
Journal of Hardware and Systems Security
https://doi.org/10.1007/s41635-018-0053-2

Unravelling Security Issues of Runtime Permissions in Android

Efthimios Alepis1 · Constantinos Patsakis1

Received: 20 May 2018 / Accepted: 15 October 2018
© Springer Nature Switzerland AG 2018

Abstract
Mobile computing is conquering human-computer interaction and user Internet access over the last years. At the same time,
smartphone devices are equipped with an increasing number of sensors, realizing context awareness, while accompanying
their users in their daily life. As a result, these highly sophisticated and multi-modal devices deal with a surprisingly big
amount of data, much of which is private and sensitive. To control data access, OSes have special permission mechanisms,
often controlled by the users. The Android permission model has radically changed over the last years, in an effort to become
more flexible and protect its users more effectively. This work presents a thorough analysis of the new android permission
architecture, accompanied with a criticism regarding its advantages and disadvantages based on a number of disclosed
security issues.

Keywords Android · Security · Permissions · Privacy · Smartphones

1 Introduction

In an era where the world’s most valuable resource is data
[21], replacing oil, the context under which data exploita-
tion is taking place is perhaps one of the most plausibly
important discussions. Both companies and humans, indi-
vidually, have always been trying to maximize their profit.
The latter in the digital world has been realized in a clash of
data harvesting. Unsurprisingly, data originating from users
has been labeled as very valuable [46] and more specifi-
cally, regarding smartphones, users are paying less money
using mobile apps, since they are becoming the actual prod-
uct [31]. As a result, in modern life, we are facing a reality
where developers, and correspondingly companies, want as
much access as possible to user data, while concurrently,
users want to protect their privacy and their rights, with
various emerging policies around the globe [23]. Mobile
operating systems are lying arguably somewhere “in the
middle” since they want to satisfy both parties and fulfill
their claims, even though their interests seem to be in many
cases conflicting.

� Constantinos Patsakis
kpatsak@gmail.com

1 Department of Informatics, University of Piraeus, 80, Karaoli,
Dimitriou, 18534, Piraeus, Greece

Android is the most widely used platform for hand-held
devices having a huge user base in the scale of billions.
While the core of Android is Linux, the platform has been
radically redefined by Google to meet the specific needs
of the users in devices with constrained resources. Android
as well as iOS are almost a decade old and entered the
market when other operating systems were monopolizing.
Nonetheless, they quickly conquered the market, currently
owning more than 90% of the market share. This quick
shift in the market can be attributed to a big transformation
in the functionality that both operating systems allowed:
the installation of third-party applications. Companies and
independent developers quickly started developing mobile
applications for both these platforms exploiting the new
capabilities that these devices are equipped with, creating a
new ecosystem.

Evidently, over the last years of smartphone develop-
ment, modern mobile devices needed more fine-grained
security models for their users since very sensitive data
were handled, other can be extracted from the embedded
sensors and most importantly, because these devices are
being constantly used in most peoples’ everyday life. As
a result, users who were inexperienced with computers, as
well as children and elderly are nowadays smartphone users.
Therefore, it is easier to trick modern users who are also
more prone to experience security and privacy threats. To
address these issues, a security model that would inform
users about permission settings only once during application

(2019) 3:45–63

/ Published online 2 5 October 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s41635-018-0053-2&domain=pdf
http://orcid.org/0000-0002-4460-9331
mailto: kpatsak@gmail.com

installation has been considered as insufficient. Unfortu-
nately, the main reason for this was the fact that many users
did not take these permission settings into consideration
and this has often resulted in them being misled or even
deceived. An improved model that would handle security
and privacy threats during runtime for stock devices was
first introduced in iOS 7 from Apple, and in Android Marsh-
mallow from Google. The intention of these models is to
provide the required information and request permissions
during applications’ runtime once the application needs to
access them. Therefore, an application must not only declare
which permissions are necessary for its incorporated func-
tions, but users would also have a broader view of how their
sensitive data are handled whenever and even each time
these data were handled by the application. Hence, access
to the respective resources and sensors has the explicit
permissions granted by the user.

Having used the new security model of Android,
developers have significantly changed their programming
logic, since a large amount of smartphone applications
depends on the granted permissions to interact with the
operating system’s environment. As a next step after the
incorporation of the new permission “logic,” an evaluation
of the first results of the new model must follow to
determine whether the applications’ behavior has been
improved compared with the older model. In this sense, we
have developed some smartphone applications that would
be used as testbeds for the new security model.

The new permission framework introduced in Android
Marshmallow is just a few years old and, evidently,
continuously changing, yet the model remains the same.
This research effort mainly focuses on providing ground
evidence about its problems and possible ways to overcome
some of them. The presented security flaws have also been
tested against the most recent Android OS versions to date,
namely Android Nougat and Android Oreo. Additionally,
the paper includes related privilege escalation security
issues, presenting attacks that require zero-permission apps,
while, finally, the apps possess either dangerous or even
system-level permissions, making them potentially very
“dangerous” for their users.

Main Contributions The goal of this work is to go a
step before the implementation, and discuss the actual
permission model of Android, which essentially describes
how sensitive information is handled by applications. In this
regard, the contributions of this work are twofold. First,
we provide a detailed description of Android’s permission
model, in an effort to analyze the needs that led to its
introduction. Further to just stating the new features of
the security model, we proceed to an in-depth analysis
of new problems we have identified and others that are
augmented. To validate our claims, we have developed

a number of test applications, some of which are used
for comparison, while others expose serious security and
privacy issues. It should be highlighted that the recent
changes in Google Play1 make the usage of this model
mandatory for all apps. This manuscript is an extended
version of [2]. In this paper, we focus on more thoroughly
investigating the Android permission architecture, detailing
how the permissions are applied. Moreover, we disclose
some important security issues, reported and acknowledged
by Google. These security issues include, but are not limited
to, transformation attacks, usage of other application’s
resources, and privilege escalation. Finally, we update the
literature with other attacks that were possible due to the
flawed implementation of the permission model, e.g., [44].

Road Map The rest of this work is structured as follows.
We first provide a brief overview of Android platform and
related work in Section 2. Then, in Section 3, we detail the
new permission model in Android and how it is applied.
Section 4 highlights several fallacies of the model and the
risks that users are exposed to, while it also includes some
new attacks that result in serious permission escalation
issues. Section 5 discusses remedies for the security issues
that are presented in this work. Finally, the article concludes
with some remarks and ideas for future work.

2 RelatedWork

Each application in Android is installed through an APK file
which is a compressed package that contains everything that
the application needs to be executed, such as the bytecode,
resource files, and metadata. This APK is installed by
invoking the Package Manager system service. The official
and most widely used method is through Google Play, an
application with elevated permissions which connects to
Google’s application market and downloads the requested
applications enabling also the indexing and a reputation
system. Users may also invoke the Package Installer by
downloading or copying an application to the phone storage
and asking Android to open it. Finally, advanced users may
use Android Debug Bridge (ADB) through their computers,
a tool provided by Google through Android SDK which
offers developers many additional functionalities. If a user
selects to install an application using the first two scenarios,
he will be presented with a screen which notifies him
which permissions have to be granted in order for the
app to run in his device. Up to Marshmallow, the user
was forced to either accept the proposed permissions and
install the application, or to reject them, thus canceling

1https://developer.android.com/distribute/best-practices/develop/target-
sdk

J Hardw Syst Secur (2019) 3:45–6346

https://developer.android.com/distribute/best-practices/develop/target-sdk
https://developer.android.com/distribute/best-practices/develop/target-sdk

the entire installation process. Therefore, permissions were
given once to application and they could not be revoked,
unless the user decided to uninstall the application.

This “take-it-or-leave-it” policy was also present in iOS;
nevertheless, modding communities introduced fine-grained
policies in rooted devices23. In this case, users were allowed
to explicitly revoke access on installed applications; nonethe-
less, this quite often affected the stability of these apps.
Therefore, while users gained more control of their devices
and data, it reduced the quality of user experience.

When Android and iOS first introduced their application
markets, developers were not requesting a big number of
permissions. However, developers and companies seemed to
start realizing that the capabilities of these devices, such as
location awareness, access to contact lists, usage patterns,
etc. could provide them a great wealth of information that
could be exploited and therefore monetized, and in a sense
became more “greedy,” as apps constantly request more
and more permissions as time passes [15, 42]. In many
occasions, simple applications require absurd permissions
only to harvest user data [41]. While in some instances,
this can lead to malicious acts, unfortunately it has also
paralyzed user reflexes towards such requests. As shown
by Felt et al. [28], the continuous increase of application
permission requests for access to sensitive permissions or
unrelated to their core functionality, made users ignore
Android warnings and install apps without understanding to
what risks they expose themselves, a result which was also
verified in other cases [9, 35].

While the Android permission model is considered secure,
from time to time, several severe security issues have appeared.
For instance, Davi et al. [17] showed that they could esca-
late the access privileges of applications by performing calls
to other applications, which had already granted the respec-
tive privileges. Since Android does not perform checks
on transitive calls, they managed to create a chain of calls
between applications, so that the combination of the appli-
cations gained the necessary privileges. In the scenario of
Davi et al. a malicious application exploits the vulnerabil-
ities of a legitimate application to execute the malicious
code. Since the malicious application was not initially
granted the privileges to perform an action, it is most likely
to evade the respective checks and continue its nefarious
acts. Orthacker et al. [37] extended the aforementioned
scenario to show that an adversary could use permission
spreading, that is split the necessary privileges to different
applications, and through intercommunication launch the
attack. Similar approaches regarding app collusion and
spread of permissions have been reported by Dimitriadis et
al. [19] as well as Blasco and Chen [12].

2http://repo.xposed.info/module/biz.bokhorst.xprivacy
3https://lineageos.org/

On top of the aforementioned issues, Grace et al. [33]
found that many applications would use plain HTTP to
download code and execute it on client’s device. While inse-
cure, this method is often seen in Android applications [40],
allowing an adversary to alter the downloaded file during
its transfer. This is amplified by an inherent threat to all
Android applications: The access level to a resource is
granted per application and not per component. Theoreti-
cally, this does not raise any important issue, since all the
components are handled by the same entity, the developer
who created the app. However, as discussed in the following
paragraphs, this is not always the case.

In general, recent statistical and research findings indi-
cate that ads have started becoming more and more “greedy”
regarding users’ information. In fact, the more installations
an app has, the more privacy invasive it tends to be [14]. Apart
from direct requests to get users’ location, ad libraries, may
perform additional WiFi scans to determine users’ location,
scan whether a user has accounts in social networks, or
even scan the device to find which applications have been
installed [13]. Recently, more advanced ad libraries man-
age to link devices by playing inaudible sounds from one
device and collecting them from the microphone of mobile
devices that use applications where such an ad library has
been embedded [30].

Yang et al. [47] attempted to crowdsource users’ permis-
sions preferences in a semi-automatic way. Their applica-
tion, Droidganger, executed an application monitoring its
behavior, and gradually revoked permissions to determine
problems with its execution. When issues appeared, the
user would be prompted to comment them, and the results
were aggregated in a central server. This approach could
potentially remove unnecessary permissions from appli-
cations which requested far more permissions than they
actually needed, which accounts for a huge market share
and whose acts could be characterized as malicious [13, 45].
To decrease user interaction, automated approaches have
been introduced such as the work of Bartel et al. [11] and
Tsiakos’ and Patsakis’ [43], with the latter aiming towards
advertisement networks.

To provide more fine-grained permissions, Jeon et al.
[34] developed some tools which can be used to detail which
permissions are granted to an application and which are not,
in order to make them comply with the principle of least
“permissions.” For more on Android and the old permission
model, the interested reader may refer to [25, 26].

In view of the above, Android Marshmallow introduced
many changes in Android, many of which are focused on the
security and privacy of the platform. The new version has
drastically decreased the number of dangerous permissions,
which had reached more than 260 in API level 22. Some
of these permissions are illustrated in Table 1. Contrary to
the line of previous versions where, as highlighted by Wei

J Hardw Syst Secur (2019) 3:45–63 47

http://repo.xposed.info/module/biz.bokhorst.xprivacy
https://lineageos.org/

Table 1 Some of the Android permissions in API level 22

Permissions

ACCESS ALL EXTERNAL STORAGE ACCESS LOCATION EXTRA COMMANDS ACCOUNT MANAGER

ACCESS CACHE FILESYSTEM ACCESS MOCK LOCATION ALLOW ANY CODEC FOR PLAYBACK

ACCESS CHECKIN PROPERTIES ACCESS MTP ASEC ACCESS

ACCESS COARSE LOCATION ACCESS NETWORK CONDITIONS ASEC CREATE

ACCESS CONTENT PROVIDERS EXTERNALLY ACCESS NETWORK STATE ASEC DESTROY

ACCESS DRM CERTIFICATES ACCESS NOTIFICATIONS ASEC MOUNT UNMOUNT

ACCESS FINE LOCATION ACCESS PDB STATE ASEC RENAME

ACCESS FM RADIO ACCESS SURFACE FLINGER AUTHENTICATE ACCOUNTS

ACCESS INPUT FLINGER ACCESS WIFI STATE BACKUP

ACCESS KEYGUARD SECURE STORAGE ACCESS WIMAX STATE BATTERY STATS

et al. [45], the permissions were made to satisfy vendors,
the new permission model is focused towards developers.
Nonetheless, as it is going to be discussed in the next
sections, by no means has the new model become more
fine-grained, and more importantly, it cannot be considered
transparent. Nonetheless, starting from Marshmallow, the
user can revoke permissions or grant them upon request to
further refine access rights.

3 The New PermissionModel

From the very beginning of Android, in 2007, until Android
L (all API levels until 23), application permissions were
accepted by users in the first steps of their installation.
With this move, Google had moved towards achieving two
goals: firstly to inform the user about which operations
an application may perform and secondly to mitigate
possible attacks by limiting the application access. The
permission model provided a “take-it-or-leave-it” approach
as users would either accept the requested permissions
and install the application, or the application would not
be installed. After many years of using this approach,
the Android team brought a new model in October 5,
2015, with the introduction of the new Marshmallow
flavor. As Google states, Android 6.0 (API level 23)
includes a variety of system changes and API behavior
changes, improving resource allocation, stability and
performance. Nevertheless, probably the most notable
change, is the complete redesign of its permission model,
which is listed on the top of Google’s list of changes as
“Runtime Permissions.” According to Google’s developer
site4, Android 6.0 introduces a new permission model,
where users can directly manage app permissions at
runtime. It is also highlighted that this new security model

4https://developer.android.com/about/versions/marshmallow/android-6.
0-changes

gives users improved visibility and control over application
permissions.

The new permission model allows users to selectively
revoke dangerous permissions, Fig. 1a, and facilitates users’
privacy control by grouping applications according to
granted permissions, Fig. 1b. Moreover, the applications are
not granted dangerous permissions during installation, but
on runtime, even if they are included in the system image.
The new model mandates all apps to check for and request
permissions at runtime.

Evidently, as it will also been shown in the next sections,
even the biggest security change, introduced in Marshmal-
low and kept through Android Nougat and Android Oreo,
namely “Runtime Permissions” contains serious security
flaws, which can be exploited and result in exposing users’
security and trust.

Permissions in Android are characterized according to
the risk implied when granting them into the following four
categories:

– Normal: These permissions can be regarded as the ones
that expose the user or the system to the least possible
risk when granted. Therefore, the system automatically
grants them at installation, without asking for the user’s
explicit approval.

– Dangerous: In this category, the risk is higher as
granting these permissions can expose private user data
or allow control of the device. Since these permissions
imply a potential high risk, explicit user approval
is required to be granted. Typical, such permissions,
include access to the microphone, contacts, camera, etc.

– To allow interoperability, Android application may
exchange information through inter component commu-
nication (ICC). Nonetheless, to guarantee that specific
applications are granted some permissions, Google has
introduced the signature permission. Therefore, Android
grants access to an application only if the requesting
application is signed with the same certificate as the

J Hardw Syst Secur (2019) 3:45–6348

https://developer.android.com/about/versions/marshmallow/android-6.0-changes
https://developer.android.com/about/versions/marshmallow/android-6.0-changes

Fig. 1 Managing permissions in
Marshmallow

application that declared the permission without user
notification.

– In order to cater for the needs of applications that are
supplied by the manufacturers, Google has introduced
the signatureOrSystem permission. This permission is
granted only to apps that reside in the Android system
image or that are signed with the same certificate
as the application that declared the permission. Such
privileges allow apps to reboot a device or to allow
an application to clear the caches of all installed
applications on the device. Essentially, this permission
is designed for manufacturers.

Apart from the above four main categories, several addi-
tional flags can be used to further characterize the protection
level of a permission such as privileged, also known as sys-
tem, used when multiple vendors have applications built
in to a system image to determine who can use what,
installer, verifier for applications which install and ver-
ify packages respectively, etc. For a detailed list of these
permissions and where they apply, the interested reader
may refer to [8]. Moreover, since many unprotected APIs
were found in previous versions [36], additional protec-
tion mechanisms have been integrated for many intents.
Finally, developers may create their own permission groups
to expose their functionality to other apps by defining
permissions which those other apps can request.

According to Google5, the categorization of permissions
to normal and dangerous implies the existence of a direct
privacy risk. It is worth noticing that prior to Marshmallow,

5https://developer.Android.com/training/permissions/requesting.html

Android had numerous permissions, part of them shown
in Table 1, flooding the user with information. This fact
was often exploited by developers who for instance would
request many permissions which would not actually be used,
so that the user would not be able to see the dangerous ones
on top of the landing screen. The normal permissions since
API 23 are illustrated in Table 2.

To counter such issues, Android further grouped “danger-
ous” permissions according to their access level in terms of
functionality, as it is illustrated in Fig. 2. These groups facil-
itate users, as they group permissions according to a specific
functionality, e.g., “Manage SMS,” instead of granting per-
missions to each functionality independently, e.g., receive,
read, send SMS, the user grants permissions per application
to a group of permissions, enabling full access to the rest of
the permissions in the same group. Certainly, this approach
significantly improves user interaction and experience as
users have to respond to significantly less notifications.

Prominently, Google introduced several features in
the permission model which are not apparent from the
aforementioned description, in order to further protect
users’ privacy. For instance, since Marshmallow, develop-
ers are expected to request ACCESS FINE LOCATION or
ACCESS COARSE LOCATION permissions to access hard-
ware identifiers of nearby external devices via Bluetooth
and WiFi scans. This change was introduced to prevent
location disclosure, as many applications were trying to
exploit this knowledge to correlate this information with
the location of already known devices. However, hardware
identifiers can still be extracted to locate users, e.g., as
shown in [4] unique hardware identifiers can be extracted
by the use of WiFi-P2P.

J Hardw Syst Secur (2019) 3:45–63 49

https://developer.Android.com/training/permissions/requesting.html

Table 2 Normal permissions in
Marshmallow Permissions

ACCESS LOCATION EXTRA COMMANDS NFC

ACCESS NETWORK STATE READ SYNC SETTINGS

ACCESS NOTIFICATION POLICY READ SYNC STATS

ACCESS WIFI STATE RECEIVE BOOT COMPLETED

BLUETOOTH REORDER TASKS

BLUETOOTH ADMIN REQUEST IGNORE BATTERY OPTIMIZATIONS

BROADCAST STICKY REQUEST INSTALL PACKAGES

CHANGE NETWORK STATE SET ALARM

CHANGE WIFI MULTICAST STATE SET TIME ZONE

CHANGE WIFI STATE SET WALLPAPER

DISABLE KEYGUARD SET WALLPAPER HINTS

EXPAND STATUS BAR TRANSMIT IR

GET PACKAGE SIZE UNINSTALL SHORTCUT

INSTALL SHORTCUT USE FINGERPRINT

INTERNET VIBRATE

KILL BACKGROUND PROCESSES WAKE LOCK

MODIFY AUDIO SETTINGS WRITE SYNC SETTINGS

Moreover, to protect users from phishing and ransomware
attacks, since Marshmallow, an app has to explicitly request
the permission to overlay itself over others. In fact, to indicate
the criticality of granting such a permission, Android breaks
the usual user interface redirecting the user to another settings
menu to grant this specific permission, with indicative screens.
Nonetheless, this protection mechanism is rather flawed as
it will be discussed later on.

The enforcement of the permission model is a multi-
step process, but before we describe this process, we should
highlight that each application in Android is considered
as a different user; hence, it is granted a different UID.

The reason for this choice is to prevent applications from
accessing the data and private resources of other installed
apps. Once an app performs a call to the framework API,
this is accompanied by the UID of the app. The framework
then checks whether it has been assigned upon installation
in the AndroidManifest.xml file. Should this be the
case, Android checks the permission level of this call
(normal, dangerous etc.). If it is a normal permission it is
granted and access to the API is provided. However, if it is a
dangerous permission, the system will query whether access
to this resource has been granted by the user and allow or
deny the access accordingly. Finally, if the permission is

Fig. 2 Dangerous permissions groups

J Hardw Syst Secur (2019) 3:45–6350

signature or signatureOrSystem, then the system will have
to check the signature of the app with the requesting UID
before granting the corresponding access.

To further protect the Android ecosystem, Google
requires the user to explicitly grant some app permissions
through completely different permission management
screens (see Fig. 3b, c, d), which differ greatly from the
common permission screen supplied for handling danger-
ous permissions (seen in Fig. 3a). In the former category,
we have permissions such as SYSTEM ALERT WINDOW,
BIND ACCESSIBILITY SERVICE,
WRITE SETTINGS, and PACKAGE USAGE STATS. To
prevent users from carelessly granting these permissions,
Android provides a completely different interface and in
principle the corresponding settings are well-hidden in the
menus so that users will grant access only when deemed
necessary (see Fig. 3 for comparison). To understand the
extent of the risk that these permissions expose their users
to, one has to consider that the SYSTEM ALERT WINDOW
allows an application to overlay every Android activ-
ity, and therefore can totally deceive the user. The
BIND ACCESSIBILITY SERVICE permission allows an
application to imitate user tapping on the screen. Therefore,
once granted to an app, it can perform any action on the
user’s device. Finally, the PACKAGE USAGE STATS will
be discussed in detail in the following paragraphs.

Beyond the aforementioned categorization of permis-
sions, Android has the same Linux-based mechanism for
UID/GID-based access control to enforce the permission
mechanism. All users and groups are assigned with an ID
(see Listing 1). As implied by this code excerpt, apps are

assigned an ID above 10000, referred to as AID. Once a user
grants a permission to an app, the app is added to the cor-
responding group, and it can access the respective resource.
Therefore, if an app belongs to groups 1006 and 1021, it can
access camera and GPS.

4 Drawbacks of the New PermissionModel

The aforementioned permission categorization may seem
quite secure, improving the previous model, as sensitive
information seems to be protected and selectively disclosed.
Nonetheless, the implementation of the new model also
introduces several drawbacks which are going to be
discussed in the following paragraphs.

4.1 Flawed Implementation of the PermissionModel

One would expect that after the introduction of Marshmal-
low, all of the functionality would be immediately provided
to the software systems that have the novel permission
model installed. However, this is subject to the targeting API
of the installed app. Practically, this means that apps may
exploit this feature to extend their permissions. For instance,
if an app is targeting an “old” API, prior to Marshmallow,
then the app will request the permissions on installation, and
if the user accepts them, then once the app is loaded, the
permissions have been granted, as in the pre-Marshmallow
era, so the user has to disable the dangerous permissions
manually and no granting screen will be displayed to the
user. This, however, seems to contradict the user’s initial

Fig. 3 Different interfaces for managing permissions in Android

J Hardw Syst Secur (2019) 3:45–63 51

Listing 1 Excerpt from
available UIDs/GIDs in Android
as defined in AOSP source code
[32]

intuition. Despite the obvious issues that this approach
raises with normal and dangerous permissions, the flawed
implementation of permission handling introduces further
security issues, far more dangerous.

One of the most well-known examples is the “notorious”
SYSTEM ALERT WINDOW permissions. This permission,
introduced in Marshmallow, is a system permission, and
theoretically can be granted only through specific user
interaction. This permission can be considered as “really
dangerous” as it allows an adversary to create overlays that
can deceive the user by covering any part of the screen
while allowing the rest of the screen (the overlayed app)
to be responsive. Fratantonio et al. [29] used this trick
to lure users to grant almost full control of the device
to them by afterwards tricking the user to grant them
the BIND ACCESSIBILITY SERVICE permission. The
latter permission, also system permission, allows an app to
imitate user interaction, e.g., user clicks, in every Android
activity. However, the overlay issues have been proven
to be far more severe and may not even require system
permissions [5].

Recently, another severe vulnerability was disclosed
by Tuncay et al. [44]. The researchers actually use a
transformation approach to trick the system to grant them
dangerous permissions. To do that they first create an app
which requests a custom permission with the protection
level normal or signature and set this to be a part of a
system permission group. Once the user installs this app,
these permissions are granted to the app. However, they are
incorrectly flagged by the system; therefore, an adversary
may later update the app to request dangerous permissions

within the scope of the custom permission, and they will be
automatically granted without any kind of user interaction.

4.2 Transformation Attacks in Runtime Permissions

In what follows, we illustrate another attack vector which is
based in exploiting apps’ actual names. Nevertheless, in this
case, it is not used to steal users’ private data, by luring them
to use a fake application, as reported by the authors in [38],
but to enable a malicious app to gain access to all available
dangerous permissions, deeply deceiving Android users by
exploiting the newly introduced runtime permission model.
The problem is amplified by the alarming fact that the
malicious app does not only manage to successfully deceive
its users, but furthermore, it breaks the users’ trust to
their already installed, legitimate apps. As a result, in the
next paragraphs, it will be shown that a malicious app
successfully escalates privileges and also indirectly “puts
the blame” on other official market apps for its illegal
acts. This security issue has been responsibly disclosed to
Google and has been subsequently acknowledged (Android
ID 72708800), while its fix has not been released yet, at
the time of writing, after more than 7 months of the initial
report. Since the last Android version, code named “Pie” has
been released in August 2018 and a patch is not yet released,
all Android versions, including Marshmallow, Nougat, and
Oreo are affected by the disclosed security issue. The attack
is presented in the following use case scenario:

– A zero-permission app, named “Bob” is uploaded to
Google Play.

J Hardw Syst Secur (2019) 3:45–6352

– Users download, install and run the app at least once. It
requests no permissions, acts just any benign app.

– The attacker issues an update for “Bob.” In this update,
the attacker renames the app and requests a number of
dangerous permissions. For the sake of simplicity, we
assume that the new name is “Google Maps.”

– The update is pushed probably during night (accompa-
nied presumably with other app updates too), when the
device is left unattended, e.g., to be charged.

– After the update, the malicious app is able to ask the
user to grant it several dangerous runtime permissions
to the “former” Bob app. This action is only initiated
if the malicious app has found the target app (Google
Maps in our use case) installed, through obtaining a
list of all the available packages (information which is
available to every installed app).

– After a successful attack the previous steps can be
repeated, to target other famous apps, and request
permissions on their behalf as well.

– Having successfully succeeded in the attacks, the
malicious app may change its name back to “Bob,” in
order to fully “cover” its malicious actions, escalating
privileges and gaining access to dangerous permissions
on demand.

It is important to mention that this attack also involves a
zero-size activity (totally invisible to the user) that revokes
the runtime system permission. This activity is initiated to
show the “fake” runtime permission system dialog to the
user and is never actually used. A decent explanation could
easily accompany all these permission requests. Moreover,
users are clearly aware of the reasons why the legitimate
apps would need the dangerous permissions and trust them
so they would not have second thoughts to grant them
the permissions once again, or even give access to other
dangerous permissions.

Our attack scenario supplementarily includes possible
time-frames for the attacks to be launched, in order to
illustrate the extend and the context in which such use cases
could take place:

– Broadcast events, such as device reboot, charging,
network changes, etc.

– Forged notifications from (acting as the actual legiti-
mate) apps, as presented by the authors in [38].

– Device unlock: Whenever a runtime permission is
requested, even if a device is locked, the runtime dialog
will appear to the user as soon as s/he unlocks the
device.

– When other, targeted apps have been upgraded, e.g.,
through periodical version code (packageInfo.
versionCode) checking.

– Not considering our zero-permission approach,
alternatively one can choose to utilize the

UsageStatsManager service to request the dan-
gerous permissions when a target app is opened by
the user, by determining the foreground app. Prac-
tically, this means that an app which is granted the
PACKAGE USAGE STATS permission can escalate
privileges for all dangerous permissions.

A representative use case is also illustrated in Fig. 4,
where a malicious app is requesting a dangerous permission,
namely location, forging the genuine app Google Maps.
In this hypothetical scenario, the user considers granting
access to Google Maps; nevertheless, the dangerous
permission is granted to the malicious app.

It should also be noted that in our attack scenario, there
is no need to partially overlay an app or a settings dialog
as in [5] and [29], but we actually underlay the app. The
overlay with the permissions dialog that finally causes
the permission escalation security flaw actually belongs to
the System UI itself. Another important note is that the
names of apps in Google Play are not adequately monitored,
allowing them to change names whenever the developer
wants. As a result, similar names can be used to trick
the users. Moreover, users do not have auditable trails
of the updates that apps make. Therefore, users cannot
track which changes are made to their apps and when.
Unfortunately, even the name and visual identity of the apps
may change without any form of notification to the user. In

Fig. 4 Malicious app runtime permission transformation attack

J Hardw Syst Secur (2019) 3:45–63 53

our independent research, we have confirmed the existence
of apps in Google Play that share the same name, e.g.,
“Dictionary,” while at the same time we have successfully
uploaded our own apps in Google Play after having renamed
them with other popular apps’ names.

We argue that the illustrated attack exploits the users’
inherent trust in Android mechanisms with the most profound
one, users’ trust on Google Play. The presented security
flaw that results in permission escalation is amplified by the
fact that other genuine apps with perhaps millions or even
billions of installations have indirectly been involved in a
way that could affect their “presence” in the entire market,
potentially resulting in negative side effects such as app
unistallations. In fact, if Google did not allow apps to have
the same name as other apps, or use the resources of other
installed apps, as it is illustrated in a following subsection
of the paper, this attack vector would not exist.

4.3 Lack of Control in Running Apps and On-Boot
Apps

This part focuses on permission issues related to running
applications. More specifically, we discuss about security
issues that are related with the apps actively running on an
Android device and secondly about issues that arise from
apps that are initiated after device boot.

Using the term “running” apps in Android clearly needs a
more thorough explanation. Our intention in using the term
is twofold, on the one hand, providing an indication whether
third party apps are actually “running” and thus having the
ability to create a list of running apps and processes. On the
other hand, indicating the users’ “weakness” in essentially
controlling which apps are running in their devices, when
and under which circumstances.

Analyzing the first, the ability to determine the exact
identity of running processes within the mobile OS, has
caused several threats to arise in the past [5, 16]. These
security issues stem from the fact that being able to
determine the running processes and more precisely finding
the foreground app; the one the user interacts with, paves
the way for a variety of malware to launch phishing attacks.
Moreover, this allows an adversary to collect valuable usage
statistics without the user’s knowledge nor consent.

The second question regarding “running” apps in the
Android ecosystem involves user control in third-party apps.
Perhaps, the majority of Android permissions focuses on
providing or denying access to specific resources within
the mobile device. A smaller set of permissions deals with
user interaction, such as notification permissions, drawing
over other apps and device “wake-locks.” Nevertheless,
another significant vector lying more in the dimension of
“user control” over the mobile device deals with the users’
ability to actually control the apps’ behavior in terms of

when and in which “situations” the installed apps could or
should operate. Notably, there are cases where an attempt
towards this direction has been made from the OS, as with
the RECEIVE BOOT COMPLETED permission, where apps
declare their intent to watch for device restarts, to proceed to
further actions. Nevertheless, this permission is a “Normal”
one and as a result it remains invisible to the user in the
post Marshmallow era, and thus cannot be controlled. Other
events of user interaction are included in a large list of
“Actions,” such as broadcasted intents actions indicating for
example whether WiFi has been enabled, or disabled, or
the intent filter android.intent.action.ACTION
POWER CONNECTED, for determining the device’s battery
current charge status. Such actions, namely a significant
number of broadcast events, require no permission at all
from the app to declare to be notified. Unsurprisingly,
the many Android users have probably faced the situation
while not interacting with her mobile device, the “Location”
indicating icon starts blinking, beyond doubt indicating that
a background process is utilizing location services, logging
the user’s current location. Regrettably, in these situations,
there are actually no means to determine which app is using
that data, since this operation can be easily accomplished
through a background service. In this use case, it should
be highlighted that the discussed problem does not arise
from the actual “use” of the location resource, since this is
clearly a declared runtime permission, but from the fact that
an almost “arbitrary” number of background tasks can be
initiated by apps, which cannot be controlled nor monitored
by the user, leaving the “force-stop all apps” action an
unrealistic option.

Regarding on-boot apps, Android users have no control
on which applications are able to start or initiate a
background process during their device boot. This is a
quite common feature, found in a number of computer
OSes, including Windows, where users can choose which
applications will be launched once the OS starts. This
is allowed for various reasons, including system slow-
down, resource and power management and security. On
the contrary, in Android ecosystem there is no such control.
Therefore, a malicious app, could register to always receive
the boot event and this along with a system DOS attack,
resulting in system restart, would lead to an endless restart
loop that the user cannot stop. This kind of “lack control”
both in running and in “on-boot” apps affects all versions of
Android, ranging from Marshmallow to Oreo.

4.4 Using Other apps’ Resources

Using other apps’ resources arbitrarily and without the
involved app developers’ consent is another significant
security issue, closely related with the Android permission
mechanism since at the time of writing it does not provide

J Hardw Syst Secur (2019) 3:45–6354

any mechanism to prevent it. As illustrated in our previous
work [38], other apps’ resources can be used to create
forged notifications. Similarly, forged UIs can result in the
transformation of malicious Android activities, replicating
genuine ones. Correspondingly, for a number of reasons,
including malicious acts, installed apps are able to use
the resources of other installed apps, with no protection
mechanisms present to date. Legitimate apps resources
include logos and copyright material, and even apps’
compiled source code that should by no means remain
“public” and unprotected to third parties for both legal and
ethical reasons.

Taking this specific permission issue a step further, we
additionally report a related issue regarding the purchased
apps from Google Play. In this particular case, we focus on
the purchased apps for two basic reasons:

– From the users’ perspective, having purchased some-
thing is something they own and that they might not
want to share with others, especially without their
authorization.

– From the developers’ perspective, having their App in
an App Market as a paid product and not for free, can
be plausibly considered as a protection and restriction
mechanism towards arbitrary use.

Alarmingly, every installed app has unrestricted access
not only to the paid apps resource files, as discussed earlier,
but also to the app’s installation files (APKs) without
requesting any permission, not even the most obvious one:
Storage. It is worthy to note that even if someone
had access to the device’s storage, this would involve the
SD card and not the /data folder where the APKs are
stored. Indeed, we have clearly proven and consequently
responsibly disclosed to Google that “all apps have access
to paid app installation files requiring no permission at all.”
Secondly, we have further shown that an app can start by
declaring no permissions and move on by requesting normal
permission such as “Internet,” without users knowing about
that. As a result, having actual access to a private, paid apk
and a “open channel” to unrestrictedly communicate it may
lead to “unfortunate” situations. Firstly, “anyone” is able to
distribute through the internet and consequently install paid
apks. Secondly, installed apps and their developers are also
able to view and examine the paid apk’s private source code
and other private resource files on their own free will. Paid
app and source code uncontrollable distribution are some of
the most profound consequences of this issue.

In fact, allowing third parties to collect these APKs,
which can then be used to be installed in other devices, most
likely violates the developers’ license agreement and cannot
be monitored. However, Google’s Android Team considers

that “at the moment installed APKs are not considered
private.” Nevertheless, they also stated that “they may
consider changing this policy in an upcoming major release
of Android,” after our report. Correspondingly, since there
is no change in this direction even by the release of Android
Pie, all Android versions, ranging fromMarshmallow to Pie
are affected by the disclosed security issue.

4.5 Privilege Escalation via Intents

As already discussed, Kywe et al. [36] identified plenty
of unsecured APIs that could be taken advantage of,
allowing applications without permissions to exploit them.
Since then, the new versions of Android have introduced
security mechanisms to address these issues. However,
the authors have identified and responsibly disclosed to
Google that there are even more security flaws which
may arise from the malicious and unrestricted usage of
Android intents. For instance, to access the microphone,
the dangerous permission RECORD AUDIO needs to be
granted; nonetheless, an adversary can use an intent to
launch the Speech-to-Text API and automatically convert all
microphone input to text without requesting any permission.
The latter can be used in combination with the Text-to-
Speech API or simple audio to execute arbitrary commands
on the device via intents to Voice Assistants [3], extending
and automating the attacks of [18]. Evidently, such a
privilege escalation attack to access users’ voice by the
microphone can be exploited for public surveillance. In
response to these issues, in the upcoming version of Android
Google plans to prevent apps from using the microphone or
camera when they are in the background.6

4.6 Transparency and Lack of Control

Inarguably, both user interaction and user experience
are improved due to the introduction of the runtime
permission model. Nonetheless, we argue that the current
implementation lacks in terms of transparency and fails
to provide fine-grained control to its full potential.
Additionally, we argue that the process of granting
permissions during runtime does not necessarily improve
the previous state where permissions were granted prior to
app installation. The following subsections illustrate how
the new permission model may negatively affect the user
interaction and also specific use cases where the new model
lacks in transparency and lack of control regarding its
permissions.

6https://www.theverge.com/2018/3/7/17091104/android-p-prevents-apps-
using-mic-camera-idle-background

J Hardw Syst Secur (2019) 3:45–63 55

https://www.theverge.com/2018/3/7/17091104/android-p-prevents-apps-using-mic-camera-idle-background
https://www.theverge.com/2018/3/7/17091104/android-p-prevents-apps-using-mic-camera-idle-background

4.6.1 Delusive user Interaction

User experience (UX) and flawless user interaction are
considered as top priority aims in the entire mobile
development process. Through our independent research,
we have found realistic use cases where the introduced
changes in the OSes permission model have resulted
in misleading the users. To validate our claims, we
experimented by developing PoC applications which enable
us to compare the pre-Marshmallow model to the post
Marshmallow one. First, we start the comparison with the
previous permission model trying to indicate the actual
changes during the installation and execution of some
applications. To this end, we developed an application
which requests a small number of security permissions,
more precisely, permissions to receive, read and send SMSs,
and also the permissions to access the location of the
device through fine and coarse location permissions. For the
evaluation, we created two versions of the application, one
that is targeted to API level 22 (Android 5.1) and one that
is targeted to API level 23 (Android 6). Consequently, the
API 23 app has also been tested against Android Nougat and
Android Oreo, giving the same results.

In API level 22, during the installation process, the user
is prompted to accept all the permissions in order to proceed
with the installation, Fig. 5a. Having successfully acquired
the device’s location, the application runs smoothly, Fig. 5b,
and the user can later review the permissions that are granted
to the application, Fig. 5c, without of course being able to
revoke them.

Similarly, we perform the same actions using API level
23, which incorporates the new permission model. Notably,
Fig. 5a shows that there is no permission required to proceed
with the application’s installation. Even more interestingly,
a user facing this screen is informed that “This application
does not require any special access.” This information

is already misleading and faulty since the application
really requires some “dangerous” permissions; however,
they are going to be requested after the installation, to be
discussed afterwards. Figure 6b, c illustrates the first launch
of the application where two groups of permissions are
deliberately requested. Perhaps, the most important thing to
notice in this process is the fact that these two permissions
have not been requested by the application when they
were really needed during runtime, but surprisingly during
an unrelated to them event, namely the application’s first
launch. Apparently, granting permissions is not performed
on usage request, but when the application is executed. As
illustrated in screenshot of Fig. 5b, the mobile application
uses both location and SMS features in the corresponding
events of two buttons. The application successfully acquires
the devices exact location; nevertheless, no pop-up window
or alert message informs the user that location service is
being used by the application. Finally, Fig. 6d illustrates
the application’s settings, in the application manager.
The aforementioned experiment, after being launched in
Android API level 23, has also been successfully evaluated
for Android versions 24, 25, 26, and 27.

Having carefully examined the above two use cases
where the same application is running targeted to API level
22 and 23 respectively, some important issues arise. Firstly,
newer applications, targeted to APIs equal to or greater
than 23 do not inform users properly about permissions
during installation. Clearly, the information that users
receive during installation that they do not require any
special access can be considered as either unnecessary or
misleading. Moreover, the timing of appearance of the alert
requesting a specific permission is also misleading. One
would expect that a permission notification would appear
once an application tries to access a resource related to that
permission. However, applications may ask the user to grant
them access to dangerous permission groups on unrelated

Fig. 5 API level 22

J Hardw Syst Secur (2019) 3:45–6356

Fig. 6 API level 23

occasions, when there is no actual need for using them.
In our case, this was made during the first launch of the
application. Afterwards, the application was able to access
these dangerous resources arbitrarily.

This behavior is rather important for the user. More
precisely, the user is constantly being “nagged” to accept
a permission, but once accepted it will not be prompted
again. The naive user for example would therefore accept
the permission permanently, whereas if she was prompted
again, even if she had accepted once, she could occasionally
revoke this permission. A typical example can be considered
in location-aware applications where users would like to
selectively disclose their location to the service provider and
not to perform a long sequence of actions to revoke such a
permission.

Going a step further, one can claim that the permission
model can become even more misleading in the cases of the
dangerous permission groups. For instance, we discuss the
use case where a user installs an application that requires
some access to the phone’s capabilities. When the app
requests to read the phone state (permission READ PHONE
STATE); a widely used permission, the user will be asked
to grant access for this request. Nonetheless, after accepting
the permission, the user has granted, indirectly, more
access to the application, as the application is actually
granted full access to the dangerous “phone” permission
group. Therefore, the application may read and change
the call history (READ CALL LOG, WRITE CALL LOG),
or even make phone calls (CALL PHONE) without any
user notification. Actually, the permission request is stated
as “Allow ApplicationName to make and manage phone
calls?”. The statement is quite vague, so it may frighten the

user, nevertheless, as users are accustomed to such requests
most likely they will accept. Nonetheless, the user cannot
determine which of the actual permissions has been granted
to the application and cannot revoke the permission to a
single member of the category.

The confusion of the user may even be greater than the
aforementioned notification, as the new permission catego-
rization does not improve transparency. During installation
users are not allowed to see what actual permissions are
going to be requested by an application in their future
executions. More interestingly, since many permissions of
Table 1 have not been categorized as dangerous, the user
is not prompted about them and they are automatically
granted on installation.

An important factor that was overseen in this radical shift
is that users would be accustomed to use the new permission
model. Therefore, a user is expected to always have the
control of dangerous permissions during runtime, regardless
of what he has done in the installation procedure. Exploiting
this false concept, malware authors have specifically
targeted Marshmallow, using the “backwards compatibility”
option which allows it to install and execute applications
developed for previous API versions. However, in this case,
things are not as users would expect. If an application
has been developed for target sdk 22, then once a
victim installs the application to Marshmallow, it will
be granted the permissions upon installation. Definitely,
the victim will be shown the “dangerous” permissions
upon installation, but since the user is not accustomed to
following this procedure during installation (as a result
of being used to the new runtime permission model), it
is highly likely that she will accept it, hoping that when

J Hardw Syst Secur (2019) 3:45–63 57

she launches the application, she will be able to apply her
permission policies. This user experience gap has already
been exploited by malware, such as Android.Bankosy
and Android.Cepsohord. Although apps do not launch
automatically, such apps would exploit this gap to collect
as much personal information as possible before the user
revokes his permissions.

A final consideration concerning the lack of trans-
parency, reported by the authors, is that by requesting only
normal permissions, Android apps completely obscure these
permission from their users. In the cases where a danger-
ous permission is included in a set of requested permissions,
users are able to navigate to the app’s settings and reveal
both the dangerous and also the normal permissions that are
required by the app. However, after installing an app that
has no dangerous permission included in its manifest, users
have no access to the underlying permissions through the
app’s settings menu, since this capability is surprisingly dis-
abled. This can be considered as a very important security
issue, not only because of its “lack of transparency” dimen-
sion, but also since its exploitation can lead to obvious app
metamorphoses attacks. In this case, apps could be initially
installed without any permission requirements and would
subsequently acquire an arbitrary number of normal per-
missions in automatic updates, leaving users with complete
lack of control over them. One could argue that since these
permission are not marked as dangerous, the impact could
be rather small. However, this is not the case since normal
permissions have been proven to conceal security threats
[4, 5, 36], but also because our research has revealed that
even “System” permissions are mistakenly handled by the
system behaving as normal. The SYSTEM ALERT WINDOW
permission, is considered by Google, as a “System” permis-
sion that: “Very few apps should use this permission; these
windows are intended for system-level interaction with the
user.” [7]. Nonetheless, our research has revealed that not
only it is automatically granted for all apps that come from
the Google Play store, without user interaction, but also, in
the case of being included in the “normal permission set,”
described above, it is also hidden by the users. The secu-
rity issue in question has also been responsibly disclosed to
Google, over a year before the time of writing this paper.
Regrettably, the Android team has responded by claiming
that this issue “falls more under the category of a feature
request as opposed to a security vulnerability,” and that
“they will pass it along to the feature team for consideration
in a future version of Android.”

4.6.2 Permission Intransparency

Another issue reported by the authors refers to a lack
of transparency in the permission handling mechanism,
which has been applied after Android Marshmallow.

More specifically, when an app has both dangerous and
normal permissions declared, users are able to see both
of these categories through appropriate navigation in
the app’s settings menu (App Info→Permissions→App
Permissions→All permissions). Even though the total of
declared permission is not illustrated in the first-user
interface, perhaps for user experience reasons, nevertheless
a user has actually the potential to find them through the
settings menu. However, our independent research revealed
that if the app has no dangerous permission declared,
the “permission” option is disabled, not giving users the
opportunity to see and/or review all the apps permissions.
The same case applies even in the case of a “system”
permissions, namely the SYSTEM ALERT WINDOW one,
where no access from this specific menu is enabled.
Transparency in users’ permissions means clearly that users
should be able to see all permissions requested by apps, no
matter whether they are marked as normal or dangerous. If
this was not the case in question, then there should be no
need in having “normal” permissions at all.

The described use case is illustrated in Fig. 7, where an
application clearly declares a dozen of normal permissions,
notwithstanding the users have no means to get informed
about them through the OSes app settings.

Even more alarmingly, such a security bug also enables
mobile apps’ metamorphoses attacks. More specifically,
apps could initially declare no permission at all, and after

Fig. 7 Lack of transparency in normal permissions

J Hardw Syst Secur (2019) 3:45–6358

installation, through app updates they could request an
arbitrary number of normal permissions (correspondingly,
or even system ones). Afterwards, through automatic
updates, they would be granted these permissions and the
users would have no knowledge about it, nor a way to
get informed, staying completely unprotected in terms of
permissions’ transparency.

This issue has been found present in all Android versions
from Marshmallow and above, tested up to Android Oreo,
and has been responsibly disclosed to the involved company.

4.7 Access to the Internet

Clearly, the INTERNET permission, as its name suggests,
allows an application to connect to the Internet. Up to API
22, Google considered INTERNET permission a dangerous
one, however, since Marshmallow this is not the case. It
is considered a normal one so the user is not notified
about it during installation nor afterwards. Notably, due
to the Android security model, the user cannot block
an application from accessing a domain or the Internet,
and additionally, she will not be notified of such actions.
One of the core ideas behind this change is the fact that
many applications were requesting this permission. As
highlighted in [22, 27], while the INTERNET permission
is widely used and in many cases, it is used only to fetch
advertisements [10], yet it is often used to leak private user
information, such as location. Google considers that since
in Marshmallow there is an inherent mechanism to control
access to sensitive pieces of information, an application
cannot leak important data about the user without his
consent, that is grant access to dangerous permissions.

To illustrate the changes in this particular permission,
since the runtime permission model we have used Tacyt7.
More specifically, we have noticed that there is a significant
change in the usage of the Internet permission. Since
Tacyt reports the results according to app versions and
not per app, in what follows the reported figures refer to
versions. Up to the release of Marshmallow, 89.24% of the
uploaded versions were using the Internet permission. With
the introduction of Marshmallow, this percentage has been
increased by more than 7%, reaching 96.26%, indicating
that many apps took advantage of this change to allow
themselves to have access to the Internet.

Nonetheless, the very existence of a channel that enables
an application to connect to the outer world through the
Internet, without the user’s consent or control essentially
augments many security and privacy issues. The reason is
that several “benign” actions do not imply any risk for the

7https://www.elevenpaths.com/technology/tacyt/index.html

user, however, if someone can control them remotely or get
a result out of them, can greatly expose the user. A typical
example of this problem is the clipboard, used by every
user to transfer information between applications. Clearly,
due to the physical constraints for data input, most mobile
users use this functionality to copy passwords, links, or
other content from one application to another. Apparently,
the sensitivity of the content that is temporarily stored can
easily be used to launch an attack [24, 48]. Since there
is no special permission for accessing the content of the
clipboard, any application can sniff it and transmit it to a
predefined location or modify it (e.g., injecting a malicious
link). Clearly, this risk could be avoided if the applications
had no Internet access or the user could define Internet
access policies.

Apparently, the existence of such a channel, facilitates
the leakage of other sensitive information. Another example
is the access, without requesting any permission, e.g.,
to local storage, to the drawable area of the wallpaper
(reported by the authors, triaged and awaiting for a bug fix
for more than a year before the time of writing). While
drawing on a canvas cannot be considered harmful, one
has to consider that most users use personal photos as
their wallpapers, which may depict their beloved, express
their political or religious beliefs. Allowing an application
to collect this information without user explicit consent
could allow it to extract sensitive information, which apart
from the aforementioned could include music and sexual
preferences, relationship status, etc. Clearly, if most users
knew that this information could be mined and processed
from apps without their explicit consent, they would be quite
reluctant to use many of the photos that they currently do.
Moreover, as shown in [5], this can be exploited to leak the
user’s unlock PIN or pattern.

It should also be highlighted that if users were able
to block Internet access per application, it is most certain
that in many instances they would so. The reason is that
most applications only need Internet access to display
ads which for the vast majority of them is the only
monetization source.8 Apparently, if apps are not able to
display ads, developers will have to result in other means
for monetization in order to support their apps, e.g., shifting
to the traditional paid model, which would radically change
the Play store, as well as Google’s monetization policy
from Android. We argue that the answer to this question
is not obvious, and there are several ways to avoid this
dilemma, e.g., by providing unrestricted Internet access to
applications only to fetch ads.

8According to AppBrain(http://www.appbrain.com/stats/free-and-paid-
android-applications) the ratio of free to paid apps is more than 10 at the
time of writing. Free apps with in app purchases are considered free.

J Hardw Syst Secur (2019) 3:45–63 59

https://www.elevenpaths.com/technology/tacyt/index.html
http://www.appbrain.com/stats/free-and-paid-android-applications
http://www.appbrain.com/stats/free-and-paid-android-applications

4.8 User Profiling

While Android has been introducing many restrictions
to unique identifiers, e.g., since Nougat most content of
/proc has become inaccessible by apps, there are many
ways in which apps using only normal permissions can
profile the users.

The ACCESS WIFI STATE, as well as CHANGE
NETWORK STATE and CHANGE WIFI STATE permis-
sions have been removed from being declared as “danger-
ous” in the new permission categorization. Automatically
granting these permissions allow an application to connect
and disconnect from a WiFi. More interestingly, it allows
the application to retrieve the information of the connected
WiFi which can expose a lot of information [1]. On a first
level of a nefarious scenario, this could allow an applica-
tion to enforce extra charges to the user by disconnecting
from the WiFi and using a 3G/4G connection. Nonetheless,
going a step further, one could determine the location of
the user from the name of the connected WiFi, but more
interestingly, the application can create a user profile as it
has access to all stored networks. Apparently, collecting this
information, one could correlate it with others to determine
social connections using other sources of information such
as time to infer, e.g., how long two users stay in proximity,
what times of day, etc. harvesting users’ relative location
and potential relationship.

A lot of usage statics and preferences can be extracted
by the apps using the GET PACKAGE SIZE permission,
a normal permission as well. Using this permission, an
application can profile a user as it can list all the
installed applications and determine the user interests.
Additionally, since this permission retrieves the storage
space used by an application, an adversary could also infer
how much an application is being used. Interestingly, the
permission KILL BACKGROUND PROCESSES is also a
normal permission, allowing it to kill other process, apart
from system ones. Essentially, this permission can be used
to sabotage other applications as they could shutdown,
losing needed information or without notifying the user
about e.g., an important event.

Finally, despite the upcoming changes to Android ID
from Android O, apps can use a non user-resettable
identifier which is app metadata. In this regard, an adversary
can keep track of when apps were installed by reading the
metadata of the /data directory which constitute a unique
identifier [6].

5 Remedies

Perhaps, the most obvious change that is probably needed
in the post Marshmallow era is to allow users to have

full access to the underlying permissions. This would
allow them to both review the permissions that they grant
to each application; improving transparency, but also to
revoke access on both normal permissions as well as to
categories from dangerous permission groups. This does
not essentially have to confuse the user since for instance
Android would automatically grant normal permissions, but
request permission for each dangerous permission and not
for a group. Such an interface could be conceived as the
right hand side in Fig. 8, which showcases our approach in
comparison with the current one. The user can easily see
what are the granted permissions per application and revoke
those when deemed necessary.

While the latter does not request many changes in
the core of Android, a significant change should be
introduced in the runtime permission model. As already
discussed, applications request permissions to a resource
at an irrelevant point, thus misleading users. While the
developers may add an explanatory text of why they request
a permission, the fact that the user cannot determine when
it is actually used by the application does not create a trust
relationship with it. For instance, a user cannot understand
when an application needs to send an SMS, that might
infer some additional cost. Such functionality might be
needed once, e.g. for initialization and authorization of the
application and never be used again, or be a part of a
functionality that the user never uses. Having granted this
permission prior to the actual request, authorizing arbitrarily
such actions, can lead to malicious applications exploiting
this initial trust.

Another vector of the attacks illustrated in this paper
deals with the app updates, as mentioned in the previous
section. The profound reason for these attacks becoming

Fig. 8 Proposed interface for managing normal and dangerous
permissions

J Hardw Syst Secur (2019) 3:45–6360

possible is because of a lack in the control mechanisms from
Google Play and Android itself. As discussed, any app can
claim arbitrary names, even after installation, and can use
resources of other applications. Moreover, the user is not
able to determine which the foreground application is, and
the updates do not inform the user of changes in permissions
names. Therefore, the platform in question does not provide
at any point the needed transparency to prevent privilege
escalation attackes and also phishing attacks. Furthermore,
the malicious apps are able to succeed in their attacks by
using other companies’ resources, such as app icons, in
every case without having the companies’ consent to do so.
A remedy to this problem would be to use other unique ids
in the runtime permission mechanisms, such as app package
names, which by their definition in Google Play are unique.
Of course, this countermeasure should be accompanied by
corresponding permission changes in the way that apps deal
with other apps’ resources.

Going a step further, even normal permissions can lead
to user profiling and expose sensitive user information,
as outlined in the previous section. Therefore, Google
has to consider what an application can infer from
combinations of such permissions through communication
between cooperating applications and alert the user of
possible consequences.

6 Conclusions

The Android security for API levels prior to Marshmallow
had several important issues that should be addressed,
something that became apparent after many attacks in
core libraries [20, 39] and functionalities that had to
be introduced to counter other attacks, such as storage
encryption or even setting the device to charge-only mode
by default when connected to USB. Google’s Android team,
made a reasonable decision towards an implementation
that would offer more and better protection to Android
smartphone users of all ages and backgrounds. A good
example is the presence of permission settings in the
application manager, where users have real-time access
to specific groups of dangerous permissions, after an
application is installed. However, major changes in software
models that existed for several years can be easily
accompanied by new security issues that may arise and new
situations where end users may turn out not to be satisfied,
nor actually protected.

This paper focused on highlighting several security issues
that have risen since the introduction of the “Runtime
Permission” model in the Android OS. Additionally, in this
paper, we have disclosed a significant number of security
issues regarding the Android permission architecture, which
have been reported by the authors to Google. Some of

the security issues may be addressed by re-organizing
permission groups, and perhaps endorse a more “strict”
permission policy in terms of “dangerous” and “normal”
(not dangerous) permissions.

Other issues regarding user notifications and especially
what information is given to users are also quite important.
Moreover, we detailed security and privacy issues which
are either introduced or augmented by the new permission
model. Undoubtedly, a core issue in the majority of the
presented apps in this research is the unrestricted Internet
access, which provides applications with a communication
channel that cannot be stopped or even filtered. As
discussed, blocking this path may result to other side effects,
which could potentially radically affect and change the
Android market. Nevertheless, we believe that Android
needs to incorporate more precise explanations to users
about permissions, as well as the ability to inform users
in more detail. Additionally, not negatively affecting user
experience, the OS should incorporate “advanced” settings
in security options, where users could, whenever deemed
necessary, monitor third party app “behavior” in detail and
also manipulate all kinds of permissions.

Finally, the runtime permission model should handle
more sufficiently the need to inform users when a dangerous
or even a system permission is required, by means of
exact time and purpose. At its current implementation, the
proposed security model in Android leaves “more freedom”
to Android developers to ask for permissions even when
they do not need them and keep them for future uses. This
combined with the “click once but permanent acceptance”
of dangerous permissions can lead to the destruction of
what is meant as runtime permission and even more
importantly what users expect by it. As already connoted,
requesting all app permissions during the first app usage
does not necessarily imply any significant differentiation
than requesting the permissions during the app installation.
We argue that a possible solution to this problem would
be to stop expecting developers to do the checks and
request permissions in their programs but to force this
operation to be controlled by the OS. Correspondingly,
this could be accomplished by properly reconstructing
Android’s programming classes and interfaces involved in
all kinds of “dangerous” permissions so as to automatically
request user permissions, or check whether a permission has
been applied, every time a dangerous resource is handled in
code.

Smartphones have radically penetrated in peoples daily
lives and accompany them everywhere, at anytime and
most importantly being almost always “powered on.” This
means that a wealth of user data can be collected and
used by an increasing number of smartphone applications,
which in many cases may compromise users’ privacy and
security for reasons ranging from data harvesting and data

J Hardw Syst Secur (2019) 3:45–63 61

mining to more illegitimate purposes. At the current state
of smartphone OSes, users’ rights are tightly coupled with
applications’ permissions, which control each app’s access
to the smartphone’s resources. This paper has focused on
providing a thorough investigation and understanding of
this significant smartphone software mechanism, as well
as presenting and disclosing security flaws that should be
addressed in the days to come.

Funding Information This work was supported by the European
Commission under the Horizon 2020 Programme (H2020), as part of
the OPERANDO project (Grant Agreement no. 653704). The authors
would like to thank ElevenPaths for their valuable feedback and
granting them access to Tacyt.

References

1. Achara JP, Cunche M, Roca V, Francillon A (2014) Wifileaks:
underestimated privacy implications of the access wifi state
android permission. In: Proceedings of the 2014 ACM conference
on security and privacy in wireless & mobile networks, ACM, pp
231–236

2. Alepis E, Patsakis C (2017) Hey doc, is this normal?: exploring
android permissions in the post marshmallow era. In: Ali SS,
Danger J, Eisenbarth T (eds) Security, privacy, and applied
cryptography engineering - 7th international conference, SPACE
2017, Goa, India, december 13-17, 2017, proceedings. Lecture
notes in computer science, vol 10662. Springer, pp 53–73

3. Alepis E, Patsakis C (2017) Monkey says, monkey does: security
and privacy on voice assistants. IEEE Access

4. Alepis E, Patsakis C (2017) There’s wally! location tracking
in android without permissions. In: Proceedings of the 3rd
international conference on information systems security and
privacy - Volume 1: ICISSP, INSTICC. ScitePress, pp 278–284.
https://doi.org/10.5220/0006125502780284

5. Alepis E, Patsakis C (2017) Trapped by the ui: the android case.
In: Proceedings of the 20th international symposium on research
in attacks, intrusions and defenses. Springer. (To appear)

6. Alepis E, Patsakis C (2018) Session fingerprinting in android
via web-to-app intercommunication. Security and Communication
Networks 2018:7352030:1–7352030:13. https://doi.org/10.1155/
2018/7352030

7. Android Developer Manifest.permission – SYSTEM ALERT
WINDOW. https://developer.android.com/reference/android/Mani
fest.permission.html#SYSTEM ALERT WINDOW, date retrieved:
28/03/2017

8. Android Source Code (2017) platform frameworks base/core/
res/AndroidManifest.xml. https://github.com/Android/platform
frameworks base/blob/master/core/res/AndroidManifest.xml

9. Balebako R, Jung J, Lu W, Cranor LF, Nguyen C (2013)
Little brothers watching you: raising awareness of data leaks on
smartphones. In: Proceedings of the ninth symposium on usable
privacy and security. ACM, p 12

10. Barrera D, Kayacik HG, van Oorschot PC, Somayaji A (2010) A
methodology for empirical analysis of permission-based security
models and its application to android. In: Proceedings of the
17th ACM conference on computer and communications security,
ACM, pp 73–84

11. Bartel A, Klein J, Le Traon Y,Monperrus M (2012) Automatically
securing permission-based software by reducing the attack surface:
an application to android. In: Proceedings of the 27th IEEE/ACM

international conference on automated software engineering,
ACM, pp 274–277

12. Blasco J, Chen TM (2017) Automated generation of colluding
apps for experimental research. Journal of Computer Virology and
Hacking Techniques 1–12

13. Book T, Pridgen A, Wallach DS (2013) Longitudinal analysis of
android ad library permissions. arXiv:1303.0857

14. Book T, Wallach DS (2013) A case of collusion: a study of the
interface between ad libraries and their apps. In: Proceedings of
the third ACM workshop on security and privacy in smartphones
& mobile devices, ACM, pp 79–86

15. Calciati P, Kuznetsov K, Bai X, Gorla A (2018) What did really
change with the new release of the app? In: Proceedings of the
15th international conference on mining software repositories,
ACM, pp 142–152

16. Chen QA, Qian Z, Mao ZM (2014) Peeking into your app without
actually seeing it: UI state inference and novel android attacks.
In: 23rd USENIX security symposium (USENIX security 14).
USENIX Association, San Diego, pp 1037–1052

17. Davi L, Dmitrienko A, Sadeghi AR, Winandy M (2011) Privilege
escalation attacks on android. In: Information security. Springer,
pp 346–360

18. Diao W, Liu X, Zhou Z, Zhang K (2014) Your voice assistant is
mine: how to abuse speakers to steal information and control your
phone. In: Proceedings of the 4th ACM workshop on security and
privacy in smartphones & mobile devices, ACM, pp 63–74

19. Dimitriadis A, Efraimidis PS, Katos V (2016) Malevolent app
pairs: an android permission overpassing scheme. In: Proceedings
of the ACM international conference on computing frontiers,
ACM, pp 431–436

20. Durumeric Z, Kasten J, Adrian D, Halderman JA, Bailey M, Li F,
Weaver N, Amann J, Beekman J, Payer M et al (2014) The matter
of heartbleed. In: Proceedings of the 2014 conference on internet
measurement conference. ACM, pp 475–488

21. Economist T (2017) The world’s most valuable resource is no
longer oil, but data. https://www.economist.com/leaders/2017/05/
06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data/

22. Enck W, Gilbert P, Han S, Tendulkar V, Chun BG, Cox LP, Jung
J, McDaniel P, Sheth AN (2014) Taintdroid: an information-flow
tracking system for realtime privacy monitoring on smartphones.
ACM Transactions on Computer Systems (TOCS) 32(2):5

23. EUGDPR (2018) The EU general data protection regulation.
https://www.eugdpr.org/

24. Fahl S, Harbach M, Oltrogge M, Muders T, Smith M (2013)
Hey, you, get off of my clipboard. In: International conference on
financial cryptography and data security. Springer, pp 144–161

25. Faruki P, Bharmal A, Laxmi V, Ganmoor V, Gaur MS, Conti
M, Rajarajan M (2015) Android security: a survey of issues,
malware penetration, and defenses. IEEE Commun Surv Tutorials
17(2):998–1022

26. Felt AP, Chin E, Hanna S, Song D, Wagner D (2011) Android
permissions demystified. In: Proceedings of the 18th ACM
conference on computer and communications security. ACM, pp
627–638

27. Felt AP, Greenwood K, Wagner D (2011) The effectiveness of
application permissions. In: Proceedings of the 2nd USENIX
conference on web application development, pp 7–7

28. Felt AP, Ha E, Egelman S, Haney A, Chin E, Wagner D
(2012) Android permissions: user attention, comprehension, and
behavior. In: Proceedings of the eighth symposium on usable
privacy and security. ACM, p 3

29. Fratantonio Y, Qian C, Chung S, Lee W (2017) Cloak and dagger:
from two permissions to complete control of the UI feedback loop.
In: Proceedings of the IEEE symposium on security and privacy
(Oakland), San Jose, CA

J Hardw Syst Secur (2019) 3:45–6362

https://doi.org/10.5220/0006125502780284
https://doi.org/10.1155/2018/7352030
https://doi.org/10.1155/2018/7352030
https://developer.android.com/reference/android/Manifest.permission.html#SYSTEM_ALERT_WINDOW
https://developer.android.com/reference/android/Manifest.permission.html#SYSTEM_ALERT_WINDOW
https://github.com/Android/platform_frameworks_base/blob/master/core/res/AndroidManifest.xml
http://arxiv.org/abs/1303.0857
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data/
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data/
https://www.eugdpr.org/

30. Goodin D (2015) Beware of ads that use inaudible sound to link
your phone, tv, tablet, and pc http://arstechnica.com/tech-policy/
2015/11/beware-of-ads-that-use-inaudible-sound-to-link-your-phone-
tv-tablet-and-pc/

31. Goodson S (2015) If you’re not paying for it, you become the
product https://www.forbes.com/sites/marketshare/2012/03/05/if-
youre-not-paying-for-it-you-become-the-product/#3398a05f5d6e

32. Google: Aosp source code for filesystem config. https://android.
googlesource.com/platform/system/core/+/master/libcutils/include/
private/android filesystem config.h

33. Grace MC, Zhou Y, Wang Z, Jiang X (2012) Systematic detection
of capability leaks in stock android smartphones. In: NDSS

34. Jeon J, Micinski KK, Vaughan JA, Fogel A, Reddy N, Foster
JS, Millstein T (2012) Dr. android and mr. hide: fine-grained
permissions in android applications. In: Proceedings of the second
ACM workshop on security and privacy in smartphones and
mobile devices. ACM, pp 3–14

35. Kelley PG, Consolvo S, Cranor LF, Jung J, Sadeh N, Wetherall D
(2012) A conundrum of permissions: installing applications on an
android smartphone. In: Financial cryptography and data security.
Springer, pp 68–79

36. Kywe SM, Li Y, Petal K, Grace M (2016) Attacking android
smartphone systems without permissions. In: 2016 14th annual
conference on privacy, security and trust (PST). IEEE, pp 147–156

37. Orthacker C, Teufl P, Kraxberger S, Lackner G, Gissing M,
Marsalek A, Leibetseder J, Prevenhueber O (2012) Android
security permissions–can we trust them? In: Security and privacy
in mobile information and communication systems. Springer, pp
40–51

38. Patsakis C, Alepis E (2018) Knock-knock: the unbearable
lightness of android notifications. In: Proceedings of the 4th
international conference on information systems security and
privacy, ICISSP 2018, Funchal, Madeira - Portugal, January 22-
24, 2018. pp 52–61

39. Peles O, Hay R (2015) One class to rule them all: 0-
day deserialization vulnerabilities in android. In: 9th USENIX
workshop on offensive technologies (WOOT 15)

40. Poeplau S, Fratantonio Y, Bianchi A, Kruegel C, Vigna G
(2014) Execute this! analyzing unsafe and malicious dynamic
code loading in android applications. In: 21st annual network and
distributed system security symposium, NDSS 2014, San Diego,
california, USA, February 23-26, 2014. The Internet Society

41. SnoopWall (2014) Flashlight apps threat assessment report
http://www.snoopwall.com/wp-content/uploads/2015/02/Flashlight-
Spyware-Report-2014.pdf

42. Taylor VF, Martinovic I (2017) To update or not to update:
insights from a two-year study of android app evolution. In:
Proceedings of the 2017 ACM on Asia conference on computer
and communications security. ASIA CCS ’17. ACM, pp 45–57

43. Tsiakos V, Patsakis C (2016) Andropatchapp: taming rogue ads in
android. In: Mobile, secure, and programmable networking - first
international conference, MSPN 2016

44. Tuncay GS, Demetriou S, Ganju K, Gunter CA (2018) Resolving
the predicament of android custom permissions. In: ISOC network
and distributed systems security symposium (NDSS)

45. Wei X, Gomez L, Neamtiu I, Faloutsos M (2012) Permission
evolution in the android ecosystem. In: Proceedings of the 28th
annual computer security applications conference. ACM, pp 31–
40

46. Wibson (2018) How much is your data worth? At least $240 per
year. likely much more https://medium.com/wibson/how-much-
is-your-data-worth-at-least-240-per-year-likely-much-more

47. Yang L, Boushehrinejadmoradi N, Roy P, Ganapathy V, Iftode L
(2012) Short paper: enhancing users’ comprehension of android
permissions. In: Proceedings of the second ACM workshop on
security and privacy in smartphones and mobile devices. ACM, pp
21–26

48. Zhang X, Du W (2014) Attacks on android clipboard. In:
International conference on detection of intrusions and malware,
and vulnerability assessment. Springer, pp 72–91

J Hardw Syst Secur (2019) 3:45–63 63

http://arstechnica.com/tech-policy/2015/11/beware-of-ads-that-use-inaudible-sound-to-link-your-phone-tv-tablet-and-pc/
http://arstechnica.com/tech-policy/2015/11/beware-of-ads-that-use-inaudible-sound-to-link-your-phone-tv-tablet-and-pc/
http://arstechnica.com/tech-policy/2015/11/beware-of-ads-that-use-inaudible-sound-to-link-your-phone-tv-tablet-and-pc/
https://www.forbes.com/sites/marketshare/2012/03/05/if-youre-not-paying-for-it-you-become-the-product/#3398a05f5d6e
https://www.forbes.com/sites/marketshare/2012/03/05/if-youre-not-paying-for-it-you-become-the-product/#3398a05f5d6e
https://android.googlesource.com/platform/system/core/+/master/libcutils/include/private/android_filesystem_config.h
https://android.googlesource.com/platform/system/core/+/master/libcutils/include/private/android_filesystem_config.h
https://android.googlesource.com/platform/system/core/+/master/libcutils/include/private/android_filesystem_config.h
http://www.snoopwall.com/wp-content/uploads/2015/02/Flashlight-Spyware-Report-2014.pdf
http://www.snoopwall.com/wp-content/uploads/2015/02/Flashlight-Spyware-Report-2014.pdf
https://medium.com/wibson/how-much-is-your-data-worth-at-least-240-per-year-likely-much-more
https://medium.com/wibson/how-much-is-your-data-worth-at-least-240-per-year-likely-much-more

	Unravelling Security Issues of Runtime Permissions in Android
	Abstract
	Introduction
	Main Contributions
	Road Map

	Related Work
	The New Permission Model
	Drawbacks of the New Permission Model
	Flawed Implementation of the Permission Model
	Transformation Attacks in Runtime Permissions
	Lack of Control in Running Apps and On-Boot Apps
	Using Other apps' Resources
	Privilege Escalation via Intents
	Transparency and Lack of Control
	Delusive user Interaction
	Permission Intransparency

	Access to the Internet
	User Profiling

	Remedies
	Conclusions
	Funding Information
	References

