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Abstract
The Internet-of-Things today gives rise to a number of applications that require lightweight cryptographic primitives, such
as block ciphers for secure and efficient computation using very little resources. This paper addresses the open problem
of design-for-security methodologies for constructing such lightweight block ciphers with combined protection against
both side channel and fault attacks. We propose novel design strategies that, unlike existing methodologies, are equipped
with target-specific design choices. Our first proposal is the incorporation of lightweight linear layers that combine good
diffusion properties with fault attack resistance via fault space transformation. Our second proposal is to make S-Box choices
using a new metric called the modified transparency order, so as to facilitate a lightweight masking strategy where the
mask is only periodically refreshed. Our third and final proposal is to implement a cipher-dependent multi-round shuffling
technique that is lightweight and affords greater security than the standard shuffling schemes in the literature. Each of our
propositions are assembled into one single construction for a PRESENT-like block cipher, that consumes 15% less look-up
tables on a Xilinx xc5vlx50 FPGA than all existing threshold implementations of PRESENT, and provides good security
guarantees against both fault and side-channel attacks. In particular, it resists both classical and biased fault attacks, and
does not exceed the safety threshold against side-channel attacks over 50,000 power traces, collected on a SASEBO GII
board.
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1 Introduction

The advent of the Internet-of-Things (IoT) brings has lent
great impetus to the design of smart devices that are often
embedded with electronics, software, sensors, actuators,
and network connectivity for easy communication and
interaction. The IoT today is a network of physical objects
or things, embedded with electronics, software, sensors,
and network connectivity, that can be sensed and controlled
remotely across the existing network infrastructure. While
IoT creates a number of opportunities for integration of
the physical world into computer-based systems for greater
economic benefit, it also gives rise to a number of security
vulnerabilities that must be handled. In particular, several
IoT devices embed cryptographic cores for authentication
and information processing, which unless protected, could
leak secret information to malicious adversaries. Embedded
security solutions for IoT must typically be tuned resource-
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constrained environments, and are therefore expected to
have low area footprint and low power consumption.

One of the major threats to cryptographic security arises
from implementation-based attacks, such as side channels
and active fault analysis. A variety of passive side channels,
including time, power, and electromagnetic emission [1],
have been successfully exploited to recover the secret key
from devices running cryptographic algorithms. While most
of these attacks are semi-invasive or non-invasive, active
invasive attacks such as fault injection [2] can also force
a device to leak the secret key as a result of a faulty
computation. Both side-channel and fault attacks are easy to
mount and do not necessarily require high-end equipment,
and are therefore extremely potent threats to cryptographic
devices in the present world.

1.1 Background and RelatedWork

There have been a number of countermeasures proposed in
the literature against implementation-based attacks. Coun-
termeasures against side channels can be broadly cate-
gorized into three major categories—addition of random
noise [3], randomization of state variables via masking
[4], and derangement in time of sensitive operations via
Shuffling [5]. While masking provides provable security
against power and electromagnetic side-channel attacks, ad-
hoc implementation of masking is often too costly and
unsuitable for highly resource-constrained devices. Stan-
dard shuffling-based countermeasures, on the other hand,
are less costly than masking, but are often insufficient as
stand-alone countermeasures to resist side-channel attacks.
Fault attacks, on the other hand, are often countered via use
of redundancy [6], infection [7], or code-based techniques
[8]. However, many of these techniques, such as the use
of temporal and spatial redundancy, are vulnerable to non-
uniform fault distribution-based attacks such as differential
fault intensity attacks (DFIA) [9], where the adversary con-
trols the probability of injection of different faults onto the
target device [10].

We point out here that many of the aforementioned counter-
measure techniques are generic and are often agnostic of the
underlying target block cipher, implying that they may not
be tailored to suit a particular cipher under test. For instance,
while shuffling may be a more optimal choice of coun-
termeasure for lightweight implementations of substitution-
permutation network (SPN)-based block ciphers, such as
the AES [11] or PRESENT [12], ciphers such as SIMON
[13] that do not have substitution boxes more amenable to
masking at a much lesser cost. In addition, countermeasures
against side channels and fault attacks are often conflict-
ing, in the sense that countering one threat might actually
aggravate the other. For instance, the use of robust codes to

prevent differential fault analysis (DFA) has been studied
in detail in [14], yet it has been found to enhance side-
channel vulnerabilities of the design under test owing to
the non-linear nature of the code [15]. Finally, fortifying a
cryptographic core with a variety of countermeasures with-
out prudent engineering choices imparts a huge overhead
on the resources required, especially if not equipped with
prudent engineering strategies. This leads to the require-
ment of lightweight design-for-security methodologies for
countering side channels and fault analysis.

1.2 Our Motivation

Our aim in this paper is to propose novel design strategies for
cryptographic primitives that make them amenable to light-
weight countermeasures for combined resistance against
side channels and fault attacks in an IoT environment. The
techniques presented in this paper can serve as guidelines
for designing cryptographic primitives that are suitable for
resource-constrained environments, and are, at the same
time, holistically resistant to implementation attacks.

1.3 Countermeasure Strategies and Case Studies
in the Paper

In this section, we present an overview of the countermeasure
strategies discussed in this paper against combined side-
channel and fault analysis, along with the corresponding case
studies used to illustrate the effectiveness of these strategies.
Table 1 summarizes the overall layout of the paper.

1.3.1 Lightweight Countermeasure Strategy Against Fault
Attacks

Fault space transformation (FST), introduced by Patran-
abis et al. in [16] is a countermeasure strategy against fault
attacks that combines traditional redundancy-based tech-
niques with use diffusion layers to hinder the ability of an
adversary to inject highly localized/biased faults in multiple
computation rounds. In particular, they advocate the use of
additional maximum distance separable (MDS) and inverse
MDS mappings in the redundant computation to a signif-
icant shift in Hamming weight between equivalent faults
in the original and redundant computations (for instance,
with respect to AES-128, in order to bypass the redundancy
check, the adversary must precisely inject a localized single
byte fault in the original computation and a distributed four
byte fault in the redundant computation, where the four byte
fault is the image of the single byte fault under the MDS
mapping). However, MDS mappings are typically expensive
to implement in lightweight applications. In this paper, we
illustrate lightweight hardware-based design strategies for
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Table 1 Countermeasure strategies and case studies in the paper

Attack type Countermeasure strategy Case-study Section

Fault attacks Fault space transformation (MDS matrices) PRIDE 4

Fault space transformation (bit permutations) PRESENT 5

Side-channel attacks Masking with refresh PRESENT 8

Shuffling across rounds

Fault attacks + side-channel analysis Fault space transformation + masking + shuffling PRESENT 9

GIFT 9

MDS mappings that are suited to area-constrained applica-
tions. Note that MDS mappings designed using our strate-
gies serve the dual purpose of diffusion and FST. We
validate our techniques using a case study on the recently
proposed block cipher PRIDE [17] in Section 4. PRIDE was
originally proposed keeping systematic linear layer design
for software implementations in mind. However, as demon-
strated in the case study, such strategies are not necessarily
the most optimal for hardware implementations, especially
in FPGA-based applications commonly encountered in IoT.
Thus, PRIDE presents us with the ideal framework to illus-
trate the superiority of our design strategies with respect
to hardware implementations. In addition, the case study
illustrates the effectiveness of MDS mappings in achieving
FST

We then explore a second strategy for FST using bit permu-
tation-based linear layers instead of MDS mappings—an
option that was not investigated by Patranabis et al. in [16].
Note that this is immediately attractive from the point of
view of lightweight applications, since bit permutations
can be implemented efficiently with zero area overhead. In
fact, bit permutations are popularly employed in a number
of recently proposed lightweight block ciphers, including
PRESENT [18] and GIFT [19] However, it provides less
optimal diffusion guarantees as compared to MDS layers.
For the effectiveness of bit permutations in achieving FST,
we make the following probabilistic argument: suppose that
the adversary injects a highly localized (single byte/single
nibble) fault in the original computation round of a block
cipher implementation protected using bit permutation-
based FST. Then with very high probability, the equivalent
fault to be injected in the redundant computation is
distributed across multiple nibbles, and is thus difficult to
inject precisely. Additionally, without the exact knowledge
of the internal state of the block cipher, the adversary cannot
predict the “pathological fault injection instances” where
the effect of FST is not sufficient to prevent the fault
attack. As a case study, we illustrate the effectiveness of
using bit permutations for FST in an implementation of the
PRESENT block cipher.

1.3.2 Lightweight Countermeasure Strategies Against
Side-Channel Analysis

For resistance against side-channel attacks, we present the
following lightweight implementation strategies:

1. Masking with Periodic Refresh. Masking of the non-
linear substitution boxes (S-Boxes) [20] is a popular
countermeasure against DPA that aims to randomize the
S-Box computations, thereby destroying the correlation
of the power leakage with the sensitive data during
the execution of the block cipher. For ideal security,
the mask should be chosen uniformly at random, that
is, refreshed after every encryption. This is, however,
extremely costly both in terms of area overhead and
throughput loss, and is hence rather impractical for
lightweight applications targeting resource-constrained
devices. As an alternative design strategy, we advocate
trading off security with efficiency by refreshing
the mask at pre-specified intervals instead of after
every encryption. In particular, we focus on serialized
block cipher implementations, which is a popular
hardware implementation strategy for area-constrained
applications.

2. Choice of S-Boxes. The periodic refresh strategy is
further complemented by a careful choice of S-Box
for the block cipher. For this, we resort to using
modified transparency order (MTO) metric [21] to
compare between different S-boxes in terms of their
resistance against differential power analysis (DPA).
We establish via simulation studies that there exists a
direct correlation between the MTO value of a given
S-Box, and the adequate refresh rate for a masked
implementation of the same to achieve reasonable
side-channel security. In other words, a careful S-Box
choice guided by the MTO metric potentially reduces
the overhead of periodic mask refresh and improves
throughput.

3. Multi-Round Shuffling. In a shuffled implementation,
any key-dependent operation is deranged in time, thereby
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increasing the uncertainty of the adversary as to when
a specific key-dependent operation occurs in time.
This in turn reduces the signal-to-noise ratio (SNR) of
the implementation, thereby increasing security against
side channels [22]. Standard shuffling practices often
advocate shuffling to be restricted within the operations
in a single round. This often does not afford sufficient
security for shuffling to be used as a stand-alone
countermeasure. In this section, we present details of
how shuffling may be done across multiple rounds of
a substitution-permutation network (SPN) block cipher
in a lightweight and efficient manner for improved
side-channel resistance.

In order to elucidate the combined effectiveness of the
aforementioned strategies in thwarting side-channel attacks,
we present a case study involving an implementation of the
PRESENT block cipher using a combination of good S-Box
choices, fortified via refresh-based masking, and shuffling
across two rounds.

1.3.3 Putting Everything Together

We present a final case study on a generalized bit permutation-
based PRESENT-like block cipher that combines all our
aforementioned design choices for combined resistance
against side-channel and fault analysis. More specifically,
our implementation combines the following features:

1. Area-efficient FST using bit permutations that provide
optimal diffusion across three cipher rounds with high
probability

2. MTO-based choice of S-Box (different from the orig-
inal S-Box of PRESENT) protected using periodically
refreshed masks

3. Nibble-wise shuffling of S-Box computations dis-
tributed across two cipher rounds

Our implementation is more area-efficient as compared to
state-of-the-art implementations of PRESENT that are
secure against both side-channel and fault analysis. In term
of side-channel leakage, our implementation does not cross
the safe leakage threshold against side channel attacks over
50,000 power traces, which appears to be sufficient for a
large number of lightweight applications. In addition, it is
resistant against both DFA- and DFIA-like fault attacks.
We also present an equivalent case study for the block
cipher GIFT proposed in [19], where we combine spatial
redundancy-based FST using the bit permutation layer of
GIFT with a refreshing-based masked implementation of
the PRINCE S-Box and shuffling of S-Box operations
across rounds.

1.4 The Target Platform: Field Programmable Gate
Arrays (FPGAs)

In this paper, we choose FPGAs as the target platform
for our case studies owing to their reconfigurability
and relevance to IoT. Since IoT applications are often
constrained by the dual requirements of high performance
and parsimony of resources, reconfigurable hardware seems
to be the ideal choice. FPGAs also offer additional
advantages, such as low power consumption and low
memory bandwidth requirements, making them preferable
over GPUs in distributed applications such as image
search [23]. Modern FPGAs are equipped with even
more sophisticated features, such as dynamic partial
reconfiguration (DPR), that allows dynamic, energy-
efficient non-invasive modification of the existing circuit on
the FPGA, mostly to enhance functionality in the form of
added plug-ins. The plug and play philosophy is particularly
suitable for IoT applications, since it supports multiple
functions at a very large scale without the need for having
dedicated hardware available at all times.

1.5 Practical Evaluation of Side-Channel Leakages

In this paper, we use the Test Vector Leakage Assess-
ment (TVLA) methodology [24] to practically evaluate
the side-channel leakage of any device under test. TVLA
is an extremely popular metric owing to its simplicity,
reproducibility and recent international standardization. In
particular, we use the non-specific first-order leakage test
for computing TVLA on-chip. In this test methodology,
two sets of leakage measurements are collected—one with
a fixed plain text value and the other with random plain-
text values drawn uniformly at random. This is followed
by a statistical t test that uses the mean and variances
of both leakage data sets. The TVLA acts as more of a
yes/no metric, in the sense that it certifies a design as either
leakage-free or not leakage-free, depending on whether the
t test statistic exceeds a safe threshold or not.

However, two designs under test may be compared with
respect to their side-channel security in terms of the number
of leakage samples beyond, which their TVLA value crosses
the safe threshold. For instance, if the TVLA value for
design-1 crosses the safety threshold for TVLA at 10,000
leakage samples, while that for design-2 crosses the safety
threshold beyond 50,000 traces, design-2 can be said to be
more resilient to side channel attacks compared to design-
1. In addition, if across a certain number of traces, design-2
has a greater TVLA leakage as compared to design-1, the
former can be said to be more resilient against side-channel
attacks.
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2 Lightweight Design Strategies
for Countering Fault Attacks on Block
Ciphers with MDSMatrices

This section presents our proposed design-for-security
strategies to counter fault attacks on block cipher implemen-
tations. We begin by briefly reviewing popular fault attack
strategies in the literature. We then introduce the concept of
FST as a countermeasure against such attacks. Finally, we
demonstrate how the linear layer of the block cipher itself
may be used efficiently to achieve good FST.

2.1 Fault Attacks on Block Ciphers

The basic principle of any fault attack is to cause a malicious
aberration in the normal execution of the target crypto-
graphic algorithm, and to use the corresponding leakage to
try and recover the key. In this work, we focus on counter-
ing two major varieties of fault attacks—DFA, where the
adversary injects a random fault with certain known spatio-
temporal characteristics, and analyzes faulty and fault-free
ciphertext pairs to recover the secret key, and differential
fault intensity analysis (DFIA) that combines principles of
side-channel analysis techniques, such as DPA with that
of fault based perturbations to recover the secret key from
faulty ciphertexts only.

– Differential Fault Analysis (DFA): In DFA, the adver-
sary injects a random fault with certain known spatio-
temporal characteristics, and analyzes faulty and fault-
free ciphertext pairs to recover the secret key.

– Differential Fault Analysis (DFIA): DFIA [9] repre-
sents a class of fault attacks that combine principles of
side-channel analysis techniques, such as DPA with that
of fault-based perturbations to recover the secret key
from faulty ciphertexts only.

The actual attack procedure and the subsequent key
recovery technique depends on the following:

– The nature, or model of the fault (such as bit flips,
byte faults, stuck-at faults, or random faults) and the
nature of information obtained by the adversary (correct
and faulty ciphertexts, only faulty ciphertexts or even
behavior)

– The spatio-temporal characteristics of the fault (for exam-
ple, with respect to block ciphers, the precise location
and round in which the fault is injected)

– The propagation of the fault to the output of the cryp-
tographic algorithm and the corresponding leakage/
behavior in terms of the information obtained (this usu-

ally depends on the various round operations in any
block cipher algorithm)

2.1.1 Differential Fault Analysis (DFA)

In DFA, the adversary injects a random fault with certain
known spatio-temporal characteristics, and analyzes faulty
and fault-free ciphertext pairs to recover the secret key.
DFA has been widely studied on a number of block ciphers
such as AES [2, 25]. DFA is powerful enough to recover
the entire 128 bit key of AES with just a single random
fault injection [2]. The usage of practically achievable fault
models, such as bit faults and byte faults that can be injected
using low-cost fault injection techniques [2] makes DFA a
potent threat to the security of cryptographic algorithms.

2.1.2 Differential Fault Intensity Analysis (DFIA)

DFIA [9] represents a class of fault attacks that combine
principles of side-channel analysis techniques, such as
DPA with that of fault-based perturbations to recover
the secret key from faulty ciphertexts only. Such attacks
require only faulty ciphertexts, and exploit the fact that
the key-dependent faulty state value has a strongly biased
distribution for the correct key hypothesis. This in turn can
be distinguished from a random state due to an incorrect key
hypothesis using an appropriate distinguisher.

2.1.3 Safe-Error Attacks (SEA), Differential Behavior
Analysis (DBA), Fault Sensitivity Analysis (FSA)

Safe error attacks (SEA) and differential behavior analy-
sis (DBA) deduce the presence or absence of a fault during
an encryption operation from the behavior of a crypto-
graphic device [26, 27]. The crux of the attack lies in the fact
that depending on a particular subpart of the secret key (such
as a bit or a byte), a fault may or may not lead to a faulty
computation. Hence, such key-dependent behavior can be a
potential source of leakage, and has in fact been exploited
to mount implementation dependent attacks on AES [27].

2.2 Popular Countermeasures Against DFA
and Insufficiency against DFIA

Countermeasures against DFA can be broadly classified into
the following categories:

2.2.1 Concurrent Error Detection (CED)

CED techniques use four major kinds of redundancies—
temporal, spatial, information, and hybrid (combination of
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space, time, and information) to detect faults. In temporal
redundancy, each operation is performed twice, followed
by a check to detect errors [28, 29]. A similar concept
is that of spatial redundancy, where the system maintains
two copies of the same hardware operating in parallel,
and checks for errors by comparison [28, 30]. Information
redundancy uses additional check bits that are generated by
encoding the input message and are transmitted with the
encrypted message [6]. The decrypter derives these check
bits and checks if they indeed are generated by encoding the
decrypted message. These bits could be derived from linear
codes, such as parity [31] or non-linear robust codes [14].

2.2.2 Infective Countermeasures

A second variety of countermeasures against fault attacks
is based on infection. Infective countermeasures avoid
the usage of comparison (as opposed to detection based
countermeasures) by diffusing the effect of the fault to
render the ciphertext unexploitable. Several propositions
regarding infective countermeasures have been made in the
cryptographic literature, and the most recently proposed
variant [7] combines the usage of redundancy with dummy
rounds to confuse the adversary. Infective countermeasures
have been proven to be formally secure against standard
first-order DFA and have been suitably implemented to
prevent even advanced software-based fault attacks such
as instruction skips [32]. However, a major shortcoming
of infective countermeasures lies in their usage of the
additional dummy rounds, which tends to reduce throughput
to a large extent.

2.2.3 Encoding Based Countermeasures

A third and very efficient class of countermeasures against
fault attacks use the concept of data encoding. In such
countermeasures, the naı̈ve detection step is performed
using a different data encoding, so as to reduce the fault
collision probability. A foremost example of such technique
is the orthogonal direct sum masking (ODSM) [33] that
uses linear complementary dual codes to detect and prevent
both side-channel and fault attacks. An extended version of
this is used to prevent hardware Trojan horse-based fault
attacks on encoded circuits [8]. A major disadvantage of the
technique in [8, 33] is that it can only detect first-order fault
attacks up to a maximum Hamming weight d. Secondly, the
usage of masking makes the overhead of ODSM large with
respect to fault attack prevention. Another popular encoding
technique to prevent fault attacks is the usage of dual rail
precharge logic [34].

We note that while each of the aforementioned tech-
niques successfully thwart DFA, they are prone to DFIA
due to the biased nature of fault injection in the latter. In

fact, as demonstrated by Patranabis et al. in [16, 32], biased
fault attacks render most existing redundancy-based coun-
termeasures ineffective, since the adversary can inject the
same fault multiple times with reasonably high probability
and bypass the detection mechanisms in place. In fact, this
holds true even when the fault injection mechanism is not
too precise, such as clock and voltage glitches. Additionally,
advanced fault attack techniques such as laser injections can
also be used to bypass a number of different fault detection
mechanisms, including parity check and other code-based
techniques [35]. Unfortunately, mechanisms to thwart DFIA
had not been studied until a recent work of Patranabis
et al. [16], referred to as fault space transformation, which
acts as a combined countermeasure against DFA and DFIA.
We expand more on this technique in the following section.
Finally, we would like to point out that there are no known
countermeasures against DFIA that appear to be broken by
DFA. This may be attributed to the fact that DFIA has been
introduced more recently; hence, countermeasures against it
are far less studies compared to DFA.

2.3 Fault Space Transformation: a Combined
Countermeasure Against DFA and DFIA

Fault space transformation (FST) [16] is a technique that
combines the use of redundancy with a transformation
between the original and redundant state variables to ensure
that the two computations are not identical. While the use
of redundancy prevents classical fault attacks such as DFA,
the presence of the transformation ensures that biased fault
attacks such as DFIA cannot be mounted by introducing
identical faults in the original and redundant computations.
More specifically, FST provides security against multi-fault
injections, where the fault model chosen by the adversary
has a localized nature (for example, byte faults in AES-
128 or nibble faults in PRESENT-80). The idea behind FST
is to ensure (with high probability) a significant shift in
Hamming weight between equivalent faults in the original
and redundant computations (for instance, with respect to
AES-128, in order to bypass the redundancy check, the
adversary must precisely inject a localized single byte fault
in the original computation and a distributed four byte
fault in the redundant computation, where the four byte
fault is the image of the single byte fault under the MDS
mapping). This shift makes it difficult for the adversary
to ensure that an equivalent fault pair is precisely injected
in the original and redundant rounds without disrupting
the rest of the computation, which is typically difficult to
achieve in practice when one of the faults to be injected
is highly non-localized. Figure 1 summarizes the concept
of FST in conjunction with a time-redundant version of
a block cipher. Part (a) demonstrates a simple schematic
description for a generalized block cipher structure with no
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Fig. 1 Overview of fault space transformation: combination with spatial redundancy

protection against fault attacks. The register R0 is updated
with the intermediate cipher state value at the end of each
round. The block cipher has a total of R rounds. Note
that it is assumed that the round function involves the
secret key corresponding to a particular round, and an
adversary tries to inject a fault in the state register R0.
Part (b) illustrates a spatially redundant version of the same
where the hardware for the cipher round is duplicated and
the state register is randomized in case the output of the
original and redundant operations do not match. Part (c) also
incorporates a transformation W between the original and
redundant computations, which essentially transforms the
fault space and makes equivalent fault injection harder to
achieve than in part (b).

2.3.1 Advantages of FST over Code-based Countermeasure
Techniques

One of the main reasons we choose FST as a counter-
measure technique is because of its two major advantages
over code-based countermeasures. First of all, unlike infor-
mation redundancy-based techniques such as robust codes
[14] that use non-linear transformations, FST uses linear
transformation, and hence does not affect the side-channel
security of the implementation. This is because any linear
layer used to implement FST typically comprises entirely
of XOR gates, which typically exhibit uniformly balanced
switching activity over a large sample of operations. Sec-
ondly, unlike techniques such as linear complementary dual

codes [33], it provides 100% fault coverage independent of
fault properties, such as Hamming weight. Finally, unlike
state-of-the-art infective countermeasure techniques [7, 32],
it does not require the use of additional dummy rounds, and
hence affords better throughput.

2.4 FST and the Linear Layer: Choosing
the TransformationW

The authors of [16] propose the use of maximum
distance separable (MDS) matrices [36] for W . An MDS
matrix is a matrix representing a function with special
diffusion properties and has many useful applications in
cryptography, especially in designing multi-permutations
to prevent cryptanalysis. Now, suppose that the linear
transformation W is a m2 × m1 MDS mapping over a field
K from Km1 to Km2 . MDS FST redundant fault spaces
F0 and F1 differ sufficiently in their Hamming weights
to have low correlation of occurrence. Let the adversary
inject a t byte fault f0 in the register R0, and let f1 be the
corresponding fault to be injected in the register R1 so that
the countermeasure fails to detect the fault injection. By the
MDS diffusion property, any t byte fault f0 is mapped an
m2 − t + 1 byte fault f1. For the special case of a single
byte fault (t = 1), the transformed fault space comprises of
faults that affect at least m2 bytes of the output. Thus, the
precision of the transformed fault space F1 is approximately

1
2(8m2−1)

times lower than the original fault space F0, making
it difficult for the adversary to create equivalent fault
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injections with high probability. Additionally, since using
MDS matrices causes W to be a linear transformation, the
side-channel leakage of the implementation is not adversely
affected [15].

It seems that incorporating FST in a block cipher
design would lead to huge hardware overhead due to the
requirement of a suitable MDS transformation. We point out
here, however, that the use of MDS matrices for designing
linear layers of block ciphers is a widely accepted strategy
in today’s literature, since it guarantees a suitably active
number of S-boxes across a certain number of rounds,
and hence good linear and differential characteristics. The
same MDS transformation present in the linear layer of the
block cipher can hence serve the dual purpose of resisting
cryptanalytic attacks and fault attacks, thereby eliminating
the overhead due to an extra linear transformation for FST.

The resource-constrained environments frequently
encountered in IoT-based applications demand that any
design strategy for crypto-primitives, such as block ciphers
must ensure a low area footprint. Given that even the
most optimized construction of non-linear S-Boxes [37,
38] imposes huge penalties on the gate count of hardware
implementations, the construction of lightweight linear
layers with good diffusion properties is of paramount
importance to the design of low energy ciphers. However,
to the best of our knowledge, the systematic study of design
strategies for such optimal linear layers is scarce in litera-
ture. Most current designs for linear layers are either ad-hoc
[39], or focus mostly on strong security arguments against
linear and differential cryptanalysis, but are agnostic on the
hardware requirements of the designs.

3 Lightweight MDS Layer Design: Combining
Linear Layer Design with Fault Space
Transformation

In this section, we focus on lightweight design strategies
for linear layers with MDS properties that ensure resistance
against both cryptanalytic attacks and fault attacks. We first
point out that the space of MDS matrices is too huge to
make the exhaustive search of suitable lightweight trans-
formations practically infeasible. Designers of lightweight
crypto-primitives such as PHOTON [40] and LED [41]
have specifically chosen MDS matrices with lightweight
roots, which could be iterated multiple times to arrive at the
required MDS mapping. However, there is no discussion on
how such a strategy can be generalized into a design guide-
line that narrows down the search space within practical
limits. Existing research on identifying MDS transforma-
tions with lightweight roots is not guaranteed to be optimal
and is computationally intensive [42]. A tangible solution

has been presented in the construction of the block cipher
PRIDE [17], which uses block interleaving, and has been
claimed by the authors to be efficient in terms of both
software and hardware implementations, although no hard-
ware design for the same has been reported to the best
of our knowledge. Finally, [43] provides new methods to
look for lightweight MDS matrices, and in particular involu-
tory ones. By proving many new properties and equivalence
classes for various MDS matrices constructions, such as
circulant, Hadamard, Cauchy, and Hadamard-Cauchy, the
authors of [43] exhibit new search algorithms that greatly
reduce the search space and make lightweight MDS matri-
ces of rather high dimension possible to find. Follow-ups to
this work have focused on lightweight circulant involutory
MDS matrices [44], lightweight generalized circulant matri-
ces [45], [46], optimized implementations [47], and almost
MDS matrices over rings with zero divisors [48].

3.1 Notations Used

In this section, we introduce the basic notations used in
this paper. We denote by F2 the field with two elements
and by Fb

2 the extension field of F2, obtained using an
irreducible polynomial of degree b. We also denote by (F2)

n

the n-dimensional vector space over F2, and by (Fb
2)

n
the n-

dimensional vector space over the corresponding extension
field Fb

2 .
In literature, the weight of a vector x =

(x1, x2, · · · , xn) ∈ (Fb
2)

n
(where each xi ∈ Fb

2) is given
by wtb(x) = |{1 ≤ i ≤ n|xi �= 0}|. Consequently, given a
linear mapping L : (Fb

2)
n −→ (Fb

2)
n
, its differential branch

number Bd(L) and linear branch number Bl(L) are given
by Bd(L) = min{wtb(x) + wtb(L(x))|x ∈ (Fb

2)
n
, x �= 0}

and Bl(L) = min{wtb(x) + wtb(L∗(x))|x ∈ (Fb
2)

n
, x �= 0}

respectively. Here, L∗ denotes the adjoint linear mapping of
L, which, in this context refers to the transposed matrix of
L. The differential and linear branch numbers of the linear
mapping are cryptographically significant because these
can be used to define upper bounds on the differential and
linear characteristics of the cipher.

In particular, greater the differential and linear branch
numbers, the lower is the average probability that the
adversary can obtain a differential or linear trail. Thus, in
order to achieve the desirable diffusion properties, the linear
mapping L must satisfy a minimum differential and linear
branch number. From the perspective of coding theory,
the differential branch number corresponds to the minimal
distance of the F2-linear code C over Fb

2 with generator
matrix G = [I |LT ], where I is the n × n identity matrix.
In other words, C is a (2n, 2n) additive code over Fb

2
with minimal distance d = Bd(L). Analogously, the linear
branch number corresponds to the minimal distance of the
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F2-linear code C⊥ over Fb
2 with generator matrix G∗ =

[L|I ]. Note that C and C⊥ are dual codes and do not
necessarily have the same minimum distance.

Suppose that a matrix G = [I |L]T is the generator
matrix for a F2-linear (2n, 2n) code with minimal distance
d. Then, L has at least d − 1 ones per row. The proof for
this statement is fairly straightforward. A similar proof can
also be given for the statement that if G∗ = [L|I ] is the
generator matrix for a F2-linear (2n, 2n) code with minimal
distance d, then L has at least d − 1 ones per column.

We now present a construction strategy for the linear
layer of an SPN block cipher, with focus on minimizing
the hardware footprint of the cipher, while guaranteeing
desirable cryptographic security.

3.2 Combining Lightweightedness with MDS
Properties

Designing MDS matrices that are lightweight in terms of
hardware footprint is a major challenge. The high diffusion
property provided by MDS matrices is due to their high
linear and differential branch numbers, which in turn puts a
lower bound on the number of ones in each row and each
column. In particular, any m × m binary MDS matrix with
linear and/or differential branch number d, must have at
least m(d−1) ones in the entire matrix. This leads to a trade-
off between lightweightedness and diffusion properties. A
solution to this is to choose MDS matrices with lightweight
roots that have less hardware requirements, and can then
be iterated to obtain the necessary diffusion properties.
However, for a given dimension m × m and branch number
d, there are as many as (

(
m

d−1

)
2m−d+1)

m
such matrices. For

instance, let us consider m = 32 and d = 5, which is the
case for the linear layer of PHOTON. In this case, the space
is approximately 228×32, which is enormously large for a
brute force search. An alternative strategy to this is to start
from the underlying lightweight matrices and arrive at the
desired MDS matrices by iterating them. Further, we reduce
the search space for these underlying matrices by assuming
a simplified form for them, as described below.

We assume that the matrices are defined over some GF(2t )

field. The basic technique is to start with an underlying
matrix A of either of the two forms as shown below.

⎛

⎜⎜⎜⎜⎜
⎝

0 1 · · · 0
0 0 · · · 0
...

...
...

...
0 0 · · · 1
Z1 Z2 · · · Zm

⎞

⎟⎟⎟⎟⎟
⎠

,

⎛

⎜⎜⎜⎜⎜
⎝

Z1 · · · Zm−1 Zm

1 · · · 0 0
0 · · · 0 0
...

...
...

...
0 · · · 1 0

⎞

⎟⎟⎟⎟⎟
⎠

and then iterate to arrive at the desired MDS matrix (here
0, 1 and Zi ∈ GF(2t ) for i = 1, 2, · · · , n). Since

the actual hardware implementation contains only A, we
achieve massive savings in terms of gate count. The choice
of elements in the last row of A is governed by two
major factors—the compactness of A, and the linear and
differential characteristic of the final MDS matrix Aj . The
main challenge in this design strategy is to tackle the search
space for the final row, which has size (2t )m and thus makes
an exhaustive search difficult for large values of m.

We point out here that although we refer to matrices over
GF(2t ), each such matrix also has an equivalent binary rep-
resentation, denoted as the companion matrix representation
[49]. In the companion matrix, each GF(2t ) element in the
original matrix by a corresponding t × t binary sub-matrix.
Thus, any m×m matrix comprising of GF(2t ) elements has
a corresponding mt × mt companion matrix representation.
In this work, we define the lightweightedness of a GF(2t )

matrix in terms of the density of its companion matrix.
For the sake of completeness, we briefly review the

fundamentals of companion matrix representation next. We
then move on to our proposed construction methodology.

3.3 The CompanionMatrix Representation

A large number of ciphers such as AES, TwoFish and PHO-
TON use GF(2t ) multipliers for MDS matrix multiplica-
tions. In a GF(2t ) multiplier, each GF(2t ) element has a
t × t companion matrix representation over F2, depend-
ing on the primitive polynomial p(x) of degree t used to
construct the field. We present a small example here to
elucidate the basic construction idea. Let a = 3 be an ele-
ment in GF(28), where the primitive polynomial is given by
p(x) = x8 + x4 + x3 + x + 1. Now let Ta,p be the corre-
sponding 8 × 8 companion matrix representation of a. The
basic construction steps are as follows:

1. The first column vector or col[0] is given by the 8-bit
binary representation of a, which is (00000011)2

2. Every other column vector i for i = 1, · · · , 7 is
obtained by left shifting column i −1, and XOR-ing the
resultant vector with the polynomial p(x) in the event
of an overflow.

The final companion matrix Ta,p is given by the following:

Ta,p =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 1
1 1 0 0 0 0 0 1
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 1
0 0 0 1 1 0 0 1
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Our proposed linear layer design strategy uses this
concept to design n

t
× n

t
matrices over GF(2t ), such that the

corresponding n×n companion matrices are MDS in nature,
that is, they satisfy the necessary linear and differential
properties to be secure enough against linear and differential
cryptanalysis.

3.4 Construction of the Linear Layer : Block
Interleaving

We now concentrate on our proposed strategy for con-
structing the linear layer using the wide-trail technique. We
assume that we are dealing with SPN block ciphers, such
that the substitution layer consists of n S-box instances, each
of dimension b acting in parallel. We intend to construct the
linear layer L for this cipher. In order to achieve the desired
diffusion properties, L must be constructed such that the
matrix G = [I |LT ] generates a (2n, 2n) additive code with
minimal distance d over Fb

2 . The linear layer L is broken
up into two major components—the permutation mapping
and the MDS mapping. We denote by P n

b1,··· ,bk
the permu-

tation matrix that maps (x1, · · · , xn) ∈ (F2
b1 × F2

b2 ×
· · · × F2

bk )n to ((x
(1)
1 , · · · , x

(1)
n ), · · · , (x

(k)
1 , · · · , x

(k)
n )) ∈

(F2
b1)

n × (F2
b2)

n × · · ·× (F2
bk )

n
, where

∑k
i=1bi = b. The

MDS mapping, denoted by L, is constructed as a direct sum
of k smaller MDS mappings L1, L2, · · · , Lk , such that Li

has dimensions nbi × nbi . Quite evidently, L has dimension
nb × nb, and may be represented as follows :

L =

⎛

⎜⎜⎜
⎝

L1 ∅ ∅ ∅ · · · ∅
∅ L2 ∅ ∅ · · · ∅
...

...
...

...
...

...
∅ ∅ ∅ ∅ · · · Lk

⎞

⎟⎟⎟
⎠

where ∅ is all zero binary matrices of appropriate
dimensions. This kind of a construction is popularly referred
to in literature as block interleaving [50]. Now, for each
i, let Gi

n = [I |Li
T ] be the generator matrix for a F2-

linear (2n, 2n) code with minimal distance di over F2
bi for

1 ≤ i ≤ k. Then, the matrix G = [I |LT ] with L =
(P n

b1,b2,··· ,bk
)−1 ◦ L ◦ P n

b1,b2,··· ,bk
is the generator matrix of

a F2-linear (2n, 2n) code with minimal distance d over F2
b,

where d = mini di . For a detailed proof of this statement,
refer [17]. A similar argument can also be formed for the
dual code C⊥ = [L|I ] to ensure that L also has a necessary
minimal distance with respect to the linear characteristic.
Further, it is easy to see that the linear and differential
characteristics of the overall linear layer L is the same as
that of the MDS mapping L, while the permutation mapping
(along with its inverse) essentially enhance the diffusion
properties. We now focus on how to choose the smaller

MDS mappings Li such that they achieve the necessary
diffusion and can also be implemented in a lightweight
fashion. Figure 2 summarizes the construction methodology
discussed here.

3.5 A BottomUp Strategy: Construction of MDS
Layers Using Smaller Matrices

We now concentrate on our proposed strategy for con-
structing the MDS linear layer for a block cipher using
the wide-trail technique. Our approach is to construct the
MDS mapping, denoted by L, as a direct sum of k smaller
MDS mappings L1, L2, · · · , Lk , such that Li has dimen-
sions nbi × nbi . Quite evidently, L has dimension nb × nb,
and may be represented as follows :

L =

⎛

⎜⎜⎜
⎝

L1 ∅ ∅ ∅ · · · ∅
∅ L2 ∅ ∅ · · · ∅
...

...
...

...
...

...
∅ ∅ ∅ ∅ · · · Lk

⎞

⎟⎟⎟
⎠

where ∅ is all zero binary matrices of appropriate
dimensions. This kind of a construction is popularly referred
to in literature as block interleaving [17]. We next focus on
how to design each of the sub-matrices L1, L2 · · · Lk . The
general idea is as follows. Let d be the minimum branch
number that we wish the MDS matrix L to have. Then, each
sub-matrix Li must have a branch number greater than or
equal to d, which is equivalent to having at least d ones in
each row and each column. Now, each binary sub-matrix
Li can be viewed as the companion matrix representation
of the corresponding MDS matrix Li,2t over GF(2t ) with

Fig. 2 The construction technique
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dimension n
t

× n
t
. Each matrix Li,2t is constructed using

the iterative technique described in Section 3.2, that is
Li,2t = (Ai,2t )c for some constant c and a lightweight
matrix Ai,2t over GF(2t ). Note that the exhaustive search

space for the last row of each Ai,2t is (2t )
n
t = 2n, as opposed

to (2t )
nk
t = 2nk in case the entire matrix L were to be

constructed in this fashion. Thus, the divide and conquer
approach makes it much more computationally efficient to
choose the underlying lightweight matrices. The appropriate
choice of the underlying matrices is now made by a brute
force search in the smaller space, with focus on minimizing
the number of iterations c as well the hardware footprint of
the lightweight companion matrices Ai .

3.6 Ensuring High Dependency

An additional requirement that a well-designed linear layer
needs to satisfy is high dependency [17]. An S-box i is said
to be dependent on an S-box j if an input differential to S-
box i in a given round leads to an input differential for S-box
j in the next round. Since ensuring a high branch number
does not ensure a high dependency, we need to address
the two issues independently. For instance, in our proposed
construction, we could have L1 = L2 = · · · = Lk such
that they have the minimum possible hardware overhead
as well the desired branch number d. However, this would
lead to poor dependency because each position (j1, j2) such
that Li(j1, j2) = 0 will cause the S-boxes j1 and j2 to be
totally independent. We propose a strategy to address this
issue. In Section 3.2 we showed two different forms for the
underlying lightweight matrices Ai,2t . We further point out
here that each lightweight matrix Ai1,2t of the first form
has a corresponding lightweight matrix Ai2,2t of the second
form, such the last row of the former serves as the first row
of the latter. These matrices thus have identical hardware
footprint and, when iterated, result in corresponding MDS
matrices Li1,2t and Li2 , 2t with identical branch numbers.
Further, we have Li1,2t (j1, j2) = Li2,2t ( n

t
− j1,

n
t

− j2).
The probability that both these entries are 0 is now 1

4 .
Thus, alternating between the two forms helps to improve
dependency without adversely affecting either the branch
number or the lightweightedness.

It is easy to see that the inverse of the MDS matrix con-
structed above has the same differential and linear charac-
teristics as the original matrix, and can be implemented in a
lightweight manner. The first property is true for any matrix,
since it follows from simple coding theory arguments. The
second property, while not true for any arbitrary matrix,
holds for our construction methodology. In particular, the
inverse MDS matrix is also guaranteed to have a root that
can be analogously constructed from smaller lightweight
matrices.

3.7 The Inverse Linear Layer

When designing the linear layer for a block cipher, it is
important to keep in mind that the inverse linear layer
should also be lightweight, and have the same diffusion
characteristics. Of these, the second property is guaranteed
because, if a matrix L is an MDS matrix with minimum
distance d, then its inverse is also an MDS matrix with
minimum distance d. The first property, however, is more
difficult to achieve. For instance, the inverse MixColumns
operation of AES is much more difficult to implement in
a lightweight fashion than the MixColumns operation [51].
However, our proposed lightweight construction ensures
that both of the abovementioned properties are satisfied for
the inverse matrix as well. To show this, it is sufficient to
show that the inverse of each sub-matrix, given by (Li,2t )−1,
and its corresponding lightweight root (Ai,2t )−1 satisfy
these properties. Let Ai,2t be a lightweight matrix of the first
form described in Section 3.2. Then its inverse (Ai,2t )−1 is
as follows:

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
...

...
0 0 0 0 · · · 1
Z1 Z2 Z3 Z4 · · · Zn

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

,

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

Y1 Y2 Y3 Y4 · · · Yn

1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
...

...
0 0 0 · · · 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

where Yn = (Z1)
−1 and Yi = (Z1)

−1Zi+1 for i =
1, 2, · · · , (n − 1). This means (Ai,2t )−1 is essentially a
lightweight matrix of the second form. Analogously, a
lightweight matrix of the second form has a lightweight
inverse of the first form. Thus, the inverse linear layer is
also always implementable in a lightweight manner. Note
that this is a vital observation with respect to cryptographic
primitives such as block ciphers.

3.8 An Illustration of the Proposed Strategy

To illustrate the efficiency of the proposed construction
technique, we present an instance of a 4 × 4 MDS matrix
L over GF(28) with target differential and linear branch
number 5 constructed using our technique. The recursive
construction first chooses a pair of 2×2 lightweight matrices
A1,28 and A2,28 such that the number of iterations required
is minimum (4 in this case). The corresponding search space

is (28)
2 = 216, and hence can be explored. The descriptions

of the smaller matrices are as follows:

A1,28 =
(

0 1
1 3

)
A2,28 =

(
3 1
1 0

)
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Iterating the matrices 4 times, the following 2 × 2 MDS
matrices are obtained:

L1,28 =
(

4 15
15 21

)
L2,28 =

(
21 15
15 4

)

Using our construction, as proposed in Section 3.5, the final
4 × 4 MDS matrix L28 is generated:

L28 =

⎛

⎜⎜
⎝

4 15 0 0
15 21 0 0
0 0 21 15
0 0 15 4

⎞

⎟⎟
⎠

As discussed, obtaining the companion binary matrices for
each element of the field GF(28), expands the matrix L28

into a binary matrix L of dimension 32 × 32. Now, we
compare this matrix with that of PHOTON [40], which we
refer to as L′. Matrices L and L′ have differential/linear
branch numbers of 5 and 4 respectively, and the underlying
lightweight matrices have 70 and 62 ones respectively.
Furthermore, an attempt to build a 4×4 MDS matrix directly
from underlying lightweight matrices of the form described
in Section 3.2 leads to a search space of 232, which is
significantly larger than the search space of 216 in our
approach. Thus, our proposed methodology yields cipher
linear layers with similar area footprint, and good diffusion
properties (i.e., both branch number and dependency),
while also reducing the computational complexity of the
construction process.

4 Case Study 1: Combining Linear Layer
Design with FST on a PRIDE-like Block Cipher

In this section, we present a case study based on the
block cipher PRIDE proposed recently in [17]. The linear
layer of PRIDE also uses block interleaving, but the sub-
matrices are chosen to be circulant matrices. In our case
study, we substitute the original linear layer of PRIDE with
a linear layer constructed using our proposed technique.
The interleaving construction is used, with each sub-matrix
populated using GF(28) elements that are chosen according
to the strategy proposed in Section 3. The diffusion matrix
L for our modified PRIDE is constructed by interleaving
four binary MDS matrices, each of dimension 16 × 16.
Each of these matrices has differential and linear branch
number equal to 4, which implies that the overall matrix
also has the same linear and differential branch numbers,
as in original PRIDE. These matrices are obtained by
exhaustively searching the space of 2 × 2 lightweight
matrices of the form discussed in Section 3.2, with focus
on minimizing hardware requirements and maximizing
dependency properties. We first briefly describe the linear
layer to be used, and then compare the hardware costs of

our construction with that of the original construction. We
point out that, although the authors of PRIDE claim that
PRIDE is hardware efficient, no results related to hardware
implementations of PRIDE are available in literature to the
best of our knowledge.

4.1 TheModified Linear Layer

4.1.1 The Permutation Mapping

The permutation layer P chosen for our proposed cipher is
the bit wise permutation matrix P 16

1,1,1,1, as in the original
construction for PRIDE. This permutation layer is suitable
for hardware implementations as it comes entirely free of
cost.

4.2 TheModifiedMDS Layer

The diffusion matrix L is constructed by interleaving
four binary MDS matrices, each of dimension 16 × 16.
Each of these matrices has differential and linear branch
number equal to 4, which implies that the overall matrix
also has the same linear and differential branch numbers,
as in original PRIDE. These matrices are obtained by
exhaustively searching the space of 2 × 2 lightweight
matrices of the form discussed in Section 3.2, with focus
on minimizing hardware requirements and maximizing
dependency properties.

The diffusion matrix L is constructed using the inter-
leaving construction. We construct 4 binary MDS matrices
L1, L2, L3, and L4, each of dimension 16×16 and combine
them to obtain the final 64 × 64 matrix L.

(
0 1
1 2

)4

=
(

5 8
8 21

)
,

(
2 1
1 0

)4

=
(

21 8
8 5

)

(
0 1
1 4

)4

=
(

17 64
64 10

)
,

(
4 1
1 0

)4

=
(

10 64
64 17

)

4.2.1 Security Against Classical Cryptanalysis

Since the differential and linear branch numbers of each
of the four sub-matrices L0, L1, L2, and L3 is 4, it is 4
for the entire linear layer L by construction. From the
MDS property, this implies that a minimum of 4 S-boxes
are active every 2 rounds, and 32 in 16 rounds. As in
PRIDE, the choice of S-boxes implies that there is no single
differential trail over 16 rounds with average probability
better than ( 1

4 )32 = 2−64. Similarly, for linear cryptanalysis.
the maximum absolute correlation value for a single linear
trail is upper bounded by ( 1

2 )32 = 2−32. Since our proposed
cipher has the same differential and linear characteristics
as PRIDE, the security analysis for PRIDE against round
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reduced implementations, as well as other forms of attacks
such as algebraic attacks also holds for our cipher.

4.2.2 Hardware Implementation Results

We implemented both the original and modified versions
of on a Virtex-5 FPGA (XC5VLX330T) and compare their
resource consumptions. To the best of our knowledge, this
is the first report in literature on an FPGA implementation
of PRIDE. The architecture of PRIDE with our proposed
linear layer construction is shown in Fig. 3. This architecture
is an example of iterative style of implementation where a
single round implementation is iterated multiple times to
execute the cipher operation. The architecture of the original
PRIDE is nearly same as Fig. 3, with the only difference
being in the MDS layer implementation. Table 2 presents
a detailed summary of the design of the original version of
PRIDE on FPGA, while Table 3 presents the corresponding
details for modified PRIDE. Table 4 then compares the
resource requirements for the linear layer of original and
modified PRIDE in terms of gate counts and LUTs. The
gate equivalent values are presented in terms of 2-input
XOR gates. We note that the modified design does not
increase the resource requirements for any other component
except the control unit, which requires 6 LUTs more than
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Fig. 3 The architecture of PRIDE with proposed design specification

the original PRIDE. The additional control unit overhead
in modified PRIDE stems from the need for additional
multiplexers when iterating over the lightweight roots of the
MDS matrices to achieve the same linear and differential
characteristics as original PRIDE. The overall savings for
the full implementation in modified PRIDE, as compared to
original PRIDE, is thus 10% (26 LUTs), which is 40% of the
maximum savings that could be achieved in any hardware
implementation in PRIDE without altering any of the other
components.

4.2.3 Description of the Architecture for Original PRIDE

The architecture of PRIDE with our proposed linear layer
construction is shown in Fig. 3. This architecture is an
example of iterative style of implementation where a single
round implementation is iterated multiple times to execute
the cipher operation. The architecture of the original PRIDE
is nearly same as Fig. 3, with the only difference being
in the MDS layer implementation. A detailed summary of
the design of the original version of PRIDE on FPGA is
presented in Table 2. It is important to note that the LUT
requirement for linear layer of PRIDE is approximately 25%
of the total LUT requirements. Thus, keeping the rest of
the architecture including the S-Box and the key schedule
intact, the maximum total LUT savings that any optimization
of the linear layer might yield is upper bounded by
25%. Nonetheless, any saving is crucial from the point of
lightweight cryptography.

4.2.4 The Resource Savings Achieved in Hardware

We next describe the resource savings achieved by our
design methodology for the linear layer of PRIDE. We
present our results in terms of both gate savings in ASIC,
as well as LUT savings on FPGA. It is important to note
that the expected savings with respect to gate counts on
ASIC does not translate exactly to LUT savings on FPGA.
This difference however can be explained mathematically
using the formulation presented in [52] as follows. Consider
a q bit combinatorial circuit. Then, the minimum number
of LUTs required to implement this circuit can be lower
bounded as follows:

#LUT(q) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if q = 1
1 if 1 < q ≤ 4

x� if q > 4 and qmod3 = 2
�x
 if q > 4 and qmod3 �= 2

(1)

Table 4 compares the resource requirements for the linear
layer of PRIDE in terms of gate counts and LUTs. The gate
equivalent values are presented in terms of 2-input XOR
gates. We note that the modified design does not increase the
resource requirements for any other component except the
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Table 2 Resource requirement
of original PRIDE on Virtex-5
FPGA

Design Design LUT Flip-flops DSP Clock Maximum

name module blocks cycles frequency

Key-Xor+MUX 1 64 0 0

MUX 2

S-Box 64 0 0

MDS 64 0 0 22 163 MHz

Original MUX 3 64 0 0

pride Control unit 7 5 0

Key schedule 0 0 4

Register 0 64 0

Total 263 69 4

control unit, which requires 6 LUTs more than the original
PRIDE. The overall savings for the full implementation is
thus 10%, which is 40% of the maximum savings that could
be achieved in any hardware implementation in PRIDE
without altering any of the other components.

Since each round requires a single clock cycle, the overall
implementation of PRIDE has a requirement of 22 clock
cycles, including two additional clock cycles for the key
whitening operations. Our modified version of PRIDE, on
the other hand, must iterate the MDS part of the linear
layer four times in each round except the penultimate round.
However, we point out that the critical path delay of the
linear layer of PRIDE is four 2-input XOR gates due to
the presence of a minimum of five ones in each row of
the linear layer matrix. On the other hand, the modified
linear layer designed using our technique uses extremely
lightweight underlying matrices with a maximum of three
ones in any row. The critical path delay is thus due to two
XOR gates. On FPGA, according the formulation presented
in [52], the maximum combinatorial delay of a q-bit circuit
is given by

⌈
log4(q)

⌉
times the delay of a single LUT. This

value is 4 and 2.5 respectively for the original and modified
linear layer designs. Hence, for the modified PRIDE, we
perform the linear layer operation using a faster clock with
double the frequency of the original clock used for the other

operations, such as substitution and key-XOR. This clever
use of clock switching between the non-linear and linear
layer operations leads to an overall requirement of 51 clock
cycles for the modified PRIDE. Now, if we consider the area
savings in terms of gate requirement (60% on ASIC), the
overall area time product for the modified PRIDE is less by
7.5%.

4.3 Resistance to Fault Attacks

In this section, we examine the fault tolerance of an
implementation of PRIDE that uses its linear layer for
FST space transformation in a time-redundant fashion. Our
approach is to inject highly localized faults within a single
nibble, and to gradually enhance the fault intensity so as
to increase the number of faulty bits within the target
nibble. We illustrate the difficulty of the attack in the
presence of FST by presenting the distribution of faults in
the original round and the corresponding equivalent fault in
the redundant round in Fig. 4. The fault injection parameters
are the same for both the injections. We note that in the
presence of FST, all localized single nibble faults in the
original computation are mapped to faults spreading across
four nibbles in the redundant computation, all two nibble
faults are mapped to either four or eight nibble faults, all

Table 3 Resource requirement
of modified PRIDE on Virtex-5
FPGA

Design Design LUT Flip-flops DSP Clock Maximum

name module blocks cycles frequency

Key-Xor+MUX 1 64 0 0

MUX 2

S-Box 64 0 0

MDS 32 0 0 45 185 MHz

Modified MUX 3 64 0 0

pride Control unit 13 10 0

Key schedule 0 0 4

Register 0 64 0

Total 237 74 4
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Table 4 Comparison of
original and modified PRIDE :
hardware resources

Design platform Original PRIDE Modified PRIDE Percent savings

ASIC 128 2-input XORs 50 2-input XORs 60

FPGA 64 LUTs 32 LUTs 50

three nibble faults are mapped to either four, eight, or twelve
nibble faults. Beyond this, the equivalent fault spreads
across all the nibbles of the cipher state in the redundant
computation. Using low-cost fault injection techniques such
as clock glitches, and even more sophisticated techniques
such as EM pulse injections, such an attack is practically
very difficult to achieve.

5 AreMDS Transformations Mandatory
for Achieving FST?

In the aforementioned discussion, we have illustrated a design
strategy for obtaining MDS transformations with lightweight
roots that serve the dual purpose of diffusion (for resistance
against classical cryptanalysis) and FST (for resistance
against fault attacks). However, there exist a number
of block ciphers that do not use MDS transformations,
examples being—SIMON, SPECK, and PRESENT. Some
of these block ciphers, such as PRESENT, have specially
designed linear layers so as to ensure the adequate linear
and differential branch numbers for a desired number of
active S-Boxes across a certain number of rounds. In others,
such as SIMON, the linear layer merely consists of bit shifts
and XOR gates. It appears that incorporating FST in such
block cipher designs would require the introduction of an
additional MDS transformation, thereby compromising to
a large extent the lightweight nature of the design itself.
However, this is not necessarily true. In the following case
study on PRESENT, we illustrate how its bit permutation -
based linear layer suffices to achieve FST, thus doing away
with the need for an additional MDS block in the design.

5.1 Case Study 2: FST Using Non-MDS Linear Layer
of PRESENT

We present a second case study using PRESENT to illustrate
that even non-MDS FST injection methodology is identical
to that described in Section 4. The target is the block
cipher PRESENT, augmented with spatial redundancy-
based FST using its bit permutation-based linear layer. We
illustrate this by presenting the distribution of faults in
the original round and the corresponding equivalent fault
in the redundant round in Fig. 5. Quite surprisingly, the
distribution of faults, presented in Fig. 5, are nearly identical
to that in Fig. 4 for PRIDE. The observation may be

explained as follows. The bit permutation layer of PRESENT
ensures that nibble of the input of the permutation branches
out into four different nibbles of the output—a property
that most MDS mappings also exhibit. This property is
most significant with respect to FST, since it ensures that a
localized fault in the original fault space transforms into a
non-localized fault in the transformed fault space.

6 Design of the Non-Linear Layer:
Side-Channel Security

Masking of the non-linear substitution boxes (S-Boxes) [20]
is a popular countermeasure against differential power analy-
sis (DPA). For ideal security, the mask should be chosen
uniformly at random, that is, refreshed after every encryp-
tion. This is, however, extremely costly both in terms of
area overhead and throughput loss, and is hence rather
impractical for lightweight applications targeting resource-
constrained devices. As an alternative design strategy, we
advocate trading off security with efficiency by refreshing
the mask at pre-specified intervals instead of after every

Fig. 4 Effect of fault space transformation on fault distribution: a
PRIDE-like block cipher
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Fig. 5 Effect of fault space transformation on fault distribution:
PRESENT-64

encryption. In particular, we focus on serialized block cipher
implementations, which is a popular hardware implementa-
tion strategy for area-constrained applications. The periodic
refresh strategy is further complemented by a careful choice
of S-Box for the block cipher. For this, we resort to using
modified transparency order (MTO) metric [21] to com-
pare between different S-boxes in terms of their resistance
against DPA. We establish via simulation studies that there
exists a direct correlation between the MTO value of a
given S-Box, and the adequate refresh rate for a masked
implementation of the same to achieve reasonable side-
channel security. In other words, a careful S-Box choice
guided by the MTO metric potentially reduces the overhead
of periodic mask refresh and improves throughput. Finally,
all analysis in this section assumes security against first-
order side-channel attacks. While elegant countermeasure
techniques exist against higher-order side-channel attacks,
they are usually too expensive to implement on resource-
constrained devices, and are hence not considered in the
following discussion.

6.1 Modified Transparency Order of S-Boxes

The first attempts to quantify the theoretical resistance of
S-Boxes against DPA attacks were based on evaluating
the signal-to-noise ratio (SNR) of the implementation [53].
The transparency order (TO) [54] was then proposed as
a more formal metric focusing on the resilience of S-
Boxes against DPA attacks. TO is essentially dependent

on the propagation characteristics of the S-Box coordinate
functions, and uses a side-channel efficiency metric close
to the standard score measure introduced in [55]. While the
authors of [54] argued that S-Boxes with smaller TO have
higher DPA resilience, the definition of TO itself was found
to have drawbacks, which were eventually corrected in [21]
resulting in a new metric called the MTO.

We begin by recalling the definition of MTO [21] of S-
Boxes as a means to evaluate their side-channel resilience.
An n × m S-Box F can be seen as a multi-output Boolean
function, namely a function from Fn

2 into Fm
2 with m ≤ n.

Let u ∈ Fm
2 be a vector whose binary coordinates are all zero

except one which is assumed to be at index j , and let Cf1,f2

denote the cross-correlation spectrum between two Boolean
functions f1 and f2. The j th component function of the S-
Box F is the single output Boolean function u · F . If F =
(F1, . . . , Fm), then one may note that u · F = Fj . We also
recall the notion of cross-correlation spectrum between two
Boolean functions; for f1, f2 ∈ Bn, it is defined for every
ω ∈ Fn

2 as the value Cf1,f2(ω) = ∑
x∈Fn

2
(−1)f1(x)⊕f2(x⊕ω)

(note that we have Cf,f (ω) = Af (ω)).

Definition 1 Let F be a balanced n × m function. Its
improved transparency order is the coefficient TO(F )

defined by the following:

TO(F ) = max
β∈Fm

2

⎛

⎜
⎝m − 1

22n − 2n

∑

a∈Fn∗
2

m∑

j=1

∣∣∣∣∣

m∑

i=1

(−1)βi⊕βj CFi ,Fj
(a)

∣∣∣∣∣

⎞

⎟
⎠ .

(2)

MTO in particular corrects the earlier definition of TO [54]
with respect to the assumption that all the coordinates of an
S-Box are balanced, which does not apply to the entire space
of S-Box functions, such as bent functions. In addition, it
also advocates that the cross-correlation terms between S-
Box coordinates should be treated as non-zero, unlike in
the original definition, where it is treated to be zero. MTO
is, to the best of our knowledge, the most comprehensive
metric for quantifying DPA resilience of S-Boxes in the
cryptographic literature today.

6.2 Masking with Periodic Refresh: Security Versus
Lightweight Implementations

Masking of S-Boxes [20] is a popular countermeasure
against DPA that aims to randomize the S-Box computa-
tions, thereby destroying the correlation of the power leak-
age with the sensitive data during the execution of the block
cipher. Given an S-Box S, an unprotected S-Box imple-
mentation would compute y = S(x) directly. A masked
implementation, on the other hand, uses a pair of input and
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output masks mx and my respectively to compute ym =
S(xm), such that xm = x ⊕ mx and ym = y ⊕ my respec-
tively. This ensures that any leakage is independent of the
key. For ideal security, the mask should be chosen uniformly
at random, that is, refreshed after every encryption. This
is, however, extremely costly both in terms of area over-
head and throughput loss, and is hence rather impractical
for lightweight applications targeting resource-constrained
devices. Our aim in this section is to propose a trade-off
between security an efficiency by refreshing the mask at
pre-specified intervals instead of after every encryption. In
particular, we focus on serialized block cipher implementa-
tions, which is a popular hardware implementation strategy
for area-constrained applications.

We point out here that there are two possible mask refresh
strategies for lightweight serialized implementations that
could be used in practice. One possibility is to use different
masked S-Boxes for each state byte/nibble, and to refresh
the masks for each S-Box for each encryption. This is the
best possible scenario and affords provable security. The
masks for the next encryption could be prepared during the
current encryption itself, since a serialized implementation
allows sufficient clock cycles during execution for the same.
This approach, however, requires the masked S-Boxes for
the next round to be stored, leading to an increase in the
area footprint of the design. A more lightweight strategy
is to use a single masked S-Box for each state byte/nibble,
and to refresh the mask periodically to ensure the side-
channel leakage does not exceed the safe threshold. This
strategy is not provably secure, but is more lightweight
while offering reasonable security at the same time. In
addition, the security of the system in this case also depends
on the choice of the underlying S-Box. Given two S-Boxes,
choosing the one supports a lower mask refresh rate without
exceeding the safe leakage threshold leads to a secured
implementation with a lower cost.

Note that the mask refresh rate critically affects the through-
put of any protected block cipher implementation. In par-
ticular, a very high refresh rate could catastrophically
reduce throughput, making it unsuitable for a large range
of real-time applications with reasonably high throughput
requirements. High refresh rates also make the implementa-
tion vulnerable to fault attacks—an adversary could simply
inject faults into the registers used for the mask refresh,
instead of the cipher state registers, and bias the mask
shares to enhance side-channel leakage. Thus, even though
a high mask refresh rate greatly advances resistance against
side-channel attacks, it could degrade both performance
and security via alternative attack channels. Hence, in our
case studies presented subsequently, we explore the trade-
off between the refresh rate and the minimum number of
samples at which the TVLA evaluation crosses the safe
threshold of 4.5. We then choose a refresh rate that ensures

that this minimum number of samples is beyond 50,000.
Such a refresh rate appears optimal in the sense that (a)
it does not lead to a massive decrease in throughput, and
(b) the mask refresh operation can be executed at suffi-
ciently unpredictable intervals to prevent an adversary from
performing a targeted fault injection in the mask refresh
circuit.

In our case study, we present a side-channel and fault-
attack resistant block cipher architecture that makes use of
four block RAMs, which are essentially dedicated two-port
memory elements available in Xilinx FPGAs, to store the
mask shares. The use of Block RAMs not only reduces the
overall slice count of the design, but also enhances security
against side-channel and fault attacks. We point out that the
use of Block RAMs for efficient design of cryptosystems is
quite abundant in literature [56, 57]. Indeed, given the fact
that nearly all modern FPGAs are equipped with dedicated
hard IPs, such as Block RAMs, a judicious utilization
of the same for reducing the area footprint of a design
targeted primarily for FPGA-based platforms seems quite
acceptable. In an actual implementation for deployment in
real-world applications, it is preferable to store the mask
shares in small tamper-resilient memory units embedded
in the target device, so as to prevent corruptions via fault
injections.

6.3 UsingMTO for Choosing S-Boxes

The MTO metric proves very useful in the context of
choosing S-Boxes that allow lightweight designs with
reasonable security. We explain this by presenting a case-
study on 4 × 4 S-Boxes for the block cipher PRINCE listed
in [58]. The minimum MTO values of these eight S-Boxes
are presented in Table 5. We compare two 4 × 4 S-Boxes
out of the eight presented in Table 5—namely S-Box 1 and
S-Box 7, having MTO values 1.66 and 2.33 respectively,
with respect to their resilience to DPA in the presence of
masking with varying refresh rates. Figure 6 summarizes the
leakages for both the S-Boxes—in the absence of masking
and in the presence of masking with refresh rates of once per

Table 5 Minimum MTO values for the eight PRINCE S-Boxes

S-Box Min. MTO

S-Box-1 1.63333

S-Box-2 1.7

S-Box-3 1.66667

S-Box-4 1.56667

S-Box-5 2.16667

S-Box-6 2.1

S-Box-7 2.23333

S-Box-8 2.2
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Fig. 6 Comparison of TVLA values for S-Box 1 and S-Box 7 with different mask refresh rates

40, 60, 80, and 100 encryptions respectively. The leakage
is measured using the popularly used test vector leakage
assessment (TVLA) metric [24]. Quite evidently, in each

of the cases, S-Box 7 exhibits TVLA leakage greater than
the safe threshold of 4.5 in a fewer number of traces than
S-Box 1 (excluding the initial irregularities arising from
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unexploitable forms of leakage). Thus, given a set of S-
Boxes with widely varying MTO values, choosing the S-Box
with lesser TO leads to a secured masked implementation
with lesser cost.

6.4 Qualitative Comparison with Fresh Re-keying

Fresh re-keying is an elegant technique that can be used to
thwart a number of implementation-based attacks, including
DPA and fault attacks. A nice exposition on the advantages
of fresh re-keying in RFID technology is presented in [59].
The authors of [59] propose a fresh re-keying scheme that
is especially suited for challenge-response protocols such as
used to authenticate tags. A qualitative comparison reveals
certain similarities between masking with periodic refresh
and fresh re-keying: in both cases, the implementation uses
an additional function acting as a source of randomness
to prevent an adversary from collecting sufficient number
of correlated leakage traces from a given cipher imple-
mentation. For fresh re-keying this is the function used
to refresh the key, while in masking, this is the function
used to generate the fresh mask shares. Additionally, the
refresh rate in each implementation directly influences secu-
rity: a refresh for every encryption renders certain forms
of attacks impossible to mount, while a lower refresh rate
results in a trade-off between security and efficiency. We
believe that for our approach provides an alternative to the
fresh re-keying mechanism, both in terms of security and
efficiency, especially in applications other than those based
on challenge-response protocols, where fresh re-keying may
not be viable.

7 Strenghtening Side-Channel Resistance:
Lightweight Shuffling Across Rounds

This section presents the idea of shuffling across multiple
rounds as a cipher-dependent countermeasure strategy to
prevent side-channel attacks on lightweight serialized imple-
mentations of block cipher algorithms. In a shuffled imple-
mentation, any key-dependent operation is deranged in time,
thereby increasing the uncertainty of the adversary as to
when a specific key-dependent operation occurs in time.
This in turn reduces the SNR of the implementation, thereby
increasing security against side channels [22]. Standard
shuffling practices often advocate shuffling to be restricted
within the operations in a single round. This often does not
afford sufficient security for shuffling to be used as a stand-
alone countermeasure. In this section, we present details of
how shuffling may be done across multiple rounds of a cryp-
tographic algorithm, and how this depends on the nature of
the underlying block cipher. Our analysis is generic enough
to be applicable to a wide range of block ciphers.

7.1 SNR and Shuffling

Suppose that during the execution of a cryptographic
algorithm, a side-channel adversary targets a specific
operation, which depends on a specific subpart of the
secret key K and occurs at time tc in an execution
of the cryptographic algorithm. Let P̂ be the leakage
from the device at time t̂c, which is composed of two
component leakages—P due to the actual processing of the
target intermediate result (also referred to as the signal),
and N due to device and algorithmic noise. Let the
hypothetical leakage corresponding to the correct sub-key
guess corresponding to the target operation be H . Also,
let ρ(H, P̂ ) and ρ(H, P ) denote the correlation coefficient
between the hypothetical power consumption and the total
and signal (actual) leakages respectively.

Then, as per the formulation stated in [22], we have the
maximum correlation as follows:

ρmax(H, P̂ ) = ρ(H, P )
√

1 + 1
SNR

(3)

Thus, quite evidently, lower the SNR, the easier it is for an
adversary to attack the given cryptographic implementation.

Finally, the number of samples S required to mount a
successful SCA attack is related to the maximum correlation
ρ(H, P̂ ) as follows:

S = 3 + 8

⎛

⎜
⎝

Zα

ln
(

1+ρ(H,P̂ )

1−ρ(H,P̂ )

)

⎞

⎟
⎠

2

(4)

where Zα denotes the distance between the sampling
distributions with minimum and maximum correlation
coefficients and is a device dependent parameter [22].

In a shuffled implementation, any key-dependent opera-
tion is deranged in time. There now exists a finite proba-
bility p̂ that the target operation occurs at a particular time
tc. In such a scenario, the expression for ρ(H, P̂ ) takes the
form:

ρmax(H, P̂ ) = ρ(H, P )
√

1 + 1
SNR

×
√

p̂ ×
√

Var(P )

Var(P̂ )
(5)

Quite evidently, greater the extent of derangement due to
shuffling, lower is the value of p̂ and the more difficult it is
for the adversary to mount an SCA, such as integrated DPA
on the implementation.

7.2 Block Cipher Structure-Dependent Shuffling
Across Multiple Rounds

We introduce the concept of generalized shuffling across
multiple rounds of a cryptographic algorithm. We assume
the following parameters for the structure of the underlying
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Fig. 7 The inter-round
dependencies : an illustration for
three rounds

block cipher, which in turn impact the prospects of the multi-
round shuffling algorithm:

– The cipher algorithm consists of R rounds
– Each round r (where 1 ≤ r ≤ R) consists of exactly

N key-dependent operations that may be targeted by an
adversary (such as S-Box computations)

– Each potential target operation in round r + 1 depends
on the output of exactly m operations from round r

We refer to m as the degree of diffusion for the block cipher
(Fig. 7).

7.3 The Derangement Space

We now analyze mathematically the impact of shuffling the
operations across multiple rounds on the derangement space
(the number of clock cycles across, which a sensitive
operation may be permuted) for each operation. Let the
operations in a serialized implementation of the target block
cipher be shuffled across k rounds, for 1 ≤ k ≤ N , and let r

be any arbitrary round in this shuffling range. For maximum
diffusion across rounds, it is logical to assume that the
computation of each potential target operation in round r

depends on exactly min(mi, N) operations in round r−i−1.
Thus, for l = logm N , any operation in round r depends
on all operations in rounds prior to r − l − 1, and affects
every operation in rounds succeeding r + l. Such absolute
dependencies therefore cannot contribute to the uncertainty
due to shuffling.

Then, any shuffling algorithm for k rounds must satisfy the
following categories of constraints, as depicted pictorially
in Fig. 8. Category 1 and category 4 enumerate complete

dependencies, while categories 2 and 3 enumerate partial
dependencies across rounds.

1. Category 1: Any operation in round r depends on each
of the N operations computed in rounds 1, · · · , r − l

(assuming r > l)
2. Category 2: Any operation in round r depends on

exactly ml−1, ml−2, · · · , m operations computed in
rounds r − l + 1, r − l + 2 · · · , r − 1

3. Category 3: Any operation in round r affects the output
of exactly m,m2, · · · , ml−1 operations computed in
rounds r + 1, r + 2, · · · , r + l − 1

4. Category 4: Any operation in round r affects the output
of all N operations in rounds r + l, · · · , k (assuming
k ≥ r + l)

Keeping the aforementioned dependencies in mind, we
argue that an arbitrarily large value of k is not desirable for
the following reasons:

– A very large value of k makes generating permutations
of size Nk a computationally intensive task, and
sacrifices the very lightweightness that makes shuffling
an attractive countermeasure choice.

– A very large value of k brings a large number of
dependencies of categories 1 and 4, which are rather
deterministic from the point of view of the adversary,
and do not contribute to the overall randomness of the
permutation.

In particular, we propose choosing values of k such that
k ≤ l + 1. This ensures that for all values of r where
1 ≤ r ≤ k, we have r ≤ l + 1 and k ≤ r + l.
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Fig. 8 Shuffling Across k rounds : the constraints for a random round r

Now, let Dr be the maximum possible range in time over
which any operation in round r may be effectively deranged.
It is easy to see that for shuffling across k rounds, the
derangement space Dr may be lower bounded as follows:

Dr = Nk − N(r − l − 1) − ml − m

m − 1
− mk−r+1 − m

m − 1

= Nk −
(

mr − m

m − 1

)
−

(
mk−r+1 − m

m − 1

)

= Nk − 2

(
ml − m

m − 1

)

≥ Nk − 2
(
m + · · · + ml−1

)
(6)

We point out that while multi-round shuffling seems to be
a generic countermeasure idea, a precise implementation
of the same is heavily dependent on the structure of
the target cipher. For example, for block ciphers with a
substitution-permutation network based structure (such as
AES or PRESENT), the maximum number of rounds to
which shuffling may be extended is given by logm N , where
N is the number of operations in each round and m is the
degree of diffusion.

In addition, the derangement space (and consequently the
degree of security afforded) is a also a function of the N and
m.

Note that for one-round shuffling, the value of Dr is
N , which follows from the fact that only the operations
within one round are being shuffled. For k = 2, we have
Dr = 2N − m.

7.4 Security of k -round Shuffling Against
Side-Channel Attacks

We now examine the impact of shuffling across multiple
rounds on the side-channel resistance of the target block

cipher. Recall from Eq. 5 that the maximum correlation
ρ(H, P̂ ) between the hypothetical and the total power
consumptions (H and P̂ respectively) depends on the
derangement probability p̂ for the given target operation.
Assuming that our shuffling algorithm ensures that a given
operation in round r is permuted uniformly at random
across its entire derangement space Dr , the derangement
probability p̂ is given by the following:

p̂k−round shuffling = 1

Nk −
(

mr+mk−r+1−2m
m−1

) (7)

Our next step is to relate the increase in derangement
space due to multi-round shuffling with the corresponding
increase the number of samples required to attack a block
cipher implementation, as compared to an unprotected
version of the same. This analysis follows from the standard
relation of the SNR of an implementation with the number
of attack samples required (refer [22] for more details):

Sk−round shuffling

Sunprotected
≈

⎛

⎝
ln

(
1+ρunprotected
1−ρunprotected

)

ln
(

1+ρk−round shuffling
1−ρk−round shuffling

)

⎞

⎠

≈
(

ρunprotected

ρk−round shuffling
.
1−ρk−round shuffling

1−ρunprotected

)

≈
(

ρunprotected

ρk−round shuffling

)

≥
(

Nk −
(

mr + mk−r+1 − 2m

m − 1

))
(8)

Thus, given a block cipher parameterized by (N, m), our
aforementioned analysis allows us to evaluate a lower bound
on the side-channel security afforded by shuffling across
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k rounds in terms of the derangement space afforded by
multi-round shuffling. For example, for the block cipher
PRESENT with N = 16 and m = 4, shuffling across k = 2
rounds is expected to have a derangement space around 1.75
times larger than traditional shuffling within a single round.
This in turn affords greater security against side-channel
attacks. Note that both the security and the implementation
overhead for multi-round shuffling is heavily dependent on
factors, such as N and m, and hence, on the structure of the
underlying block cipher.

7.5 Unification of Masking andMulti-Round
Shuffling

We conclude our proposals for lightweight design-for-
security against die channel attacks by advocating a
combination of masking with periodic refresh, and shuffling
across rounds. From the point of view of security, it is
enough to have only masking, with a refresh rate of once per
encryption, which makes the system provably secure against
side-channel attacks such as DPA. However, in resource-
constrained environments, this is too expensive and often
impractical to achieve without compromising hugely on the
throughput. Hence, any practical lightweight system can
only afford masking with a limited mask refresh rate, which
in turn implies compromising on security. Such a system
can, however, be fortified further against side-channel
threats by the incorporation of multi-round shuffling as

proposed above. This leads to systems with strong security
and, at the same time, lesser cost of implementation than
provably secure masking.

8 Case-Study 3: CombiningMasking
with Refresh and Two-Round Shuffling
for PRESENT

In this section, we present a case study on a PRESENT-
64 where we combine both the aforementioned strategies
of masking with periodic refresh and shuffling across two
rounds in order to resist side-channel attacks. Our aim here
is to demonstrate that while neither of these lightweight
strategies can serve as stand-alone countermeasures, their
combination results in a design that has sufficient security
against side-channel attacks for IoT-based applications.
In addition, the design is more lightweight in terms of
area footprint as compared to the most efficient two-share
threshold implementation of PRESENT [60] reported in the
existing literature.

8.1 Implementation Details

In this section, we present details of our implementation
of PRESENT that combines both masking with periodic
refresh and shuffling across two rounds. Figure 9 illustrates
the basic serialized architecture of our design that processes

Fig. 9 Combined masking and two-round shuffling on PRESENT-80
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one nibble per clock cycle. We make use of Block RAMS—
dedicated two-port memory elements in Xilinx FPGAs—as
storage elements for the block cipher state. Three such
memory blocks are maintained in the architecture in order
to accommodate two-round shuffling. While one of these
stores the content of the previous round, the other two are
used to update the state nibbles of the current and next
round in random shuffled order. The cross-dependencies
across nibbles in consecutive rounds (induced by the bit
permutation layer) are handled using a combination of
multiplexers. The masked S-Box for the first two rounds is
prepared initially before the start of the encryption, while
the masked S-Box for each round r + 1, where r ≥ 1,
is programmed in parallel to the execution of round r (the
control signal PROG is used to handle the parallel S-Box
programming). Thus, the mask gets refreshed after every
two rounds of execution.

8.1.1 Area Overhead Results

The resource overhead for our implementation of PRESENT
that combines masking with two-round shuffling is pre-
sented in Table 6. The target platform is a Xilinx xc5vlx50
FPGA. Table 6 also compares the overhead of our imple-
mentation with that of existing threshold implementations
for PRESENT against first-order side-channel attacks. The
comparison results clearly demonstrate that our imple-
mentation is more lightweight than all existing threshold
implementations of PRESENT in terms of both LUT and
flip-flop requirements. While our design uses four addi-
tional BRAMs, we would like to point out that Table 6
presents the area overheads only for the encryption modules
of each design; all TI implementations reported here require
additional area for pseudo-random number generation and
other pre-computation steps such as in [62]. Hence, the use
of four additional BRAMs does not make our design more
expensive that TI implementations.

8.1.2 Power Consumption

With respect to power consumption, we calculated the
average and maximum power consumed by our side-
channel resistant implementation, which were found to be
225.6 and 226.2 mW, respectively. This is around 12%
more energy consumption as compared to an unprotected
serialized implementation of PRESENT, that consumes
around 205.7 mW of power on an average, and a maximum
of 210.1 mW. The consumed power was measured using the
voltage drop across a 1-ohm shunt register on a SASEBO
GII board.

8.2 Leakage Analysis

In this section, we present an analysis of the security
of our proposed countermeasure strategy against side-
channel attacks. The analysis is presented for each of the
four configurations mentioned above using the popularly
used test vector leakage assessment (TVLA) metric [24].
Figure 10 presents the TVLA leakage of the four
configurations across 50,000 power traces collected on a
SASEBO GII board. A comparison of the maximum TVLA
progression with the number of collected traces for each
configuration is presented in Fig. 11. We briefly comment
about the leakage for each configuration below (the area
overhead for each configuration can be found in Table 7):

1. Unprotected Implementation: The unprotected imple-
mentation of PRESENT obviously suffers from the
maximum leakage due to the absence of any counter-
measures against side-channel attacks.

2. Masking with Refresh: The second maximum leakage
rate comes from the implementation with only masking.
This is probably a bit surprising, but maybe explained
as follows. The mask share is refreshed only once in
32 clock cycles, and the same masked S-Box is used

Table 6 Comparison of implementation overhead

Implementation Slice count Slice count Block Maximum Target Synthesis

(encryption module) (look-up tables) (registers) RAM frequency FPGA tool

Threshold (first order) [61] 641 384 0 218 MHz Xilinx Spartan-6 LX75 Xilinx XST

Threshold (first order) [62] 808 384 0 207 MHz

Threshold (second order) [62] 2245 1680 0 204 MHz

Threshold (first order) [63] 1720 722 0 112 MHz

Threshold (first order) [60] 742 362 0 490 MHz Xilinx Virtex-5 xc5vlx50

Shuffling + masking (this paper) 570 308 4 105 MHz Xilinx xc5vlx50
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Fig. 10 TVLA leakage on
50,000 traces for different
implementations using
PRESENT S-Box

across two rounds of computation. This is thus a rather
lightweight form of masking that compromises most of
the requirements of normal masking, such as in thresh-
old implementations [60, 64]. Such a masking strategy
is therefore not meant to serve as a stand-alone coun-
termeasure against side-channel attacks. However, in
conjunction with other low-cost countermeasures such
as shuffling, it improves the security of the implemen-
tation.

3. Two-Round Shuffling: Two-round shuffling has a much
lower leakage as compared to the unprotected and
masking-only implementations. It is, again, a light-
weight countermeasure that is stronger than one-
round shuffling but not secure enough to serve as a
stand-alone countermeasure. This is not a surprising
observation since, as per our analysis in Section 7.1
shuffling increases the number by samples required to
break the system by around 28 times, which is a linear
increase in security.

4. Masking + Shuffling: This implementation is the most
secure and barely crosses the safe threshold over 50,000
power traces. Thus, quite evidently, combining two
lightweight countermeasure techniques, none of which
are sufficiently secure in isolation, we arrive at a design

that is both lightweight and more secure than of the
aforementioned techniques in isolation.

For a more exact estimation of the actual strength of
our countermeasure, we state that the TVLA leakage from
the design using the PRINCE S-Box is found to exceed the
threshold of 4.5 at around 150,000 traces.

9 Case-Study 4: Combining Side-Channel
Analysis with Fault Resistance
for a PRESENT-like Block Cipher

We present a final case study where we assimilate our pro-
posed design strategies for protection against side-channel
and fault attacks. In particular, we make two main altera-
tions/additions to the implementation of PRESENT reported
in Section 8: (a) we incorporate a spatial redundancy-based
FST in the design according to strategies discussed in
Section 2, and (b) we implement the design principle for
S-Boxes proposed in Section 6. In particular, we substitute
the PRESENT S-Box with the candidate 4 × 4 S-Box for
PRINCE listed in [58] that has the least MTO among all
such candidate S-Boxes (see S-Box-4 in Table 5 with a mini-
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Fig. 11 Progression of TVLA with number of power traces: implementa-
tions using PRESENT S-Box

mum MTO value of 1.56667). We also present an equivalent
case study for the block cipher GIFT proposed in [19],
where we combine spatial redundancy-based FST using
the bit permutation layer of GIFT with a refreshing-based
masked implementation of the PRINCE S-Box and shuffling
of S-Box operations across rounds. Since the TVLA leak-
age for the protected GIFT implementation is found to be
nearly identical to that of the PRESENT implementation,
we only report the area overhead in this case. The TVLA
leakage for the PRESENT-like implementation is presented
in Fig. 12 while the architecture for the protected GIFT-64
implementation is presented in Fig. 13.

9.1 Area Overhead of Our Combined Strategy

The resource overhead for our design is presented in Table 8,
and is compared against the combined countermeasure pre-
sented by Cnudde et al. in [64], which is the only other
combined countermeasure strategy targeting PRESENT for
FPGA-based implementations, to the best of our knowledge.
The countermeasure of Cnudde et al. uses a threshold imple-
mentation to counter side-channel attacks, and combines
the same with private circuits (PC-II) to resist fault attacks.
Table 8 presents an overall comparison of their implementation
with ours, while Table 6 presents a direct comparison of the

Fig. 12 TVLA leakage on 50,000 traces: combined side-channel and
fault attack resistance using PRINCE S-Box

overhead specific to side-channel resistance. Quite clearly,
our strategy leads to a more lightweight implementation;
albeit, at the cost of a trade-off on security, as described in
the following section. Note that while the authors of [64]
have recently presented certain extensions to their original
proposal in [65], the results in [65] entirely target ASIC plat-
forms, and hence do not provide scope for fair comparison.
We therefore restrict our comparison studies to the earlier
version of their paper reporting FPGA implementations. We
also note that the relatively higher overhead for the GIFT-
64 implementation may be attributed to the fact that we
completely avoid the use of block RAMs for this design.
This also provides an estimate of the relative costs of our
approach for designs with and without block RAMs.

9.2 Security of Our Combined Strategy

Figure 12 summarizes the TVLA leakage over 50,000
power traces for two designs—one with the PRESENT
S-Box and the other with the PRINCE S-Box. Both the
designs combine FST with lightweight masking and two-
round shuffling. Note that the use of an S-Box with
lower MTO significantly reduces the TVLA leakage.
In particular, while the TVLA leakage from the design
using the PRESENT S-Box exceeds the threshold of 4.5

Table 7 Area overhead for different implementations

Implementation Slice count Slice count Block Maximum Target Synthesis

(encryption module) (look-up tables) (registers) RAM frequency FPGA tool

Unprotected implementation 215 123 0 205 MHz Xilinx xc5vlx50 Xilinx XST

Only lightweight masking 428 235 1 112 MHz

Only two-round shuffling 354 196 3 145 MHz

Masking + shuffling 570 308 4 105 MHz
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Table 8 Implementation overhead: combined side-channel and fault attack resistance

Implementation Slice count Slice count Block Maximum Target Synthesis

(encryption module) (look-up tables) (registers) RAM frequency FPGA tool

TI+PC-II [64] 10341 1292 0 Not reported Xilinx Virtex-II Pro Xilinx XST

Shuffling + masking + FST (PRESENT-80) 655 344 4 65.7 MHz Xilinx xc5vlx50

Shuffling + masking + FST (GIFT-64) 1244 1081 0 74.9 MHz

within 50,000 traces, the leakage from the design using the
PRINCE S-Box is within the secure threshold over 50,000
traces. This establishes the validity of our proposed design
choice for S-Boxes. In summary, as compared to the
countermeasure strategy of Cnudde et al., our proposal
is more suited to applications targeting highly resource-
constrained environments, and requiring reasonable security
guarantees against both side-channel and fault attacks.

9.3 Comparison with ParTI [66]

We present a comparative study of our proposed combined
countermeasure strategy with ParTI [66]—a recent study

that protects the block cipher LED against side-channel
and fault attacks. Note that the comparison here is purely
of design principles and general overheads incurred, as
opposed to concrete implementation-based comparison,
since the target block cipher for ParTI is LED, while
the target block ciphers for our approach are PRESENT-
80 and GIFT-64. ParTI essentially combines a threshold
implementation of LED with error-detection codes, while
our strategy combines a combined masking and shuffling-
based lightweight implementation of PRESENT/GIFT with
bit permutation-based FST. In terms of design principle, we
point out certain advantages of our strategy over that of
ParTI, especially with respect to IoT applications:
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Table 9 Comparison of
proposed method with other
combined countermeasure
strategies

Countermeasure technique Target cipher Additional overhead (in times)

ParTI [66] LED-64 19.92x

Shuffling + masking + FST PRESENT-80 3.12x

GIFT-64 6.11x

1. As already discussed, our strategy of combining light-
weight masking with two-round shuffling leads to
more resource-efficient side-channel resistant designs
with reasonable security margins as compared to
threshold implementations (see, for example, Table 6
for a comparison of our implementation with existing
threshold implementations for PRESENT). In many IoT
applications where area constraints are paramount, our
technique provides a more suitable alternative.

2. ParTI uses error-detection codes such as parity, and
hence requires additional hardware for predictors and
error-detection modules. Our strategy, on the other
hand, uses FST which, particularly in the case of
PRESENT, is zero-cost in hardware since it only uses
bit permutations.

Table 9 compares the implementation overheads of ParTI
and our proposed implementations of PRESENT and GIFT.
Since the implementations target ASIC and FPGA platforms
respectively, we highlight the relative increase in overhead
for either design as compared to baseline unprotected
implementations of LED and PRESENT, respectively. The
unprotected and protected implementations in either case
are reported for the same ASIC technology/FPGA platform.
In particular, the baseline implementation overhead for
unprotected LED is obtained from [67], which uses the same
0.18 μm technology as used in ParTI. Observe that the
overhead in case of ParTI is 19.92 times that for the baseline
implementation, while that for our implementations of
PRESENT and GIFT are 3.12 times and 6.11 times,
respectively (once again, the difference may be attributed
to the fact hat the GIFT implementation does not use block
RAMs). The difference in overhead due to our approach
with that incurred in the ParTI approach can be principally
attributed to the use of FST in our proposed approach, which
leads to more lightweight designs.

10 Conclusion

In this paper, we addressed the problem of design-for-security
methodologies to construct lightweight block ciphers for
IoT applications with combined protection against both
side-channel and fault attacks. Our target platforms were
FPGAs, which are extremely suitable for IoT owing to their
wide range of reconfigurable properties. We proposed three

main design principles—the first pertaining to fault attack
protection, and the remaining pertaining to side-channel
protection. With respect to fault attacks, we proposed
recursive design strategies for MDS linear layers with
lightweight roots. Such linear layers serve the dual purpose
of providing diffusion for resistance against classical
cryptanalysis, and ensuring FST for countering both DFA-
and DFIA-like fault attacks. In the context of side-channel
protection, we proposed a combination of two lightweight
strategies—masking with periodic refresh and shuffling
across multiple rounds. Finally, we presented a case study
on a PRESENT-like block cipher that combined all our
design choices into a single lightweight implementation
with holistic resistance against both side-channel and fault
attacks. Our design requires around 15% lower resources
as compared to the best threshold implementations of
PRESENT in the literature.
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