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Abstract
One of the most important benefits of using cloud computing is the benefit of on-demand services. Accordingly, the method
of payment in the cloud environment is pay per use. This feature results in a new kind of DDOS attack called Economic
Denial of Sustainability (EDoS), in which the customer pays extra to the cloud provider as a result of the attack. Similar
to other DDoS attacks, EDoS attacks are divided into different types, such as (1) bandwidth-consuming attacks, (2) attacks
that target specific applications, and 3) connection-layer exhaustion attacks. In this work, we propose a novel framework
to detect different types of EDoS attacks by designing a profile that learns from and classifies the normal and abnormal
behaviors. In this framework, the extra demanding resources are only allocated to VMs that are detected to be in a normal
situation and therefore prevent the cloud environment from attack and resource misuse propagation.

Keywords DDoS attacks · EDoS attacks · Cloud computing · Machine learning · Detection

1 Introduction

Cloud computing is a revolutionary concept that has
transformed information and communication technology
by delivering computational resources as services across
the Internet. Cloud computing provides inexpensive and
scalable resources on demand for system requirements,
and consequently, there is no need to invest in a huge
computer system. However, security is a big concern in this
emerging technology. There are more systems to protect,
more possible points of entry, more holes to patch, and
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also more interconnection points in the cloud. Accordingly,
security in the cloud is more critical than old systems [1].
One of the popular problems in cloud security is a denial of
service (DOS) attack. DOS attacks increase the server load
and make the system inaccessible [2].

The absolute prevention of Distributed Denial of Service
(DDoS) attacks, one of the popular DOS attacks in cloud
computing, is not possible. Therefore, detecting these
attacks is an important step in securing the cloud against
this very common type of security threat. The attacker
in a DDoS attack tries to flood a target machine by
sending packets similar to normal and factual traffic sent by
another virtual machine. Thus, the detection systems cannot
successfully detect DDoS attacks. On the other hand, the
distributed nature of these attacks makes themmore difficult
to detect. There is a specific type of DDoS attack specially
designed for the cloud computing environment, which is
called Economic Denial of Sustainability (EDoS) [3].

According to the general definition of the National
Institute of Standards and Technology (NIST), one of the
most important benefits of using cloud computing is having
on-demand services [4]. This means that cloud customers
do not need to buy whole resources and infrastructure for
the first time but can instead get more resources on demand
later. Accordingly, the method of payment in the cloud
environment is pay per use [5]. EDoS has been designed
based on this particular benefit of cloud computing.
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Since the cloud environment is elastic and works based
on the pay-as-you-use model, additional resources might be
easily available. However, the customer must pay extra for
them. Economic Denial of Sustainability is a scenario in
which the customer pays extra to the cloud provider as a
result of the attack. Also, because in this situation the DDoS
attack is transferred to the hypervisor, it can be dangerous
for the hypervisor and for the entire cloud environment.

One way to prevent this problem is to limit or control
the resource allocation [6]. However, by doing so, we
actually limit some of the most important advantages of
cloud computing. Thus, the absolute prevention of the
occurrence of Distributed Denial of Service (DDoS) attacks
and Economic Denial of Sustainability (EDoS) attacks in
cloud computing is not possible. Therefore, detecting these
attacks, which can help in controlling resource allocation
in a secure way, is an important step in securing the cloud
against this very common type of security threat.

The majority of existing algorithms for detection of
DDoS attacks in the cloud-computing environment work
based on packet information; however, In most of the times
the packet information in DDoS attacks is very similar to the
normal situation (more similarity, more dificulty to detect),
except for the number of packets, which can be considerable
in DDoS attacks. Consequently, the current packet-based
approaches are not reliable and powerful enough for DDoS
detection.

On the other hand, the present algorithms for EDoS
attacks have mainly focused only on finding a solution
for the defense and mitigation of EDoS attacks. Moreover,
they are usually proper for a limited number of attack
types because most of them work on the attacks features.
To the best of our knowledge, there is no global model
that detects all types( without limitation) of EDoS attacks.
Therefore, we decided to detect DDoS and EDoS attacks
in cloud computing by working on traffic and resource
usage anomaly detection. For this work, we selected
HTTP Attack, Database Attack, and TCP SYN Flood
Attack as a type of bandwidth-consuming attacks, attacks
that target specific applications, and connection-layer
exhaustion attacks respectively and try to investigate that
how they affect the system.

Our main idea for detecting these attacks is that even if
attackers in DDoS and EDoS attacks can generate similar
packets to normal packets, the amount of traffic generated in
DDoS and EDoS attacks will not be similar to that in normal
situations. Furthermore, the proportion of resource usage
is completely different in the case of attack in comparison
with normal situations. The approach here is to get periodic
sample traffic and patterns of resource usages from VMs
under investigation, learn from them, generate a behavioral
profile for each VM, and use the learned profile to detect
if the demand for the extra requested resources comes from

a normal or abnormal behavior and then accept, limit, or
prevent the demanded extra resource allocation.

Our contributions in this work are as follow:

1. Detecting DDoS and EDoS attacks by working on
traffic and resource usage anomaly detection in the
cloud environment

2. Introducing an inclusive algorithm that detects HTTP
Recompile 1 Attack, Database Attack, and TCP SYN
Flood Attack, no matter when each attack happens.

3. Using precise kernel information using a low-overhead
kernel tracer in the profile feature collection and
detection phases.

We used machine learning algorithms in two differents
phases. Phase one explains the analysis of our metrics
and check whether the metrics of one kind of attack play
an important role to detect another type of attacks and
vice versa (comparison between our algorithm and C1,
C2, C3). Phase 2 is for detection; we define a profile to
collect data from VMs any time that they applied for more
resources from hypervisor. We check each sample with the
profile, and based on changing process of the data and
behaviour of resource usage, we can detect situation of the
traffic. Although using threshold method is a well-known
procedure of change detection [25], we preferred to use
machine learning because by using threshold we cannot
investigate difference between heavy normal traffic and
attack traffic. Small threshold improves the sensitivity, but
increases the possibility of introducing false positives. On
the other hand, a larger threshold is likely to reduce the
sensitivity of detection. Basically, in normal situations, we
might have a large load in the network without any attack;
however, by using the threshold, this situation is considered
as an attack. There are two types of intrusion detection
systems [27]: signature based and anomaly based. Each
of them has some benefits and some problems. We used
benefits of both types of IDS by using machine learning and
define a profile in the same algorithm.

The remainder of this paper is organized as follows:
Section 2 presents the previous related works. In Section 3,
we will propose our architecture and methodology. In
Section 4, we will explain our profile and the different
feature of this profile. Section 5 discusses and analyzes
the results and describes how we used machine learning
techniques to build VM profiles. Section 6 concludes the
paper and investigates some interesting future work.

2 RelatedWork

There are many algorithms in traditional (non-virtualization)
systems for detecting DDoS attacks, but since the virtualiza-
tion technique itself is causing overloads on the server [7],
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even a small attack in the cloud-computing environment can
disable the server. Thus, we need a more powerful algorithm
with a low overload capacity.

Some approaches have been introduced in the literature
on how to detect, defend against, and mitigate EDoS
attacks in the cloud-computing environment. Sqalli et al.
[8] proposed an approach called EDoS-Shield to mitigate
EDoS attacks in cloud computing. They divided the
received requests from the user side into two categories:
the legitimate requests and the generated-by-bots requests.
They used a verifier and sent the first request from a new IP
to this verifier. The verifier performs a verification process
and decides to put this address either in the whitelist or in
the blacklist. These lists are related to legitimate requests
and bot-generated requests, respectively. The subsequent
requests that are from an IP address in the blacklist will be
blocked by a virtual firewall, and the subsequent requests
from an IP address in the whitelist can connect to the cloud
services to access services that they want.

The proposed work by Naresh Kumar et al. [9] provided
an architecture to mitigate web service EDoS attacks. In this
work, a crypto puzzle (client puzzle) has been generated
to identify a legitimate user. The customers must solve this
puzzle to receive authorization to use the cloud services.
Their work is based on the service provider assessment
about the state of the system, which can be normal or
suspicious, depending on the server load and the bandwidth
load. Using this information, the architecture decides on the
severity of the puzzle.

The Enhanced DDoS-Mitigation System (Enhanced
DDoS-MS) is a framework presented by Alosaimi et al.
[10] to mitigate EDoS attacks in cloud computing. This
framework distinguishes legitimate users from malicious
ones by testing the first packet received from the user by
using a Graphical Turing Test (GTT). They also utilized an
Intrusion Prevention System (IPS) to detect malware in the
contents of packets. The crypto puzzle and white/black list
approaches were used to mitigate EDoS attacks in this work,
similar to the previous articles discussed above [8, 9].

A cost-effective EDoS attack mitigation framework for e-
commerce applications in cloud environments, called EDoS
Armor, has been provided by Masood et al. [11]. This
paper provided a multi-layered defense system. In the first
step, only a limited number of valid users are allowed
to connect to the application to be less overwhelming.
Next, a browsing behavior-based learning mechanism is
used, and the priority of the users is allocated on this
basis. This priority value determines how the resources are
shared among the users; the higher the priority, the more
resources are allocated, while the lower the priority, the
fewer resources are assigned.

An approach to control virtual resource access to mitigate
EDoS attacks against cloud infrastructures is provided by

Baig et al. [12]. In this paper, an approach has been provided
to selectively control user requests for a service within
the service provider. In this approach, incoming requests
from the user are classified into either normal or suspicious
requests. Afterward, further analysis is implemented to
guarantee that those normal and legitimate users have the
priority of cloud service access; however, users that are in
the suspicious class have a lower priority to the service
access until they are removed from the suspect list.

Al-Haidari et al. [13] provided an algorithm that uses the
Time To Live (TTL) field of the IP header to detect and
mitigate the spoofed IP EDoS attacks. The authors made
use of the white/blacklist approach in their work. They used
a verifier and a threshold system to classify the entering
packets as either normal packets or suspicious ones and to
collect source IP addresses, along with the amounts of TTL,
in the whitelist and the blacklist for the normal and the
suspicious packets, respectively.

Koduru et al. [14] also proposed a detection approach for
EDoS. They used the Time Spent on a Web Page (TSP) to
detect HTTP EDoS attacks. The main idea of their work
came from the fact that the TSP in an attack situation is
different from the mean TSP of a web page in normal
situations. They calculated TSP and the mean absolute
deviation (MAD) of TSP and showed the results in a graph.
However, the provided approach in this paper does not work
automatically, and a cloud administrator needs to constantly
monitor the graphs. This paper also provided a solution for
detecting only HTTP EDoS attacks and cannot detect other
kinds of EDoS attacks.

Shea et al. [7] tried to find a solution for DoS attacks by
using a threshold and modifying it in the interrupt request.
The authors also provided a resource usage monitoring
approach. In this paper, the impact of DOS attacks in
different resources in the cloud-computing environment has
been presented.

As shown in this review, the majority of the papers in the
field of EDoS attacks have focused on finding a solution
for the defense and mitigation of only one type of EDoS
attack in cloud computing. However, in general, there are
also a few works on detecting this kind of attack. In the next
section, we will add new features to these structures and will
propose a new framework for detecting different types of
EDoS attacks in cloud computing.

3Methodology

We consider that virtual servers in cloud computing can be
targeted by three general classes of attacks:

A. Bandwidth-consuming attacks: This kind of attack uses
the total bandwidth of the target with large volumes of
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data packets. It leads to a denial of services because
normal requests cannot receive quick and operational
responses [15]. In this work, we use HTTP Attack
as a good representative for the bandwidth-consuming
EDoS.

B. Attacks that target specific applications: This kind
of attack targets a specific application in servers. In
the cloud-computing environment, each application
can run in a virtual machine; therefore, in an attack
scenario, the attacker tries to harm servers by attacking
the special VM that includes this specific application.
In our work, we chose database as the application
targeted by this type of attack (one targeting specific
applications), and our goal is to investigate the virtual
machine allocated to database.

C. Connection-layer exhaustion attacks: This kind of
attack tries to use the protocol features, such as a
Three-Way Handshake in TCP/IP protocol, to attack
the servers. TCP SYN Flood and ICMP/UDP flood
attacks are examples of connection-layer exhaustion
attacks. Since these attacks happen at the time of
making a connection between client and server, we call
this category “connection-layer exhaustion attacks.”
As a delegate for connection-layer exhaustion attacks
in this work, we nominate the TCP SYN Flood Attack,
which is one of the most important issues in security
[2]. Accordingly, we will use the features suitable
for detecting this kind of connection-layer exhaustion
attack. To detect other attacks in this category of
EDOS attacks, it is probably necessary to add other
features to our profile, although the same model is
applicable in all cases.

Isolation is one of the main concepts in cloud computing,
and we assume here that every service in cloud computing
is located in a separate virtual machine. For example, the
database is placed in one virtual machine and the web server
is located in a separate virtual machine. Therefore, when a
customer wants to put her/his services in the cloud, she/he
must order a set of VMs. (We consider the infrastructure as
a service.) However, as discussed earlier, cloud-computing
systems are pay-as-you-go services, so customers must pay
for the amount of VM that they used. They can apply for
more resources whenever they want.

On the hypervisor side, we can monitor all the events and
requests from each VM. In the proposed framework, when
a virtual machine applies for more resources and sends
its requests to the hypervisor, we can have a monitoring
system trace the VM kernel system and compare the results
with the profile. If the situation is normal, the resources
are allocated to VM, but if an attack is detected in VM
resources(abnormal situation), the resources will not be
allocated to VM and the live migration will be stopped.

Based on this explanation about cloud computing, we have
designed a profile with the following features:

Therefore, in this paper, our ultimate goal is to introduce
a generic algorithm that works perfectly for HTTP Attacks,
Database Attacks, and TCP SYN Flood Attacks, no
matter when and where (in what VM) each attack occurs.
Consequently, instead of using three different algorithms
for detecting these attacks, we propose a unique and
generalized algorithm to detect all of them at the same time.
In this way, we get much more reliable results compared to
the algorithms that consider only the features of one attack,
because the features of one attack can play an important role
in other attacks as well. Figure 1 demonstrates our proposed
idea. In the following, we will investigate a different part of
the architecture.

3.1 Feature Extraction

In the very first step, we will need to have normal traffic
and a normal resource usage pattern from the hypervisor.
We must first generate this traffic intentionally and collect
the samples. The number of the samples must be enough
to cover the various traffic situations at different hours
of the day. These traffic samples must cover heavy and
light traffic times, as various services may be provided
to customers by the cloud provider depending on the
time. We want to analyze this traffic and the resource
usage in normal situations to extract some thresholds and
investigate the behavior and proportion of resource usage
in a normal situation and extract some information. With
this information, we can verify if there is misuse in the VM
traffic and resource usage.

3.2 Monitoring and SamplingModule

We will need to generate HTTP Attack, Database Attack,
and TCP SYN Flood Attack traffic in order to collect
and investigate the corresponding sample resource usage
patterns.

On the hypervisor side, we monitor all the events and the
requests from each VM to extract some predefined metrics
(we will explain in more detail about this metrics in next
sections). Every time a virtual machine applies for more
resources and sends a request to the hypervisor to demand a
new set of resources, we call the sampling and monitoring
module. To do so, we trace kernels of the request sender
VM and VMs that communicate with that VM. We will then
be able to get the samples from the traffic of VMs for our
analysis. To achieve this goal, it is necessary to design a
“Monitoring and Sampling” module as a part of the targeted
DDoS/EDoS detection architecture. Hypervisor is the best
place for positioning this part as all the traffic for all virtual
machines goes through the hypervisor.
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Fig. 1 The architecture of the proposed detecting and monitoring system

3.3 Attack Identification

Our main approach to detect HTTP Attacks, Database
Attacks, and TCP SYN Flood Attacks is based on the
fact that even if the attackers in DDoS and EDoS attacks
can make packets similar to the normal case, they cannot
cheat on the amount of traffic they generate in the attack
situation. The proportion of resource usage would also
be completely different in the case of attack compared
to a normal situation. Accordingly, each attack can be
identified by specific features that are related to the traffic
and resource usage pattern in that attack. Furthermore,
we assume that a virtual machine hosts only one specific
service. For example, the database server is placed in one
virtual machine, while the web server is located in another
virtual machine. Different types of attacks target different
virtual machines as follows:

1. EDoS Attacks, including HTTP Attack and Database
Attack: In HTTP Attacks, a webserver virtual machine
will be targeted by attackers. In the case of Database
Attacks, the virtual machine assigned to the Database
Server receives many database queries for each HTTP
request.

2. TCP SYN Flood Attack occurs in the time of
connection to the webserver virtual machine.

To design our model, we need to investigate the behavior
of resource usage in virtual machines that are related to the

victim virtual machine. For this purpose, we collect features
related to traffic and resource usage in each attack situation.
These features are the metrics of our profile and will be
explained in detail in the following section.

It is important to note that we do not compare the
attacks themselves with each other. However, rather than
using a separate algorithm for detecting each attack, we
will introduce an inclusive and generalized algorithm that
contains the metrics of all three attacks. Metrics of one kind
of attack play an important role in detecting other types as
well. Therefore, we can expect much more reliable results
using our generic algorithm compared to the algorithms that
investigate the metrics of only one type of attack. We will
demonstrate it in Section 3.4.

3.4 Metrics

In this section, we introduce the metrics that we use to
design our detection model. The metrics are selected from
prior works on Http attacks such as [7, 14, 30, 32–34], on
TCP SYN Flood attacks such as [7, 26, 28, 33], and on
Database attacks such as [7, 14, 33]. Generally, there is no
priority in the metrics(features) in our algorithm.We used a
set of metrics(apart from types of attacks) and define some
rules(signs). Then, we compared our result with the states
that only metrics related to one attack was considered for
detect that type of attack (C1, C2, C3).Actually we evaluate
our metrics by doing this comparison in the end of the
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paper and it shows the metrics of one kind of attack play an
important role to detect another type and vice versa. These
are the features that we want to extract from the traffic or
resource usage monitoring:

– TSP: Time Spent on a Web Page (X1).
– IOWi: Network I/O in webserver virtual machine

(incoming) (Kbits/s) (X2).
– IOWo: Network I/O in webserver virtual machine

(outgoing) (Kbits/s) (X3).
– IODi: Network I/O in database virtual machine

(incoming) (Kbits/s)(X4).
– IODo: Network I/O in database virtual machine

(outgoing) (Kbits/s)(X5).
– CPUW: Percent of CPU usage in webserver virtual

machine (X6).
– CPUD: Percent of CPU usage in Database virtual

machine (X7).
– MemW: Percent of Memory usage in webserver virtual

machine (X8).
– NBWph: Network bandwidth usage in webserver per

hours (MB) (X9).
– NBWpd: Network bandwidth usage in webserver per

day (MB) (X10).
– NBWpw: Network bandwidth usage in webserver per

week (GB) (X11).
– NBWpm: Network bandwidth usage in webserver per

month (GB)(X12).
– R(SYN): The ratio of SYN packets in TCP pack-

ets(X13).
– R(ACK): The ratio of ACK packets in TCP pack-

ets(X14).
– R(SYN+ACK): The ratio of SYN and ACK packets in

TCP packets(X15).
– NPi: Number of packets (incoming) per second(X16).
– NPo: Number of packets (outgoing) per second(X17).
– NHOP: Number of half-opened connections(X18).

3.5 Profile

The approach here is to get periodic traffic samples
and patterns of resource usage from the VMs under
investigation, generate a behavioral profile for each VM,
and then use the learned profile later in the detection phase.

It is important to note that in our algorithm, a set of
features is considered for a VM profile; therefore, the
machine learning algorithm needs to check all features to
make a decision about normal or attack traffic. In fact,
we classify attack traffic into three classes: bandwidth-
consuming attacks, connection-layer exhaustion attacks,
and attacks that target specific applications by using
machine learning based on 18 features (X1, X2,..., X18).
Table 1 demonstrates a summary of the attacks and the

relationship between each attack and the metrics (HTTP
Attack, Database Attack, and TCP SYN Flood Attack as
a type of bandwidth-consuming attacks, attacks that target
specific applications, and connection-layer exhaustion
attacks, respectively). This data is then used to train the
machine learning algorithm in the training phase.

In order to have an updated profile, we use the
exponential moving average (EMA) method [16] after
detecting a suitable category for each new entry traffic.
By using this method, we add features of all new traffic
to our profile and increase the number of data to improve
our framework accuracy by time. In the EMA method, we
calculate the average of previously collected data for each
feature in the time that new traffic is received (t) and call
it Ave(t−1) ; the number of data collected in our profile is
n − 1 at time t − 1; this number will be n at time t.

Therefore, we can calculate the Ave(t−1) using the
following equation:

Ave(t−1) =
∑n−1

i Si

n − 1
(1)

where Sis are previous data in each feature. Based on the
EMAmethod, we can calculate the new average (Ave(t)) for
each feature using Eq. 2 :

Avet = (1 − α)Ave(t−1) + αSj (2)

where Sj is the feature of new received traffic and the α

factor is the weight we consider for each data to show its
importance. α can be defined as follows:

α = 2

n + 1
(3)

By using the above technique and by considering α factor,
the newer entries play a stronger role in calculating the
average. Finally, the new average will be put in the suitable
category (Normal situation, HTTP Attack, Database Attack,
and TCP SYN Flood Attack) in our profile each time.

4 Detection Algorithms

As discussed earlier, when VMs need more resources
(memory, CPU, network bandwidth, etc.), they send their
requests to the hypervisor to increase the resources, and the
hypervisor allocates the required resources to these VMs.
However, if the hypervisor does not have enough resources,
it may migrate the VM to another hypervisor. In an attack
situation, it may then propagate the attack to other VMs by
using more resources in the under-attack VM and limiting
the resources for other VMs, thereby affecting their normal
behavior.

We put our framework in the middle of this process
so that when a request is sent from VMs, this request
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is first received by the Traffic Statistic Computation &
Measurement part. The task of this part is to extract features
of all VMs that are related to the desired VM. Afterward,
the results generated by that Traffic Statistic Computation &
Measurement part (X1 to X18) will be sent to the Decision
Unit, where our proposed detecting algorithm can detect
the situation of the new arrival traffic and can calculate the
occurrence probability of each type of attack as well, which
works based on a machine learning algorithm.

The machine learning module is trained by profile
data, as explained in the previous section. Thereafter, the
Decision Unit makes a decision by comparing new arrival
traffic features with the profile features and then puts
the new traffic in one of the four classes (normal traffic,
connection-layer attack, bandwidth-consuming attack, or
specific application attack).

Based on the results of this detection, if one of the three
attacks is detected with a high percentage, allocation of
the resources will be limited; otherwise, resources will be
allocated to VM. The critical value of the attack percentage
to make a decision depends on the sensitivity of the system.
For a more sensitive system, even attacks with a low
percentage occurrence cause limiting resources.

We used all the metrics of different types of attacks for
detecting each type of attack in our framework. This means
that the metrics of one kind of attack play an important
role in detecting other types and vice versa. In order to
elaborate on and evaluate our detection model, we compared
our framework efficiency with algorithms that use only the
special metrics of one attack to detect that attack without
considering the metrics of other attacks. We named these
three types of algorithms C1, C2, and C3, as discussed in
the following.

4.1 HTTP Attack Detection

When a virtual machine applies for more resources and
sends its requests to the hypervisor, the hypervisor must
analyze the VM that sent the requests, as well as the VMs
that communicated with that VM, and must then check the
below states. If the hypervisor finds the below states in the
behavior of VMs, there is an HTTP Attack in that VM and
the hypervisor should not allocate more resources to that
VM. C1 is a set of algorithms to detect HTTP Attacks based
on specific features of HTTP Attacks. Using the information
shown in Table 1, we consider an HTTP Attack as being
carried out when the following signs are observed.

1. Sign 1: TSP in HTTP Attacks shows a sudden decrease.
2. Sign 2: IOWi in HTTP Attacks shows a sudden increase

and IODi shows a sudden decrease.
3. Sign 3: IOWo in HTTPAttacks shows a sudden increase

and IODo shows a sudden decrease.
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4. Sign 4: CPUW in HTTP Attacks shows sudden increase
and CPUD shows sudden decrease.

5. Sign 5: NBWph in HTTP Attacks shows a sudden
increase.

6. Sign 6: NBWpd in HTTP Attacks shows a sudden
increase.

7. Sign 7: NBWpw in HTTP Attacks shows a sudden
increase.

8. Sign 8: NBWpm in HTTP Attacks shows a sudden
increase.

The State parameter for the sign p in this attack is defined
as SHT T P,p. For the sign p in an HTTP Attack, SHT T P,p is
equal to 1 if the sign meets and is equal to 0 if the sign does
not meet.

4.2 TCP SYN Flood Attack Detection

C2 is a set of algorithms to detect TCP SYN flood attacks
based on specific features of TCP SYN flood attacks. These
specific features are as follows:

1. Sign 1: MemW in TCP SYN Flood Attacks shows a
sudden increase.

2. Sign 2: R(SYN), R(ACK) and R(SYN+ACK) are
somehow related to each other in the case of SYN Flood
Attacks and normal situations, as shown in Fig. 2 and
will be explained shortly.

3. Sign 3: NPi in TCP SYN Flood Attacks shows a sudden
increase.

4. Sign 4: NPo in TCP SYN Flood Attacks shows a sudden
increase.

5. Sign 5: NHOP in TCP SYN Flood Attacks shows a
sudden increase.

In an observation, the values for each sign can either be zero
or one, depending on the condition defined in each sign.
However, for Sign 2, we can have different numbers, from
−3 to +3, depending on the different occurrence (shown in
Fig. 2) of the different equations defined in the following:

• Equation 1: R(SYN) = 2R(SYN+ACK)
• Equation 2: R(ACK)+R(SYN+ACK) = Total number

of samples’ packet
• Equation 3: R(SYN) + R(SYN+ACK) ≥ Total number

of samples’ packet
• Equation 4: R(ACK) = R(SYN+ACK)

Figure 2 is used to calculate the value of Sign 2. For
instance, if only Eqs. 1 and 2 are true, then the value for Sign
2 will be considered −3; if only one of the Eqs. 1 and 2 is
correct, then the value of the Sign 2 will be−1. These values
will be used later in the above equations to detect attack
probability. In general, a negative state parameter means that

this parameter shifts the traffic to a normal one; therefore, it
decreases the probability of the attack.

4.3 Database Attack Detection

Similar to an HTTP Attack, when a virtual machine applies
for more resources and sends its requests to the hypervisor,
the hypervisor must inspect the VM that sent the requests,
as well as the VMs that communicated with that VM,
and must then check the below states. If the hypervisor
finds the below states in the behavior of VMs, there is a
Database Attack in that VM, and the hypervisor should not
allocate more resources to that VM. The states that specify
a Database Attack are almost the opposite of the HTTP
Attack’s states.

C3 is a set of algorithms to detect Database Attacks based
on specific features of Database Attacks. This algorithm
uses the following signs to detect the attack:

1. Sign 1: TSP in Database Attacks shows a sudden
increase

2. Sign 2: IOWi in Database Attacks is much smaller than
IODI.

3. Sign 3: IOWo in Database Attacks is much smaller than
IODO.

4. Sign 4: CPUW in Database Attacks is much smaller
than CPUD.

The State parameter for the sign p in this attack is defined as
SDB,p. For the sign p in a Database Attack, SDB,p is equal
to 1 if the sign meets and is equal to 0 if the sign does not
meet.

4.4 Attack Detection Formula

After calculating each of the above-defined signs, we use
the following formula to determine with what probability
our VM under investigation is in the attack state.

Therefore, we can calculate the Ave(t−1) using the
formula shown in Eq. 4:

W(t) =
∑n

p=1Stp
∑n

p=1Smaxtp

(4)

In the Eq. 4, t represents the type of attack, n is the number
of conditions, p represents the sign number, Stp is the value
of Sign p in attack t, and W(t) is the probability of attack.

5 Evaluation and Discussion

In our prototype implementation, we allocate one VM to
the web server and another VM to the database server and
try to extract metrics that have been explained in previous
sections. Finally, metrics of the new arrival traffic will be
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Fig. 2 The relevancy of network packet counts and their ratio to the Attack/Normal states (used in Sign 2)

given to our model as an input, and the proposed model will
detect the situation of this traffic. In this section, we present
our setup environment, discuss our detection results, and
compare our model with previous works in order to evaluate
the performance of our proposed model.

5.1 Setup Configuration

We used QEMU (version 2.0.0-rc1), which is a common and
open-source machine emulator and virtualization machine,
to have VMs based on KVM. We considered one of the
VMs as a webserver virtual machine and ran a webserver
on it. Apache 2.2 and MySQL 5.6.16 have been used as our
web and database servers. We performed an Http attack and
a Database attack separately by using HTTPFlooder 1 and
LoadRunner 2, consecutively.

We measured Network I/O and the number of packets
per second by using IPTraf, which is a tool for monitoring
network statistics. Vnstat is also used for measuring the
different amount of bandwidth usage. Memory usage and
CPU usage are monitored by using Top command. The
command that we used for monitoring the number of half
open-connections was netstat. Moreover, we used LTTng
(Linux Tracing Toolkit Next Generation) [17] for sampling
and collecting packet information from traffic. The details
of collecting data from LTTng and modeling them at
multiple levels to be used for advance attack analysis can be
found at [29, 31].

Based on the result of the detection algorithm, if one
of the aforementioned three attacks is detected with a
high percentage, allocating the resources will be limited;
otherwise, resources will be allocated to VM. The critical
value of the attack percentage to make a decision depends
on the sensitivity of the system. For a more sensitive system,

1https://code.google.com/p/httpflooder/wiki/Usage
2http://www8.hp.com/us/en/software-solutions/
loadrunner-loadtesting/index.html

even attacks with a low percentage cause the limiting of
resources. We evaluate our system using two criteria: metric
and accuracy, both of which we will explain in the following
sections.

5.2 Metrics Evaluation

In order to evaluate the efficiency of our metrics, we need
to test and compare them with C1, C2, and C3 without
performing our detection model. One option is using a
machine learning algorithm for evaluating our metrics. We
are going to determine the percentage of correctly classified
traffic when a machine learning algorithm uses our metrics
and compare it with the cases when the machine learning
algorithm uses C1, C2, or C3 metrics.

For this purpose, we have selected two popular machine-
learning algorithms for our framework: support vector
machine (SVM) and neural network, as can be seen in
Fig. 1. These two algorithms have been widely used in
previous works related to the security concept, especially
in DDoS attacks, either in cloud computing [18–21] or
in old networks (non-virtualization) [22]. We evaluated
our metrics based on two criteria: percentage of correct
classification and time. We also compare two machine
learning algorithms that was introduced in the literature
based on those two criteria. We have tested our framework,
and the results will be discussed in two parts: neural network
and support vector machine (SVM).

5.2.1 Neural Network Machine Learning

WEKA is a machine learning workbench that helps in
using different machine learning algorithms for different
real-word problems [23]. We choose a neural network
algorithm for classification. Accordingly, our profile has
been implemented and trained to WEKA. Multilayer
perception is a function in WEKA that represents a neural
network. We have configured the neural network and trained

https://code.google.com/p/httpflooder/wiki/Usage
http://www8.hp.com/us/en/software-solutions/loadrunner-loadtesting/index.html
http://www8.hp.com/us/en/software-solutions/loadrunner-loadtesting/index.html
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Fig. 3 Our model by using
neural network

it with a set of samples (65% of our data), all of which
include the previously explained 18 features (X1 to X18).
Afterward, we have tested the algorithm using the rest
of the samples (35% of our data), all of which also
include 18 features. As a result, the neural network could
precisely classify traffic in 0.46 s, in which 97.06% of
traffic has been correctly classified and only 2.94% has been
incorrectly classified. Figure 3 demonstrates the model that
the neural network created based on our profile features in
the abovementioned time.

Figure 4 shows a comparison between our framework
performance and the performance of the above three
categories by using the neural network algorithm.

As is clear in Fig. 4, our framework has a much higher
percentage of correctly classified attacks and a much lower
incorrectly classified attack. Furthermore, the first and most
important advantage of our model is that we are able to
detect all three types of attacks in our framework, whereas
other algorithms can only detect one type of attack.

5.2.2 Support Vector Machine

Similar to previous sections of this paper, we again used
the WEKA tool, but this time, we implemented and trained
our profile by using support vector machine (SVM). SMO
is a function in WEKA that represents SVM. We have

Fig. 4 Evaluating our
framework when using neural
network
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Fig. 5 Evaluating our
framework when using SVM

configured the support vector machine similar to what has
been done in the neural network configuration and trained it
with a set of samples (65% of data) with 18 features (X1 to
X18); afterward, we have tested the algorithm by using the
rest of the samples (35% of data) with 18 features. This time,
SVM perfectly classified traffic without any incorrectly
classified traffic within only 0.17 s.

We have again compared our framework with C1, C2,
and C3 algorithms but this time based on the support
vector machine in order to evaluate the performance of our
framework in SVM. The result of this comparison is shown
in Fig. 5.

Based on Fig. 5, it is completely clear that the
performance of our framework is much better than C1, C2,
and C3.

Fig. 6 Comparison with Snort with comparing the correct detection
rates

We conclude that the support vector machine had better
performance in classification and is also less costly in the
case of response time. Therefore, using the support vector
machine as a machine learning algorithm for the Decision
Unit tool will be much faster and more secure than using the
neural network.

5.3 Accuracy Evaluation

In order to evaluate the accuracy of our algorithm, we
tested our detecting model and compared it with previous
works. For this purpose, we choose Snort [24]. Snort is a
free and open-source intrusion detection system (IDS) that
can perform real-time traffic analysis and detect the attacks
[21]. The result showed that our model works with a higher
rate of correct detection compared to a previous IDS like
Snort. Figure 6 shows the result of comparison between
the rate of correct detection in our model and in Snort
IDS.

As is clear in Fig. 6, the rate of correct detection in our
model approximately averages about 85 %. However, the
average of the rate of correct detection in snort is roughly
70%. In view of the above result, we can conclude that
the accuracy of our detection model is reliable and highly
acceptable.

5.4 Limitations

Although our algorithm is highly reliable and extremely
accurate in detecting all three mentioned attacks, it does
have a limitation. If the Database Attack and HTTP Attack
occur simultaneously in the system, the traffic and resource
usage are very similar to heavy and busy traffic in normal
situations. Therefore, the accuracy of detection will degrade
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in this case. However, the possibility of having these two
attacks concurrently in the system is very low and almost
negligible, which is why we ignored this situation in our
assumptions.

6 Conclusion and FutureWork

In the framework of this paper, we discussed security, which
is a big concern in cloud computing and EDoS, a kind of
DDoS attack and one of the most important attacks in the
cloud environment.

The first important step for confronting these attacks is
detecting them. For successfully finding the attacker and
determining the prevention system against this attack, the
most important step is to design a good framework for attack
detection with approximately 100% reliability.

In this work, we proposed a novel framework for
detecting different types of EDoS attacks. The results of
our evaluation showed that we could detect different types
of attacks perfectly and precisely without any incorrectly
classified traffic by using the Support Vector Machine. This
precise detection can be considered as a kind of defense
itself, as the services will be provided only to VMs that are
in a normal situation; therefore, we prevent the migration
of attacks from VM to the hypervisor. This is a temporary
defense for the system until a permanent solution is found
in the future. We also showed that the accuracy of having
a single framework for detecting different types of EDoS
attacks at the same time is better than having a separate
framework for each attack.

Actually in this work we demonstrated that the metrics
of one kind of attack play an important role to detect
another type and vice versa.We considered a nominate
for each general types of attacks that we introduced in
the paper. Thus, HTTP attack represented bandwidth-
consuming attacks, attacks that target specific applications
represented by Database attack in this work, and TCP
SYN Flood attack was a nominate for connection-layer
exhaustion attacks in this paper. So this work can be further
expanded to find features for other attacks in addition to
HTTP Attacks, Database Attacks, and TCP SYN Flood
Attacks. A very interesting elaboration on this work would
be to allocate weights to the metrics and then to design a
machine learning algorithm that can automatically predict
and detect other types of attacks using this expanded model.
Also, access to real-world network traffic was limited in
this work and the evaluation of the work under real network
traffic will be addressed in a feature work.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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