
Journal of Hardware and Systems Security (2018) 2:297–313
https://doi.org/10.1007/s41635-018-0048-z

Exploring RFC 7748 for Hardware Implementation: CURVE25519
and CURVE448 with Side-Channel Protection

Pascal Sasdrich1 · Tim Güneysu1

Received: 14 February 2018 / Accepted: 24 August 2018 / Published online: 26 September 2018
© Springer Nature Switzerland AG 2018

Abstract
Recent revelations on manipulations and back-doors in modern ECC have initiated the revision of existing schemes and
led to the selection of two new solutions for next-generation TLS proposed in RFC 7748: CURVE25519 and CURVE448.
Unfortunately, both curves were designed and optimized primarily for software implementations; their implementation in
hardware and physical protection against SCA has been neglected during the design phase. In this work, we demonstrate
that both curves can indeed be efficiently and securely mapped to hardware structures of modern FPGAs while including
advanced protection mechanisms against physical attacks and still providing high performance and throughput. In particular,
our CURVE25519 architecture provides more than 1 700 point multiplications per second, using only 1 006 logic slices (LSs)
and 20 digital signal processors (DSPs) of a mid-range Xilinx XC7Z020 FPGA. Furthermore, our CURVE448 architecture
still achieves more than 600 operations per second at a significantly higher security level of 224 bits, using not more than
1 985 LSs and 33 DSPs on the same device. In addition, we performed a practical, test-based leakage assessment for both
architectures. More precisely, we investigated the detection of scalar- and base-point-dependable leakage individually while
our designs were incorporated scalar blinding and point randomization countermeasures. Eventually, our findings prove
with high confidence, that we cannot detect any scalar- and base-point-dependable leakage even after evaluating 1 000 000
power measurements.

Keywords ECC · RFC7748 · TLS · Curve25519 · Curve448 · SCA · FPGA

1 Introduction

Efficient key agreement, exchange, and digital signatures
are among the most crucial problems that cannot be solved
solely relying on symmetric cryptographic primitives but
require asymmetric public-key systems. For security-critical
embedded applications, elliptic curve cryptography (ECC)
has become the predominant asymmetric cryptographic
system although it still involves complex modular arithmetic
that is a particular burden for small embedded systems and
processors.

However, recent revelations on manipulations and back-
doors have undermined the confidence in existing schemes

� Pascal Sasdrich
pascal.sasdrich@rub.de

Tim Güneysu
tim.gueneysu@rub.de

1 Horst Görtz Institute for IT-Security, Ruhr-Universität
Bochum, Bochum, Germany

and led to discussion among researchers and standardiza-
tion bodies on the selection of new curves and the rigid-
ity of existing curve generation processes. Within these
discussions, the Internet Engineering Task Force (IETF)
Transport Layer Security (TLS) working group requested
new recommendations on elliptic curves for the next gen-
eration of TLS on which the Internet Research Task
Force (IRTF) Crypto Forum Research Group (CFRG) has
selected two candidates for the RFC 7748: CURVE25519
and CURVE448. Simultaneously, the IETF curdle group
proposed both curves for application in future protocols
such as DNSSEC. With further emergence of the Inter-
net of Things (IoT), TLS (including CURVE25519 and
CURVE448) has to be implemented on various embed-
ded and constrained devices. But since both curves
were primarily designed for powerful software platforms
(x86) and with hardly any evaluation of their resistance
against low-level physical threats such as side-channel
attacks, we still need to investigate the hardware imple-
mentation of both curves in combination with according
countermeasures.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41635-018-0048-z&domain=pdf
http://orcid.org/0000-0002-5443-626X
mailto: pascal.sasdrich@rub.de
mailto: tim.gueneysu@rub.de

298 J Hardw Syst Secur (2018) 2:297–313

1.1 RelatedWork

Since there is a wealth of publications addressing ECC
hardware architectures and side-channel countermeasures
for ECC implementations that we cannot cover and discuss
within the scope of this work, we refer an interested reader
to the overviews in [5, 7, 8] and restrict the discussion of
related work to the most relevant ones.

As one of the first attempts in hardware-based ECC
implementations, Orlando and Paar [17] proposed a
design targeting explicitly reconfigurable hardware using
Montgomery-based multiplications including a series of
precomputations. This publication was followed by many
more, e.g., [9] trying to improve performance on field-
programmable gate arrays (FPGAs) by using of dedicated
multipliers or [21] trying to improve the performance
by an algorithmic approach. Using integrated DSPs both
for modular addition and multiplication was initially
proposed in [18] targeting the standardized NIST primes
P-224 and P-256 using a special reduction scheme.
Besides, Järvinen et al. [11] recently presented a high-
performance architecture for FOURQ, a novel elliptic
curve with about 128-bit security that supports highly
efficient point multiplications. Recently, Koppermann et
al. presented a novel optimized architecture for X25519,
explicitly targeting low-latency applications for the realm
of IoT devices by heavily exploiting parallelisms in the
Montgomery ladder algorithm.

However, efficient computation on constrained embed-
ded devices is only one side of the coin, but still achieving
physical security against side-channel analysis is the other.
One of the first differential power analysis (DPA) attacks on
ECC hardware implementations was presented in [16]. To
prevent common DPA attacks, Coron proposed and imple-
mented a set of countermeasures, including scalar and pro-
jective coordinate randomization, for a design performing
Diffie-Hellman and ElGamal operations on elliptic curves
[4]. In [2], a flexible hardware architecture for standard
NIST primes p192, p224, p256, p384, and p521 was pro-
posed that implements low-level and high-level protection
mechanisms against simple power analysis (SPA) and DPA
including point randomization and the unification of oper-
ation sequences to prevent adversaries from distinguishing
atomic operations.

1.2 Contribution

In this work, we present side-channel protected, efficient,
and high-performance architectures of special ECC sys-
tems implementing the particular elliptic curve instances
CURVE25519 [3] and CURVE448 [10] on reconfigurable
hardware. In general, the main target application of this
work is a single point multiplication operation suitable for

high-performance applications, i.a., necessary for Diffie-
Hellman key agreement protocols and digital signature
generation and verification. Particularly, we extend our
initial works presented in [22–24] to provide practical,
test-based leakage and side-channel evaluation of our high-
performance cryptography architectures including physical
protection against common side-channel analysis such as
timing behavior, SPA, and DPA.

In general, our primary design objective was to prove that
the mapping of both curves to (reconfigurable) hardware
structures can be done efficiently. To this end, all our
designs take particular advantage of the arithmetic cores
intended for digital signal processing provided by most
modern reconfigurable devices. Although CURVE25519 and
CURVE448 were initially proposed to accelerate the Diffie-
Hellman key agreement primarily in software, we show
that the characteristics for both elliptic curves can be
similarly exploited in hardware to achieve and implement a
compact and high-performance ECC processor on modern
reconfigurable devices.

Due to its small parameter sizes and efficient arithmetic,
nowadays, ECC is considered for many modern high-perfor-
mance applications with high demands on throughput and
computational power. To this end, we strove for high-per-
formance implementations in order to provide architectures
that can provided sufficient computational power and
acceleration for virtually every application. Depending on
the provided security level, our goal was to perform at least
1 000 operations per second for the medium 128-bit security
level of CURVE25519 and still 500 operations per second for
high-security applications using CURVE448. Eventually, our
single-core CURVE25519 architecture, implemented on a
moderate Xilinx XC7Z020 FPGA, achieves more than 1 739
point multiplications per second. On the other hand, despite
of the similarity of CURVE25519 and CURVE448, we were
faced with completely revising the design rationales due to
specially crafted parameters and the significantly increased
field size of 448 bits. Interestingly, we can demonstrate that
even in light of the asymptotically growing complexity in
the field size, CURVE448 still can provide similarly high
throughput providing a performance of more than 683 point
multiplications per second at moderate resource costs.

Despite the security level provided by the hardness of the
underlying mathematical problem, modern cryptographic
systems more often have to face severe threats due to
implementation attacks. In particular for modern embedded
systems and devices, including various cryptographic
implementations and co-processors, physical attacks such
as side-channel analysis (SCA) and fault-injection analysis
(FIA) are serious problems. Given physical access to a
cryptographic system, the adversary may observe additional
information such as timing [12], power consumption [13],
or electromagnetic emanations [1]. Consequently, modern

J Hardw Syst Secur (2018) 2:297–313 299

cryptographic implementations include a broad variety of
countermeasures against these attack vectors. To this end,
our implementations inherently provide protection against
timing and SPA attacks, but we include advanced security
mechanisms in order to provide even in the light of DPA
attacks. Further, we present test-based leakage evaluation
results using 1 000 000 power traces that confirm the
security of our proposed architectures with high confidence.

Providing these results, our designs can virtually
support any high-performance application of asymmetric
cryptography using reconfigurable devices, even with high
demands on the physical security of the implementation.

2 Preliminaries

In this section, we will discuss the basic field arith-
metic of both considered elliptic curves (CURVE25519
and CURVE448) before presenting the fundamentals for
the group arithmetic and the variable point-scalar multi-
plication operation. Furthermore, we include information
on side-channel protection mechanism and discuss general
optimization strategies for hardware implementation.

2.1 Field Arithmetic

2.1.1 Curve25519

The elliptic curve CURVE25519 is an efficient Montgomery
curve specified over a prime field with a prime of shape
2n − c, i.e., close to a power of two (Pseudo Mersenne
prime), and defined by its short Weierstrass equation:

EM : y2 = x3 + 486 662x2 + x mod (2255 − 19) (1)

with A = 486 662, d = (A−2)
4 and p = 2255 − 19. In

general, according to RFC 7748, CURVE25519 provides the
function X25519 in order to accelerate the Diffie-Hellman
key agreement, but also can be used for digital signature
schemes based on its birationally equivalent Edwards curve
ED25519.

On the lowest level, CURVE25519 processes 255-bit val-
ues and performs arithmetic operations over GF(p) defined
by p = 2255 − 19. In general, field arithmetic opera-
tions include modular addition, subtraction, multiplication,
squaring, and inversion. Since the underlying finite field is
defined over a Pseudo Mersenne prime, providing a special
structure, efficient reduction can be performed using the fact
that 2255 ≡ 19 mod p. Eventually, inversion can be reduced
to modular multiplication using Fermat’s Little Theorem
(FLT), i.e., ap−2 ≡ a−1. Hence, given a set of modu-
lar addition, substraction, and multiplication operations and

instructions, we can realize any functionality that is neces-
sary in order to implement group arithmetic operations as
well as the point multiplication.

2.1.2 Curve448

The untwisted Edwards curve CURVE4481 with a security
level of 224 bits is given and defined by:

ED : y2 + x2 ≡ 1 + dx2y2 (mod 2448 − 2224 − 1) (2)

with factor d = −39 081, the Solinas prime p = 2448 −
2224 − 1 and its golden ratio φ = 2224. It can be used in
order to accelerate variable point-scalar multiplications with
an extended security level of 224 bits.

Technically, CURVE448 processes 448-bit values over
GF(p) but still is highly versatile and flexible for software
implementations and different platforms (ranging from 8 to
64 bits) due to the fact that 448 = 56 × 8 = 28 × 16 =
14 × 32 = 7 × 64. Further, due to its golden ratio φ,
the Solinas prime p allows fast and efficient Karatsuba-
based multiplication of two operands A = (a0 + a1φ) and
B = (b0 + b1φ), such that:

C = A · B = (a0 + a1φ) · (b0 + b1φ) =
(a0b0 + a1b1) + ((a0 + a1) · (b0 + b1) − a0b0)φ (3)

Eventually, modular inversion can be tweaked compared
to inversions based on FLT using that, if p ≡ 3 mod 4,
the inverse square root (ISR) can be computed as 1

±√
x

=
x

(p−3)
4 , which directly leads to:

x−1 = x · (
1

±√
x2

)2 = x · [(x2)
(p−3)

4]2 = xp−2 (4)

2.2 Group Arithmetic

According to Request for Comments (RFC) 7748, both
functions X25519 and X448 perform a variable scalar-
point multiplication on the according Montgomery curve
(CURVE25519 or CURVE448) using the Montgomery ladder
algorithm [15] that combines point addition and point
doubling in a single step. Hence, given d, two points
Q1,Q2 ∈ E (in projective coordinate representation)
and the difference Q3 = Q1 − Q2, a single step of
the Montgomery ladder algorithm, computes two points
Q4,Q5 ∈ E such that Q4 = 2 · Q1 = (x4, z4) is the result
of the point doubling with:

x4 = (x1 − z1)
2 · (x1 + z1)

2 (5)

z4 = 4x1z1 · (x2
1 + dx1z1 + z2

1) (6)

1According to RFC 7748, CURVE448 represents a Montgomery
curve and the untwisted Edwards curve actually is called Edwards448.
However, since both curves are birationally equivalent, we use the term
CURVE448 synonymously throughout this work.

300 J Hardw Syst Secur (2018) 2:297–313

and Q5 = Q1 + Q2 = (x5, z5) is the result of the point
addition with:

x5 = z3((x1 − z1) · (x2 + z2) + (x1 + z1) · (x2 − z2))
2 (7)

z5 = x3((x1 − z1) · (x2 + z2) − (x1 + z1) · (x2 − z2))
2 (8)

Fortunately, these equations are independent of the y-
coordinate which can be omitted during the intermediate
computation and only has to be restored for the final result
using Eqs. 1 and 2.

Figure 1 shows the algorithmic flow of a single step for
three points Q1, Q2, and Q3. In total, a single step of the
Montgomery ladder algorithm involves 7 multiplications, 4
squarings, 4 additions, and 4 subtractions over GF(p). The
number of operations performed and its sequence is always
the same, independently of the processed data. Therefore,
the computation for both curves can be executed in constant
time preventing timing-based attacks and even SPA.

2.3 Point Multiplication

Given a public point P ∈ E and a secret k, the point
multiplication routine computes another point Q = k · P
using a sequence of consecutive Montgomery ladder steps.
For this purpose, the scalar is scanned bit-wise (starting
from the most significant bit) and depending on the value
of the currently processed bit, inputs to a single step of the
Montgomery ladder algorithm are swapped. Hence, starting
from the base point P , the point at infinity O, and their
difference (i.e., P), the point multiplication finally yields
the resulting point Q after the execution of 255 steps in the
case of CURVE25519 and 448 steps for CURVE448.

2.4 Side-Channel Protection

In order to prevent SCA attacks, modern cryptographic
implementations usually encompass protection and coun-
termeasures against various physical attacks. Fortunately,
the application of the Montgomery ladder algorithm already
provides basic and inherent protection against timing and

Fig. 1 Visualization of the combined double-and-add formula accord-
ing to Montgomery’s ladder

SPA attacks; however, dedicated countermeasures against
DPA attacks have to be added. Since there is a plethora of
different countermeasures against DPA attacks, we refer the
interested reader to an overview of Fan et al. [7, 8], but only
briefly summarize point randomization and scalar blinding
as an example.2

2.4.1 Point Randomization

This countermeasure takes advantage of the additional
degree of freedom introduced by the application of
projective coordinate representations in order to randomize
the representation of a base point using a randomly chosen
λ. During the base point transformation process (from
affine to projective coordinates), the random factor is
applied as shown in Eq. 9, which yields in different point
representations (depending on λ).

Pr = (xPr
, zPr

) = (λxP , λzP) = (λxP , λ) (9)

Fortunately, point randomization does not affect the
correctness of the underlying scheme, as proven in Eq. 10.

xPr
· z−1

Pr
= λxP · λ−1 = xP (mod p) (10)

2.4.2 Scalar Blinding

Instead of randomizing the base point P , scalar blinding
deals with the randomization of the second input parameter
of the point multiplication operation that computes Q =
k ·P . Again, choosing a random factor r , the original scalar
k is blinded with a multiple of the group order |E |, as shown
in Eq. 11.

kr = k + r · |E | (11)

Given the blinded scalar kr , correctness of the underlying
scheme is proven by the fact that the product of group order
and base point returns the point at infinity. Hence, the point
multiplication still results in Q as shown in Eq. 12.

kr · P = (k + r · |E |) · P = k · P + r · O = k · P (12)

Due to structures within the group orders, the random-
ization factor for the scalar blinding countermeasure has
to be chosen appropriately. Hence, Schindler and Wiemers
[25] suggest to choose blinding factors of more that half of
the bit-length of the according group order which naturally
increases the number of Montgomery steps per operation.

2We have chosen this set of countermeasures since it provides us with
the opportunity to randomize and protect all input parameters of a
single point multiplication.

J Hardw Syst Secur (2018) 2:297–313 301

2.5 Optimization Strategies for Reconfigurable
Hardware

In order to provide the best possible mapping of the chosen
elliptic curves and algorithms to the provided structures
of modern reconfigurable devices, we heeded several
optimization strategies. We identified these approaches
during our design space exploration while evaluating
different architectural choices in order to provide the
optimal solution for the hardware structures of modern
Xilinx FPGAs. In addition, we still followed generic
and well-known optimization strategies including register
balancing, parallelization, and resource sharing in order
to increase the overall throughput of our hardware
architectures. Hence, given a single instance of our design,
we put a lot of engineering effort to find the optimal
mapping on reconfigurable hardware, minimize the critical
path, and increase the maximum frequency by hand
while maintaining a balanced resource utilization in order
to allow the implementation of multiple instances in
parallel (multi-core design). In the following, we briefly
explain algorithmic conditions for efficient mapping on
reconfigurable hardware and provide some details on our
optimization strategies and approaches.

Control Flow. Most algorithms that are implemented in
hardware will be mapped to finite state machines (FSMs)
in order to handle and control iterations and sequences
of consecutive operations. In particular algorithms
with a regular structure, few exceptions and repetitive
sequences of operations will result in small FSMs
with low or medium complexity. On the other hand,
even larger algorithms that can be reduced to smaller
sequences can help to reduce the overall complexity
while implementing multiple FSMs that interact with
each other (divide-and-conquer approach).

Parallelism. One of the major advantages of hardware
implementations, including reconfigurable hardware, is
the instantiating of multiple independent blocks that
take care of individual parts of an algorithm which can
be executed in parallel. In particular for reconfigurable
devices, this is easy to realize since FPGAs provide a
plethora of general purpose logic resources that can be
configured in order to support virtually all possible tasks
without additional costs.

Data and Memory. In addition, modern FPGAs provide
special purpose logic blocks, such as DSPs and block-
RAMs (BRAMs), each with a configurable interface in
order to support different data widths. In particular, the
BRAMs are powerful resources that can be used in order
to store large amounts of data. Through the configurable
interface, the data can be accessed in various ways and
multiple BRAMs can be cascaded in order to extend

the interfaces and memory space. Apart from that, LUT-
based distributed memory (LUTRAM) can be used as
small but fast alternative to store smaller portions of data
more efficiently. Hence, even data-intensive algorithms
with varying data widths can be mapped easily to
reconfigurable hardware.

3 Side-Channel Protected Curve25519

In this section, we discuss the key features of CURVE25519
that enable an efficient map of its mathematical and arith-
metic structures to contemporary reconfigurable hardware
devices. In addition, we provide insights to the most relevant
features of our side-channel protected, high-performance,
single-core architecture and provide practical implementa-
tion results for mid-range Xilinx FPGAs.

3.1 Design Considerations

In the following, we identified the several aspects of
CURVE25519 at different hierarchies as promising features
that allow to map the necessary arithmetic efficiently on
modern FPGA structures.

3.1.1 Field Arithmetic

On the lowest level, the field arithmetic operations provide
ample scope for optimization and efficient mapping on
reconfigurable structures.

Modular Reduction. For most modern standardized ellip-
tic curves considered for high-performance applications,
e.g., the NIST P-224 and P-256 instances, the under-
lying prime field is based on a Generalized Mersenne
Prime which allows a modular reduction solely based
on additions and subtractions. However, the underly-
ing finite field of CURVE25519 is based on a Pseudo
Mersenne Prime of shape 2n − c providing a slightly
different modular reduction scheme. In particular, for
the elliptic curve instance CURVE25519, the reduc-
tion can be computed by a multiplication with the
small constant c = 19 and additional additions or
subtractions.

Modular Multiplication. Any field element, with a total
size of 255 bits, can be divided perfectly into fifteen
chunks, each having a size of 17 bits. Processing smaller
words is usually inefficient for common processors and
microcontrollers which often operate on a basis of 8-,
16-, 32-, or 64-bit data words. Modern FPGA devices,
however, provide a multitude of dedicated, full-custom
designed, arithmetic DSP slices equipped with pre-
addition, multiplication, and accumulation or addition

302 J Hardw Syst Secur (2018) 2:297–313

stages for fast integer arithmetic. Each DSP instance
is enhanced with additional register stages to reduce
the internal critical path delay and allow operations
at maximum device frequency. Since the multiplication
unit within each DSP block was designed to support
signed 25 × 18-bit wide multiplications (or 24 × 17-
bit unsigned operations), this is a perfect fit to our
requirement of processing unsigned 17-bit data words.
By means of a customized, interleaved multiplication
scheme, multiplying two 255-bit field elements can
be rearranged and distributed over several DSP blocks
operating in parallel. Each single DSP unit then has to
compute only one 17 × 17-bit multiplication at a time.
Additionally, we can use the included accumulation stage
within each DSP core to sum up the intermediate results
into a partial product.

Modular Addition and Subtraction. Besides modular
multiplication, the basic group operations (point dou-
bling and addition) require the computation of modular
additions and subtractions. Fortunately, the addition
respectively subtraction unit can be implemented as sim-
ple cascade of only two DSP instances, one to perform
the main arithmetic operation and one for the subsequent
modular reduction.

Modular Inversion. In order to return a unique result for
each point multiplication operation, a final inversion is
required to convert the internal result based on projective
coordinates back to an affine coordinate representation.
For the basic version of a modular inversion, we make
use of FLT. This approach requires solely the modular
multiplier already provided by the core that is augmented
with a small additional state machine. Inversion based
on this approach requires negligible extra resources;
however, its performance will be comparably slow.
Another approach would be to implement a dedicated
inversion unit based on the binary Extended Eucledean
Algorithm (EEA). This extra circuit requires a significant
amount of additional resources but the computation of
each inversion is significantly faster. Still, in a multi-core
scenario, these hardware costs can be mitigated mostly by
sharing one dedicated inversion unit among several point
multiplication cores.

3.1.2 Architectural Level

From a different point of view, modern FPGAs provide
plenty of resources that allow implementation of custom and
tailored architectures for virtually all modern applications.
To this end, our architecture particularly draws upon BRAM
and DSP cores:

Memory. We limit the storage requirements to a bare
minimum, using only two 36K dual-port BRAM units

to store all intermediate values in a butterfly-wise
configuration and data flow using an enhanced 34-bit
data path to process two words at the same time.

Arithmetic. As mentioned before, the addition and sub-
traction unit can be implemented with a minimal amount
of two DSP cores. Besides, the full multiplication unit
contains 15 DSP slices in parallel and we end up gen-
erating the final result in the accumulation stage that is
slightly too large but which can be reduced in a subse-
quent recombination step. The final reduction step itself
can be implemented by a constant multiplier with c =
19, realignment logic to combine shares of partial prod-
ucts as well as a subtraction stage to correct the result
by reducing it modulo P in case it is still slightly too
large. Eventually, we can implement the entire field arith-
metic operations (addition, subtraction, multiplication,
squaring, inversion, and reduction) using only 20 DSP
units.

3.2 Implementation

Our single-core CURVE25519 implementation is designed
as a supplementary unit to provide asymmetric, public-
key cryptographic operations, but to save most of the
FPGA logic and resources for additional main applications.
In detail, the cryptographic core is designed to support
point multiplications using points on CURVE25519. More
precisely, the single-core architecture supports addition and
doubling operations of points given in projective coordinate
representations. However, for use with most cryptographic
protocols, the core additionally implements an inversion
functionality to convert final results from projective back to
affine coordinate representations. Internally, the arithmetic
processor therefore supports two basic operation modes:
either a combined double-and-add step function using
the Montgomery ladder algorithm or a single modular
multiplication operation. In particular, the latter instruction
is required for the final conversion, i.e., for a modular
inversion of a field element a ∈ GF(p) by computing
ap−2 mod p based on FLT. To prevent timing attacks, the
arithmetic unit performs the point multiplication running a
total 384 double-and-add operations (including additional
steps due to the scalar blinding countermeasure) and 266
iterated multiplications for the inversion, both in constant
time.

In general, our implementation follows several of the
design suggestions of Bernstein for software implemen-
tations as given in the original work on Diffie-Hellman
computations over CURVE25519 [3]. In particular, each
addition or subtraction is followed by a subsequent multi-
plication again nearly always succeeded by another addition
or subtraction. This fact leads to a design using two dual-
port BRAM units in a butterfly-like configuration. More

J Hardw Syst Secur (2018) 2:297–313 303

precisely, the first BRAM only receives results of the addi-
tion or subtraction unit and provides inputs to the multipli-
cation unit. Further on, the second BRAM stores all results
of the multiplication core and feeds the addition unit. This
way, parallel operation of both arithmetic units is enabled
and pipeline stalls through loading and write-back can be
avoided with only little overhead.

3.2.1 Modular Addition and Subtraction Unit

Centerpiece of the modular addition and subtraction unit
(computing c = a ± b mod p) are two DSP blocks
supporting 25 × 18-bit signed multiplications and up to
48-bit additions, subtractions, or accumulations. Whereas
the first DSP always performs the main operation (i.e.,
addition or subtraction c′ = a ± b), the second DSP
block computes a prediction for the reduced result by c′′ =
c′ ∓ p. Both c′ and c′′ are stored into the first BRAM
and distinguished by a flag which is obtained from the
last carry or borrow bit in the prediction operation and
indicates at which address the correct result is stored. In
total, modular addition or subtraction takes 10 clock cycles
which can be executed in parallel to any multiplication
operation. Thus, when exploiting the alternating, butterfly-
like data flow as mentioned above, the latency for
modular addition or subtraction is completely absorbed
within the latency for a concurrently running modular
multiplication.

3.2.2 Modular Multiplication Unit

Besides the modular addition and subtraction unit, the
largest component of the arithmetic core is the modular
multiplication unit which consists of 18 DSP instances
— 15 blocks are used for partial product computations,

Fig. 2 Architecture of the modular multiplication unit

one for pre-reduction and two for the post-reduction and
recombination step. Each modular multiplication can be
computed in 55 clock cycles of which 34 are required
for the actual multiplication and the remaining ones for
loading and storing data. Due to the modular design shown
in Fig. 2, computation of partial products (stage 1) can
be interleaved with the reduction step (stage 2) in pipeline
fashion. By this, new multiplication operations can be
already restarted as soon as the first stage (computing the
partial products) has completed the previous computation.
Thus, only an initial multiplication takes the full 55 clock
cycles, whereas each subsequent computations is becoming
available with a latency of 17 clock cycles only. However,
since data dependencies need also been taken into account,
the combined double-and-add step for CURVE25519 takes
246 cycles in total.

3.2.3 Side-Channel Countermeasures

In Section 2.4, two countermeasures were presented that
allow preventing DPA attacks on elliptic curve hardware
implementations. Since our design is inherently resistant
against timing and SPA attacks, we now briefly present
the details of the smooth integration of side-channel
countermeasures into the core architecture.

Source of Randomness Since most modern side-channel
protection mechanism rely on randomization of internals,
our countermeasures require an additional random number
generator (RNG) delivering the core with at least 389 bits of
fresh randomness during every operation. In particular, the
core accepts points in projective coordinate representation
that can be exploited to randomize the base point. However,
the point randomization, i.e., the modular multiplication
λxP (mod p), has to be applied externally. Similarly, the
core accepts randomized scalars of up to 384 bits, that have
been blinded beforehand using a 128-bit random blinding
factor. Optionally, the core can be forced to randomize and
scramble internal register addresses using another 6 bits of
randomness.

Scalar Blinding Since the point multiplication in ECC
depends on two parameters, a public point P and a secret
scalar k, both can be target for randomization. In our first
approach, the private scalar is randomized (externally) and
blinded by adding random multiples of the group order of
the underlying elliptic curve. Due to the special structure
of the group order #E , it turns out that small blinding
factors are insufficient to hide the structure which could
be exploited using advanced SCA [25]. Thus, in order to
prevent such attacks, practical solutions have to rely on
blinding factors of at least half of the bit size of the group
order, i.e., we considered 129 bits for CURVE25519. Apart

304 J Hardw Syst Secur (2018) 2:297–313

from that, the core uses 384 instead of 255 Montgomery
ladder steps to perform a full point multiplication operation,
certainly affecting and decreasing the final throughput of
our core.

Simple Point Randomization Besides predicting parts of
the random scalar, an attacker could try to guess parts
of the binary representation of elliptic points and some
intermediate values of the double-and-add formula in
order to deduce the used scalar (even if its randomized).
Internally, the affine coordinates (x, y) of elliptic points are
replaced by projective coordinates (x, y, z) during operation
in order to relax the computation and to replace costly
inversions of the point multiplication by additional field
multiplications. Note that internally the computations for
CURVE25519 only depend on the coordinates (x, z) and
originally assumed z = 1. Hence, in order to randomize
the point without affecting the final result, it has to be
multiplied externally by a random 255-bit factor λ. More
precisely, the value λ is randomly chosen for each execution
so that, even when always using the same scalar and curve
point as input to the computation, all intermediate results
differ during execution of the point multiplication but still
lead to the correct result. In addition, the core no longer can
assume zP = 1 which mainly affects the computation of
x5 (see Eq. 7) where the final multiplication with z3 cannot
be skipped. Besides, all other values and constants of the
computation are unaffected.

Memory Address Scrambling For our implementation, all
inputs of the Montgomery ladder algorithm (Q1, Q2, and
Q3) are stored in the same BRAM, and after each execution
step, both results Q4 = 2 · Q1 and Q5 = Q1 + Q2

will overwrite Q1 and Q2 while serving as a new input
to the next iteration of the algorithm execution. For every
step of the double-and-add computation, a single bit of the
secret scalar is evaluated and indicates whether the inputs
have to be swapped or not. Thus, the BRAM access pattern
at the beginning of every execution of the double-and-add
formula is key dependent and can help an attacker to reveal
information of the secret scalar. Therefore, an adversary
who is able to recover information on the BRAM addressing
pattern using DPA can easily identify all inputs of the
algorithm and thereby recover each bit of the secret scalar
successively.

Hence, in order to protect the memory accesses against
SCA and hide revealing access patterns, the addresses
can be randomized for each execution. In the case of
our design, we decided to choose random addresses for
the intermediate values and all results that are stored in
the memory prior to each point multiplication call. After
every execution, we then choose a new set of random

addresses for the intermediate values and results that are
stored in the BRAMs. Since all addresses of our BRAM
have a size of 6 bits, we can select up to 26 different
sets of random addresses. With the help of a Linear
Feedback Shift Register (LFSR) (based on the formula
x6 + x5 + 1), we can determine all addresses depending on
a random base address. Therefore, we take 6 bits, supplied
by an external RNG, and use them as seed (i.e., the base
address) for the LFSR. Before our core can perform a
new point multiplication operation, the LFSR is advanced
and the random addresses are saved for the next point
multiplication, initializing and preparing the BRAM by
rearranging all required values and constants. Hence, in
total, we allow 26 different sets of random addresses instead
of a single fixed one. Besides other technical issues such
as noise reduction, an attacker needs to distinguish between
these memory lines.

Continuous Point Randomization The integration of all
previously described countermeasures provides protection
against SCA in particular if an adversary can observe
multiple runs of the scalar multiplication operation. In a
common adversarial setting, the attacker would observe
multiple runs using the same scalar. In such a scenario, using
randomized scalars, coordinates, and addresses mitigates
the risk of disclosing sensitive and secret information.
However, horizontal attacks pose another serious threat
in particular for ECC [6]. In general, horizontal attacks
— unlike previously described vertical attacks — exploit
and combine the leakage within single traces in order to
extract sensitive information. Unfortunately, scalar blinding
does not provide protection against these kinds of threats,
since the scalar is only randomized after each scalar
multiplication operation [19]. However, re-randomizing the
projective coordinate representation of either Q4 or Q5

after each iteration of the Montgomery ladder algorithm
can help to mitigate the threat of horizontal attacks and
increase the physical protection level. But certainly, the
overall performance will be decreased due to two additional
multiplication steps after each iteration in order to re-
randomize the intermediate points and results. In addition,
the continuous randomization yields in higher demands for
fresh entropy and randomness for each scalar multiplication
in general and each Montgomery ladder step in particular.
To this end, we provide two different implementations,
one using simple coordinate randomization that is only
applied after each scalar multiplication while the second
design uses continuous point randomization. In particular,
we opted to re-randomize the intermediate point Q5 using
two additional modular multiplications to compute λ·x5 and
λ · z5 after each Montgomery ladder iteration with λ being
a fresh random value for each re-randomization step.

J Hardw Syst Secur (2018) 2:297–313 305

Table 1 Resource utilization and performance results for
CURVE25519 after PAR

Aspect Single core

Utilization Component Instances Ratio

Look-up tables 2 077 3.90%

Flip-flops 4 223 3.97%

Logic slices 1 006 7.56%

Digital signal processors 20 9.09%

Block-RAMs 2 1.43%

Performance Operation Cycles Time (at 200 MHz)

Addition/subtraction 10 0.05 μs

Multiplication 55 0.28 μs

Montgomery step1 262 1.31 μs

Montgomery step2 352 1.76 μs

Inversion 14 372 71.86 μs

Point multiplication1 114 980 574.90 μs

Point multiplication2 149 540 747.70 μs

1Without point re-randomization, 2With point re-randomization

3.3 Results

In this section, we present implementation and performance
results after PAR for our CURVE25519 design. All results
were obtained for a Xilinx XC7Z020CLG484-3 FPGA
using the Vivado Design Suite 2015.4.

Table 1 provides implementation and utilization results
of our presented side-channel protected, high-performance,
single-core CURVE25519 architecture. Considering multi-
core architecture with many cores operating in parallel,
obviously, the limiting factor of this design is the number of
DSP cores that is available for the given FPGA platform.

Besides, Table 1 also provides details on the performance
of our proposed CURVE25519 architecture. Since the design
can run at a maximum frequency of 200 MHz, a single
iteration of the Montgomery ladder takes about 1.3μs

(262 clock cycles), respectively, 1.8μs (352 clock cycles)
including continuous point re-randomization as protection
against horizontal attacks. Since our core performs 384
iterations for a single point multiplication, followed by
a final inversion step, this leads to a final latency of
about 575μs, respectively, 748μs for a single operation
and roughly 1 700 or 1 300 operations per second, clearly
outperforming our initial goal of 1 000 operations per
second for CURVE25519.

4 Side-Channel Protected Curve448

As mentioned before, CURVE25519 and CURVE448 share
many similarities. However, in particular, the different
structures of the underlying primes and the extended field

size of CURVE448 forced us to completely rethink and
revise the architectural options and decisions. Eventually,
we ended up with an entirely new design that varies widely
from the previous CURVE25519 architecture.

4.1 Design Rationales

Hardware implementations of modern cryptographic prim-
itives can be designed in many ways and optimized from
different perspectives, such as performance and throughput,
resource utilization and hardware footprint, and physical
and side-channel security. In this section, we discuss several
optimization strategies and different approaches in order to
achieve the chosen objectives for our final optimized imple-
mentation. In particular, we consider an efficient mapping
to existing hardware structures before we optimize for high-
performance applications and physical protection. To the
best of our knowledge, this is one of the first hardware
implementations of an elliptic curve with security level of
more than 128 bits, so we can mainly compare to imple-
mentations targeting lower security requirements which are
naturally faster. However, implementing high-security side-
channel protected ECC must not prevent us from providing
a competitive hardware architecture particularly if we can
exploit the given structures optimally.

4.1.1 Field Arithmetic Optimizations

According to Section 2.1.2, all operations on elliptic
curves over GF(p) are based on operations over finite
fields, such as modular addition, subtraction, multiplication,
and inversion. Hence, the fundamental component of our
hardware architecture is the Field Arithmetic Unit (FAU)
(cf. Section 4.2) which has to be designed and optimized
thoroughly before implementation since its operation is
crucial and will impact to a great extent the final
performance. Due to this fact, we had to do the entire
optimization manually without relying on automated tools.
In the following, we present and discuss several design
choices leading to our high-performance FAU in particular
optimized for CURVE448 on Xilinx FPGAs.

Modular Inversion In general, hardware designers have
to decide whether performing modular inversion using
dedicated units, e.g., based on the binary EEA, or re-using
modular multiplication to compute the inversion using FLT
or the ISR tweak. We decided against a dedicated unit due
to its bad ratio between performance gain and area increase
(for a single core); instead, we intend to perform modular
inversion using the ISR tweak in Eq. 4.

Modular Multiplication With regard to the modular mul-
tiplication, we investigated and compared two different

306 J Hardw Syst Secur (2018) 2:297–313

approaches: Karatsuba Multiplication and Schoolbook Mul-
tiplication with Interleaved Reduction.

Karatsuba. The Karatsuba algorithm, as shown in Eq. 3,
uses decomposition in order to perform multiplications
in partial steps which are more favorable due to smaller
operand sizes. This approach allows to reduce the size of
the multiplication unit (in terms of occupied area) but at
cost of additional latency and control overhead.

Schoolbook. Due to the Solinas prime, the common
schoolbook multiplication can be combined with an
interleaved reduction step based on the fact that 2448 ≡
2224 + 1 (mod p). Hence, each multiplication step is
interleaved by a reduction before the partial products are
accumulated.

Since the main goals of this work are efficient mapping,
high-performance, and physical security for an elliptic
curve point multiplication, we decided to build a modular
multiplication unit based on the Schoolbook Multiplication
with Interleaved Reduction. This approach has a lower
latency compared to the Karatsuba Multiplication and more
important, it perfectly maps to the available hardware
resources (i.e., the DSP units) as shown in Section 4.2.
Note, however, that both approaches need a final processing
and reduction step which is handled by another, dedicated
reduction unit.

Although modern FPGAs provide asymmetric multipli-
cation cores that allow to build more efficient multipliers
[20], we instantiated only 16×16 multipliers for the sake of
symmetry and easy combination of the multiplication with
interleaved reduction.

4.1.2 Architectural Customizations

In Section 2.5, we provide a general set of optimization
strategies that we considered throughout the entire design
process. Based upon this, we decided to extend the internal
data path of our architecture to a full width of 448 bits
in order to allow maximum parallelization and optimal
performance within all sub-modules and to avoid stalls
during operation. In general, this allows to provide the FAU
with all operands on time avoiding or reducing idling phases
due to load or store operations.

Further, since most of the time, our FAU will perform
modular multiplications and each multiplication is per-
formed in 28 steps, thus requiring at least 28 cycles, we
implement the optimal number of additional pipeline stages
within the DSP units (i.e., four) in order to allow operation
at maximum frequency. Note, however, that this modifi-
cation as well increases latency of modular additions and
subtractions, since we share and re-use the DSP units for
these operations.

Eventually, our FAU is divided into sub-modules
which are separated by register stages in order to allow
independent operation and in order to decrease the critical
path.

4.2 Implementation

In this section, we provide implementation details of
our CURVE448 hardware architecture, in particular the
arithmetic units of our enhanced design which provides
further protection mechanism and countermeasures against
side-channel attacks. Most of all, we like to point out that
this additional protection can be integrated smoothly with
only minimum effort and resource overhead.

4.2.1 Field Arithmetic Unit

As mentioned earlier, the FAU (as sketched in Fig. 3) is
the basic component of our architecture. In principle, it can
be subdivided into two different components, an arithmetic
core (AC) and a reduction core (RC), that we explain in
detail in the following.

Arithmetic Core (AC). In order to perform arithmetic
operations, the body of our AC is implemented using
28 fully pipelined DSPs in parallel. Each DSP provides
different configurations, such as 16-bit addition, 16-
bit subtraction, or 16 × 16-bit multiplication. By
selecting the according configuration during run time,
the AC implements full data path additions, subtractions,
and multiplications. Hence, sharing the DSPs allows
implementing Carry-Save Additions and Subtractions
as well as Schoolbook Multiplications with Interleaved
Reduction within a single unit. The final accumulation
and reduction of the results is performed by the RC.

Reduction Core (RC). The RC consists of another five
DSPs, three to pre-add partial products and two to
accumulate the carries and to perform the final reduction.
In general, the reduction process is performed serially on

DSP
28

DSP
27

DSP
1

DSP
2

BR
AM

 1 DSP
29

DSP
30

DSP
31

DSP
32

DSP
33

BR
AM

 1
4

sh
ift

 re
gi

st
er

(p
ar

al
le

l l
oa

d)
 s

hi
ft

re
gi

st
er

sh
ift

 re
gi

st
er

(p
ar

al
le

l l
oa

d)
 ro

ta
te

 re
gi

st
er

(p
ar

al
le

l l
oa

d)
 ro

ta
te

 re
gi

st
er

... ...

32

32

32

32

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

17

17

20

20

20

P

P

17
17

17

(p
ar

al
le

l l
oa

d)
 s

hi
ft

re
gi

st
er

(p
ar

al
le

l l
oa

d)
 s

hi
ft

re
gi

st
er

Fig. 3 Simplified architecture of the FAU

J Hardw Syst Secur (2018) 2:297–313 307

17-bit words in order to take advantage of the internal
shift operation of the DSPs. However, due to the serial
design, the reduction is the bottleneck of the FAU. Still,
both, the AC and the RC, can be operated independently
and in parallel in order to alleviate the disadvantage of
the serial design.

4.2.2 Side-Channel Countermeasures

In this section, we explain the necessary modifications
of our architecture in order to provide a basic protection
against side-channel attacks using point randomization and
scalar blinding.

Scalar Blinding According to Section 2.4.2, the scalar is
blinded by a random multiple of the group order and due to
the special structure of the underlying prime, it is advisable
to use random factors of at least half of the field size [25].
Hence, the secret scalar is blinded and expanded by 224 bits
and the core itself accepts scalars of up to 672 bits. However,
based on the increased scalar size, the final performance of
the implementation naturally drops due to 224 additional
Montgomery steps that have to be performed compared to
an unprotected architecture.

Simple Point Randomization As explained in Section 2.4.1,
point randomization uses a randomly chosen parameter λ

which is applied to the base point. In general, this process
initializes the z-coordinate with λ, but the x-coordinate has
to be multiplied by λ externally. Hence, this countermeasure
can be integrated easily, since the core already accepts base
points in projective coordinate representation.

Continuous Point Randomization As already mentioned in
Section 3.2.3, in particular the continuous re-randomization
of intermediate points based on our point randomization
countermeasure can mitigate the risk of horizontal attacks
against our implementation. To this end, including two
additional modular multiplications at the end of each
Montgomery ladder iteration in order to randomize the
intermediate point Q5 can help to prevent successful
leakage exploitation using horizontal attacks. Of course,
the additional security and protection mostly comes at cost
of increased latency and additional requirement for fresh
randomness during every iteration.

4.3 Results

In this section, we present implementation and performance
results after PAR for our CURVE448 design. Note, that
all results were obtained for a Xilinx XC7Z020CLG484-3
FPGA using the Vivado Design Suite 2015.4.

Table 2 Resource utilization and performance results for CURVE448
after PAR

Aspect Single core

Utilization Component Instances Ratio

Look-Up tables 4 624 8.69%

Flip-flops 8 209 7.72%

Logic slices 1 985 14.92%

Digital signal processors 33 15.00%

Block-RAMs 14 10.00%

Performance Operation Cycles Time (at 341MHz)

Addition/subtraction 4 11.72 ns

Multiplication 32 93.76 ns

Reduction 36 105.48 ns

Montgomery step1 694 2.03 μs

Montgomery step2 766 2.25 μs

Inversion 32 976 96.62 μs

Point multiplication1 499 344 1.46 ms

Point multiplication2 547 728 1.61 ms

1Without point re-randomization, 2With point re-randomization

Table 2 reports the final implementation and performance
results after PAR for our protected, high-performance,
single-core CURVE448 architecture. Similar to the
CURVE25519 architecture, again the number of available
DSP resources is the limiting factor for multi-core designs.

Besides, particularly, the maximum frequency of
341 MHz is noteworthy, which allows to perform a sin-
gle point multiplication, including 672 iterations of the
Montgomery ladder and a final inversion, within 1.46ms

respectively 1.61ms (including protection against horizontal
attacks) despite the large field size of 448 bits. Eventually,
this leads to a final performance of 683 or 622 operations
per second, still outperforming our initial goal of 500 point
multiplications per second.

5 Comparison and Discussion

To the best of our knowledge, there are only few
implementations of ECC schemes for FPGA devices which
target a security level equal or above 128 bits that are
publicly available. Along with the fact that modern FPGA
architectures have evolved a lot and now include more
powerful features compared to earlier generations, a fair
and meaningful discussion or comparison of different
designs and implementations with previous work is not
straightforward. Nevertheless, we like to put our results
in the context with existing implementations to allow the
reader a quick overview on other designs and architectures.

308 J Hardw Syst Secur (2018) 2:297–313

Table 3 lists different FPGA architectures of recent
ECC schemes over prime fields, including our previous
architectures of CURVE25519 [22, 23] and CURVE448 [24],
NIST P-256 [9], and recent results on FOURQ [11]. Note,
however, that all of these implementations target a lower
security level of about 128 bits, except for CURVE448.
This particularly implies a smaller field size and thus less
arithmetic complexity for the basic operations.

Although our architectures are based on the results of
[23] and [24], area and performance numbers are to some
extent different. In particular, for CURVE25519, we could
reduce the number of logic slices (LSs) significantly, simply
by using the Vivado Design Suite for PAR instead of ISE
14.7. On the other hand, the latency, i.e., the number of
clock cycles per operation, increased significantly due to
the extended size of the secret scalar (384 bits instead of
269 bits). In addition, since we had to include an additional
multiplication by z3, this increased the latency as well
(for both, CURVE25519 and CURVE448). Besides, since the
randomization of scalar and point is provided externally, we
could reduce the number of DSPs for both designs.

6 Side-Channel Evaluation

Eventually, we performed a practical, test-based side-
channel Analysis and leakage assessment in order to eval-
uate our implementations and included countermeasures.
To this end, we performed practical power measurements
on a SAKURA-X [14] side-channel evaluation board.
Our designs were running on a 7-series Kintex FPGA
(XC7K160T) using a stable, jitter-free 96 -MHz clock sig-
nal. More precisely,, we measured the voltage drop over an
1 � resistor in the Vdd path by means of a digital oscil-
loscope using a sampling rate of 250 MS/s and 20 MHz
bandwidth limitation.

6.1 Detection of Scalar-Dependent Leakage

During our first analysis, we first focused on detection of
scalar-dependent leakage using a fixed base point throughout
the evaluation process while the scalar is chosen from a set
of random scalars. In order to apply a non-specific t test,
the measurements are randomly interleaved with operations

Table 3 Comparison of different designs for elliptic curve cryptography over prime fields on FPGAs

Scheme Device Security Architecture Performance Ref.

Data path LS DSP BRAM Cycles MHz OP/s

NIST P-256

Single-core XCC4VFX12 128 bits 32 bits 1715 32 11 243 000 490 2 020 [9]

Multi-core XCC4VFX12 128 bits 32 bits 24 574 512 176 – 375 24 700 [9]

FOURQ

Single-core4 XC7Z020 123 bits 127 bits 565 16 7 58 967 190 3 222 [11]

Single-core5 XC7Z020 123 bits 127 bits 1 691 27 10 29 739 190 6 389 [11]

Multi-core5 XC7Z020 123 bits 127 bits 5 697 187 110 – 175 64 730 [11]

CURVE25519

Single-core1,4 XC7Z020 127 bits 34 bits 1 029 20 2 79 400 200 2 519 [22]

Single-core2,4 XC7Z020 127 bits 34 bits 1 169 22 2 83 252 200 2 402 [23]

Single-core2,4 XC7Z020 127 bits 34 bits 1 006 20 2 114 980 200 1 739 This work

Single-core3,4 XC7Z020 127 bits 34 bits 1 176 20 2 149 540 200 1 337 This work

CURVE448

Single-core1,4 XC7Z020 224 bits 448 bits 1 580 33 14 328 286 357 1 087 [24]

Single-core2,4 XC7Z020 224 bits 448 bits 1 648 35 14 473 926 335 708 [24]

Single-core2,4 XC7Z020 224 bits 448 bits 1 985 33 14 499 344 341 683 This work

Single-core3,4 XC7Z020 224 bits 448 bits 2056 33 14 547 728 341 622 This work

1Unprotected, 2Scalar blinding and simple point randomization, 3Scalar blinding and continuous point randomization, 4Montgomery ladder,
5Endomorphism

J Hardw Syst Secur (2018) 2:297–313 309

based on a fix scalar. Further, in order to avoid any input-
dependent leakage, the scalar blinding and point randomi-
zation have been performed externally while the cores
only accept masked inputs, i.e., blinded scalars and points
in projective coordinate representation. However, the final
result of the scalar-point multiplication still is available only
in an unprotected state which certainly results in output-
dependent leakage. Hence, to avoid such result-depending
detection of leakage, we exclude the final operations after
the inversion from our measurements and observations.

Further on, we defined four different evaluation profiles
in order to gradually evaluate our main countermeasures
(i.e., point randomization and scalar blinding). In particular,
Profile 1 provides a reference since all countermeasures
are disabled, i.e., the PRNG does not provide random
values but all zero. Profile 2 and 3 then investigate the
scalar blinding and point randomization countermeasures
individually before Profile 4 evaluates our fully protected
designs with both countermeasure active in combination.

During our analysis of CURVE25519 and CURVE448 , we
used the default base points xP = 9 and xP = 5, and per-
formed a non-specific t test with fix and randomly chosen
scalars according to [26]. In Fig. 4, we provide two mean
traces for CURVE25519, respectively, CURVE448, both based
on 1000 measurements, where we at first disabled (Fig. 4a,
c) and then enabled (Fig. 4b, d) all of our countermeasures.

6.1.1 Profile 1: PRNG Off

Our first profile serves as a reference setup where we
disabled our PRNG in order to provide a constant zero
value. Consequently, the secret scalar is provided in an
unblinded fashion and the base point has a constant z-
coordinate of zP = 1. In Figs. 5a and 6a, we present

the t test-based evaluation results after measuring 10 000
power traces. Obviously, the t test detects scalar-dependent
leakage with very high confidence for both architectures
giving proof for the correctness of our setup. As expected,
the leakage is mainly detectable during the last 255,
respectively, 448 Montgomery step executions and the final
inversion, since the secret scalar is padded with zeros for
both cases (fix and random scalar).

6.1.2 Profile 2: Point Randomization

The second evaluation profile investigates the individual
security gain through the randomization of projective coor-
dinate representations without scalar blinding countermea-
sures. Therefore, the core is provided with a random multi-
ple of the x′

P = 9λ (mod p) or x ′
P = 5λ (mod p) and the

random z-coordinate z′ = λ. For this profile, we captured
100 000 power traces with fix vs. random scalars and the
t test results are shown in Figs. 5b and 6b. For both mea-
surements, since the unprotected scalar is expanded by 128
bits, respectively, 224 bits, and padded with leading zeros,
we can clearly distinguish an initial phase that processes
these zeros from the actual processing of the scalar bits due
to its smaller t values. In summary, randomizing projective
coordinate representations helps to decrease the observable
side-channel leakage though it does not prevent the imple-
mentation from exhibiting scalar-dependent side-channel
information.

6.1.3 Profile 3: Scalar Blinding

In Figs. 5c and 6c, we provide the evaluation results for
our third profile in order to investigate our scalar blinding
countermeasure. Again, we measured 100 000 power traces

0 0.35 1.05 1.4

-270

159

Time [ms]

V
o
lt
a
g
e
 [
m

V
]

0 0.35 1.05 1.4

-278

198

Time [ms]

V
o
lt
a
g
e
 [
m

V
]

0 1.5 4.5 6

-211

-137

Time [ms]

V
o
lt
a
g
e
 [
m

V
]

0 1.5 4.5 6

-211

-137

Time [ms]

V
o
lt
a
g
e
 [
m

V
]

Fig. 4 Mean traces over 1 000 power traces

310 J Hardw Syst Secur (2018) 2:297–313

0 0.3 0.9 1.2

-251

0

251

Time [ms]

t

0 0.3 0.9 1.2

-18

0

18

Time [ms]

t

0 0.3 0.9 1.2

-4.5

0

4.5

Time [ms]

t

0 0.3 0.9 1.2

-4.5

0

4.5

Time [ms]

t

Fig. 5 Non-specific t test results for CURVE25519: fix vs. random scalar

using a non-specific t test setup with fix vs. random scalars.
In addition, each scalar is blinded externally using a random
128-bit or 224-bit blinding factor (i.e., about half of the bit-
length of the according group order) which is multiplied
by the group order of the base point and added to the
original scalar. Then, the core receives and processes only
the blinded scalar. Obviously, this countermeasure avoids
any detectable scalar-dependent leakage both designs and
for the given number of measurements and in particular we
cannot distinguish the loading and processing of any fix and
random secret scalar (on the first statistical order).

6.1.4 Profile 4: Combination

Eventually, our forth profile combines all countermeasures
in order to investigate their interaction. Figures 5d and 6d

provide the non-specific t test results using 1 000 000 power
traces and as expected we cannot observe any first-order
side-channel leakage for both designs while using scalar
blinding and randomized projective coordinates.

6.2 Detection of Base-Point-Dependent Leakage

In a further step, we evaluated the detection of base-point-
dependent leakage, this time using a fixed scalar throughout
the evaluation procedure while the base point is chosen from
a random set and interleaved with operations on a fix base
point. Again, we used xP = 9 and xP = 5 as fix base
points. However, in order to ensure the correct operation of
our core and the scalar blinding countermeasure, the random
base point has to have the same group order than the default
base point. To this end, we modified our measurement setup

0 1.3 3.9 5.2

-316

0

316

Time [ms]

t

0 1.3 3.9 5.2

-57

0

57

Time [ms]

t

0 1.3 3.9 5.2

-4.5

0

4.5

Time [ms]

t

0 1.3 3.9 5.2

-4.5

0

4.5

Time [ms]

t

Fig. 6 Non-specific t test results for CURVE448: fix vs. random scalar

J Hardw Syst Secur (2018) 2:297–313 311

0 0.3 0.9 1.2

-311

0

747

Time [ms]

t

0 0.3 0.9 1.2

-4.5

0

4.5

Time [ms]

t

0 0.3 0.9 1.2

-183

0

416

Time [ms]

t

0 0.3 0.9 1.2

-4.5

0

4.5

Time [ms]

t

Fig. 7 Non-specific t test results for CURVE25519: fix vs. random base point

such that when a random base point is sent to the core,
an arbitrarily chosen scalar s is used to derive a new base
point as P ′ = s × P , i.e., we performed an additional point
multiplication to ensure the same group order for P and P ′.
Besides, the scalars have been fixed to the test vectors that
are given in RFC 7748.

Profile 1: PRNG Off Again, the first profile is intended as a
reference for our evaluation setup. To this end, we again
disabled our PRNG and countermeasures. Consequently, the
scalar is not blinded and the base point has a constant z-
coordinate of zP = zP ′ = 1. Figures 7a and 8a present the
t test results using 10 000 power traces. As expected, the t

score exceeds the threshold significantly, i.e., we can detect
base-point-dependent leakage with high confidence.

Profile 2: Point Randomization In Figs. 7b and 8b, we
provide the evaluation results when enabling point random-
ization as countermeasure. Obviously, we cannot detect any
first-order side-channel leakage for CURVE25519 after mea-
suring 100 000 power traces, but surprisingly we detect
first-order leakage for CURVE448. However, the detected
leakage only appears during the first 224 iterations of the
Montgomery steps, i.e., where the secret scalar is padded
with leading zeros. Hence, without the padding or with
using a randomized representation of the scalar , we expect
to prevent this detection of leakage.

Profile 3: Scalar Blinding Figures 7c and 8c provide the
evaluation results of our third profile, when enabling the
scalar blinding countermeasure, using only 10 000 power
traces and with fix scalar. In contrast to Profile 3 with

0 1.3 3.9 5.2

-445

0

660

Time [ms]

t

0 1.3 3.9 5.2

-91

0

52

Time [ms]

t

0 1.3 3.9 5.2

-213

0

572

Time [ms]

t

0 1.3 3.9 5.2

-4.5

0

4.5

Time [ms]

t

Fig. 8 Non-specific t test results for CURVE448: fix vs. random base point

312 J Hardw Syst Secur (2018) 2:297–313

fix base point, we can clearly detect and observe leakage
for both architectures. In particular, the internal processing
of the point Q3 = Q1 − Q2 can be detected due to its
dependency on the base point since x3 = xP and z3 = zP
hold for each iteration of the Montgomery ladder. Hence,
we did not expect to prevent base-point-dependent leakage
when blinding the secret scalar.

Profile 4: Combination The last profile again combines
both countermeasures in order to analyze and evaluate
the interaction of both mechanisms. In Figs. 7d and 8d,
we present the evaluation results, again using 1 000 000
power traces. As we expect, we cannot observe first-order
side-channel leakage for our CURVE25519 and CURVE448
architectures while both countermeasures are active.

7 Conclusion

In this work, we presented FPGA architectures for
CURVE25519 and CURVE448 that provide high-
performance ECC operations (point multiplications)
including advanced protection against physical attacks. In
particular, we have proven that both elliptic curves can be
efficiently mapped to existing FPGA structures although
only software implementations were considered during the
design phase of both curves. In addition, our architectures
support virtually all high-performance applications for all
security levels in the range of 128–224 bits, providing more
than 1 700 and 600 operations per second for CURVE25519
and CURVE448 on a mid-range Xilinx XC7Z020 FPGA.
Eventually, our leakage assessment confirms with high
confidence, that even with 1 000 000 power measurements
we cannot detect any scalar- or base-point-dependent leak-
age while the scalar blinding and point randomization
countermeasures are active.

References

1. Agrawal D, Archambeault B, Rao JR, Rohatgi P (2002) The EM
side-channel(s). In: 4th International workshop on cryptographic
hardware and embedded systems - CHES 2002. Redwood Shores,
CA, USA, Revised Papers, pp 29–45

2. Alrimeih H, Rakhmatov DN (2014) Fast and flexible hardware
support for ECC over multiple standard prime fields. IEEE Trans
VLSI Syst 22(12):2661–2674

3. Bernstein DJ (2006) Curve25519: new Diffie-Hellman speed
records. In: 9th International Conference on theory and practice of
public-key cryptography on public key cryptography - PKC 2006.
New York, NY, USA, April 24-26, 2006, proceedings, volume
3958 of lecture notes in computer science. Springer, pp 207–228

4. Coron J-S (1999) Resistance against differential power analysis
for elliptic curve cryptosystems. In: 1st International workshop
on cryptographic hardware and embedded systems - CHES 1999.

Worcester, MA, USA, August 12-13, 1999, proceedings, volume
1717 of lecture notes in computer science. Springer, pp 292–302

5. de Dormale GM, Quisquater J-J (2007) High-speed hardware
implementations of elliptic curve cryptography: a survey. Journal
of Systems Architecture

6. Dugardin M, Papachristodoulou L, Najm Z, Batina L, Danger J-L,
Guilley S (2016) Dismantling real-world ECC with horizontal and
vertical template attacks. In: Constructive side-channel analysis
and secure design - 7th international workshop, COSADE 2016,
Graz, Austria, April 14-15, 2016, revised selected papers, volume
9689 of lecture notes in computer science. Springer, pp 88–108

7. Fan J, Xu G, De Mulder E, Schaumont P, Preneel B, Verbauwhede
I (2010) State-of-the-art of secure ECC implementations: a survey
on known side-channel attacks and countermeasures. In: IEEE
International symposium on hardware oriented security and trust -
HOST 2010, Anaheim Convention Center, CA, USA, June 13-14,
2010, proceedings. IEEE Computer Society, pp 76–87

8. Fan J, Verbauwhede I (2012) An updated survey on secure
ECC implementations attacks, countermeasures and cost. In:
Cryptography and security: from theory to applications - essays
dedicated to Jean-Jacques Quisquater on the occasion of his
65th birthday, volume 6805 of lecture notes in computer science.
Springer, pp 265–282

9. Güneysu T, Paar C (2008) Ultra high performance ECC over NIST
primes on commercial FPGAs. In: 10th International workshop
on cryptographic hardware and embedded systems - CHES
2008. Washington, D.C., USA, August 10-13, 2008, proceedings,
volume 5154 of lecture notes in computer science. Springer, pp
62–78

10. Hamburg M (2015) Ed448-Goldilocks, a new elliptic curve. IACR
Cryptology ePrint Archive, 2015:625. http://eprint.iacr.org/2015/
625

11. Jȧrvinen K, Miele A, Azarderakhsh R, Patrick L (2016)
FourQ on FPGA: new hardware speed records for elliptic
curve cryptography over large prime characteristic fields. In:
18th International conference on cryptographic hardware and
embedded systems - CHES 2016. Santa Barbara, CA, USA,
August 17-19, 2016, proceedings, volume 9813 of lecture notes in
computer science. Springer, pp 517–537

12. Kocher PC (1996) Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems. In: 16th Annual internatio-
nal cryptology conference on advances in cryptology - CRYPTO
’96. Santa Barbara, California, USA, proceedings, pp 104–113

13. Kocher PC, Jaffe J, Jun B (1999) Differential power analysis.
In: 19th Annual international cryptology conference on advances
in cryptology - CRYPTO ’99. Santa Barbara, California, USA,
Proceedings, pp 388–397

14. UEC Satoh Lab. Side-channel attack user reference architecture.
http://satoh.cs.uec.ac.jp/SAKURA/index.html

15. Montgomery PL (1987) Speeding the Pollard and elliptic curve
methods of factorization. Math Comput 48(177):243–264

16. De Mulder Elke, Ȯrs SB, Preneel B, Verbauwhede I (2007)
Differential power and electromagnetic attacks on a FPGA
implementation of elliptic curve cryptosystems. Comput Electric
Eng 33(5–6):367–382

17. Orlando G, Paar C (2001) A scalable GF(p) elliptic curve
processor architecture for programmable hardware. In: 3rd
International workshop on cryptographic hardware and embedded
systems - CHES 2001. Paris, France, May 14-16, 2001,
Proceedings, volume 2162 of lecture notes in computer science.
Springer, pp 348–363

18. Örs SB, Batina L, Preneel B, Vandewalle J (2003) Hardware
implementation of an elliptic curve processor over GF(p). In: 14th
IEEE International conference on application-specific systems,
architectures, and processors - ASAP 2003. The Hague, The

http://eprint.iacr.org/2015/625
http://eprint.iacr.org/2015/625
http://satoh.cs.uec.ac.jp/SAKURA/index.html

J Hardw Syst Secur (2018) 2:297–313 313

Netherlands, June 24-26, 2003, Proceedings. IEEE Computer
Society, pp 433–443

19. Poussier R, Zhou Y, Standaert F-X (2017) A systematic approach
to the side-channel analysis of ECC implementations with worst-
case horizontal attacks. In: 19th International conference on
cryptographic hardware and embedded systems - CHES 2017.
Taipei, Taiwan, September 25-28, 2017, Proceedings, volume
10529 of lecture notes in computer science. Springer, pp 534–554

20. Roy DB, Mukhopadhyay D, Izumi M, Takahashi J (2014) Tile
before multiplication: an efficient strategy to optimize DSP
multiplier for accelerating prime field ECC for NIST curves. In:
The 51st Annual design automation conference 2014, DAC ’14.
San Francisco, CA, USA, June 1-5, 2014, pp 177:1–177:6

21. Sakiyama K, Mentens N, Batina L, Preneel B, Verbauwhede I
(2006) Reconfigurable modular arithmetic logic unit for high-
performance public-key cryptosystems. In: 2nd International
Symposium on reconfigurable computing: architectures, tools and
applications - ARC 2006. Delft, The Netherlands, March 1-3,
2006, proceedings, volume 3985 of lecture notes in computer
science. Springer, pp 347–357

22. Sasdrich P, Güneysu T (2014) Efficient elliptic-curve cryptogra-
phy using Curve25519 on reconfigurable devices. In: 10th Inter-
national Symposium on reconfigurable computing: architectures,
tools and applications - ARC 2014. Vilamoura, Portugal, April 14-
16, 2014, proceedings, volume 8405 of lecture notes in computer
science. Springer, pp 25–36

23. Sasdrich P, Güneysu T (2015) Implementing Curve25519 for
side-channel-protected elliptic curve cryptography. ACM Trans
Reconfig Technol Syst - TRETS 9(1):3

24. Sasdrich P, Güneysu T (2017) Cryptography for next generation
TLS - implementing the RFC 7748 elliptic Curve448 cryptosys-
tem in hardware. In: Proceedings of the 54th design automation
conference - DAC 2017. Austin, TX, USA, June 18-22, 2017.
ACM, pp 1–6

25. Schindler W, Wiemers A (2015) Efficient side-channel attacks on
scalar blinding on elliptic curves with special structure. In: NIST
Workshop on ECC standards

26. Tunstall M, Goodwill G (2016) Applying TVLA to public
key cryptographic algorithms. IACR Cryptology ePrint Archive,
2016:513. http://eprint.iacr.org/2016/513

http://eprint.iacr.org/2016/513

	Exploring RFC 7748 for Hardware Implementation: Curve25519 and Curve448 with Side-Channel Protection
	Abstract
	Introduction
	Related Work
	Contribution

	Preliminaries
	Field Arithmetic
	Curve25519
	Curve448

	Group Arithmetic
	Point Multiplication
	Side-Channel Protection
	Point Randomization
	Scalar Blinding

	Optimization Strategies for Reconfigurable Hardware

	Side-Channel Protected Curve25519
	Design Considerations
	Field Arithmetic
	Architectural Level

	Implementation
	Modular Addition and Subtraction Unit
	Modular Multiplication Unit
	Side-Channel Countermeasures
	Source of Randomness
	Scalar Blinding
	Simple Point Randomization
	Memory Address Scrambling
	Continuous Point Randomization

	Results

	Side-Channel Protected Curve448
	Design Rationales
	Field Arithmetic Optimizations
	Modular Inversion
	Modular Multiplication

	Architectural Customizations

	Implementation
	Field Arithmetic Unit
	Side-Channel Countermeasures
	Scalar Blinding
	Simple Point Randomization
	Continuous Point Randomization

	Results

	Comparison and Discussion
	Side-Channel Evaluation
	Detection of Scalar-Dependent Leakage
	Profile 1: PRNG Off
	Profile 2: Point Randomization
	Profile 3: Scalar Blinding
	Profile 4: Combination

	Detection of Base-Point-Dependent Leakage
	Profile 1: PRNG Off
	Profile 2: Point Randomization
	Profile 3: Scalar Blinding
	Profile 4: Combination

	Conclusion
	References

