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Abstract
The electronics industry has become a primary target in the global market of counterfeiting. Counterfeit electronic parts trans-
verse through the supply chain end up in critical avionics, industrial, medical, and military systems, and the financial loss due to
these parts is in the billions. A vast majority of counterfeit parts within the electronics industry are integrated circuits. In this
paper, a new (near real-time) counterfeit detection process, which is based upon infrared thermal imaging, intensive statistical
analysis, and machine learning, to differentiate between authentic and inauthentic electronic parts is presented and then show-
cased as a highly accurate and cost-effective method to verify hardware authenticity.
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1 Introduction

The counterfeiting of electronic parts is a potential $96 billion
enterprise [1] which creates brand damage for the commercial
manufacturers and potentially threatens national security par-
ticularly for the USA and its allies. The supply chain of US
Department of Defense (US DoD)—which is supplied by
some of the leading electronics manufacturers—has been
characterized as Bhigh-risk,^ due in part to its supply chain
vendors ineffective and inefficient supply chain risk manage-
ment (SCRM) practices and procedures [2]. The conse-
quences of counterfeiting have an adverse effect on the reli-
ability of integrated circuits (ICs) in the hardware (H/W) sys-
tems they compose. Poor reliability of electronic components
leads to reduced performance as well as potential operational
failure. The potential failure of critical systems, such as aero-
space, defense, and financial systems, which inadvertently
incorporate counterfeit electronic parts is the reason why this
is an important issue. The H/W reliability issues caused by the
proliferation of counterfeit parts have been documented [3].

The steady increase of counterfeit electronic components
entering the production supply chains of various IC manufac-
turers is primarily due to the rampant expansion of the

production of H/W systems within the electronic industry
and a significant increase of electronic waste (e-waste) [4].
Electronic waste is generally defined as unwanted ICs which
were mishandled, sanded, or damaged during the retrieval of
their components. In the USA, many small electronic part
vendors procure parts from brokers, who are assumed to be
legitimate. Yet, many of these intermediaries purchase coun-
terfeit items which may be e-waste and enter them into the
distribution phase of the supply chain [5]. However, many of
the leading manufacturers of ICs have placed great emphasis
on their SCRM processes to thwart counterfeiting to greatly
mitigate the risk of operational loss or degradation of their
products and uphold their brands [6].

Among the leading electronic component manufac-
turers, Texas Instruments (TI) and the Intel Corporation
use similar standards to mitigate vulnerabilities within
their supply chain to impede counterfeiting [7, 8]. In this
paper, we focus on Intel and TI, due specifically to their
high name recognition and reputation for H/W reliability.
Also, analog and programmable ICs, such as those pro-
duced by TI and Intel, respectively, have the highest and
second highest occurrences of counterfeiting of all semi-
conductors [9]. The leading counterfeit detection tech-
niques [10, 11] such as material analysis like Fourier trans-
form infrared spectroscopy (FTIR), confocal scanning
acoustic microscopy (C-SAM), and aging analysis such
as Tehranipoor’s work neural network modeling of aging
mechanism and Guin’s research in combating IC recycling
are all utilized within on-chip structures, and their
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implementation is either not cost effective (based on the
cost of the board) or is destructive in nature [12–23]. Also,
there have been material analysis work employing
terahertz (THz) pulsed laser systems by Ahi. The THz sys-
tems are presently not widely used for counterfeit detection
as the resolutions of THz images are not as precise as X-
ray microscopy [24]. Yet, THz systems are effective and
non-destructive material analysis method to authenticate
electronic components [25–27]. Other novel counterfeit
detection processes, such as parametric testing including
hue-saturation-intensity transformation, and emission
spectrum analysis, Markis’s work with supervised machine
learning, and Bhunia’s efforts in scan-based authentication
are non-invasive and function in near real time, but they
are either labor intensive or do not test for a broad range of
counterfeit triggers such as inconsistent markings and ther-
mal stress [28–35]. There have been novel approaches to
thwart and detect counterfeit ICs through the utilization of
embedded nano-signatures (ENS) onto the electronic com-
ponents [36, 37]. ENS are fabricated at the manufacturer
side of the supply chain and a cipher key and the coding
lookup tables are provided to the consumer using a secure
direct line between the authentic manufacturer and the con-
sumer [36]. This novel approach of ENS basically interdic-
tion of fraudulent ICs into the supply chain as potential
counterfeiters would not have the ability to decrypt the
nano-signatures on the electronic parts. Yet, this method
may be viewed as expensive process by the manufacturers
given the nominal cost of the parts being encrypted. There
are also structural tests for counterfeit detection such as
malicious alteration recognition and verification by emis-
sion of light (MARVEL), which employs optical diagnos-
tics and electrical tests to detect chip alterations. Yet,
MARVEL is not sophisticated enough to analyze certain
ICs [38]. Other counterfeit detection approaches such as
Chen and Hu et al. [39] have examined utilizing the unique
current and voltage characteristics of transistors employed
in ICs to ascertain counterfeit ones as well as Zheng’s work
[40] exploiting dynamic supply current to detect counter-
feit ICs. Yet, this emerging technique needs to be further
work to fully understand its potential. Also, there is a coun-
terfeit detection processes analyzing printed circuit (PCB)
unique signatures based on variations in its trace imped-
ances [41]; this approach is also labor intensive. There is a
novel counterfeit detection method that analyzes non-
volatile memory of system on chip (SoC) ICs [42], but its
application is not broad. A vast majority of the aforemen-
tioned counterfeit detection techniques have been applied
to prevent fraudulent semiconductors from initially enter-
ing the supply chain. However, a more crucial challenge
facing many system integrators (e.g., US DoD) is these
methods do not adequately address the issue of fraudulent
parts already in the supply chain (i.e., counterfeit

components that have the correct—or equivalent—die
and those that come from original component manufacturer
(OCM)-approved second party vendors). There have been
several works utilizing infrared thermography (IRT)—re-
cording of images after or while thermally stimulating the
inspected component—as non-destructive inspection
(NDI) method that the authors have examined. Zhang’s
work with utilizing to IRT and signal-to-noise ratio
(SNR) measures as a NDI process to ascertain impact load-
ing in fiber-reinforced polymer specimens and defects in
polymer composite materials [43, 44] as well as employing
micro-laser line thermography, and finite element analysis
as a NDI process to discover micro-sized flaws in stitched
carbon fiber-reinforced polymer composites [45] has appli-
cability in the detection of counterfeit ICs. Also, Fernandes
et al. [46] utilizes IRT to analyze fiber orientation on
laminates.

In this paper, we showcase an NDI method to assess coun-
terfeit ICs from non-counterfeit ICs. This technique is similar
to IRT. By applying thermal imaging, statistical analysis based
on a time registration algorithm, and machine learning algo-
rithms, we are able to showcase a superior ability to identify
non-counterfeit ICs from counterfeit ones. The remainder of
the paper is structured as follows. The next section furnishes
an elucidation of the new approach for detecting counterfeit
parts by employing ICA and leveraging one of the leading
supervised learning algorithms with dynamic time warping-
aligned features. While the testing environment for the exper-
iments conducted for this work is presented in the third sec-
tion. The fourth section showcases the results along with a
comparative analysis of the three leading classifiers for the
Intel and TI PCBs, and the conclusions are noted in the fifth
and final sections.

2 Counterfeit Detection Approach

Our current research in ascertaining counterfeit parts is done
by employing blind source separation (BSS) to analyze the
validity of potential counterfeit PCB against a benchmark de-
vice, BGold Standard.^ The Gold Standard is an electronic
device proven to be legitimate either via product verification
through the OCM or certified brokers or by way of passing
previously run counterfeit detection tests. Using this new ap-
proach to focus on individual components’ infrared (IR) signal
emission from both the Gold Standard and the alleged coun-
terfeit PCB is a way to effectively prevent supply chain infil-
tration by inauthentic devices.

An overview of our IR analysis counterfeit detection ap-
proach is presented in Fig. 1. The high-level illustration is
based on the applied algorithms mentioned in the previous
section and presented in this section. The methodology as
depicted in the aforementioned figure is based on the
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collection of multiple thermal signatures given off by various
OCM ICs. A classical machine learning approach is presented
where the input of the potential counterfeit PCB is denoted by
X, i.e., the feature data, and the output is Y, the classification
label. There should exist a relationship or pattern between the
input and output values. This relationship is accomplished by
the function y = f(x), which is known as the target function.
However, f(x) is an unknown function so the learning algo-

rithm tries to guess a Bhypothesis^ function f̂ xð Þ that approx-
imates the unknown function f(x). The set of all possible hy-
potheses is known as the Hypotheses set F̂ xð Þ, and the goal of
the machine learning algorithm is to ascertain the final hypoth-
esis that best approximates the unknown target function.

2.1 Concept of Blind Source Separation

Blind source separation (BSS) is a concept where the separa-
tion of a set of signals from a set of mixed signals can be
achieved, without prior knowledge about the content or struc-
ture of the mixed signals. This can be achieved using to as-
sumption that the original source signals are mutually statisti-
cally independent. Themathematical representation for BSS is
presented using the following equation:

x tð Þ ¼ A∙s tð Þ ð1Þ

where the set of original source signals, s(t) = (s1(t),…,
sn(t))

T, is mixed using the matrix, A = [aij] ∈ ℝmxn, to produce
a set of mixed signals, x(t) = (x1(t),…, xn(t))

T. Usually, n is
equal to m. When m> n, the system of equations is overde-
termined and the unmixing can be obtained via conventional
linear methods. When n >m, the system is underdetermined
and a non-linear method must be used to recover the original
signals from the mixture, respectively. These signals can be
multidimensional which the case for this research is.
Extending this mathematical representation to the problem
of electronic components verification, the thermal emissions
emitted by the electronic components on the integrated circuit
board are represented by s(t) which are assumed to be statis-
tically independent, A represents the mixing matrix, and x(t)
represents overall board signatures [47].

2.2 Independent Component Analysis and the Fast
Independent Component Analysis Algorithm

Independent component analysis (ICA) is a computational
method for discovering embedded structures from within
mixed signals. ICA assumes a statistical model whereby the
observed multivariate signals are linear or nonlinear mixtures
of some unknown hidden variables. The mixing coefficients
are also unknown, and these hidden variables are considered
both non-Gaussian and mutually independent. Finally, it is
these hidden variables that are known as the independent com-
ponents of the observed data. It is through the ICA approach
that these independent components can be determined. Fast
independent component analysis (FastICA) is an efficient and
well-known algorithm for independent component analysis.
FastICA uses Newton’s method on an approximation for
negentropy, negentropy being its measurement of non-
Gaussianity. This method is selection-based on the estimated
statistical measures of the original signals. FastICA is partic-
ularly fast simply because of the numerical method and ap-
proximation it uses [48].

As a means to demonstrate the FastICA algorithm, we uti-
lized two independent source signals from an examined PCB,
captured by a pair of IR cameras, which are to be mixed then
separated. Please note, further experimental details of the
PCBs used will be described later in the manuscript. The IR
signatures from different electronic components on the PCBs
along with any noise present would be the inputs of the two
cameras. Inputting these two captured unique mixtures into
the FastICA algorithm will allow the recovery of any of the
individual signals present on the PCB. In our approach, we
recover unique thermal signatures of test board components
off of the PCB examined to produce a result to be compared to
known authentic board, i.e., Gold Standard. After FastICA is
applied, the matrix in (1) rotated back to its original axis and
re-projected into the original coordinate frame. The rotation is
performed by minimizing the Gaussianity of the data
projected on both axes [fixed point ICA]. By rotating the axis,
FastICA is able to recover the original sources which are sta-
tistically independent. This property of this effective process
comes from the central limit theorem which basically states
any linear composite of two independent random variables is
considered to be more normal (Gaussian) than the original
variables alone [48].

2.3 Machine Learning Techniques

Support vector machine (SVM), a supervised machine learn-
ing algorithm typically used for classification or regression
problems, was implemented in this framework due to its ef-
fective in high dimensional spaces (collected IR measure-
ments from the Gold Standard). This algorithm, also known
as support vector networks [49], is a machine learning

Fig. 1 Overview of the counterfeit detection methodology
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techniques that assesses observed data to determine pat-
terns based on statistics. The research problem presented
here is posed as a binary or binomial classification task
with the goal classifying thermal emissions from the test
board into two categories, i.e., counterfeit or not
counterfeit , respectively. Binary classification is
dichotomization applied to this challenge, and therefore,
an important point is that in many practical binary
classification problems, the two classes or categories are
not symmetric, meaning that rather than overall accuracy,
the relative proportion of different types of errors is of
interest. For example, in testing electronic boards, a
false positive (detecting a counterfeit component when it
is not present) is considered differently from a false
negative (not detecting a counterfeit component when it
is present). To reiterate, for this research, we initially use
two classes (z ∈ ± 1) noted counterfeit and not counterfeit
(ergo authentic).

A set of Gold Standard ICs developed from a set of
trusted devices was used to train the classifier. These
devices were obtained directly from the manufacturer,
respectively. For this research, there is no requirement
for a priori information about potential counterfeit PCB
characteristics. A set of thermal measurements were ini-
tially captured from the trusted ICs via multiple infrared
camera:

Yi ¼ Y 1; Y 2;⋯; Yk ;⋯; Ynf g ð2Þ

which represents the IR signature vector of the ith cam-
era (i = 1 or 2) and n denotes the thermal emission
measurements captured over the predetermined time in-
terval. These observations were within a tolerance that
deemed them authentic Yj = (Y jtlow ; Y jthigh ), j = 1, ⋯, n.

In other words, there is an acceptable region of IR sig-
natures for the Gold Standard and only ICs that are authen-
tic or have limited process variations will be used to train
the classifier. The Gold Standard was generalized by de-
vice type and defined statistically using a learning algo-
rithm that attempts to determine the hidden structure within
the IR signatures being tested. For this paper, we initially
leveraged a series of two class classifiers to assign a deci-
sion function, f, where f(Y) = 1 when the PCB is designated
to be authentic and f(Y) = − 1 when the PCB is determined
to be counterfeit. Once the machine learning algorithm was
trained, the classifier was capable of determining whether a
test PCB, not from the OCM or their authorized distribu-
tors, were counterfeit. Further information on this type of
classifier may be found in [49].

As part of our performance assessment of machine
learning algorithms and ability to detect counterfeit de-
vices, the naive Bayes approach was evaluated. This

algorithm is one of the leading supervised learning tech-
niques given its simplicity to implement. Additionally, na-
ive Bayes is recognized as an especially accurate classifier
when used with larger training sets [50].

The naive Bayes classifier was consistently trained to
detect whether the PCB compared to the Gold Standard
was counterfeit over variety of different manufacturers.
Further treatment of this machine learning algorithm is
deferred to [51].

The third and final machine learning algorithm con-
sidered was learning vector quantization (LVQ). LVQ is
a nearest-neighbor-based algorithm composed of a set
number of processing modules. Each module consists
of n × 1 reference vector and is associated with one of
the mapping of the input data in (2). Further treatment
of this algorithm is deferred to [52].

2.4 Time Registration

A preprocessing procedure to align temporal signals of
the Gold Standard and the potentially counterfeit IC’s
thermal signatures is required. This is needed to address
differences in both signal compression and time scale.
Here, dynamic time warping (DTW), a versatile algo-
rithm to accurately map discrepancies among varying
time indices [53], is employed. DTW is used to gener-
ate the coordinated features for the aforementioned ma-
chine learning algorithms. Specifically, the normalizing
factor and the minimum unnormalized distance between
the Gold Standard and the commercial manufacturer
devices from the ICA are additional features leveraged
for both training and testing the supervised learning
techniques described.

DTW is a similarity measure [54], which represents the
distance between the reference measurements in (2) and the
test samples denoted below

Ti ¼ T1; T2;⋯; Tl;⋯; Tmf g ð3Þ

wherem represents observed thermal signals over time. Given
the pair of signals in (2) and (3), to align these two signals
employing DTW, a distance matrix [n ×m], D, containing
Euclidean distances between all pairs of points, [Yi, Tj] is
constructed:

d Y k;Tl
� � ¼ Yk−Tlj j ð4Þ

Each matrix element (k, l), where k, l > 1, is related to the
precise sequencing between the points Yk and Tl. DTW is
proven efficient computationally in ascertaining the optimal
path because it identifies a sequence of partial paths and main-
tains the best local path [55]. This is achieved by recursion to
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determine the cumulative distance. The cumulative matrix P
for the warping path is then defined as

P k; lð Þ ¼ d Yk ; Tlð Þ
þmin P k−1; l−1ð Þ;P k; l−1ð Þ;P k−1; lð Þf g ð5Þ

The optimal total distance between thermal emissions, Y
and T, after registration is achieved and can be denoted as
qDTW = P(k, l). Utilizing DTW, we are able to accurately com-
pare the similarity of time series with different lengths. Next,
the H/W environment used in the research is introduced.

3 Inspection of the Leading Integrated Circuit
Manufacturers’ Hardware

We conducted an initial analysis on authentic PCBs received
from Intel and TI. We examined Intel Galileo and TI MSP-
EXP430G2 as they are the leading ICs. We also procured
numerous non-OCM PCBs to register as the potential coun-
terfeits for this initial examination. We conducted external
visual inspections and captured optical information.

The authors did not visually notice any apparent optical
differences between the Intel manufactured ICs and the non-
OCM Intel Galileo ICs. Regarding the non-OCM purchased
TIMSP-EXP430G2, there were boards missing several mark-
ings, such as Restriction of Hazardous Substances (RoHS)
symbol and pin identification numbers, in comparison to the
OCM TI MSP-EXP430G2 ICs. Also, a few of the non-OCM
purchased MSP-EXP430G2 ICs were of a darker color of red
and had an additional (mismarked) labels in contrast to the TI-
manufacturedMSP-EXP430G2 ICs. Figures 2 and 3 display a
described Gold Standard (authentic) and one of the purported
counterfeit (inauthentic) PCBs for Intel and TI, respectively.

We used two data sets for our experiments, which were
developed through acquisition of IR imagery and application
of the ICA algorithm. Test data sets for all the Intel and TI

boards were acquired and consisted of 24-bit, red-green-blue
(RGB) images which were captured using a pair of FLIR
Systems A655sc® IR cameras at a rate of 30 frames per sec-
ond (fps). For purpose of these experiments, the camera reso-
lution was reduced from a maximum resolution of 640 × 480
pixels to 160 × 128 pixels to improve computational perfor-
mance while maintaining efficacy, and the camera lenses were
positioned approximately 7 in. vertically above the test
boards, 5 in. apart, and at an angle of 45° with the focus
primarily on the boards’ processor. Long wave infrared
(LWIR) was used which covers the most common thermal
range of 7 or 8 μm to 14 μm. This range was desired because
it is the largest coverage of IR camera spectral ranges and can
be used on a wide variety of testing boards. We employed the
MATLAB 2011b software (S/W) for signal analysis and
Visual C++ (2010) with Open Source Computer Vision
(OpenCV) specifically for real-time signal analysis running
within a Windows Operating System (O/S) environment. All
machine learning experiments were conducted using the
Python programming language and scikit-learn. Scikit-learn
is an open source machine learning library for the Python
programming language. Additionally, Python numerical and
scientific libraries NumPy and SciPy were used. The pro-
gram’s end-to-end evaluation time to assess a test board was
approximately 3 s per experimental trial. The resulting thermal
signatures are showcased.

3.1 Inspection Environment for Intel

For the experimentation, we obtained our non-OCM Intel
Galileo boards online. The online companies were chosen
due to the availability of the Galileo boards and price point
(which is a key factor in purchasing electronic components).
The H/W specifications for the Galileo PCBs are stated in
Table 1. The PCBs were provided power internally—individ-
ual power supplies (five-volt output)—and externally from a
function generator. The specifications for the voltage pulse

Fig. 2 Images of the Intel Galileo Gold Standard (on the left) and a
potential inauthenic board (on the right)

Fig. 3 Images of the TI MSP-EXP430G2 Gold Standard (on the left) and
a potential inauthentic board (on the right)
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from the generator used on each test board are listed in Table
1. One of the OCM Galileo ICs procured was designated as
the Gold Standard (a priori). The resulting thermal images for
Intel Galileo PCBs can be seen in Fig. 4.

3.2 Inspection Environment for Texas Instruments

The test environment for the TI MSP-EXP430G2 PCBs was
similar to the one set up for the Intel ICs.We obtained the non-
OCM PCBs from a reputable online vendor due to the avail-
ability and cost point. We produced a generalized test pulse
signal to send to the boards. However, due to the different H/
W specifications for the TI PCBs (as shown in Table 1), it
necessitated a more uniquely tailored test signal. One of the
TI boards was designated as the Gold Standard (a priori).

The output of the function generator was connected to the
Ground (GND) and Test pins of each of the experimental TI
PCBs. A power source was supplied to the main GND and
voltage peak-to-peak pins of these experimental boards. With

the initial pulse parameter values, the desired test pulse output
was not optimal visually, i.e., the signal period was too fre-
quent to capture by the thermal cameras used. Therefore, var-
ious adjustments were made. We decided to employ a more
optimal frequency in order to produce more visible periods in
the range of seconds as opposed to minutes (listed in Tables 1
and 2). This decision reduced the total algorithm run time to
14- and 16-s periods for the manufacturer’s processor and IC,
respectively. Since the TI H/W is designed to function inde-
pendently of the power supply, offset and peak-to-peak volt-
ages were utilized to allow the board to receive sufficient
voltage to remain functioning with the addition of a pulse
voltage. The resulting thermal images for the TI MSP-
EXP430G2 PCBs can be seen in Fig. 5.

4 Device Authenticity Verification Results

We present the results of our examination on the practicality of
this counterfeit detection approach—implementation of ther-
mal imagining with DTW features and a supervised learning
algorithm—for determining whether a PCB is authentic or
possibly counterfeit and thereby unreliable. We conducted
an extensive series of simulations to validate the theoretical
methodology and technical approach described in this work.
We first generated the Gold Standard via ICA using our au-
thentic test boards. The experimental simulations consisted of
multiple IR video test data with an application of the ICA
algorithm. For each experiment, several LWIR videos were
acquired each approximately 5 min in length, and we assumed
that each individual electronic component on the board has the
same kind of temporal dependencies (i.e., non-stationary
smoothly changing variances). Additionally, each test board
utilized a specific test load, and the videos were recorded

Table 1 Specifications and
testing environment details for
examined hardware

Hardware specifications Intel Texas Instruments (TI)

Board name Galileo MSP-EXP430G2
Board type 32-bit Mocrocontroller Low power mixed signal

microcontroller
Memory 8 Mbyte NOR flash 16kB flash
Operational voltage (V) 3.3–5 3.3–5
Dimensions (mm) 123.8 (L) × 72.0 (W) 66.675 (L) × 50.8 (W)
Peripherals Full sized mini PCI slot, 100 Mb

Ethernet port, Micro-SD slot,
RS-232 serial port, USB Host and
Client ports

MSP430G2553 IC,
MSP430G2452 IC, Micro Crystal
Oscillator 32.768 kHz

Testing pulse specifications
Frequency (milli = 10−3 Hz) 205 65
Peak-to-peak voltage

(amplitude volts)
10.0 3.3

Voltage offset (DC volts) 0.0 3.3
Applied signal type Sinusoidal Sinusoidal
Testing ambient temperature range

(°F)
74–81.3 72.4–81.6

Fig. 4 Thermal screen shot of one of the authentic Intel Galileo
experimental PCBs (dubbed the Gold Standard) (on the left) and one of
a possibly counterfeit Intel Galileo experimental PCBs (on the right)

J Hardw Syst Secur (2018) 2:240–250 245



precisely 10min after initial powering of the boards to prevent
any transients from being captured in the data set.

Integrated Circuit Data Set: A set of four variables (f1, f2,
f3, f4), comprising the unnormalized distance, the accumulated
distance, the normalizing factor, and the optional path, com-
puted between the Gold Standard and the test data was
employed as an input to the classifier. The data set for the
Intel Galileo was arbitrarily divided into a training sample of
1667 points and a test set of 1485 samples, and the data set for
the TI MSP-EXP430G2 was arbitrarily divided into a training
sample of 5188 points and a test set of 4757 points. The
general practice is to split the data sets into a training and test
set. Training data is the data on which the machine learning
algorithms learn to perform the necessary correlation tasks
(e.g., classify, cluster, learn the attributes) thereby determining
whether a test PCB is or is not counterfeit. The algorithms are
trained with the training set and tested via the test set to ascer-
tain how well it generalizes to data it has never seen before.
The algorithms’ performance on the test sets provide insight
into how well the model is performing. In k-fold cross-

validation, the original data set is randomly partitioned into k
equal size subsamples. Of the k subsamples, a single subsam-
ple is retained as the validation data for testing the model, and
the remaining k-1 subsamples are used as training data. The
cross-validation process is then repeated k times (the folds),
with each of the k subsamples used exactly once as the vali-
dation data. A value of k equal to 10 was used for the exper-
iments presented in this paper.

Piecewise linear-discriminant functions for decomposing
the patterns correlating to the three designated categories—
authentic, counterfeit, and unknown—were derived utilizing
the points in the training set. The ICs designated as Bun-
known^ are due to the fact our process could not clearly dis-
tinguish whether that particular board was authentic or coun-
terfeit. Those PCBs classified as Bunknown^ would require
further testing to ensure whether they are counterfeit or not.
The contingency tables for organizing the samples in both the
Intel and TI test sets for the advertised supervised learning
algorithms are shown in Tables 3, 4, and 5 and Tables 6, 7,
and 8, respectively.

In the contingency table representing classification perfor-
mance of the LVQ algorithm against Intel PCBs (Table 3), the
authentic boards was accurately classified precisely 89.3% of
the time, whereas counterfeit boards were detected 84% of the
time. The unknown boards were identified correctly at a rate
of 74.2%. For the contingency table depicting classification
performance of the naive Bayes algorithm against Intel PCBs
(Table 4), the authentic boards was correctly classified ap-
proximately 91.4% of the time, whereas counterfeit boards
were detected 92% of the time. The unknown boards were
designated properly at a rate of 80.3%. For the contingency
table portraying the classification performance of the SVM
algorithm against Intel PCBs (Table 5), the authentic boards
was properly classified exactly 91.1% of the time, whereas
counterfeit boards were detected 89.3% of the time. The un-
known boards were designated correctly at a rate of 81.8%.

Table 2 Classification summary and insights

Algorithm Parameter type Parameter set Key insights

Support vector
machine (SVM)

Kernel-type cost
gamma

Radial basis function
10, 20, 30, 40, 50, 60, 70, 80, 90, 100
2–2, 2–1, 0, 21, 22, 23, 24, 25, 26, 27

Highly accurate, performed consistently for
counterfeit detection of tested electronic devices

Performed well for high dimensional data sets
Inefficient classification training process
May not scale well for Bindustry scale^ applications

Naive Bayes Model
kernel type

Multinomial, Boolean, Bernoulli
Radial basis function

Highly accurate, performed consistently
for counterfeit detection of tested electronic devices

Computationally simple and low complexity
Converges quicker to solution than SVM and LVQ

algorithms
Learning vector

quantization
(LVQ)

Learning rate
Learning rule
1st layer hidden

neurons

0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07,
0.08

LVQ1, LVQ2
4, 8, 16

Least accurate classifier and inconsistent
detection performance against tested electronic devices

Difficult to generalize across new device types due
to dependency on distance or similarity metrics

Highly computational and complex; long training times

Fig. 5 Thermal screen shot of one of the authentic TI MSP-EXP430G2
experimental PCBs (dubbed theGold Standard) (on the left) and one of a
possibly counterfeit TI MSP-EXP430G2 experimental PCBs (on the
right)
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In the contingency table representing classification perfor-
mance of the LVQ algorithm against TI PCBs (Table 6), the
authentic boards was correctly precisely 87.9% of the time,
whereas counterfeit boards were detected 89.7% of the time.
The unknown boards were identified properly at a rate of
75.5%. For the contingency table portraying the classification
performance of the naive Bayes algorithm against TI PCBs
(Table 7), the authentic boards was properly classified exactly
89.6% of the time, whereas counterfeit boards were detected
91.9% of the time. The unknown boards were identified cor-
rectly at a rate of 71.8%. For the contingency table portraying
the classification performance of the SVM algorithm against
Intel PCBs (Table 8), the authentic boards was properly clas-
sified exactly 91.3% of the time, whereas counterfeit boards
were detected 91.3% of the time. The unknown boards were
designated properly at a rate of 81.5%.

The overall accuracy of each classification scheme is
achieved by taking the summation of the diagonal elements
in the contingency table and then dividing the sum by the total
number of points in the test set and is showcased in Table 9.
For the Intel PCBs, naive Bayes classifier correctly verified
the parts precisely 90.91% (slightly better than 90.57% for
SVM). Meanwhile, for the TI PCBs, SVM classifier accurate-
ly verified the parts approximately 89.62% (marginally better
than 89.44% for naive Bayes). The aforementioned two learn-
ing algorithms demonstrate significant performance advan-
tages over the LVQ approach in terms of classification accu-
racy. Yet, there are several factors, which could be considered
to improve these classification results. For example, with the
SVM-based approach, one can explore the use of various ker-
nel functions or research alternatives for handling a multiclass
problem. Similarly, the performance of the LVQ algorithm can

be improved through the optimal trade-off of additional train-
ing data and processing time. These considerations were be-
yond the scope of this publication in the authors’ opinion,
where our goal was to develop a successful non-invasive
counterfeit detection capability for ICs, through the original
use of thermal imaging. To fully facilitate selection of an al-
gorithm approach, one must not only consider classification
accuracy but also performance criterion such as training time,
linearity, the number of algorithm parameters, and the number
of input features, respectively. The scale-invariant feature
transform algorithm was used to detect and generate the local
features in infrared images. This approach for image feature
generation transforms an image into a large collection of fea-
ture vectors, each of which is invariant to image translation,
scaling, and rotation, partially invariant to illumination chang-
es and robust to local geometric distortion. For the reasons
presented, the authors recommend the SVM approach.

Table 2 furnishes a summary of the key insights generated
by the authors’ analyses and identifies the performance attri-
butes of each of the aforementioned classifiers. As shown for
the classification algorithms, key parameters include the ker-
nel type, which are similarity functions (i.e., functions that the
domain expert provides to a machine learning algorithm). In
this paper, we used a radial basis function, which is a popular
kernel function employed for learning algorithms. For the
SVM algorithm listed in the table, the cost parameter controls
the impact of misclassification in the training data. The cost
controls the influence of each individual support vector and
entails a trading error penalty for stability. The parameter
listed as gamma is simply a free parameter of the radial basis
function and contributes to the shape of the SVM hyerplane.
Other parameters of note in Table 2 include the predictor

Table 4 Contingency table for the classification of Intel PCBs (naive
Bayes)

Assigned category Total

Authentic Counterfeit Unknown

True category Authentic 1228 111 5 1344

Counterfeit 3 69 3 75

Unknown 8 5 53 66

Total 1239 185 61 1485

Table 3 Contingency table for the classification of Intel PCBs (LVQ)

Assigned category Total

Authentic Counterfeit Unknown

True category Authentic 1201 130 13 1344
Counterfeit 11 63 1 75
Unknown 9 8 49 66

Total 1221 201 63 1485

Table 5 Contingency table for the classification of Intel PCBs (SVM)

Assigned category Total

Authentic Counterfeit Unknown

True category Authentic 1224 116 4 1344

Counterfeit 3 67 5 75

Unknown 8 4 54 66

Total 1235 187 63 1485

Table 6 Contingency table for the classification of TI PCBs (LVQ)

Assigned category Total

Authentic Counterfeit Unknown

True category Authentic 3605 297 198 4100

Counterfeit 35 454 17 506

Unknown 23 14 114 151

Total 3663 765 329 4757
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models used for the naive Bayes classifier such as Boolean.
There is the learning rate for LVQ, which is a constant used in
artificial neural network learning algorithms to affect the
speed of learning. The LVQ classifier also utilizes a learning
rule for training. LVQ1 is implemented within the competitive
layer of the neural network, and LVQ2 is a supplemental
learning rule that may be applied only after first applying
LVQ1 (LVQ2 can improve the result of the first learning rule).
Finally, the first layer hidden neuron parameter refers to a
simple model of a biological neuron used in neural networks
to perform a small part of the overall computation for the LVQ
algorithm. It has inputs from other neurons, each with an as-
sociated weight (i.e., a number which indicates the degree of
importance which the particular neuron attaches to that input).

Since the SVM technique was recognized as best in show,
we conducted a sensitivity analysis to study of how the uncer-
tainty in the output of the system (numerical or otherwise) can
be apportioned to different system parameters. For the analy-
sis, we focused on the SVM gamma parameter as well as the
radial basis function. The gamma parameter defines how far
the influence of a single training example reaches, with low
values meaning far and high values meaning close. The gam-
ma parameters can be seen as the inverse of the radius of
influence of samples selected by the model as support vectors.
Figure 6 shows the receiver operating characteristic (ROC)
curves, which demonstrates the impact to the performance of
the machine learning algorithm. The minimum and maximum
area under the curve (AUC) is shown for the gamma modifi-
cations. In machine learning and statistics, an ROC curve is a
graphical plot that illustrates the performance of a classifier
system as its discrimination threshold is varied. The curve is

created by plotting the true positive rate (TPR), or correct
detection rate, against the false positive rate (FPR)—also
known as the false alarm rate—at various threshold settings.
The TPR is also known as sensitivity or the sensitivity index.

5 Conclusions

In this paper, a new non-destructive counterfeit detection tech-
nique was showcased to examine the authenticity of ICs by
utilizing ICA and DTW for enhanced feature extraction and a
few prominent supervised learning algorithms for classifica-
tion. The experimental results and analyses demonstrated the
technique’s effectiveness in distinguishing between counter-
feit and authentic ICs. The primary benefit of our approach is
that it provides observability indirectly into system behavior
of electronic components in real-time. Temporal insight into
how the states of electronic components change over time
(ergo not just a static snapshot of the behavior from the indi-
vidual sensors). This technique is cost effective because the IR
image analyses can detect counterfeit electronic components
at the board level within a PCB. Inexpensive components
(e.g., capacitors, diodes) are often subject to counterfeiting
[3]. This new counterfeit detection method would lessen the
likelihood of system failure or poor performance of systems
incorporating potential counterfeit ICs. Future research will
focus on using higher resolution IR imagery to improve au-
thentication accuracy, developing a confidence index within
each classification (e.g., B99% authentic^), examining other
machine learning approaches, employing a unary

Fig. 6 Sensitivity analysis via ROC curves for a SVM approach

Table 7 Contingency table for the classification of TI PCBs (naive
Bayes)

Assigned category Total

Authentic Counterfeit Unknown

True category Authentic 3672 270 158 4100

Counterfeit 29 465 12 506

Unknown 17 16 118 151

Total 3718 751 288 4757

Table 8 Contingency table for the classification of TI PCBs (SVM)

Assigned category Total

Authentic Counterfeit Unknown

True category Authentic 3678 262 160 4100

Counterfeit 35 462 9 506

Unknown 15 13 123 151

Total 3728 737 292 4757

Table 9 Overall accuracy of classification of the test set per classifier

Hardware authenticity verification

LVQ Naive Bayes SVM

Intel 88.42% 90.91% 90.57%

TI 87.22% 89.44% 89.62%
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classification, and analyzing ICs from other semiconductor
manufacturers.
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