 = 106. The overall success probability at these values is
around 0.85. With the same choice of ni values but with 50
blocks, overall success probability increases to 0.9.

In this strategy, the “Joins and Cartesian Product” step is
slightly different from Algorithm 1. Due to the nature of the
fifth attribute in relations considered, the join predicate is
the conjunction of four sub-predicates. Each sub-predicate
checks for the equality of two twits where the first twit is the
fifth attribute of a tuple. To illustrate the computation of say,
the second sub-predicate, consider joining four tuples t1, t2,
t3, and t4 from r1, r2, r3, and r4 respectively. The expression
s(k15) ⊕ k2 ⊕ k6 is computed using the value of k15 in t3,
k2 in t1, and k6 in t4. The two most significant bits of the
result are then compared with the value of attribute, a2 in
t2. If they match, three other sub-predicates involving a2,
a3, and a4 are computed. Only if all four sub-predicates are
satisfied is the tuple obtained by concatenating t1, t2, t3, and
t4 included in r1 �� r2 �� r3 �� r4.

After the Scoring and Elimination step but before the
join (for same choice of ni values as above), we have
1 × 1 × 103 × 106 = 109 ≈ 230 candidate keys. The
probability of a candidate satisfying a sub-predicate is 0.25,
since we have four roughly equi-probable outcomes. So, on
average, the number of candidate keys reduces by a factor

Fig. 3 Variation in rank
of correct subkey with no.
of blocks in r3 and r4
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of 28 after the join involving a match on four sub-predicates.
So, roughly 222 candidate keys survive for Verification.

In the Verification step, we compare last 2 accesses
of rounds 3–10 (8 rounds). Using this information, we
can score candidate keys as earlier. Each candidate key’s
score starts with zero and is incremented whenever an
access matches with spy reported access. For each block of
plaintext, we can score a maximum of 8 × 2 = 16 times.
Even if we consider accesses corresponding to 10 blocks
(which are already used in initial scoring), we can score each
candidate key 160 times. By comparison, the maximum
achievable score is considerably higher than the maximum
score of, say 50, with r4 using strategy 1 (relation size = 226

and b = 50).
In practice, a scoreboard for each relation ri with five

attributes (each of size 1 byte) requires 5 × 234 bytes or
85.89-GB storage. It is not feasible to maintain such a
massive scoreboard in main memory and moving it partially
to secondary memory will increase overall time. With an
increase in the number of plaintext blocks, the number of
top-scoring subkeys greatly reduces and only subkeys with
higher scores could be saved. Another possibility is to store
the subkey count on the first pass through the tuples and
then store only the top scorers in the second pass.

Compared with Algorithm 1, the major drawback of this
strategy was the time required for retrieving the correct
key. Algorithm 1 was implemented in Python. It took 40
to 50 min on an Intel (R) Core (TM) i5-4440 CPU @
3.10 GHz system for retrieving a key using 50 blocks of
plaintext. We re-wrote in C the compute intensive portion
of Algorithm 1 (lines 9 to 18) which scores 226 possible
subkeys per equation. This was integrated into the Python
code to bring down the time taken for retrieving the subkeys
to under a minute. The same approach was used for strategy
II implementation, where 234 subkeys were scored. It took
around 3–4 hrs to get the key using 50 blocks of plaintext
on a 4 core machine. Since the application is highly
parallelizable, the speedup is expected to be close to the
number of cores even with around 50 cores.

5 Related Work

It was first mentioned by Hu [20] that cache memory
can be considered as a potential vulnerability in the
context of covert channels to extract sensitive information.
Later Kocher [21] demonstrated the data-dependent timing
response of cryptographic algorithms against various public
key systems. Based on his work, Kelsey et al. [22]
mentioned the prospects of using cache memory to perform
attacks based on cache hits in S-box ciphers like Blowfish.

One formal study of such attacks using cache misses was
conducted by Page [16].

Tromer et al. [9] proposed an approach and analysis
for the access-driven cache attacks on AES for the first
two rounds. They introduced the Prime+Probe technique
for cache attacks and targeted 4 table-based (OpenSSL-
0.9.8) implementation which spans over 64 cache lines. As
a countermeasure, they suggested a 256-byte S-Box table
(spanning 4 cache lines) and pre-fetching all table entries
before every round. Neve et al. [23] designed an improved
access-driven cache attack on the last round of AES on a
single-threaded processor.

Gullasch et al. [10] proposed an efficient access-driven
cache-based attack when attacker and victim use a shared
crypto library. They targeted OpenSSL-0.9.8n 4 table (4KB
lookup table) implementation and the compressed 2KB
lookup table-based implementation of AES to retrieve
the key using 100 blocks of plaintext. However, their
key retrieval algorithm failed to recover key with S-box
implementation. Yarom and Falkner [17] introduced the
Flush+Reload technique which is effective across multiple
cores and virtual machine boundaries. They conducted a
cross-core attack on the Last Level Cache (LLC) with the
spy and the victim executing concurrently on two different
cores. Later, Irazoqui et al. [8] used the Flush + Reload
technique for cross virtual machine attack and recovered the
AES secret key with 219 encryptions.

Irazoqui et al. [24] introduced a new shared Last Level
Cache attack by exploiting huge pages to work across virtual
machines using the Prime+Probe technique. A similar attack
was proposed by Liu et al. [25] on various versions of
GnuPG. An attack on LLC was introduced by Kayaalp et al.
[26], which does not use the huge pages or shared data or
the knowledge of virtual-to-physical page mappings.

Gotzfried et al. [27] demonstrated that Intel SGX
enclaves are vulnerable to cache-based side channel attack
by attacking OpenSSL-0.9.7a AES using Prime+Probe
technique when the victim is running inside the enclave.
They assumed that the victim and attacker run as a single
process in two different threads running in two logical
CPUs sharing the same physical core. The above attacks
targeted OpenSSL’s 4 table or 5 table (T-Table)-based
C implementation of AES. Moghimi et al. [28] attacked
both the T-Table-based and S-Box implementations of AES
using Prime+Probe method in Intel SGX. They modified
the kernel to interrupt the victim running inside SGX
enclave and obtain information about cache accesses during
encryption. With noise-free simulated data, they recovered
64 bits of the key with 500 blocks of plaintext, 80 bits of
the key with 1500 blocks of plaintext, and 96 bits of the key
with thousands of blocks of plaintext. Our attack does not
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use a compromised OS and recovers the full key with 40–50
plaintext blocks.

6 Conclusions

We successfully launched two cache-based side channel
attacks on the assembly implementation of AES which uses
a single 256-byte lookup table. The first of these attacks
involves two rounds. In the first round, we crafted about 15
blocks of plaintext to recover the first two bits of each of the
16 bytes of the AES key. In the second round, we obtained
the remaining 6 bits of each byte of the key with 40 blocks.

The novelty in the second attack (Single Round Attack)
is that it involved spying on the cache accesses in the second
round alone. We obtained all 128 bits of the AES key with
about 50 blocks of random plaintext and a 90% success
rate. The main advantage of this attack is that it does not
require specially crafted plaintext, so the attack scenario is
more realistic. On the other hand, the main drawback of the
Single Round Attack is that the off-line key retrieval takes
about 5 hrs on a 4-core machine. However, since it is highly
parallelizable, we expect it to take under 30 min on 50 cores.
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