
Journal of Hardware and Systems Security
https://doi.org/10.1007/s41635-018-0054-1

Certain Observations on ACORN v3 and Grain v1—Implications
Towards TMDTO Attacks

Akhilesh Anilkumar Siddhanti1 · SubhamoyMaitra2 ·Nishant Sinha3

Received: 28 June 2018 / Accepted: 16 October 2018
© Springer Nature Switzerland AG 2018

Abstract
It is known that for a stream cipher with state size less than 2.5 times the key size, it is possible to mount a Time-Memory-
Data Trade-Off attack with an online complexity lower than the exhaustive key search. The search space is restricted by
considering a fixed keystream prefix and deducing certain state bits by formulating equations. We show how by using SAT
solving techniques one can automate this process of solving equations and obtain better parameters. This is demonstrated
by mounting TMDTO attacks on ACORN v3 and Grain v1. We show that a TMDTO attack can be mounted on ACORN v3
with a preprocessing complexity 2171 and 2180 (without and with the help of a SAT solver) and the maximum of online time,
memory and data complexities 2122 and 2120 respectively. For Grain v1, we show that it is possible to obtain parameters
as T = 268.06, M = 264, D = 268 with a preprocessing complexity of 296. While our results do not refute any claim of the
designers, these observations might be useful for further understanding of the ciphers.

Keywords ACORN v3 · CAESAR · Cryptanalysis · Grain v1 · Stream cipher

1 Introduction

Stream ciphers are particularly useful in resource-constrained
environments because of their low gate counts. The
designers are hence competing to model stream ciphers with

This work is an extended and revised version of the paper
presented at SPACE 2017 [12]. Section 5 has been added in this
draft over the conference version.

� Akhilesh Anilkumar Siddhanti
akhileshsiddhanti@gmail.com

Subhamoy Maitra
subho@isical.ac.in

Nishant Sinha
nishantsinha.iitr@gmail.com

1 Department of Computer Science and Mathematics,
BITS Pilani, Goa Campus, Vasco-da-Gama, Goa,
403726, India

2 Applied Statistics Unit, Indian Statistical Institute,
203, B. T. Road, Kolkata 700108, India

3 Department of Computer Science and Engineering, Indian
Institute of Technology Roorkee, Roorkee 247667, India

as low gate count as possible. In fact, the eStream portfolio
saw one of its finalist Grain v1 [6] with a circuit size of
960 GE. However, it has been noted that designing stream
ciphers with state size less than twice the key size makes
them weak against the well known Time-Memory-Data
Trade-Off (TMDTO) Attacks. Hence, it was considered a
thumb rule to design stream ciphers with state size more
than twice the key size, only to be proved wrong by the
introduction of BSW sampling [1, 2], which asks for a state
size minimum of 2.5 times the key size (one may refer to [8]
for more details). CAESAR (Competition for Authenticated
Encryption: Security, Applicability, and Robustness) [4] has
recently announced its finalists, and ACORN v3 is one
among those [13]. ACORN v3 is a lightweight authenticated
stream cipher with a state size of 293, composed of 6 Linear
Feedback Shift Registers (LFSRs) and four additional bits.
It promises a 128-bit security using a 128-bit secret key and
IV.

Given that the present ciphers are designed with well-
informed efforts, refuting the designer’s claim are quite
challenging and sometimes even elusive. However, there are
important observations discovered by the cryptanalysts that
help in providing more robust ciphers. This is the reason
ACORN has been revised twice and the current version is

(2019) 3:64–77

/ Published online 2 5 October 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s41635-018-0054-1&domain=pdf
http://orcid.org/0000-0003-3947-7036
mailto: akhileshsiddhanti@gmail.com
mailto: subho@isical.ac.in
mailto: nishantsinha.iitr@gmail.com

ACORN v3. In this paper, we try to see how well one can
obtain certain portion of the state bits for ACORN v3 and
Grain v1, given some keystream bits and the rest of the bits
of the state. This is related to sampling resistance as noted in
[1, 2]. We calculate the sampling resistance by writing down
several equations and feeding them to a SAT solver. Using
SAT solving techniques, we have formed a generalized
attack on stream ciphers with a state size less than 2.5 times
the key size. The online complexity can be best reached to
T = M = D = N2/5 in such scenarios. We then observe
this attack on Grain v1, a stream cipher from eStream port-
folio whose state size is less than 2.5 times the key size.
We will apply similar techniques for mounting an attack on
Grain v1 as we have done for ACORN v3. Finally, we will
list the possible TMDTO parameters and compare them.

1.1 Overview of the Paper

The paper is divided under the following sections:

– In Section 2, we will describe ACORN v3 relevant to
our work.

– In Section 3, we provide ways to recover a certain
portion of ACORN v3 using a fixed keystream sequence
and guessing the remaining state bits.

– In Section 4, we discuss the possible TMDTO
parameters for ACORN v3.

– In Section 5, we discuss how the attack can be applied
to Grain v1.

– In Section 6, we compare the two attacks on ACORN
v3 and Grain v1, and comment on its feasibility.

– In Section 7, we conclude our work.

2 Description of ACORN v3

We briefly state here the description of ACORN v3 relevant
to our work. We assume the plaintext message to be a stream
of 0’s, and we concentrate only on the Pseudo Random
Generation Algorithm (PRGA) that provides the keystream.
We omit the Key Loading Algorithm (KLA) and the Key
Scheduling Algorithm (KSA) of the cipher that are available
at [13]. This is because the recovery of secret state bits

during the PRGA and further the TMDTO attack can be
studied irrespective of the initialization process. As stated
before, ACORN v3 has six LFSRs and four additional bits
concatenated to form the 293 bit state. The block diagram
of ACORN is represented in Fig. 1 where ft represents
the feedback bit and mt represents the message bit at t th

step [13]. We denote the state of the cipher by St and
its respective bits as St+0 . . . St+292. The cipher has the
following three functions.

1. Output Function: The output bit zt for any state t is
generated as

zt = St+12 ⊕ St+154

⊕ maj (St+235, St+61, St+193)

⊕ ch(St+230, St+111, St+66) (1)

wheremaj () and ch() functions are defined as following:

maj (x, y, z) = x&y ⊕ y&z ⊕ z&x (2)

ch(x, y, z) = x&y ⊕ (∼ x)&z (3)

2. Feedback Function: The feedback bit ft for any state
t is generated as

ft = St+0 ⊕ (∼ St+107) ⊕ maj (St+244, St+23,

St+160) ⊕ (cat &St+196) ⊕ (cbt&zt) (4)

3. State Update Function: Before performing the shift,
the bits St+289, St+230, St+193, St+154, St+107, St+61 are
updated as follows:

St+289 = St+289 ⊕ St+235 ⊕ St+230 (5)

St+230 = St+230 ⊕ St+196 ⊕ St+193 (6)

St+193 = St+193 ⊕ St+160 ⊕ St+154 (7)

St+154 = St+154 ⊕ St+111 ⊕ St+107 (8)

St+107 = St+107 ⊕ St+66 ⊕ St+61 (9)

St+61 = St+61 ⊕ St+23 ⊕ St+0 (10)

Fig. 1 The internal state of
ACORN cipher

J Hardw Syst Secur (2019) 3:64–77 65

And then the next bit entering the state is initialized
with the feedback bit:

St+293 = ft (11)

3Methods to Recover Certain Bits
of the State for ACORN v3

The underlying motivation of BSW sampling [1, 2] is
the fact that certain bits of the state can be recovered
by observing the keystream sequence zt and guessing the
remaining part of the state. This reduces the search space
and offers a wider range of parameters to choose from
in TMDTO attack. We consider two approaches here. The
first one is using the SAT solver, and the other one is by
discovering the equations by hand using trial and error.

3.1 Using SAT Solver

Towards this, we first form a family of equations and then
feeding them into a SAT solver. While building equations,
the degree increases rapidly, which makes it very difficult to
find solutions. Hence, we have to adopt a specific approach
for formulating equations by introducing new variables.
This is in line of [11]. Consider some PRGA round t of
ACORN v3. The equations for the same round are:

1. 1 output bit equation,
2. 1 feedback bit equation, and
3. 6 state update equations.

At the beginning of PRGA, the adversary has 293
state variables S0, S1, . . . , S292. The adversary has access
to an �-length keystream z0, z1, . . . z�−1. We will now
explain how the output equation is introduced into the
system of equations. The output equation as mentioned in
Eq. 1 is:

zt = St+12 ⊕ St+154 ⊕ maj (St+235, St+61, St+193)

⊕ ch(St+230, St+111, St+66) (12)

To add an equation to the SAT solver, the equations are
represented in a way such that it is zero in the ring of
Boolean polynomials. That is, the output equation is written
as

zt ⊕ St+12 ⊕ St+154 ⊕ maj (St+235, St+61, St+193)

⊕ ch(St+230, St+111, St+66) ≡ 0, (13)

for t = 0, 1, 2, . . . , � − 1 and added to the system. Thus we
have an array of output equations as

z0 ⊕ S12 ⊕ S154 ⊕ maj (S235, S61, S193)

⊕ ch(S230, S111, S66) ≡ 0

z1 ⊕ S13 ⊕ S155 ⊕ maj (S236, S62, S194)

⊕ ch(S231, S112, S67) ≡ 0
...

z�−1 ⊕ S�−1+12 ⊕ S�−1+154

⊕ maj (S�−1+235, S�−1+61, S�−1+193)

⊕ ch(S�−1+230, S�−1+111, S�−1+66) ≡ 0

Next, we discuss the inclusion of feedback bit equation into
the system of equations. The equation as mentioned in Eq. 4
for PRGA is:

ft = St+0 ⊕ (∼ St+107) ⊕ maj (St+244,

St+23, St+160) ⊕ St+196 (14)

However, the feedback bit generated is not known. Thus
directly substituting the state variable St+293 by feedback
equations increases non-linearity. Instead, the we introduce
new variables f0, f1, . . . f�−1 and add these equations to the
SAT solver in the following manner:

f0 ⊕ S0 ⊕ (∼ S107) ⊕ maj (S244, S23, S160)

⊕ S196 ≡ 0

f1 ⊕ S1 ⊕ (∼ S108) ⊕ maj (S245, S24, S161)

⊕ S197 ≡ 0
...

f�−1 ⊕ S�−1 ⊕ (∼ S�−1+107)

⊕ maj (S�−1+244, S�−1+23, S�−1+160)

⊕ S�−1+196 ≡ 0

By now, 2� new equations and � new variables
have been introduced into the system. The variables
St+289, St+230, St+193,St+154, St+107,

St+61 are updated in Step 3 as mentioned earlier. For this,
we introduce 6� new variables a01, a02, a03, a04, a05 , a06, . . .,
a�−1
1 , a�−1

2 , a�−1
3 , a�−1

4 , a�−1
5 , a�−1

6 and add the following
equations to the system (for t = 0, 1, . . . , � − 1):

at
1 ⊕ St+289 ⊕ St+235 ⊕ St+230 ≡ 0 (15)

at
2 ⊕ St+230 ⊕ St+196 ⊕ St+193 ≡ 0 (16)

at
3 ⊕ St+193 ⊕ St+160 ⊕ St+154 ≡ 0 (17)

at
4 ⊕ St+154 ⊕ St+111 ⊕ St+107 ≡ 0 (18)

at
5 ⊕ St+107 ⊕ St+66 ⊕ St+61 ≡ 0 (19)

at
6 ⊕ St+61 ⊕ St+23 ⊕ St+0 ≡ 0 (20)

J Hardw Syst Secur (2019) 3:64–7766

Since new variables have been introduced, new equations
need to be introduced to maintain consistency of the system.
That is, the following equations are added to the system:

at
1 ⊕ St+288 ≡ 0 (21)

at
2 ⊕ St+229 ≡ 0 (22)

at
3 ⊕ St+192 ≡ 0 (23)

at
4 ⊕ St+153 ≡ 0 (24)

at
5 ⊕ St+106 ≡ 0 (25)

at
6 ⊕ St+60 ≡ 0 (26)

for t = 0, 1, . . . , � − 1. Finally, we substitute the feedback
bit into the state variable:

S293+t = ft ∀t ∈ [0, � − 1]. (27)

Therefore, the number of variables used are 293 + � +
6� = 293 + 7� and the number of equations formulated are
� + � + 6� = 8� equations. All the equations are collected
and fed to the SAT solver.

We set the SAT solver to find all possible solutions
for the above system of equations. In this way, we are
guaranteed that if the SAT solver returns only one solution,
no other solution exists for the system of equations, and
hence, we can solve for the state. However, in few cases of
our experiments, we could not achieve that. For example,
when we consider recovery of 60 bits with the help of 70
keystream bits, we sometimes obtain two solutions. The
reason for the same is that the number of keystream bits is
not enough and thus the SAT solver provides more solutions
instead of a unique solution.

We use the SAT solver Cryptominisat-2.9.6 available
with Sage-7.6 [10]. The experiments were performed on
a laptop having hardware configuration Intel(R) Core(TM)
i5-4200M CPU @ 2.50GHz and 8 GB RAM running with
Ubuntu-16.10. A few experimental data are provided in
Table 1 where each row is based on 215 experiments.

Table 1 Experimental results for solving the equations

Keystream State bits Location of # P Average

Bits used Recovered Recovered bits Time (sec)

47 47 S107 . . . S153 0 0.076

43 43 S12 . . . S54 0 0.067

72 60 S0 . . . S59 1/210 0.127

60 53 S107 . . . S150, 1/214

S56, . . . S64 0.097

The time required to run the PRGA for 293 clocks is 0.088 sec on an
average. # P gives proportion of multiple (two) solutions

3.2 Formation of Equations by Observation,
not using SAT Solver

In this section, we build the system of equations used to
recover 49 bits of internal state by using first 49 bits of
keystream. To perform this recovery, we need to fix 10
bits of internal state with a particular pattern and guess
remaining state bits. The internal state bits to be recovered
are represented by set R = R1∪R2, where R1 = {St+107 :
t = 0, . . . , 43} and R2 = {St+56 : t = 0, . . . , 4}. The Eq. 1
for generating keystream can be written as

zt = St+12 ⊕ St+154 ⊕ St+235St+61

⊕ St+235St+193 ⊕ St+193St+61

⊕ St+230St+111 ⊕ St+230St+66 ⊕ St+66. (28)

Note that in the above equation, over-lined bits are feedback
bits. The state bits are updated according to the following
equations before generating the output bit:

St+289 = St+289 ⊕ St+235 ⊕ St+230 (29)

St+230 = St+230 ⊕ St+196 ⊕ St+193 (30)

St+193 = St+193 ⊕ St+160 ⊕ St+154 (31)

St+154 = St+154 ⊕ St+111 ⊕ St+107 (32)

St+107 = St+107 ⊕ St+66 ⊕ St+61 (33)

St+61 = St+61 ⊕ St+23 ⊕ St+0 (34)

Thus, Eq. 28 can be written as

St+107 = zt ⊕ St+12 ⊕ St+154 ⊕ St+111

⊕ St+235(St+61 ⊕ St+23 ⊕ St+0)

⊕ St+235(St+193 ⊕ St+160 ⊕ St+154)

⊕ (St+193 ⊕ St+160 ⊕ St+154)(St+61

⊕ St+23 ⊕ St+0) ⊕ (St+230

⊕ St+196 ⊕ St+193)St+111

⊕ (St+230 ⊕ St+196 ⊕ St+193)St+66

⊕ St+66, (35)

which makes the recovery simpler, because all the bits on
the RHS of the equation are state bits (and not feedback bits)
for t = 0, . . . , 32. However when we place t = 33, . . . , 48
in Eq. 35, feedback bits are also involved and need to be
calculated.

Now we use Eq. 35 to recover internal state bits of set
R1. The recovery of state bits is made in a certain order.

J Hardw Syst Secur (2019) 3:64–77 67

For example, if we attempt to recover S107 by placing t = 0
in Eq. 35, then S111 appears on the RHS of the equation
and requires the knowledge of S111. Thus, S111 is recovered
before performing the recovery of S107.

We define four sets R3, R4, R5, R6, where

R3 = {St+107 : t = 40, 36, . . . , 0}
R4 = {St+107 : t = 41, 37, . . . , 1}
R5 = {St+107 : t = 42, 38, . . . , 2}
R6 = {St+107 : t = 43, 39, . . . , 3}

and each Ri ⊂ R1, for i = 3 . . . , 6. The order of recovery
of state bits is R3, R4, R5, R6 and R2, respectively, i.e.,
the state bits of R3 are recovered first then R4 and so on.
For each set Ri : i = 2 . . . , 6, the higher index elements
are recovered first. We need not fix any internal state bits
for recovering R1. However, to recover R2, the internal
state bits are fixed according to Table 2. Let the set F
represent the internal state bits which are fixed according to
Table 2.

Now we describe recovery of R3. The internal state bit
S147 is recovered by substituting t = 40 in Eq. 35. From
this, we have

S147 = z40 ⊕ S52 ⊕ S194 ⊕ S151 ⊕ S275(S101

⊕ S63 ⊕ S40) ⊕ S275(S233 ⊕ S200

⊕ S194) ⊕ (S233 ⊕ S200 ⊕ S194)(S101

⊕ S63 ⊕ S40) ⊕ (S270 ⊕ S236 ⊕ S233)S151

⊕ (S270 ⊕ S236 ⊕ S233)S106 ⊕ S106. (36)

In Eq. 36, all the bits appearing on the RHS of the
equation are guessed, except the over-lined bits. The over-
lined bits are feedback bits and not internal state bits due to
Eq. 34. Thus, we need to guess more internal state bits to
calculate the value of S63, S194, S200, S233, and S236 using
Eq. 34. In this way, we recover S147.

Table 2 State bits fixed

Row # State bits and value

1. Si+268 = 0 : i = 0 . . . , 4

2. Si+187 = Si+226 ⊕ Si+193

⊕Si+160 ⊕ Si+154 : i = 0 . . . , 3

3. S191 = S230 ⊕ S196

⊕S193 ⊕ S197 ⊕ S164 ⊕ S158

Now the internal state bit of S143 is recovered by placing
t = 36 in Eq. 35 and we derive

S143 = z36 ⊕ S48 ⊕ S190 ⊕ S147 ⊕ S271(S97

⊕ S59 ⊕ S36) ⊕ S271(S229 ⊕ S196 ⊕ S190)

⊕ (S229 ⊕ S196 ⊕ S190)(S97 ⊕ S59 ⊕ S36)

⊕ (S266 ⊕ S232 ⊕ S229)S147(⊕S266 ⊕ S232

⊕ S229)S102 ⊕ S102. (37)

Similarly, in Eq. 37, all the state bits appearing on
the right side of the equation need to be guessed, except
S271, S190 and the over-lined bits. The internal state bits S271
and S190 are fixed according to Table 2. The over-lined bits
are calculated using Eq. 34. Thus, we need to guess more
internal state bits to calculate the value of S196, S232 and
recover S143.

The remaining state bits of R3 i.e. S139, S135, . . . ,

S107 are recovered by substituting t = 32, 28, . . . , 0,
respectively, in Eq. 35. While placing t = 32, 28, . . . , 0 in
Eq. 35, the internal state bits appearing on the RHS of the
equation are guessed, except state bits belonging to R and
F . Following the same methodology, the internal state bits
of set R4, R5 and R6 are recovered.

To recover the state bits of set R2, a similar procedure is
followed, except for Eq. 28, which is rewritten as

St+12 = zt ⊕ St+107 ⊕ St+154 ⊕ St+111

⊕ St+235(St+61 ⊕ St+23 ⊕ St+0)

⊕ St+235(St+193 ⊕ St+160 ⊕ St+154)

⊕ (St+193 ⊕ St+160 ⊕ St+154)(St+61

⊕ St+23 ⊕ St+0) ⊕ (St+230 ⊕ St+196

⊕ St+193)St+111 ⊕ (St+230 ⊕ St+196

⊕ St+193)St+66 ⊕ St+66. (38)

Thus, the internal state bits S56, . . . , S60 are recovered by
using t = 44, . . . , 48 in Eq. 38, respectively. Another
difference between recovery of R1 and R2 is that it is not
necessary to recover the higher indexed elements first (as
done before).

In this way, we recover 49 bits of R by fixing the 10
internal state bits of set F and guessing the remaining 234
state bits. However, there are nine internal state bits, i.e.,
S284, . . . , S292 which have not appeared in the equations
used for recovery. However, these bits are also considered
as guessed bits during application of TMDTO attack. The
equations used for recovery of R have been mentioned
in Table 6 in the Appendix. The over-lined state bits and

J Hardw Syst Secur (2019) 3:64–7768

underlined state bits in Table 6 in the Appendix are feedback
bits and fixed state bits (according to Table 2), respectively.

4 Complexity of TMDTOAttack for ACORN v3

Nowwe will describe the TMDTO attack in complete detail.
We have a state size of n = 293 bits. Thus, the standard
TMDTO formula [1, 2] with a single table will be as
follows:

– T M2D2 = N2, where N = 2n,
– D2 ≤ T ,
– P = N

D
.

During the preprocessing phase, we will prepare a table with
m rows and t columns, where mt2 = N for a successful
attack. The number of tables is t

D
and given a single table

we have t = D. Each row of the table contains a chain
of t elements. Consider that a specific state of n = 293
bits is ζ and f is the one way function. Here by one way
function f , we mean that the cipher with the state ζ will
be clocked for n times to generate n keystream bits. These
n bits will be loaded into the new state, which is called
η. That is η = f (ζ). We will start with a random state
and then generate a row of t elements by this method.
There will be m such rows. Thus, the total table size is
mt . However, the complete row will not be saved. Only the
starting and the final element will be kept. Thus, the storage
requirement of the table will be O(m), which is the memory
parameter M .

4.1 Knowledge of 47 bits of State from 47 Keystream
Bits

Now consider the case when we are able to recover ψ bits
of the state from ψ consecutive keystream bits and the rest
of the state bits. In this case, we consider a fixed pattern for
the keystream bits and only when that pattern is found in
the keystream, we try to search the state in the table. Thus,
in this case, we consider a state size of n − ψ bits and the
parameters are referred as N ′ = 2n−ψ , P ′, M ′, T ′, D′. Let
us now consider the exact parameters referring to Table 1,
where ψ = 47. Thus, T ′M ′D′2 = N ′2 = 22(293−47). Let us
consider D′2 = T . Thus, we have T ′M ′ = 2293−47 = 2246.
Now, one can consider, T ′ = M ′ = 2123 and D′ = 261.5.
However, as we have discussed that during the online phase,
we can only mount the attack when a specific ψ-bit pattern
comes, we have D = 2ψD′. Thus, finally, we will have
the parameters T = T ′ = 2123, M = M ′ = 2123, D =
2ψD′ = 247 · 261.5 = 2108.5, P = P ′ = N ′

D′ = 2184.5. This
provides the maximum of online parameters as 2123, which

is less than the exhaustive secret key search of complexity
2128. However, as expected, the pre-processing time is much
larger than the exhaustive key search.

At this point, we would like to explain the “unit” cost
related to exact complexity. Such unit cost may involve
several computations related to the cipher operations. In a
most generic way, given a k-bit secret key, the exhaustive
attack asks for the complexity of 2k units, where each
unit may require several CPU clocks. While mounting
the TMDTO attack the same situation is valid. Thus, in
our technique, we also consider all the operations as unit
cost. However, we will point out a few cases when our
calculations are most costly, and that should be taken
care of in the complexity analysis. For example, simply
generating a 293-bit keystream (that will become the state
η) of ACORN v3 from a state ζ requires 0.088 sec in our
computing facility. However, to recover the 47 bits of the
state from 47 bits of keystream and the remaining state bits
requires a time of 0.076 sec, which is almost as same as the
time taken to generate ζ . Thus, no additional complexity is
required for solving. Hence for this scenario, our parameters
are as follows. We can take T ′ = 2122, M ′ = 2124 and
D′ = 261. Then, T = T ′ · 20 = 2122, M = M ′ = 2124,
D = 2ψ · D′ = 247 · 261 = 2108, P = P ′ = N ′

D′ = 2185.

4.2 Knowledge of 53 Bits of State from 60 Keystream
Bits

We follow a similar procedure as mentioned in Section 4.1.
However, when the SAT solver is populated with equations
and is set to find all possible solutions for 53 state bits
using only 53 keystream bits, the SAT solver fails to find a
unique solution. Instead, we get multiple solutions, where
each solution provides the same 53-bit keystream pattern.
To combat this problem, we involve a new idea. Instead of
searching for a 53-bit pattern (say 53 continuous 0’s), we
search for a 300-bit pattern where the first 53-bit sequence
and the last 7-bit sequence are fixed (say to 0’s). This is
based on the fact that the keystream sequence generated
by all solutions are different. The SAT solver identifies the
difference between the sequence of last 7 bits and removes
all additional solutions. However, this gives us an additional
Data complexity of 27. Considering this constraint into the
SAT solver in a similar fashion (as explained in Section 3.1),
we get the data mentioned in Table 1. However, in very few
cases, two solutions sets are possible which generate the
same keystream. Since the proportion is very small and our

success probability is 214−1
214

, the time complexity should be

multiplied by T ′ = T ′ × 214

214−1
≈ T ′ × 1 = T ′. However,

we still attempt to deal with this edge case scenario of two

J Hardw Syst Secur (2019) 3:64–77 69

solutions. The idea is to discard the second solution during
the offline phase and continue with the first solution set.
The matrix stopping rule ensures the entire search space
is covered with a negligible collision. During the online
phase, the adversary can access few more keystream bits
following the fixed pattern in the keystream and hence
conclude with the final solution. Our experiments show that
7 more keystream bits, i.e., 67 keystream bits in total are
enough to find a unique solution.

Similar to Section 4.1, the time taken for solving
equations is of the same order of generating ζ , hence T =
T ′.

– T = T ′ = 2120 is the total time complexity of the
attack,

– M = M ′ = 2120 is the amount of memory required,
– D = D′ × 260 = 2120 where D′ = 260, since the

adversary must succeed in finding a 60-bit pattern,
– P = N ′

D′ = 2180 is the preprocessing time for
formulating tables.

4.3 Knowledge of 49 Bits of State From 49
Keystream Bits and Fixing 10 State Bits

Here, we consider the third approach which is similar to
what has been recently considered in [8] for a TMDTO
attack against Lizard [5]. We consider that ψ state bits can
be recovered from ψ many keystream bits and rest of the
state bits, but τ many state bits has to be fixed to a specific
pattern. This follows the idea mentioned in Section 3.2. In
this case, we go back to the single preprocessing table. We
will consider ψ = 49 here, with τ = 10. That is from ψ

bits of keystream and the remaining (n − ψ) state bits (out
of which τ are fixed to a specific pattern), we will be able to
solve for the ψ bits of the state. The initial table preparation
goes as follows. We start with a (n − ψ − τ) bit random
pattern and then take a specific pattern forψ . Also, the fixed
pattern of φ is known. Now, using the equations as described
in Section 3.2, we solve for the rest ψ bits of the state. This
gives the complete state. Then we run the PRGA for n − τ

times. The initial ψ bits will be as fixed. The remaining
(n − ψ − τ) pseudorandom bits will be considered as the
part of the next state bits. Thus, we have T ′M ′ = 2n−ψ−τ =
2293−49−10 = 2234. Let us take T ′ = 2112 and M ′ = 2122,
which also gives, D′ = √

T ′ = 256. Thus, we will now have
the following parameters.

– D = D′ · 2ψ+τ = 256+49+10 = 2115, as the specific
patternψ should come towards consulting the table, and
also for a good success rate to have the specific τ bit
pattern in the state we need to try 2τ many times,

– M = M ′ = 2122,
– T = T ′ · 2τ = 2112+10 = 2122, as we only consult

the preprocessing table when the specific ψ bit pattern
appears in the keystream, but we need to try 2τ times as
we have that more data and here the solution time can
be estimated from the operations in the equations and
that can subsumed in the PRGA effort,

– P = P ′ = N ′
D′ = 2234−56 = 2178.

A similar online parameter in this respect can be obtained
considering the equation 5ψ + 2τ = n. Here, ψ = 49, by
fixing τ = 10. However, we can easily increase τ to 24 to
satisfy the equation 5ψ+2τ = 5·49+2·24 = 293 = n. That
is we will fix 24 state bits to a specific pattern. In this case,

the online complexity becomes T = M = D = 2
n−ψ
2 =

2
293−49

2 = 2122. However, the preprocessing becomes less,

which is P = 2
n+ψ
2 = 2

293+49
2 = 2171.

5 Using SAT Solving Techniques toMount
TMDTO on Grain v1

Using SAT solver and a given keystream sequence, we
could recover a portion of the state of ACORN v3. Now we
would like to see, how this new approach can help us mount
an unconditional TMDTO attack on one of the finalists
of eStream portfolio, Grain v1, and compare it with the
existing attacks on Grain v1. We will begin by describing
Grain v1.

5.1 Description of Grain v1

Grain v1 constitutes of an LFSR and an NFSR, each of size
80 bits, and supports an 80-bit secret key with a 64-bit IV.
The encryption process is divided into 3 phases: KLA (Key
Loading Algorithm), KSA (Key Scheduling Algorithm),
and PRGA (Pseudo Random Generating Algorithm).

Notation The LFSR bits are represented by l0, l1, . . . , l79
while the NFSR bits are represented as n0, n1, . . . , n79.
Similarly, the key bits are represented as k0, k1, . . . , k79 and
the IV bits as v0, v1, . . . , v63.

1. KLA: The lower 64 bits of LFSR are initialized with
the IV concatenated by a 16-bit string of 1’s, while the
NFSR is initialized with the key bits:

li = vi for 0 ≤ i ≤ 63. (39)

li = 1 for 64 ≤ i ≤ 79, (40)

ni = ki for 0 ≤ i ≤ 79, (41)

J Hardw Syst Secur (2019) 3:64–7770

2. KSA: The Key Scheduling Algorithm is carried out for
160 rounds, where in each round, the LFSR and NFSR
are shifted by 1 bit and a new bit generated by the
feedback routine enters the state. The feedback routine
for LFSR can be described as

li+80 = li+62 ⊕ li+51 ⊕ li+38 ⊕ li+23

⊕ li+13 ⊕ li ⊕ zi (42)

And the NFSR feedback routine is described as follows:

ni+80 = zi ⊕ li ⊕ ni+62 ⊕ ni+60 ⊕ ni+52

⊕ ni+45 ⊕ ni+37 ⊕ ni+33 ⊕ ni+28 ⊕
ni+9 ⊕ ni ⊕ ni+63ni+60 ⊕ ni+37ni+33

⊕ ni+15ni+9 ⊕ ni+60ni+52ni+45

⊕ ni+33ni+28ni+21

⊕ ni+63ni+45ni+28ni+9

⊕ ni+60ni+52ni+37ni+33

⊕ ani+63ni+60ni+52ni+45ni+37

⊕ ni+33ni+28ni+21ni+15ni+9

⊕ ni+52ni+45ni+37ni+33ni+28ni+21 (43)

where zi is an output bit (used internally during KSA)
computed as

zi = ni+1 ⊕ ni+2 ⊕ ni+4 ⊕ ni+10

⊕ ni+31 ⊕ ni+43 ⊕ ni+56 ⊕ h(x) (44)

and h(x) is a non-linear function:

h(x) = x1 ⊕ x4 ⊕ x0x3 ⊕ x2x3 ⊕ x3x4 ⊕ x0x1x2

⊕ x0x2x3 ⊕ x0x2x4 ⊕ x1x2x4 ⊕ x2x3x4 (45)

where x0, x1, x2, x3, x4 correspond to the tap positions
li+3, li+25, li+46, li+64, ni+63.

3. PRGA: After 160 rounds of KSA, the cipher is ready
to produce keystream bits. The output function remains
the same from KSA. The LFSR and NFSR registers are
updated in a similar fashion as KSA, except that the
output bits are not XORed into the state, but produced
externally. Note that the output bit is generated prior to a
state update.
Now that we have discussed the structure of Grain

v1, we shall discuss how by guessing a certain portion
of the state bits and assuming a fixed-length keystream
sequence, we can recover the remaining state bits.

5.2 Formulating Equations for Grain v1

The procedure of formulating equations for Grain v1 is very
similar to that of ACORN v3 as mentioned in Section 3.1.
First, 160 variables are introduced into the system, for
representing the internal state bits. Next, we assume that we
know a portion of the internal state and directly substitute
the known values instead of the state variables. We also have
a fixed keystream z0, z1, . . . , zψ−1. In our case, we do not
include any equations of the LFSR, since we are guessing
the values of LFSR bits in our attack. Hence, the LFSR bits
are clocked as mentioned in Eq. 42 without the keystream
bit (since we are talking about PRGA rounds here). For
updating the NFSR bits, we substitute the known values
directly into the NFSR state update routine using Eq. 43
(without the keystream bit) and directly substitute the newly
generated bit into the state (instead of introducing an extra
variable as done in Section 3.1); since this is giving us a
considerable speed boost.

We clock the state ψ times, and for each round,
we calculate the output bit (which will be a boolean
polynomial) using Eq. 44 and XOR the polynomial with the
corresponding keystream bit zi before adding it to the set
of equations. We first convert this system of ANF equations
into CNF using the popular dense strategy (available with
SAGE). Now the equations are expressible in terms of input
to SAT solvers, we can use any SAT solver to solve for
a solution. One popular SAT solver is Cryptominisat 5.6,
which we have used for performing our experiments.

Now we will describe our attack on Grain v1.

5.3 Recovering 25 State Bits using 30 Keystream Bits

We follow a similar idea as mentioned in Section 4.2. The
equations are formulated as mentioned in the Section 5.2.
Here, we are considering NFSR bits n0, n1, . . . , n24 for
recovery, by guessing the remaining state bits and using the
fixed length keystream pattern. Like in Section 4.2, we are
faced with a situation of multiple solutions for the system
of equations. Hence, we resort to increasing the number of
keystream bits from 25 to 30. The chance of two solutions in
this scenario is 1/25. However, we can tackle this situation

Table 3 The possible TMDTO parameters inclusive of the time
complexity of the SAT solver

T = T ′ × 22.90 M = M ′ D = D′ × 230 P = N ′/D′

269.90 268 263.5 2101.5

267.90 270 262.5 2102.5

272.90 266 264 2101

271.90 268 262.5 2102.5

J Hardw Syst Secur (2019) 3:64–77 71

Table 4 The possible TMDTO parameters inclusive of the time
complexity of the SAT solver (Recovering 32 state bits using 36
keystream bits)

T = T ′ × 24.06 M = M ′ D = D′ × 236 P = N ′/D′

272.06 260 270 294

270.06 262 269 295

268.06 264 268 296

266.06 266 267 297

The bold entry is the best attack parameter

by following a similar approach as followed in Section 4.2.
We search for a 160 bit pattern in the keystream sequence
where the first 25 bits and the last 5 bits are a pattern of our
choice, say all 0’s. This will increase the data complexity
by 230, while our search space is now reduced to N ′ =
2160−25 = 2135. We have to find appropriate parameters for
T ′, M ′ and D′ such that T ′M ′2D′2 ≥ N ′2. We can choose
T ′ = M ′ = 267.5 and D′ = 233.75 such that T = M = 267.5

and D = 263.75. The offline complexity of the attack will
stand at P = 2101.25.

Note that the complexity of SAT solver also needs to
be accounted for. Similar to Section 4.2, we will compare
the average time to solve one system of equations with
the time taken to compute 160 keystream bits in SAGE
8.2. The average time taken to solve a system of equations
is 0.059 seconds, whereas the time taken to compute 160
keystream bits is 0.0079 seconds. From this, we can assume
that the complexity of solving equations to be 22.90 Grain v1
encryptions.

The different possible TMDTO parameters are men-
tioned in Table 3.

5.4 Recovering 32 State Bits using 36 Keystream Bits

Here, we will recover NFSR bits n0, n1, . . . , n31 by
guessing remaining state bits and using a 36-bit fixed
keystream pattern. The chance of two solutions in this case
would be 2−5. The search space in this case would be N ′ =
2128. A suitable parameter in this case would be T ′ = 264,
M ′ = 264, D′ = 232 and consequently P = N ′/D′ = 296.

The average time taken to solve the system of equations
in this case is 0.42 seconds. Considering the time taken for
producing 160 keystream bits from the previous Section 5.3,

the complexity of solving equations in this case would be
24.06. The various possible TMDTO parameters are given in
Table 4.

6 Comparison and Viability of the Two
Attacks

We have seen TMDTO attacks on ACORN v3 and Grain v1
in Section 4 and Section 5, respectively. Even in the best
case scenario for our attack on ACORN v3, we need a pre-
processing complexity of at least 2171 (Section 4.3) which is
considerably higher than exhaustive key search. However, a
preprocessing complexity higher than exhaustive key search
has often been allowed since it is a one-time cost.

Note that for Grain v1, the offline complexity is close to
the exhaustive key search. We cannot claim that we have
broken the cipher since it is still slower than exhaustive key
search. But since the tables need to be prepared only once
and then can repeatedly be used during the online phase with
a complexity lower than exhaustive key search, the attack
does seem practical in future. A comparison of our work for
Grain v1 with existing works has been mentioned in Table 5.

7 Conclusion

In this paper, we have studied a generalized TMDTO attack
by using SAT solver on stream ciphers with state size less
than 2.5 times its key size. We have presented a TMDTO
attack on ACORN v3 and Grain v1. We have shown how we
can formulate equations and by using SAT solver, we can
deduce a portion of the state using a fixed keystream pattern
and guessing the remaining state bits. Then we have enlisted
the possible TMDTO parameters for each case. We observe
that the online parameters are lower than exhaustive key
search, while the pre-processing complexity still remains
higher than exhaustive key search. While our observations
do not refute any security claim of the cipher, the study adds
certain insight towards the cryptanalysis and may lead to
further research in this area.

Acknowledgments The authors like to thank Dr. Dibyendu Roy,
School of Mathematical Science, NISER, India, for an excellent review
on an initial version of this paper.

Table 5 Comparison of
complexities with existing
TMDTO attacks on Grain-v1

Algorithm State bits
recovered

State bits
fixed

Keystream
bits used

Time
(T)

Memory
(M)

Keystream
(D)

Preprocessing
(P)

Bjørstad [3] 21 0 21 270 269 256 2104

Mihaljević et al. [9] 18 54 18 254 270 272 288

Jiao et al. [7] 28 51 28 261 271 279 281

Our approach 32 0 36 268.06 264 264 296

J Hardw Syst Secur (2019) 3:64–7772

Appendix

Table 6 Recovery of 49 bits of
the internal state after fixing
10 bits

Steps Equations used for recovery Guessed bits

0

S147 = z40 ⊕ S52 ⊕ S194 ⊕ S151 ⊕ S275(S101 ⊕ S63 ⊕ S40)

⊕S275(S233 ⊕ S200 ⊕ S194) ⊕ (S233 ⊕ S200 ⊕ S194)

(S101 ⊕ S63 ⊕ S40) ⊕ (S270 ⊕ S236 ⊕ S233)S151

⊕(S270 ⊕ S236 ⊕ S233)S106 ⊕ S106

S52, S101, S63, S25, S2,

S40, S275, S233, S199,

S196, S200, S167, S161,

S194, S155, S236, S202,

S151, S106

1

S143 = z36 ⊕ S48 ⊕ S190 ⊕ S147 ⊕ S271(S97 ⊕ S59 ⊕ S36)

⊕S271(S229 ⊕ S196 ⊕ S190) ⊕ (S229 ⊕ S196 ⊕ S190)

(S97 ⊕ S59 ⊕ S36) ⊕ (S266 ⊕ S232 ⊕ S229)S147

⊕(S266 ⊕ S232 ⊕ S229)S102 ⊕ S102

S48, S97, S36, S229,

S163, S157, S266, S232,

S198, S195, S102

2

S139 = z32 ⊕ S44 ⊕ S186 ⊕ S143 ⊕ S267(S93 ⊕ S55 ⊕ S32)

⊕S267(S225 ⊕ S192 ⊕ S186) ⊕ (S225 ⊕ S192 ⊕ S186)

(S93 ⊕ S55 ⊕ S32) ⊕ (S262 ⊕ S228 ⊕ S225)S143

⊕(S262 ⊕ S228 ⊕ S225)S98 ⊕ S98

S44, S93, S55, S32,

S267, S225, S192, S186

S262, S228, S98

3

S135 = z28 ⊕ S40 ⊕ S182 ⊕ S139 ⊕ S263(S89 ⊕ S51 ⊕ S28)

⊕S263(S221 ⊕ S188 ⊕ S182) ⊕ (S221 ⊕ S188 ⊕ S182)

(S89 ⊕ S51 ⊕ S28) ⊕ (S258 ⊕ S224 ⊕ S221)S139

⊕(S258 ⊕ S224 ⊕ S221)S94 ⊕ S94

S89, S51, S28, S263,

S221, S182, S258, S224,

S94

4

S131 = z24 ⊕ S36 ⊕ S178 ⊕ S135 ⊕ S259(S85 ⊕ S47 ⊕ S24)

⊕S259(S217 ⊕ S184 ⊕ S178) ⊕ (S217 ⊕ S184 ⊕ S178)

(S85 ⊕ S47 ⊕ S24) ⊕ (S254 ⊕ S220 ⊕ S217)S135

⊕(S254 ⊕ S220 ⊕ S217)S90 ⊕ S90

S85, S47, S24, S259,

S217, S184, S178, S254,

S220, S90

5

S127 = z20 ⊕ S32 ⊕ S174 ⊕ S131 ⊕ S255(S81 ⊕ S43 ⊕ S20)

⊕S255(S213 ⊕ S180 ⊕ S174) ⊕ (S213 ⊕ S180 ⊕ S174)

(S81 ⊕ S43 ⊕ S20) ⊕ (S250 ⊕ S216 ⊕ S213)S131

⊕(S250 ⊕ S216 ⊕ S213)S86 ⊕ S86

S81, S43, S20, S255,

S213, S180, S174,

S250, S216, S86

6

S123 = z16 ⊕ S28 ⊕ S170 ⊕ S127 ⊕ S251(S77 ⊕ S39 ⊕ S16)

⊕S251(S209 ⊕ S176 ⊕ S170) ⊕ (S209 ⊕ S176 ⊕ S170)

(S77 ⊕ S39 ⊕ S16) ⊕ (S246 ⊕ S212 ⊕ S209)S127

⊕(S246 ⊕ S212 ⊕ S209)S82 ⊕ S82

S77, S39, S16, S251,

S209, S176, S170, S246,

S212, S82

7

S119 = z12 ⊕ S24 ⊕ S166 ⊕ S123 ⊕ S247(S73 ⊕ S35 ⊕ S12)

⊕S247(S205 ⊕ S172 ⊕ S166) ⊕ (S205 ⊕ S172 ⊕ S166)

(S73 ⊕ S35 ⊕ S12) ⊕ (S242 ⊕ S208 ⊕ S205)S123

⊕(S242 ⊕ S208 ⊕ S205)S78 ⊕ S78

S73, S35, S12, S247,

S205, S172, S166, S242,

S208, S78

8

S115 = z8 ⊕ S20 ⊕ S162 ⊕ S119 ⊕ S243(S69 ⊕ S31 ⊕ S8)

⊕S243(S201 ⊕ S168 ⊕ S162) ⊕ (S201 ⊕ S168 ⊕ S162)

(S69 ⊕ S31 ⊕ S8) ⊕ (S238 ⊕ S204 ⊕ S201)S119

⊕(S238 ⊕ S204 ⊕ S201)S74 ⊕ S74

S69, S31, S8, S243,

S201, S168, S162, S238,

S204, S74

9

S111 = z4 ⊕ S16 ⊕ S158 ⊕ S115 ⊕ S239(S65 ⊕ S27 ⊕ S4)

⊕S239(S197 ⊕ S164 ⊕ S158) ⊕ (S197 ⊕ S164 ⊕ S158)

(S65 ⊕ S27 ⊕ S4) ⊕ (S234 ⊕ S200 ⊕ S197)S115

⊕(S234 ⊕ S200 ⊕ S197)S70 ⊕ S70

S65, S27, S4, S239,

S197, S164, S158, S234,

S70

10

S107 = z0 ⊕ S12 ⊕ S154 ⊕ S111 ⊕ S235(S61 ⊕ S23 ⊕ S0)

⊕S235(S193 ⊕ S160 ⊕ S154) ⊕ (S193 ⊕ S160 ⊕ S154)

(S61 ⊕ S23 ⊕ S0) ⊕ (S230 ⊕ S196 ⊕ S193)S111

⊕(S230 ⊕ S196 ⊕ S193)S66 ⊕ S66

S61, S23, S0, S235,

S193, S160, S154, S230,

S66

J Hardw Syst Secur (2019) 3:64–77 73

Table 6 (continued)
Steps Equations used for recovery Guessed bits

11

S148 = z41 ⊕ S53 ⊕ S195 ⊕ S152 ⊕ S276(S102 ⊕ S64 ⊕ S41)

⊕S276(S234 ⊕ S201 ⊕ S195) ⊕ (S234 ⊕ S201 ⊕ S195)

(S102 ⊕ S64 ⊕ S41) ⊕ (S271 ⊕ S237 ⊕ S234)S152

⊕(S271 ⊕ S237 ⊕ S234)S107 ⊕ S107

S53, S64, S26, S3,

S41, S276, S156, S237,

S203, S152

12

S144 = z37 ⊕ S49 ⊕ S191 ⊕ S148 ⊕ S272(S98 ⊕ S60 ⊕ S37)

⊕S272(S230 ⊕ S197 ⊕ S191) ⊕ (S230 ⊕ S197 ⊕ S191)

(S98 ⊕ S60 ⊕ S37) ⊕ (S267 ⊕ S233 ⊕ S230)S148

⊕(S267 ⊕ S233 ⊕ S230)S103 ⊕ S103

S49, S37, S103

13

S140 = z33 ⊕ S45 ⊕ S187 ⊕ S144 ⊕ S268(S94 ⊕ S56 ⊕ S33)

⊕S268(S226 ⊕ S193 ⊕ S187) ⊕ (S226 ⊕ S193 ⊕ S187)

(S94 ⊕ S56 ⊕ S33) ⊕ (S263 ⊕ S229 ⊕ S226)S144

⊕(S263 ⊕ S229 ⊕ S226)S99 ⊕ S99

S45, S94, S33,

S226, S99

14

S136 = z29 ⊕ S41 ⊕ S183 ⊕ S140 ⊕ S264(S90 ⊕ S52 ⊕ S29)

⊕S264(S222 ⊕ S189 ⊕ S183) ⊕ (S222 ⊕ S189 ⊕ S183)

(S90 ⊕ S52 ⊕ S29) ⊕ (S259 ⊕ S225 ⊕ S222)S140

⊕(S259 ⊕ S225 ⊕ S222)S95 ⊕ S95

S29, S264, S222,

S183, S95

15

S132 = z25 ⊕ S37 ⊕ S179 ⊕ S136 ⊕ S260(S86 ⊕ S48 ⊕ S25)

⊕S260(S218 ⊕ S185 ⊕ S179) ⊕ (S218 ⊕ S185 ⊕ S179)

(S86 ⊕ S48 ⊕ S25) ⊕ (S255 ⊕ S221 ⊕ S218)S136

⊕(S255 ⊕ S221 ⊕ S218)S91 ⊕ S91

S260, S218, S185,

S179, S91

16

S128 = z21 ⊕ S33 ⊕ S175 ⊕ S132 ⊕ S256(S82 ⊕ S44 ⊕ S21)

⊕S256(S214 ⊕ S181 ⊕ S175) ⊕ (S214 ⊕ S181 ⊕ S175)

(S82 ⊕ S44 ⊕ S21) ⊕ (S251 ⊕ S217 ⊕ S214)S132

⊕(S251 ⊕ S217 ⊕ S214)S87 ⊕ S87

S21, S256, S214,

S181, S175, S87

17

S124 = z17 ⊕ S29 ⊕ S171 ⊕ S128 ⊕ S252(S78 ⊕ S40 ⊕ S17)

⊕S252(S210 ⊕ S177 ⊕ S171) ⊕ (S210 ⊕ S177 ⊕ S171)

(S78 ⊕ S40 ⊕ S17) ⊕ (S247 ⊕ S213 ⊕ S210)S128

⊕(S247 ⊕ S213 ⊕ S210)S83 ⊕ S83

S17, S252, S210,

S177, S171, S83

18

S120 = z13 ⊕ S25 ⊕ S167 ⊕ S124 ⊕ S248(S74 ⊕ S36 ⊕ S13)

⊕S248(S206 ⊕ S173 ⊕ S167) ⊕ (S206 ⊕ S173 ⊕ S167)

(S74 ⊕ S36 ⊕ S13) ⊕ (S243 ⊕ S209 ⊕ S206)S124

⊕(S243 ⊕ S209 ⊕ S206)S79 ⊕ S79

S13, S248, S206,

S173, S79

19

S116 = z9 ⊕ S21 ⊕ S163 ⊕ S120 ⊕ S244(S70 ⊕ S32 ⊕ S9)

⊕S244(S202 ⊕ S169 ⊕ S163) ⊕ (S202 ⊕ S169 ⊕ S163)

(S70 ⊕ S32 ⊕ S9) ⊕ (S239 ⊕ S205 ⊕ S202)S120

⊕(S239 ⊕ S205 ⊕ S202)S75 ⊕ S75

S9, S244, S169, S75

20

S112 = z5 ⊕ S17 ⊕ S159 ⊕ S116 ⊕ S240(S66 ⊕ S28 ⊕ S5)

⊕S240(S198 ⊕ S165 ⊕ S159) ⊕ (S198 ⊕ S165 ⊕ S159)

(S66 ⊕ S28 ⊕ S5) ⊕ (S235 ⊕ S201 ⊕ S198)S116

⊕(S235 ⊕ S201 ⊕ S198)S71 ⊕ S71

S5, S240, S165,

S159, S71

21

S108 = z1 ⊕ S13 ⊕ S155 ⊕ S112 ⊕ S236(S62 ⊕ S24 ⊕ S1)

⊕S236(S194 ⊕ S161 ⊕ S155) ⊕ (S194 ⊕ S161 ⊕ S155)

(S62 ⊕ S24 ⊕ S1) ⊕ (S231 ⊕ S197 ⊕ S194)S112

⊕(S231 ⊕ S197 ⊕ S194)S67 ⊕ S67

S62, S1, S231, S67

22

S149 = z42 ⊕ S54 ⊕ S196 ⊕ S153 ⊕ S277(S103 ⊕ S65 ⊕ S42)

⊕S277(S235 ⊕ S202 ⊕ S196) ⊕ (S235 ⊕ S202 ⊕ S196)

(S103 ⊕ S65 ⊕ S42) ⊕ (S272 ⊕ S238 ⊕ S235)S153

⊕(S272 ⊕ S238 ⊕ S235)S108 ⊕ S108

S54, S42, S277, S153

J Hardw Syst Secur (2019) 3:64–7774

Table 6 (continued)
Steps Equations used for recovery Guessed bits

23

S145 = z38 ⊕ S50 ⊕ S192 ⊕ S149 ⊕ S273(S99 ⊕ S61 ⊕ S38)

⊕S273(S231 ⊕ S198 ⊕ S192) ⊕ (S231 ⊕ S198 ⊕ S192)

(S99 ⊕ S61 ⊕ S38) ⊕ (S268 ⊕ S234 ⊕ S231)S149

⊕(S268 ⊕ S234 ⊕ S231)S104 ⊕ S104

S50, S38, S273, S104

24

S141 = z34 ⊕ S46 ⊕ S188 ⊕ S145 ⊕ S269(S95 ⊕ S57 ⊕ S34)

⊕S269(S227 ⊕ S194 ⊕ S188) ⊕ (S227 ⊕ S194 ⊕ S188)

(S95 ⊕ S57 ⊕ S34) ⊕ (S264 ⊕ S230 ⊕ S227)S145

⊕(S264 ⊕ S230 ⊕ S227)S100 ⊕ S100

S46, S34, S227

S100

25

S137 = z30 ⊕ S42 ⊕ S184 ⊕ S141 ⊕ S265(S91 ⊕ S53 ⊕ S30)

⊕S265(S223 ⊕ S190 ⊕ S184) ⊕ (S223 ⊕ S190 ⊕ S184)

(S91 ⊕ S53 ⊕ S30) ⊕ (S260 ⊕ S226 ⊕ S223)S141

⊕(S260 ⊕ S226 ⊕ S223)S96 ⊕ S96

S30, S265, S223, S96

26

S133 = z26 ⊕ S38 ⊕ S180 ⊕ S137 ⊕ S261(S87 ⊕ S49 ⊕ S26)

⊕S261(S219 ⊕ S186 ⊕ S180) ⊕ (S219 ⊕ S186 ⊕ S180)

(S87 ⊕ S49 ⊕ S26) ⊕ (S256 ⊕ S222 ⊕ S219)S137

⊕(S256 ⊕ S222 ⊕ S219)S92 ⊕ S92

S261, S219, S92

27

S129 = z22 ⊕ S34 ⊕ S176 ⊕ S133 ⊕ S257(S83 ⊕ S45 ⊕ S22)

⊕S257(S215 ⊕ S182 ⊕ S176) ⊕ (S215 ⊕ S182 ⊕ S176)

(S83 ⊕ S45 ⊕ S22) ⊕ (S252 ⊕ S218 ⊕ S215)S133

⊕(S252 ⊕ S218 ⊕ S215)S88 ⊕ S88

S22, S257, S215, S88

28

S125 = z18 ⊕ S30 ⊕ S172 ⊕ S129 ⊕ S253(S79 ⊕ S41 ⊕ S18)

⊕S253(S211 ⊕ S178 ⊕ S172) ⊕ (S211 ⊕ S178 ⊕ S172)

(S79 ⊕ S41 ⊕ S18) ⊕ (S248 ⊕ S214 ⊕ S211)S129

⊕(S248 ⊕ S214 ⊕ S211)S84 ⊕ S84

S18, S253, S211, S84

29

S121 = z14 ⊕ S26 ⊕ S168 ⊕ S125 ⊕ S249(S75 ⊕ S37 ⊕ S14)

⊕S249(S207 ⊕ S174 ⊕ S168) ⊕ (S207 ⊕ S174 ⊕ S168)

(S75 ⊕ S37 ⊕ S14) ⊕ (S244 ⊕ S210 ⊕ S207)S125

⊕(S244 ⊕ S210 ⊕ S207)S80 ⊕ S80

S14, S249, S207, S80

30

S117 = z10 ⊕ S22 ⊕ S164 ⊕ S121 ⊕ S245(S71 ⊕ S33 ⊕ S10)

⊕S245(S203 ⊕ S170 ⊕ S164) ⊕ (S203 ⊕ S170 ⊕ S164)

(S71 ⊕ S33 ⊕ S10) ⊕ (S240 ⊕ S206 ⊕ S203)S121

⊕(S240 ⊕ S206 ⊕ S203)S76 ⊕ S76

S10, S245, S76

31

S113 = z6 ⊕ S18 ⊕ S160 ⊕ S117 ⊕ S241(S67 ⊕ S29 ⊕ S6)

⊕S241(S199 ⊕ S166 ⊕ S160) ⊕ (S199 ⊕ S166 ⊕ S160)

(S67 ⊕ S29 ⊕ S6) ⊕ (S236 ⊕ S202 ⊕ S199)S117

⊕(S236 ⊕ S202 ⊕ S199)S72 ⊕ S72

S6, S241, S72

32

S109 = z2 ⊕ S14 ⊕ S156 ⊕ S113 ⊕ S237(S63 ⊕ S25 ⊕ S2)

⊕S237(S195 ⊕ S162 ⊕ S156) ⊕ (S195 ⊕ S162 ⊕ S156)

(S63 ⊕ S25 ⊕ S2) ⊕ (S232 ⊕ S198 ⊕ S195)S113

⊕(S232 ⊕ S198 ⊕ S195)S68 ⊕ S68

S68

33

S150 = z43 ⊕ S55 ⊕ S197 ⊕ S154 ⊕ S278(S104 ⊕ S66 ⊕ S43)

⊕S278(S236 ⊕ S203 ⊕ S197) ⊕ (S236 ⊕ S203 ⊕ S197)

(S104 ⊕ S66 ⊕ S43) ⊕ (S273 ⊕ S239 ⊕ S236)S154

⊕(S273 ⊕ S239 ⊕ S236)S109 ⊕ S109

S278

34

S146 = z39 ⊕ S51 ⊕ S193 ⊕ S150 ⊕ S274(S100 ⊕ S62 ⊕ S39)

⊕S274(S232 ⊕ S199 ⊕ S193) ⊕ (S232 ⊕ S199 ⊕ S193)

(S100 ⊕ S62 ⊕ S39) ⊕ (S269 ⊕ S235 ⊕ S232)S150

⊕(S269 ⊕ S235 ⊕ S232)S105 ⊕ S105

S274, S105

J Hardw Syst Secur (2019) 3:64–77 75

Table 6 (continued)
Steps Equations used for recovery Guessed bits

35

S142 = z35 ⊕ S47 ⊕ S189 ⊕ S146 ⊕ S270(S96 ⊕ S58 ⊕ S35)

⊕S270(S228 ⊕ S195 ⊕ S189) ⊕ (S228 ⊕ S195 ⊕ S189)

(S96 ⊕ S58 ⊕ S35) ⊕ (S265 ⊕ S231 ⊕ S228)S146

⊕(S265 ⊕ S231 ⊕ S228)S101 ⊕ S101

−

36

S138 = z31 ⊕ S43 ⊕ S185 ⊕ S142 ⊕ S266(S92 ⊕ S54 ⊕ S31)

⊕S266(S224 ⊕ S191 ⊕ S185) ⊕ (S224 ⊕ S191 ⊕ S185)

(S92 ⊕ S54 ⊕ S31) ⊕ (S261 ⊕ S227 ⊕ S224)S142

⊕(S261 ⊕ S227 ⊕ S224)S97 ⊕ S97

−

37

S134 = z27 ⊕ S39 ⊕ S181 ⊕ S138 ⊕ S262(S88 ⊕ S50 ⊕ S27)

⊕S262(S220 ⊕ S187 ⊕ S181) ⊕ (S220 ⊕ S187 ⊕ S181)

(S88 ⊕ S50 ⊕ S27) ⊕ (S257 ⊕ S223 ⊕ S220)S138

⊕(S257 ⊕ S223 ⊕ S220)S93 ⊕ S93

−

38

S130 = z23 ⊕ S35 ⊕ S177 ⊕ S134 ⊕ S258(S84 ⊕ S46 ⊕ S23)

⊕S258(S216 ⊕ S183 ⊕ S177) ⊕ (S216 ⊕ S183 ⊕ S177)

(S84 ⊕ S46 ⊕ S23) ⊕ (S253 ⊕ S219 ⊕ S216)S134

⊕(S253 ⊕ S219 ⊕ S216)S89 ⊕ S89

−

39

S126 = z19 ⊕ S31 ⊕ S173 ⊕ S130 ⊕ S254(S80 ⊕ S42 ⊕ S19)

⊕S254(S212 ⊕ S179 ⊕ S173) ⊕ (S212 ⊕ S179 ⊕ S173)

(S80 ⊕ S42 ⊕ S19) ⊕ (S249 ⊕ S215 ⊕ S212)S130

⊕(S249 ⊕ S215 ⊕ S212)S85 ⊕ S85

S19

40

S122 = z15 ⊕ S27 ⊕ S169 ⊕ S126 ⊕ S250(S76 ⊕ S38 ⊕ S15)

⊕S250(S208 ⊕ S175 ⊕ S169) ⊕ (S208 ⊕ S175 ⊕ S169)

(S76 ⊕ S38 ⊕ S15) ⊕ (S245 ⊕ S211 ⊕ S208)S126

⊕(S245 ⊕ S211 ⊕ S208)S81 ⊕ S81

S15

41

S118 = z11 ⊕ S23 ⊕ S165 ⊕ S122 ⊕ S246(S72 ⊕ S34 ⊕ S11)

⊕S246(S204 ⊕ S171 ⊕ S165) ⊕ (S204 ⊕ S171 ⊕ S165)

(S72 ⊕ S34 ⊕ S11) ⊕ (S241 ⊕ S207 ⊕ S204)S122

⊕(S241 ⊕ S207 ⊕ S204)S77 ⊕ S77

S11

42

S114 = z7 ⊕ S19 ⊕ S161 ⊕ S118 ⊕ S242(S68 ⊕ S30 ⊕ S7)

⊕S242(S200 ⊕ S167 ⊕ S161) ⊕ (S200 ⊕ S167 ⊕ S161)

(S68 ⊕ S30 ⊕ S7) ⊕ (S237 ⊕ S203 ⊕ S200)S118

⊕(S237 ⊕ S203 ⊕ S200)S73 ⊕ S73

−

43

S110 = z3 ⊕ S15 ⊕ S157 ⊕ S114 ⊕ S238(S64 ⊕ S26 ⊕ S3)

⊕S238(S196 ⊕ S163 ⊕ S157) ⊕ (S196 ⊕ S163 ⊕ S157)

(S64 ⊕ S26 ⊕ S3) ⊕ (S233 ⊕ S199 ⊕ S196)S114

⊕(S233 ⊕ S199 ⊕ S196)S69 ⊕ S69

−

44

S56 = z44 ⊕ S151 ⊕ S198 ⊕ S155 ⊕ S279(S105 ⊕ S67 ⊕ S44)

⊕S279(S237 ⊕ S204 ⊕ S198) ⊕ (S237 ⊕ S204 ⊕ S198)

(S105 ⊕ S67 ⊕ S44) ⊕ (S274 ⊕ S240 ⊕ S237)S155

⊕(S274 ⊕ S240 ⊕ S237)S110 ⊕ S110

S279

45

S57 = z45 ⊕ S152 ⊕ S199 ⊕ S156 ⊕ S280(S106 ⊕ S68 ⊕ S45)

⊕S280(S238 ⊕ S205 ⊕ S199) ⊕ (S238 ⊕ S205 ⊕ S199)

(S106 ⊕ S68 ⊕ S45) ⊕ (S275 ⊕ S241 ⊕ S238)S156

⊕(S275 ⊕ S241 ⊕ S238)S111 ⊕ S111

S280

46

S58 = z46 ⊕ S153 ⊕ S200 ⊕ S157 ⊕ S281(S107 ⊕ S69 ⊕ S46)

⊕S281(S239 ⊕ S206 ⊕ S200) ⊕ (S239 ⊕ S206 ⊕ S200)

(S107 ⊕ S69 ⊕ S46) ⊕ (S276 ⊕ S242 ⊕ S239)S157

⊕(S276 ⊕ S242 ⊕ S239)S112 ⊕ S112

S281

J Hardw Syst Secur (2019) 3:64–7776

Table 6 (continued)
Steps Equations used for recovery Guessed bits

47

S59 = z47 ⊕ S154 ⊕ S201 ⊕ S158 ⊕ S282(S108 ⊕ S70 ⊕ S47)

⊕S282(S240 ⊕ S207 ⊕ S201) ⊕ (S240 ⊕ S207 ⊕ S201)

(S108 ⊕ S70 ⊕ S47) ⊕ (S277 ⊕ S243 ⊕ S240)S158

⊕(S277 ⊕ S243 ⊕ S240)S113 ⊕ S113

S282

48

S60 = z48 ⊕ S155 ⊕ S202 ⊕ S159 ⊕ S283(S109 ⊕ S71 ⊕ S48)

⊕S283(S241 ⊕ S208 ⊕ S202) ⊕ (S241 ⊕ S208 ⊕ S202)

(S109 ⊕ S71 ⊕ S48) ⊕ (S278 ⊕ S244 ⊕ S241)S159

⊕(S278 ⊕ S244 ⊕ S241)S114 ⊕ S114

S283

References

1. Biryukov A, Shamir A, Wagner D Real time cryptanalysis of A5/1
on a PC. FSE 2000, pp. 1–18, LNCS 1978, 2000. Available at:
https://link.springer.com/chapter/10.1007/3-540-44706-7 1

2. Biryukov A, Shamir A Cryptanalytic time/memory/data trade-
offs for stream ciphers. Asiacrypt 2000, pp. 1–13, LNCS
1976, 2000. Available at: https://link.springer.com/chapter/10.
1007/3-540-44448-3 1

3. Bjrstad TE Cryptanalysis of grain using time/memory/data
tradeoffs. Estream Phase 3 (2013). Available at: www.ii.uib.no/tor/
pdf/grain.pdf

4. Competition CAESAR, Hosted at: http://competitions.cr.yp.to/
caesar.html

5. Hamann M, Krause M, Meier W LIZARD - A lightweight stream
cipher for power-constrained devices. FSE 2017. Available at:
http://tosc.iacr.org/index.php/ToSC/article/view/584

6. Hell M, Johansson T, Meier W (2007) Grain: a stream cipher for
constrained environments. Int J Wirel Mob Comput 2(1):86–93.
Available at: https://dl.acm.org/citation.cfm?id=1358401

7. Jiao L, Zhang B, Wang M Two generic methods of analyzing
stream ciphers. ISC 2015, Lecture Notes in Computer Science,
pp. 379–396, 2015. Available at: https://dl.acm.org/citation.cfm?
id=2966308

8. Maitra S, Sinha N, Siddhanti A, Anand R, Gangopadhyay S (2018)
A TMDTO attack against lizard. IEEE Trans Comput 67(5):733–
739. Available at: https://ieeexplore.ieee.org/abstract/document/
8107499/

9. Mihaljević MJ, Gangopadhyay S, Paul G, Imai H (2012) Internal
state recovery of Grain-v1 employing normality order of the filter
function. IET Inf Secur 6(2):55–64. Available at: ieeexplore.ieee.
org/document/6230812/

10. SAGE mathematics software. Free software foundation, Inc.,
2009. Available at http://www.sagemath.org. (Open source project
initiated by W. Stein and contributed by many)

11. Sarkar S, Banik S, Maitra S (2015) Differential Fault Attack
against Grain family with very few faults and minimal assump-
tions. IEEE Trans Comput 64(6):1647–1657. Available at: https://
ieeexplore.ieee.org/document/6857997/

12. Siddhanti AA, Maitra S, Sinha N Certain Observations on
ACORN v3 and the Implications to TMDTO Attacks. Interna-
tional Conference on Security, Privacy, and Applied Cryptography
Engineering, pp. 264-280, LNCS 10662, Springer. Available at:
https://link.springer.com/chapter/10.1007/978-3-319-71501-8 15

13. Wu H ACORN: A Lightweight Authenticated Cipher (v3).
Available at: https://competitions.cr.yp.to/round3/acornv3.pdf

J Hardw Syst Secur (2019) 3:64–77 77

https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/3-540-44706-7_1
https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/3-540-44448-3_1
https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/3-540-44448-3_1
www.ii.uib.no/ tor/pdf/grain.pdf
www.ii.uib.no/ tor/pdf/grain.pdf
http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar.html
http://tosc.iacr.org/index.php/ToSC/article/view/584
https://dl.acm.org/citation.cfm?id=1358401
https://dl.acm.org/citation.cfm?id=2966308
https://dl.acm.org/citation.cfm?id=2966308
https://ieeexplore.ieee.org/abstract/document/8107499/
https://ieeexplore.ieee.org/abstract/document/8107499/
ieeexplore.ieee.org/document/6230812/
ieeexplore.ieee.org/document/6230812/
http://www.sagemath.org
https://ieeexplore.ieee.org/document/6857997/
https://ieeexplore.ieee.org/document/6857997/
https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-319-71501-8_15
https://competitions.cr.yp.to/round3/acornv3.pdf

	Certain Observations on ACORN v3 and Grain v1—Implications Towards TMDTO Attacks
	Abstract
	Introduction
	Overview of the Paper

	Description of ACORN v3
	Methods to Recover Certain Bits of the State for ACORN v3
	Using SAT Solver
	Formation of Equations by Observation, not using SAT Solver

	Complexity of TMDTO Attack for ACORN v3
	Knowledge of 47 bits of State from 47 Keystream Bits
	Knowledge of 53 Bits of State from 60 Keystream Bits
	Knowledge of 49 Bits of State From 49 Keystream Bits and Fixing 10 State Bits

	Using SAT Solving Techniques to Mount TMDTO on Grain v1
	Description of Grain v1
	Notation

	Formulating Equations for Grain v1
	Recovering 25 State Bits using 30 Keystream Bits
	Recovering 32 State Bits using 36 Keystream Bits

	Comparison and Viability of the Two Attacks
	Conclusion
	Acknowledgments
	Appendix A
	References

