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Abstract
Embedded software is developed under the assumption that hardware execution is always correct. Fault attacks break and
exploit that assumption. Through the careful introduction of targeted faults, an adversary modifies the control flow or data
flow integrity of software. The modified program execution is then analyzed and used as a source of information leakage,
or as a mechanism for privilege escalation. Due to the increasing complexity of modern embedded systems, and due to
the difficulty of guaranteeing correct hardware execution even under a weak adversary, fault attacks are a growing threat.
For example, the assumption that an adversary has to be close to the physical execution of software, in order to inject an
exploitable fault into hardware, has repeatedly been shown to be incorrect. This article is a review on hardware-based fault
attacks on software, with emphasis on the context of embedded systems. We present a detailed discussion of the anatomy
of a fault attack, and we make a review of fault attack evaluation techniques. The paper emphasizes the perspective from
the attacker, rather than the perspective of countermeasure development. However, we emphasize that improvements to
countermeasures often build on insight into the attacks.
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1 Introduction

In this paper, we consider the fault attack threat against
secure embedded software. Software plays a crucial role
in the functionality of embedded computers. For example,
in a System on Chip, software provides flexibility and it
provides the logical integration of specialized hardware
components. Secure embedded software is any software
that employs security mechanisms (e.g., confidentiality,
integrity, authentication, and access control mechanisms)
to ensure the security of sensitive data and functionality.
Secure embedded software therefore not only is limited to
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cryptographic software but also covers access control and
permission-rights management.

Embedded computers that run secure embedded soft-
ware are all around us. A large portion of the information
ecosystem consists of embedded connected computers that
participate in the physical control and the measurement of
critical infrastructures and utilities, such as smart grid and
automotive and industrial controls. In addition, information
technology is pervasive in the immediate vicinity of people
such as in cell phones, activity trackers, medical devices,
or biometric tokens. The data handled by these embed-
ded computers is sensitive. Computing devices in critical
infrastructure execute safety-critical commands and col-
lect sensitive measurement data protected by cryptographic
keys and authentication codes. Human-centric information
systems work with private end-user data, passwords, PIN
codes, biometric data, location history, and usage patterns.
Furthermore, the firmware and configuration data of embed-
ded computing systems may represent valuable intellectual
property.

The data and the unauthorized access of these embedded
devices is an obvious target for attackers. At high level, the
purpose of an attacker is to obtain control over the execu-
tion of the embedded software, or to extract internal data
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values processed by the embedded software. We identify
three different attackers, distinguished by the abstraction
level they operate on. The input-output attacker manipu-
lates the data inputs of an embedded software application to
trigger internal buffer overflows or internal software bugs
in the application. The memory attacker co-exists with the
embedded software application, for example as a malicious
software task, and snoops the memory space in order to
directly manipulate or observe a secure embedded applica-
tion [1, 2]. Both of these attackers succeed because they
break an implicit assumption made by the secure embedded
software application. The input-output attacker exploits the
assumption that there are no malformed inputs to the pro-
gram. Using malformed inputs, the attacker exploits bugs in
secure embedded software such as missing memory bounds
checks. The memory attacker exploits the assumption that
memory space is private to the secure embedded applica-
tion. This privacy gets lost when the architecture cannot
provide memory region isolation to the application [3]

The third type of attacker, the hardware fault attacker,
is the focus of this paper. Like the previous two, the
hardware fault attacker breaks an implicit assumption made
by the secure embedded software application. In this case,
the assumption is that the embedded hardware guarantees
correct execution of the software. Table 1 illustrates
that the correct execution of software builds on many
interdependent assumptions at different levels of abstraction
in the hardware. Yet, any of the abstraction levels is a
potential target for the hardware fault attacker.

– At the instruction level, a programmer assumes that
the opcodes executed by the embedded hardware (the
microprocessor) are correct. A hardware fault attacker
who can manipulate opcodes can change the meaning
of a program.

– At the micro-architecture level, a programmer assumes
that correct opcodes imply correct execution of
the instruction. A hardware fault attacker who can
manipulate the micro-architecture can break this
assumption and still change the meaning of a program.

– At the circuit level, the correct execution of software
requires that digital logic in the processor will operate
with the proper timing, and using the proper voltage

levels to capture digital-0 and digital-1. A hardware
fault attacker who can influence circuit timing or logic
threshold levels can change the correctness of digital
execution and hence still change the meaning of a
program.

– At the lowest abstraction level, the correct execution
of software requires that the physical environment of
a digital circuit has nominal operating conditions, that
it is using the proper temperature, the proper circuit
voltage, and the proper electromagnetic environment. A
hardware fault attacker who can influence any of these
parameters can change the correctness of the architec-
ture and hence still change the meaning of a program.

This paper is only concerned with the hardware fault
attacker, that is, an attacker who builds on the manipulation
of execution correctness at the architecture level or below.
We do not ignore side-channel attacks that build on the
observation of the physical effects of computing. In fact,
some of the recent fault attacks successfully combine ideas
of side-channel attacks with fault analysis. However, for
this paper, we consistently develop the viewpoint of the
hardware fault attacker as a threat to secure embedded
software. An interested reader may refer to the existing
works [4–8] for the viewpoint of the fault-resistant system
designers.

It may appear as if a hardware attacker must be physically
close to the digital architecture to break execution correct-
ness (at any abstraction level). However, this is not always
the case. A hardware fault attacker can be a physical entity
(in hardware) or a virtual entity (in software). In the latter
case, the attacker is logically present as somebody who
runs attack software in conjunction with a victim program.
Recent work has shown that execution correctness of the
hardware can be manipulated by such a software attacker.

This paper addresses the following questions in detail.

– What are the common techniques for fault injection in a
digital architecture, and how do faults appear as a result
of fault injection?

– How do faults propagate through the micro-architecture
and across the architecture level into the secure
embedded software?

Table 1 Embedded software
targets for the hardware
attacker

Abstraction level Cause of security failure Attacker

Input/output Software bugs Input/output attacker

Application level Lack of memory region isolation Memory attacker

Instruction level Opcode modification Hardware attacker

Micro-architecture level Instruction execution is wrong

Circuit level Timing, threshold levels are not met

Environment Operating conditions are abnormal
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– How does the attacker exploit these faults towards a
fault attack?

– What testing equipment can be used to study the
fault injection, propagation and exploitation of secure
embedded software?

This paper is organized as follows. In the next section, we
develop a systematic threat model against embedded soft-
ware from the viewpoint of fault attacks, and we break down
a fault attack into smaller steps. In Section 3, we describe
commonly used fault injection techniques. In Section 4,
we investigate the impact of fault injection on micropro-
cessor execution. In Section 5, we analyze how faults
propagate from the micro-architecture into the embed-
ded software functionality. Section 6 describes commonly
used fault exploitation techniques. Section 7 describes
fault attack evaluation technologies, and certification of
embedded software against fault attacks. We then conclude
the paper.

2 Background

2.1 Threat Model

The aim of a fault attack is breaching the security of
a software program by forcing a security-sensitive asset
into unintended behavior. For this purpose, the adversary
injects well-crafted, targeted hardware faults by deliberately
altering the operating conditions of the microprocessor that
runs the target software. Then, the adversary exploits the
effects of the faults on the target software’s execution and
breaks the security. Consequently, the target of exploitation
is the software layer while the origin of vulnerability (i.e.,
faults) is the hardware layer.

In a typical fault attack, the adversary is not capable of
directly modifying or monitoring the internals of a chip, or
changing the binary of a program. The adversary is able to
alter the execution of a target program by controlling the
physical operating conditions (e.g., timing, supply voltage,
temperature) of the processor hardware executing the
program. The adversary can also provide input to the target
program and observe the effects of abnormal operating
conditions on the software execution through system output
or a related side-channel such as power consumption, cache-
activity-related timing, and performance counters.

2.2 Using Faults as a Hacking Tool

Figure 1 illustrates the steps and mechanisms involved
in a typical fault attack on embedded software. A fault
attack consists of two main phases, fault attack design
and fault attack implementation (steps 1–5 in Fig. 1).
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Fig. 1 Anatomy of a typical fault attack on embedded software: The
target of fault injection is the hardware while the target of exploitation
is the software

In the design step, the adversary analyzes the target to
determine fault model (i.e., an assumption on the faults to
be injected), fault exploitation method, and fault injection
technique. For instance, an adversary may intend to inject
faults into several assets such as an encryption program,
a security-related verification code, a memory transfer
function, the processor state register, a system call, the
firmware, or configuration information of the target device.
The adversary may then exploit the fault effects on the
target asset for various attack objectives such as weakening
the security, bypassing security checks, intellectual property
theft, extracting the confidential data, privilege escalation,
activating debug modes, and disabling secure boot of the
device.

The implementation phase is a combination of five steps:

1. Fault Injection: In this step, the adversary applies
a physical stress on the microprocessor to alter its
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physical operating conditions and to induce hardware
faults. The applied physical stress can be in various
forms such as clock glitches, supply voltage glitches,
electromagnetic (EM) pulses, and laser shots.

To induce the desired faults, the adversary varies
fault timing and fault intensity. Fault timing specifies
when the physical stress is applied on the target pro-
cessor. Fault intensity is the degree of the physical
stress by which the microprocessor hardware is pushed
beyond its nominal operating conditions. The adversary
controls the fault intensity via fault injection parame-
ters. For clock glitching, shortening the length of the
glitch increases the fault intensity. It is controlled by
glitch/pulse voltage and length for voltage glitching,
electromagnetic pulse injection, and laser pulse injec-
tion. The laser and electromagnetic pulse injections also
enable the adversary to localize the fault intensity by
controlling the shape, size, and position of the injection
probe.

2. Fault Manifestation: The circuit-level effect of fault
injection is creating electrical transients on the nets,
combinational gates, flip-flops, or memory cells. A
fault manifests at the micro-architecture level when the
electrical transients are captured into a memory cell or
flip-flop, and change its value.

The number of manifested faulty bits in the micro-
architecture level is correlated to the applied fault
intensity: A gradual change in the fault intensity causes
a gradual change in the manifested faults. We call this
relation biased fault behavior. This behavior is valid
independent of the used fault injection method, and it
enables the adversary to control the size (e.g., single
byte) of the induced faults [9–11]. However, tuning the
fault intensity alone is not sufficient to control the type
(e.g., bit-set) and location (e.g., decode logic) of the
induced faults. The adversary’s control on the fault type
and location is also affected by the type and precision
of the fault injection equipment.

The biased fault behavior also allows the adversary
to find a critical fault intensity value, at which the
electrical transients become strong enough to cause
fault manifestation. That critical fault intensity value is
called fault sensitivity of the target hardware [12].

3. Fault Propagation: In this step, the effects of the
manifested faults are propagated to the software layer
through execution of faulty instructions. The next two
paragraphs briefly explain the mechanism behind fault
propagation.

Software security mechanisms are implemented as a
sequence of instructions executed by the microproces-
sor hardware. In addition, each instruction goes through
the instruction-execution cycle that consists of multiple

steps carried out by a certain subset of available
micro-architecture-level hardware blocks. The pro-
cessor loads each instruction from program mem-
ory (instruction-fetch), then determines the mean-
ing of the current instruction through its opcode
(instruction-decode), then executes the current instruc-
tion (instruction-execution), and then updates the
state of the processor based on the instruction’s
result (instruction-store). The number of steps in the
instruction-execution cycle is architecture dependent,
and it can vary considerably from one microprocessor
to the next.

The manifested faults may cause faulty bits in any
micro-architectural hardware block such as instruction
memory, controller, datapath and register file. The
effects of the manifested faults are propagated to the
software layer when an instruction uses the affected
micro-architectural block. As each instruction uses a
specific subset of the micro-architectural blocks, the
precise effect of a hardware fault depends on the type
of the instruction. For instance, a bit-flip fault injected
during the execution step of an addition instruction may
yield a single-bit fault in the result of this instruction.
However, the same bit-flip fault injected during a
memory-load instruction would cause a single-bit fault
in the effective address calculation, and thus, data is
loaded from a wrong memory location. In the former
case, only a single bit of the destination register is
faulty; while in the latter case the destination register
has a random number of faulty bits.

4. Fault Observation: An adversary needs to observe
the effects faulty instructions in order to exploit them.
An observable fault effect can be a faulty system
output such as a faulty ciphertext, a side-channel
information such as a sudden change in the power
consumption, a single-bit information showing if fault
injection was successful, or micro-architectural effects
observed through performance counters [7, 13]. These
effects become observable to the adversary when they
are subsequent instructions that have data-dependencies
or control-dependencies on the faulty instruction are
executed.

5. Fault Exploitation: In the final step, the adversary
exploits the observable fault effects and breaks the
security. For example, the adversary can analyze the
differential of the correct and faulty ciphertexts from a
cipher to retrieve the secret key used for the encryption.
For the same purpose, an adversary may also use a
single-bit side-channel information of whether fault
injection was successful. Similarly, the adversary may
use the faults to trigger traditional logical attacks such
as buffer overflows and privilege escalation.
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3 Fault Injection Techniques

In a fault attack, it is essential to induce well-controlled
faults during execution of the target software. An adversary
achieves fault injection by deliberately applying physical
stress to push the operating conditions of the underlying
microprocessor hardware beyond their allowed margins.
The adversary controls the induced faults through timing,
location, and intensity of fault injection. The timing of fault
injection is defined as the moment at which physical stress
is applied to the processor. The location of the fault injection
is the spatial portion of the processor that is exposed to
physical stress. The intensity of the fault injection is the
amount of physical stress applied to the processor.

This section discusses common techniques used for
fault injection. We briefly describe main characteristics
of each fault injection technique. We partition the fault
injection techniques into two main categories (Fig. 2):
Hardware-controlled fault injection and software-controlled
fault injection.

Hardware-controlled fault injection techniques employ a
separate external fault injection hardware to apply physical
stress to the target hardware and induce faults in the victim
software. Typically, the fault injection process is controlled
by another software program (i.e., fault control software)
running on the fault injection hardware. In software-
controlled fault injection techniques, fault injection is
controlled with a malicious software (i.e., fault injection
and control software), which runs on the same hardware
platform as the target software does. This malicious
software alters the physical operating conditions of the
target hardware to induce faults. While hardware-controlled
techniques require physical proximity to the target system,
software-controlled fault injection techniques enable remote
fault attacks.

3.1 Hardware-Controlled Fault Injection Techniques

Several hardware-controlled fault injection techniques have
been successfully demonstrated in the literature [7, 14]. The
following sections provide an example list of commonly
used techniques.

3.1.1 Tampering with Clock Pin

An adversary may inject faults by tampering with the
external clock signal of the target device.

One way of exploiting the clock signal for fault injection
is overclocking [15], in which the adversary persistently
applies a higher-frequency clock signal than the nominal
clock frequency of the device. This violates setup time
constraints of the device and causes premature latching of
the faulty values in flip-flops of the device [16]. The spatial
precision of this method is low because the modifications
in the external clock signal are distributed across the
whole chip surface through a clock network. Similarly, the
temporal precision of overclocking is also low because all of
the clock cycles are affected by fault injection; the adversary
cannot select the clock cycles to be affected by the fault
injection. On the other hand, the adversary has a fine control
on the fault intensity through clock frequency.

Another way of tampering with the clock signal is
clock glitching [17], in which the adversary temporarily
shortens the length of a single clock cycle. This causes
setup time violations during the affected clock cycle. In
comparison to overclocking, the adversary has a precise
control on the temporal location (i.e., timing) of the fault
injection. The intensity of the fault injection is controlled
through the length of the glitched clock cycle. Similar to the
overclocking, the spatial precision of clock glitching is low.

For the clock glitching and overclocking techniques,
the state-of-the-art fault injection setups [18, 19] provide
nanosecond-level temporal precision. The disadvantage of
tampering with the clock signal is that this method requires
physical access to an external clock pin. If a device uses
an internally generated clock signal, using this method is
infeasible.

3.1.2 Tampering with Supply Voltage Pin

An adversary can also inject faults by altering the external
supply voltage of the target device. The adversary may
use underfeeding [20], in which a lower voltage than the
nominal voltage is supplied to the device. Lower supply
voltage increases the delay of combinational paths. This

Fig. 2 Fault injection categories:
a Hardware-controlled fault
injection; b software-controlled
fault injection
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causes setup time violation when the voltage drop is large
enough to make a path delay larger than the applied clock
period. This method has low spatial precision as the supply
voltage is distributed all over the chip through a power
network. Similarly, the temporal precision of the fault
injection is low because all of the clock cycles are exposed
to the lower supply voltage. The adversary controls the
fault intensity through the value of the external supply
voltage.

The adversary can also use voltage glitching [21], which
injects temporary voltage drops and provides the capability
to control the temporal location of the fault injection. In
this case, the adversary controls the intensity with the glitch
offset from the sampling edge of the clock signal, glitch
voltage, and glitch width similar to the clock glitching.

These methods require physical access to the supply
voltage pin. Removing the external coupling capacitance on
the supply voltage line improves the efficiency [21]. The
drawback of tampering with external voltage pin is that the
adversary does not have precise control on the timing and
location of the fault injection.

3.1.3 Tampering with Operating Temperature

An adversary may also use overheating to trigger setup-
time violations [16, 22] for fault injection. In this method,
the adversary does not have precise control on the spatial
and temporal location of the fault injection. The intensity of
fault injection is controlled via operating temperature of the
target device.

In addition to the setup time violation on the datapath,
overheating also causes modification in memory cells in
EEPROM [23], Flash [23], and DRAM [24] memories.
While Govindavajhala et al. [24] use a low-spatial-precision
light bulb as the heating source, Skorobogatov [23] employs
a 650-nm wavelength laser to increase the spatial precision
of heating.

3.1.4 Combination of Voltage, Frequency, and Temperature
Fault Injection

Zussa et al. [16] demonstrated that overclocking, clock
glitching, voltage glitching, underfeeding, and overheating
exploit the same fault injection mechanism, which is the
violation of a device’s setup time constraints. In addition,
Korak et al. [17, 25] showed overheating and voltage
glitching improve the efficiency of clock glitching.

3.1.5 Optical Fault Injection

In optical fault injection, the adversary decapsulates the
target integrated circuit (IC) and exposes the silicon die to a
light pulse. The applied light pulse induces a photo-electric

current in the exposed area of the IC, which then cause
faulty computations [26]. The spatial location is controlled
by the position and the size of the light source, and the
temporal location is controlled by the offset of the pulse
from a trigger signal. The intensity of the fault injection is
determined by the energy and duration of the light pulse.
It has been demonstrated that optical fault injection can be
achieved with a low-cost camera flash light [26, 27]. The
state-of-the-art optical fault injection setups [28] use laser
beams for fault injection to achieve micrometer-level spatial
and nanosecond-level temporal precision. They also provide
precise control on the fault intensity. This enables an
adversary to target a single transistor. Laser fault injection
can be done from front side and back side of an IC. Front
side attacks typically use light with shorter wavelengths.
These beams have more energy and can easily penetrate
between metal layers. Back side attacks use infrared light
that penetrates the silicon substrate without being blocked
by metal layers.

A disadvantage of the optical fault injection is that it
requires decapsulation of the target IC. In addition, it can
permanently damage the target IC. Despite these disadvan-
tages, laser fault injection is popular because it provides the
most precise and effective fault injection means.

3.1.6 Electromagnetic Fault Injection

In electromagnetic fault injection (EMFI), the adversary
applies transient or harmonic EM pulses on the target
integrated circuit (IC) through a fault injection probe, which
is designed as an electromagnetic coil. The adversary places
the probe above the target IC and applies a voltage pulse to
the coil, which induces eddy currents inside the target IC.
Then, the effects of the induced eddy currents are captured
as faults. The adversary controls the temporal location
of fault injection through offset of the EM pulse from a
trigger signal. The spatial location of the fault injection is
controlled via position and size of the injection probe. The
fault intensity is determined by the voltage and duration
of the applied EM pulse. The feasibility of EMFI on off-
the-shelf microprocessor ICs has been demonstrated using
both low-cost and high-cost injection setups. For instance,
Schmidt et al. [27] use a simple gas lighter to induce EM
pulses onto an 8-bit microcontroller with low spatial and
temporal precision. The state-of-the-art EMFI setups [29–
31] provide millimeter-level precision in spatial location
and nanosecond-level precision in the temporal location
of the EM pulse. Furthermore, these setups also provide
precise control on the voltage and duration of the applied
EM pulse. The advantages of EMFI are that it does not
require decapsulation of the target IC and it can inject local
faults. However, its spatial precision is lower than the spatial
precision of the laser fault injection.
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3.2 Software-Controlled Fault Injection Techniques

Software-controlled fault injection is a recently discovered
research area. The following two sections briefly explain the
existing two software-controlled fault injection techniques.

3.2.1 Tampering with DVFS Interface

In the modern embedded systems, Dynamic Voltage Fre-
quency Scaling is a commonly used energy management
technique, which regulates the operating voltage and fre-
quency of a microprocessor based on its dynamic workload.
In a typical DVFS scheme, kernel-level drivers control
the frequency and voltage of a processor through on-chip
regulators.

Tang et al. [32] demonstrated that an adversary can
exploit the interface between the software drivers and
hardware regulators to induce faults in a multi-core
processor. In this technique, the adversary uses a malicious
kernel-level driver running on a processor core to set
the operating voltage and frequency of another core that
executes the victim software. This method allows an
adversary to violate setup time constraints of the victim core
via overclocking and underfeeding it for a specific period
of time. The adversary controls the temporal location with
the endpoints of the overclocking or underfeeding period.
As both the clock and voltage signals are chip-level global
signals, the adversary does not have a direct control on the
spatial location. The intensity of fault is determined by the
overclocking frequency and the underfeeding voltage value.
This method requires neither additional fault injection
hardware nor physical access to the target device.

3.2.2 Triggering Memory Disturbance Errors

In this fault injection method, the adversary injects faults
into memory cells by exploiting the reliability issues of
modern memory hardware such as DRAM and Flash
memory chips. The continuous scaling down in the
process technology has enabled memory manufacturers to
significantly reduce cost-per-bit by placing smaller memory
cells closer to each other. However, this also increases
electrical interference between memory cells: Accessing a
memory cell electrically disturbs nearby memory cells. A
disturbed memory cell loses its value and experiences a
memory disturbance error when the amount of electrical
disturbance is beyond noise margins of that disturbed
cell [33, 34].

An adversary may trigger memory disturbance errors
through a non-privileged fault injection program. This
program repeatedly accesses a set of memory cells (i.e.,
aggressor memory cells) to induce disturbance errors in a
set of victim memory cells storing security-sensitive data.

This method allows an adversary to corrupt memory space
of a security-sensitive program from memory space of
the adversary-controlled fault injector program. Memory
disturbance errors have been demonstrated on commodity
DRAM and NAND Flash memory chips [33].

In DRAM memories, the memory disturbance errors are
induced through Rowhammer mechanism [34]. Thus, it
is called Rowhammering. A DRAM memory is internally
organized as a two-dimensional array of DRAM cells,
where each cell consists of an access transistor and a
capacitor storing charge to represent a binary value. As
capacitors lose their charges because of the leakage current,
the DRAM cells are periodically refreshed to restore their
charges. Each row of the array has a separate wordline,
which is a wire connecting all memory cells on the
corresponding row. To access a DRAM cell within the two-
dimensional array, the corresponding row of the array is
activated by raising the voltage of its wordline. Persistent
access to the same row causes repeated voltage fluctuations
on its wordline, which electrically disturbs nearby rows.
This disturbance increases the charge leakage rate in the
nearby DRAM rows [34]. As a result, a memory cell
within a nearby row experiences a memory disturbance
error (a bit-flip error) if it loses a significant amount
of charge before it is refreshed. An adversary may take
advantage of that physical phenomenon to inject faults. For
this purpose, the adversary runs a malicious fault injection
program on the target processor, which aims at altering a
security-sensitive state of a victim program running on the
same processor. The fault injection program continuously
accesses an aggressor DRAM row in its own memory space
and induces faults into a victim DRAM row within the
victim program’s memory space [35–37].

Similar disturbance mechanisms have been also demon-
strated on multi-level cell (MLC) NAND Flash memories.
Similar to DRAM memory, a Flash memory is also inter-
nally organized as an array of Flash memory cells, each of
which is a floating-gate transistor. The amount of charge
stored in the floating gate determines the threshold volt-
age of the transistor, which is used to represent the stored
data, In MLC Flash memories, each cell stores two bits
of data. Unlike DRAM memories, Flash memories do not
require periodic refreshing. Cai et al. [33] demonstrated
that the capacitive coupling between neighboring Flash cells
enables two memory disturbance error mechanisms. The
first mechanism, Cell-to-Cell Program Interference (CCI),
introduces faults into a Flash cell when a nearby cell is pro-
grammed (i.e., written). The amount of interference is high
when a specific data pattern for programming is used. Cai et
al. [33] and Kurmus et al. [38] showed how a malicious fault
injection program may trigger CCI mechanism to cause a
security breach. The second mechanism is Read-Disturb,
in which the content of a Flash cell is disturbed when a
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nearby cell is read. Cai et al. [33] demonstrated the use of
read-disturb to cause security problems.

The advantage of fault injection by triggering memory
disturbance errors is that it can induce single-bit to multi-bit
faults into a certain memory location [37]. This enables an
adversary to break several security mechanisms.

Table 2 summarizes the previously described fault injec-
tion techniques and the main characteristics of the physical
stress applied to the target device. For each fault injection
technique, the table provides spatial precision, temporal
precision, and hardware cost of the applied physical stress.
The table also provides a list of fault injection parame-
ters to control the intensity of the applied physical stress.

4 Fault Manifestation in Processor
Micro-Architecture

This section explains the effects of physical fault injection
on the micro-architecture of the target processor. First, we
will distinguish micro-architecture (i.e., internal architec-
ture) of a processor from its architecture (i.e., external archi-
tecture). Then, we will briefly explain main characteristics
of the induced faults into micro-architecture.

Any processor can be described from two distinct archi-
tectural perspectives. The architecture of the processor
describes it as seen by programmers in terms of its instruc-
tion set and facilities. The architecture defines semantics
and syntax of available instructions, program-visible pro-
cessor registers, memory model, and how interrupts are
handled. It is the boundary between hardware and software

as well as a contract between programmers and hardware
designers. The micro-architecture describes the physical
organization and implementation of the architecture. This
includes the memory hierarchy, pipeline structure, available
functional units, employed mechanisms (e.g., out-of-order
execution) for instruction-level parallelism, and so forth.
The micro-architecture is optimized to satisfy cost and
performance requirements.

Faults manifest as incorrect bits in the flip-flops or
memory cells employed in the micro-architecture if the
applied physical stress is beyond noise margins of target
processor hardware. The parameters and type of physical
fault injection technique determine characteristics of the
manifested faults. In this work, we use four parameters to
describe any manifested fault in micro-architecture level:

– Location of the Manifested Fault: This parameter
specifies the micro-architectural blocks that contain
faulty bits because of physical fault injection.

Faults may manifest in any micro-architectural block
in the control or datapath part of the processor such as
instruction memory, instruction fetch block, instruction
decode block, operand fetch block, execution block, data
memory, register file, processor status register, and con-
ditional flags. An adversary’s control on the location of
the manifested faults depends on the spatial precision of
the used fault injection method, which is characterized
as precise control, loose control, and no control [39].

All of the previously described fault injection tech-
niques, except software-based memory disturbance, can
target the datapath, control, or memory of a processor.

Table 2 Fault injection
techniques and the
characteristics of the
corresponding physical stress
applied to a target device

Fault injection technique Characteristics of the applied physical stress

Spatial precision Temporal precision Cost Controlling the intensity

Overclocking Low (global) Low (global) Low Clock frequency

Clock glitching Low (global) High (local) Low Glitch width

Underfeeding Low (global) Low (global) Low Voltage level

Voltage glitching Low (global) High (local) Low Glitch voltage

Glitch width

Overheating Low (global) Low (global) Low Ambient temperature

Light pulse Medium (local) Medium (local) Low Pulse width

Pulse energy

Pulse offset

Laser pulse High (local) High (local) High Pulse width

EM pulse Medium (local) Pulse energy

Pulse offset

Probe size

DVFS interface Low (global) Medium (local) Zero Supply voltage

Clock frequency

Memory disturbance High (local) Medium (local) Zero Disturbance frequency



J Hardw Syst Secur (2018) 2:111–130 119

Memory disturbance can only inject faults into the
memory.

– Size of the Manifested Fault: This parameter specifies
the number of faulty micro-architecture bits induced by
physical fault injection. An adversary can control the
size of the manifested faults by adjusting the fault inten-
sity. In the literature, manifested faults are commonly
classified as single-bit faults, byte-size faults, word-
size faults, and arbitrary-size faults [40]. The adversary
influences the size of the manifested faults by tuning the
fault injection intensity.

– Effect of the Manifested Fault: This parameter
specifies the logical effect of the manifested fault on the
fault location. Common fault effects are stuck-at fault,
bit-flip fault, bit-set fault, bit-reset fault, and random
fault [40].

All of the aforementioned fault injection techniques
are able to induce bit-flip effects. In addition, laser and
EM pulses are also able to induce bit-reset, bit-set, and
stuck-at faults.

– Duration of the Manifested Fault: Fault attacks
typically exploit transient faults, which last as long as
the physical stress is applied. Such faults are recovered
when a new value is written into the faulty flip-flop
or the memory cell. However, if a register is refreshed
only infrequently, these faults can still last a long
time. Some fault attack injection techniques are able to
create long-lasting faults, such as recently demonstrated
using focused X-ray injection [41]. Some fault injection
techniques can even inject permanent faults, such as
when a laser pulse causes permanent damage to a
memory or register cell (stuck-at).

The next section explains how the manifested faults
propagate to the software layer.

5 Fault Propagation to the Software Layer

The manifested faults propagate to the software layer
as faulty instructions when the micro-architectural blocks
containing the faulty bits are used by the instructions of
the target program. Propagated fault effects are determined
by the type of affected instruction, type of faulty micro-
architectural block, and the characteristics (size, effect) of
the manifested faults. As each processor implementation has
its own micro-architecture, it is not possible to list all of
the potential fault effects propagated to software. Instead,
we provide an example to demonstrate a list of potential
fault effects for a subset of SPARC instructions running on
a hypothetical generic micro-architecture. Using the same
approach, similar lists can be built for specific instruction
sets and processor implementations.

As an example, we chose four SPARCv8 instructions:
a memory-load (ld), a logic (xor), a comparison (cmp),
and a conditional branch (be) instruction. Table 3 lists the
instructions and their definitions.

The assumed generic micro-architecture contains the
following blocks to carry out instruction-execution cycle for
each instruction:

– I-Mem Block is the instruction memory that stores the
instructions.

– I-Fetch Block prepares the address for the instruction
memory, program counter (PC). Then, using the pre-
pared PC, it fetches an instruction into the instruction
register (IR).

– I-Decode Block takes the fetched instruction from IR
and decodes it to determine the location of the source
operands, the location of destination operands, and
the operation to be applied. The source operands are
fetched from the register file. The destination may be
the register file, data memory (D-Mem), or conditional
flags.

– O-Fetch Block uses the decoded information to fetch
the input operands from the register file and to feed
them to the execution block. The be instruction does
not use this block because it does not fetch any operand
from the register file.

– Execute Block applies the required operation on the
fetched source operands and generates a result. For
ld, it calculates the D-Mem address from r1 and r2.
For xor, it applies bitwise XOR operation on r1 and
r2. For cmp, it subtracts r2 from r1. For be, it
calculates the destination address from the current PC
and offset. It also checks the conditional flags to
determine if the branch will be taken.

– Store Block updates the destination location (D-Mem,
register file, or flags) with the result computed by
the execution block. For the ld and xor, it is the
register r3. For the cmp instruction, the destination is
conditional flags. For the be instruction, the destination

Table 3 An example set of SPARCv8 instructions

Instruction Definition

ld [r1+r2], r3 Loads a 32-bit word into register r3

from data memory (D-Mem) address r1+r2.

xor r1, r2, r3 Bit-wise XOR operation on r1 and r2

Result is written to register r3.

cmp r1, r2 Compares registers r1 and r2 and

updates conditional flags accordingly.

be offset PC-relative conditional jump:

If zero-flag is set, PC will be PC + offset.

Otherwise, PC will be PC + 4.
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is the PC value if the branch is taken. Otherwise, it will
not affect any destination.

Table 4 provides an example list of propagated fault
effects for each (instruction, micro-architecture block) pair.
In this example, we assume a single bit-flip fault in any
micro-architectural block. A fault induced in I-Memory, I-
Fetch, or I-Decode block would affect syntax (i.e., opcode
and operands) and/or semantics (i.e., the operation to be
applied) of an instruction independent from the type of
the instruction. Thus, Table 4 shows the propagated fault
effects for these blocks in a single cell. Faults induced in the
other blocks would cause errors in the instruction-specific
computation of a correctly fetched and decoded instruction:

– I-Mem, I-Fetch, I-Decode: If the fault manifests in the
opcode part of the faulty instruction, another instruction
will be executed. If the fault affects the addresses of
source operands, they will be fetched from an incorrect
location. Similarly, the result of an instruction will
be written into a wrong location if the fault hits the
destination address. Finally, the next instruction will be
fetched from an incorrect location if the PC calculation
gets faulty.

– O-Fetch: For the ld instruction, a single-bit fault in
this block affects the value of register r1 or r2 fetched
from register file. The fault then causes D-Mem address
to be faulty. As a result, a single-bit fault in either
r1 or r2 may induce an arbitrary number of faults in
the destination register r3 because the result will be
fetched from an incorrect D-Mem location.

For the xor instruction, the fault will affect a single
bit of r1 or r2, which will be propagated to r3 as a
single-bit fault.

For thecmp instruction, the single-bit fault may affect
the result of the comparison, which will alter the condi-
tional flags based on the modified comparison result.

For the be instruction, the fault will not have any
effect because this instruction does not fetch anything
from the register file.

– Execute: For the ld, xor, and cmp instructions, the
effects of the fault will be same as the effects described
in the O-Fetch case.

For the be instruction, the fault will change the
single bit of the computed branch address. If the
branch is taken, the destination address will be wrong.
Otherwise, the faulty branch address will not affect the
program. The fault may also change the direction of
the branch instruction from taken branch to non-taken
branch, or vice versa.

– Store: For the ld instruction, the fault will cause a
single-bit error in the correctly computed D-Mem add-
ress [r1+r2]. For the xor and cmp instructions, the
effects of the fault will be same as the effects described
in the O-Fetch case. For the be instruction, the fault
will change the value of the PC if it is a taken branch.

– D-Mem: As none of the instructions use a value from
the data memory, the fault in D-Mem will not affect any
of the considered instructions.

– Register File: For the ld, xor, and cmp instructions,
the effects of the fault will be same as the effects
described in the O-Fetch case. As the be instruction
does not use this block, the fault will not have any effect
on this instruction.

– Conditional Flags: The fault in conditional flags will
affect only the be instruction as the other instructions
do not use the conditional flags.

Table 4 Propagated effects to software layer for each faulty micro-architectural block (with 1-bit fault) and instruction

Faulty block Propagated fault effects

(1-bit fault) ld [r1+r2], r3 xor r1, r2, r3 cmp r1, r2 be dest

I-Mem Execution of a wrong instruction due to opcode-field corruption

I-Fetch (PC, IR) Fetching operands from wrong location due to source-operand-location corruption

I-Decode Updating a wrong destination due to destination-operand-location corruption

Fetching next instruction from a wrong address due to PC corruption

O-Fetch Arbitrary # of faults in r3 1-bit fault in r3 Faulty update No

(1-bit fault in r1 or r2) (Faulty D-Memory address) (Faulty XOR input(s)) of conditional flags effect

Execute Arbitrary # of faults in r3 1-bit fault in r3 Faulty update 1-bit fault in jump address

(Faulty D-Memory address) (Faulty XOR operation) of conditional flags or Inversion of branch

Store 1-bit fault in r3 1-bit fault in r3 Faulty update 1-bit fault in jump address

(Faulty update of [r1+r2]) (Faulty update of r3) of conditional flags

D-Mem No effect

Register File Fetching wrong source operands from register file No effect

Conditional Flags No effect No jump to dest
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6 Fault Exploitation Techniques

This section presents main fault exploitation techniques,
which have been proposed to break the security of both
cryptographic and non-cryptographic security mechanisms
protecting embedded software. Each exploitation technique
relies on a fault model, which is a high-level assumption
for the effects of physical fault injection on the execution
of the target software. Thus, we start with commonly used
fault models in practice. Then, we will briefly explain fault
exploitation techniques.

6.1 Fault Models

In the design phase of a fault attack, an adversary makes
a fault model assumption and develops an exploitation
strategy based on the fault model. This assumption generally
includes the location of the fault in the data or control flow
of the target program, the timing of the fault with respect
to the duration of the target program, size of the fault, and
effect of the fault. The fault models can be described in
algorithm level, source code level, or instruction level. The
following paragraphs provide an example list of commonly
used fault models.

The most of fault-based cryptanalysis techniques on
symmetric and asymmetric cryptography assume faults on
data flow of a target program that corrupt a single bit, single
byte, multiple bytes, or a single word of a security-critical
variable in various ways (e.g., flip, set, reset, random) [6, 7,
40].

On the control flow, the most popular fault models are
to skip the execution of a specific instruction (i.e., instruc-
tion skip) [42, 43], multiple instruction skips [44, 45],
replacing an instruction with another one (i.e., instruc-
tion modification) [21, 46], changing the result of a con-
ditional branch [47, 48], and tampering with loop counters
[49, 50].

In the implementation of a fault attack, the adver-
sary aims at inducing the fault effects assumed in the
fault model via fault injection, fault manifestation, and
fault propagation processes. Therefore, a fault model can
be realized through different combinations of fault injec-
tion, fault manifestation, and fault propagation. The fol-
lowing sections provide a list of commonly used fault
exploitation techniques to breach the security of embedded
software.

6.2 Cryptanalysis using Fault Injection

Using fault injection for cryptanalysis has been extensively
studied on the implementations of symmetric-key, public-
key, and post-quantum cryptography algorithms [6, 7, 14,
39, 40].

Differential Fault Analysis (DFA) is the most widely used
fault-based cryptanalysis technique. The main principle of
DFA is to exploit the difference between the faulty and
fault-free outputs of a cryptosystem. In a typical DFA
attack, an adversary collects two outputs (e.g., ciphertexts)
from a cryptosystem (e.g., encryption) that are generated
for the same input (e.g., plaintext) and secret variable
(e.g., encryption key). One of the outputs is collected
without fault injection. During the generation of the
second output, the adversary injects a certain fault into
the execution of the cryptosystem. Then, the adversary
analyzes the propagation of this fault differential to the
output and reveals the secret variable. DFA attacks assume
specific fault during differential analysis of the faulty
and fault-free outputs. Various DFA techniques have been
successfully demonstrated on block ciphers [51], stream
ciphers [52], public-key algorithms [7, 53], and post-
quantum cryptography [54]. To illustrate how the DFA
works, the following two paragraphs briefly explain a
previously proposed DFA attack on Advanced Standard
Encryption (AES) algorithm.

In this example attack [55], the assumed fault model is a
single-bit flip in the input of the last AES round. Figure 3
shows the propagation of a single bit fault through the last
round of AES. Due to the structure of AES, the single bit
flip (v*) is propagated to the ciphertext as a single fault byte

Fig. 3 Propagation of a single-bit flip fault through the last round of
AES. The fault causes a single faulty byte in the ciphertext
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(c*). For the fault-free (c) and faulty (c*) ciphertexts, we
can write

c = SBOX (v ) ⊕ k

c∗ = SBOX (v∗ ) ⊕ k

� = v ⊕ v∗

where � denotes the injected fault differential. The
adversary is able to observe the values of c* and c. As the
assumed fault model is to flip a single bit of v, the Hamming
weight (HW) of the injected fault differential � is assumed
to be 1. The purpose of the adversary is to reveal the value
of the corresponding byte (k) of the last round key. The
adversary achieves this through an exhaustive search on
the possible key values. For each possible key hypothesis
k̃ for actual key byte k, the adversary first computes the
corresponding fault differential �̃ as follows:

ṽ = SBOX−1(c ⊕ k̃)

ṽ∗ = SBOX−1(c∗ ⊕ k̃)

�̃ = ṽ ⊕ ṽ∗

The adversary then checks whether the computed (i.e.,
hypothesized) differential �̃ is equal to the injected (i.e.,
assumed) differential �. For our example, the hypothesized
key k̃ is a possible candidate for the actual key k if the
Hamming weight of �̃ is 1. Otherwise, the hypothesized key
k̃ is discarded.

After testing all of the possible key hypotheses, the set
of possible key candidates contains eight elements on the
average [56]. Therefore, two fault injection experiments on
a given input byte of the AES key. The remaining bytes of
the last round key can be revealed by repeating the same
steps for the remaining input bytes of the last round. As
a result, the explained attack requires 32 fault injection
experiments to retrieve the whole 16-byte last-round key
of AES-128. The adversary can then calculate other round
keys by applying AES key scheduling algorithm on the
retrieved last round key. For further information on the DFA
techniques and their comparison, the reader may refer to
existing works in the literature [7, 57, 58].

Biased Fault Analysis attacks [59–63] exploit biased fault
behavior: Because of the correlation between the fault
behavior of a target program and the applied physical
fault intensity, the distribution of fault models is non-
uniform. They allow an adversary to treat fault behavior as
a side-channel signal, which relaxes the strict fault model
requirements of the previous attacks [12]. As an example of
biased fault analysis, we will demonstrate Differential Fault
Intensity Analysis (DFIA) on AES, which was proposed by
Ghalaty et al. [59].

Similar to the previous DFA example, the DFIA assumes
faults in the input of the AES last round. Unlike DFA

attacks, DFIA does not make a precise assumption on the
injected faults. Instead, DFIA assumes that the injected
faults are biased: The adversary adjusts the fault intensity
during the fault injection step such that the number of faulty
bits in the input of the last AES round (v) is minimal. For
this specific DFIA attack, it is assumed that the number
of faulty bits in the input byte v is less than 4 [59]. DFIA
retrieves the value of the corresponding key byte as follows.
The adversary first computes the fault differential �̃ for
each key hypothesis k̃. If the correct key hypothesis is made,
the Hamming weight of the hypothesized fault differential δ̃

is small (i.e., HW(δ̃) < 4). Under a wrong key hypothesis,
the expected Hamming weight of the fault differential
is large because of highly non-linear design of SBOX
of AES.

It is possible that a single fault is insufficient to uniquely
determine the correct key. In that case, the adversary can
inject multiple biased faults, under a gradually increasing
fault intensity, each time recording the faulty ciphertext c*.
For each key hypothesis k̃ and injected fault, the adversary
computes the Hamming weight of the corresponding fault
differential. For the correct key hypothesis, the sum of
all Hamming weights is still minimal [59]. Ghalaty et al.
demonstrated that, on the average, DFIA requires 4.6 faults
to retrieve one byte of the last round key and 68 faults to
retrieve all bytes of it. In conclusion, DFIA relaxes fault
model requirements and more suitable than DFA when fault
injection is hard to control.

Safe Error Analysis (SEA) attacks exploit the dependence
between the use of a faulty data and the value of a
secret variable [64]. An adversary first identifies a target
intermediate variable, of which use depends on the value
of a secret variable. Then, the adversary injects a specific
fault into the target variable and observes whether the output
is faulty or not. If the output is faulty, it means that the
faulty target variable is used and the secret variable has a
specific value. The advantage of the SEA is that it requires
only a single-bit information from fault observation: If the
faulty value has been used or not. Fault injection may be
used to check if a specific computation is executed (C-safe
errors [65]) or if a specific memory location is accessed
(M-safe errors [66]). SEA attacks have been successfully
demonstrated on symmetric-key [7, 67] and public-key [7,
65] algorithms. Yen and Joye describe a form of safe-
error analysis that is based on collisions [65]. By forcing
a value on an intermediate value with data dependency on
the output, and by checking if the output is affected or not,
a collision between the forced value and the original secret
value can be detected. For this reason, for example, write-
only cryptographic key registers should never allow partial
update; otherwise, the attacker can test a partial key guess
by detecting these collisions.
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Algorithm-Specific Fault Analysis uses fault injection to
exploit algorithm-specific properties. For instance, the
public-key cryptography algorithms such as RSA and ECC
rely on a hard-to-solve mathematical problem. An adversary
may use fault injection to alter the mathematical foundations
of the problem and convert the problem into an easy-to-
solve one.

In the infamous Bellcore Attack, Boneh et al. demon-
strate that the security of the RSA cryptosystem can be
broken with a single faulty computation [68]. In the RSA, a
message M is signed by computing S = Md modN , where
d is the secret exponent and N = pq is a product of two
large prime integers. The security of the system relies on the
difficulty of factoring the modulus N . An efficient imple-
mentation of RSA is RSA-CRT, in which S1 = xd modp

and S2 = xd modq are computed first and then the Chinese
remainder theorem (CRT) is used to combine S1 and S2 to
obtain S = Md modN . In the Bellcore Attack, a single ran-
dom fault is assumed in the computation of either S1 or S2.
If a fault occurs during the computation of S1, the modulus
N can be easily factored using the equation gcd(S−Ŝ) = q.
In this equation, S and Ŝ denote the fault-free and faulty
signatures, respectively. Similar algorithm-specific analysis
attacks have been mounted on several public-key systems
including RSA and ECC [7, 69, 70].

6.3 Using Fault Injection to Assist Side-Channel
Analysis

Another use of fault injection is to assist side-channel
analysis for reducing the complexity of side-channel attacks
or thwarting the countermeasures. Side-Channel Analysis,
introduced by Kocher et al. [71], is a major category of
the implementation attacks used for cryptanalysis of secure
embedded software. While fault attacks actively manipulate
the physical operating conditions of a target device,
side-channel attacks exploit physical leakage (e.g., power
consumption, and electro-magnetic radiation) emanating
from the device during a security-critical operation. Side-
channel attacks are usually partitioned into two categories.
Simple Side-Channel Analysis (SSCA) exploits a single
observation of the physical leakage of the device during a
cryptographic operation. Differential side-channel analysis
(DSCA) collects multiple observations of the physical
leakage and retrieves the secret information by applying
statistical tests on these observations. In the last 20 years,
various SSCA and DSCA methods have been demonstrated
on all forms of cryptography [72–74]. Similarly, developing
countermeasures against SSCA and DSCA attacks have
been extensively investigated [4, 75–78]. The advancements
in the countermeasure design motivated fault-assisted side-
channel attacks, which utilize fault injection to break the
security of systems protected against SCAs.

In 2006, Skorobogatov [79] used a laser source to
illuminate a specific area of an SRAM memory to increase
the side-channel leakage of the illuminated area. In 2007,
Amiel et al. [80] proposed a fault-assisted side-channel
attack on an RSA implementation resistant to both side-
channel and fault attacks. In this attack, the injected
fault modifies a secret variable such that the modified
variable leaks information via SSCA. A similar attack
was also developed by Clavier et al. [81] on an AES
implementation protected with first-order masking, a DSCA
countermeasure. Roche et al. [82] also demonstrated a
combined attack on an high-order masked and DFA-
resistant AES implementation. Based on the work of Roche
et al. [82], Dassance et al. [83] developed combined attacks
on the key schedule of a protected AES implementation.
In 2010, Schmidt et al. [84] both demonstrated novel fault-
assisted side-channel attacks and countermeasures on them.
Later, Feix et al. proposed novel attacks that are capable
of breaking the countermeasures proposed by Schmidt et
al. [84]. In 2018, Yao et al. [85] proposed a fault-assisted
side-channel attack that utilize fault injection to weaken a
DSCA-resistant masking scheme and breaking its security
with a first-order DSCA.

6.4 Fault-Enabled Logical Attacks

In addition to their use in cryptanalysis, fault attacks
can also be used to trigger logical attacks (e.g., control
flow hijacking, privilege escalation, subverting memory
isolation) on smartcards and general-purpose processors.
Classic logical attacks such as buffer overflow tamper with
the inputs of a program to exploit a security bug in the
implementation of the program. A well-known example
is the HeartBleed bug [86]. In the absence of such an
exploitable software bug, it is not possible for an adversary
to mount a logical attack by just modifying inputs. In
such a case, an adversary can inject faults to dynamically
create required conditions to mount a logical attack. A
straightforward application of this idea are attacks on
input/output routines, which copy a portion of an internal
memory region to the outputs of the chip. By glitching the
end condition of the input/output routine, an adversary can
force dumping of the entire internal data memory region,
rather than just the portion allocated to the input/output
buffer. Similarly, an attacker can also utilize fault injection
to dump the source/binary code of the target program in case
the code is normally not available to the attacker [87, 88].
This enables the attacker to analyze the source/binary code
for identifying and subsequently exploiting the software
vulnerabilities. The following paragraphs briefly explain
fault-enabled logical attack examples from the literature.

Barbu et al. [42] demonstrated two fault-enabled logical
attacks on a Java Card. In the demonstrated attacks, the
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adversary uses a laser-induced instruction-skip model to
create type confusion. Then, the adversary exploits the
induced type confusion to load an unverified adversary-
controlled code on the Java Card. Type confusion also
enables an adversary to access other applications’ memory
space. Vetillard et al. [47] and Bouffard et al. [89] also
demonstrate similar attacks on Java Card, in which they
employed fault injection to bypass run-time security checks
and execute malicious code on the platform.

The first fault-enabled fault attack on a general-purpose
processor has been demonstrated by Govindavajhala et
al. [24]. In the demonstrated attack, the adversary designs
and runs a software program on a Java Virtual Machine
(JVM) on a desktop computer. The malicious program is
designed such that a bit error in the data space of the
program allows the adversary take full control over JVM.
To induce those exploitable faults, the authors overheat the
memory chips.

Nashimoto et al. [45] proposed a fault-enabled buffer
overflow (BOF) attack on a buffer overflow countermea-
sure, which limits input size. The authors demonstrated the
proposed attack on an 8-bit AVR ATmega163 and a 32-bit
ARM Cortex-M0+ microcontroller. Their fault models were
single and multiple instruction-skip, which are induced by
clock glitching.

Timmers et al. [21] demonstrated two ARM-specific,
fault-enabled logical attacks which are based on setting the
program counter (PC) of a microprocessor to an adversary-
controlled value. The authors alter the execution of a
memory-load instruction (i.e., instruction replacement) via
voltage glitching to set PC to an adversary-controlled value.
The authors provide two case studies to demonstrate the
use of such an attack. In the first case, the authors bypass
a secure-boot mechanism and run their own unverified
program on the processor. In the second case, the authors
subvert the hardware-enforced isolation mechanism of a
Trusted Execution Environment (TEE) and run their code
program with the highest privileges on the processor.

Vasselle et al. [90] demonstrated a fault-enabled logical
attack on a Quad-core ARM Cortex-A9 processor, which
bypasses secure boot mechanism and allows an adversary
to get highest privileges on the processor. The authors
achieved privilege escalation by resetting the privilege-
level-specifying bit of the Secure Configuration Register of
the processor via laser fault injection.

Timmers et al. [91] proposed three fault-attack enabled
logical attacks on a Linux Kernel to gain kernel-level
execution privileges. The authors demonstrated their attacks
on an ARM Cortex-A9 processor through voltage glitching.
In the demonstrated attacks, the authors request system
calls from the user space and, then, inject faults during
the execution of system calls for privilege escalation. The
gained privileges may allow an adversary to run an arbitrary

code on the device and access the memory space of other
applications.

The software-controlled fault injection methods such
as triggering memory disturbance errors broaden the
scope of fault attacks as they allow remote fault attacks.
For example, in Rowhammer attacks [34], an adversary-
controlled program (running in a user space) injects bit-
flip faults into security-sensitive DRAM memory cells by
repeatedly accessing nearby cells. In 2015, Seaborn [92]
demonstrated two practical Rowhammer attacks. The first
attack induces bit-flips to escape from Google Native Client
(NaCl) sandbox. The second attack use bit-flips in DRAM
for privilege escalation. Gruss et al. [35] successfully
mounted a Rowhammer attack from web browsers on four
off-the-shelf laptops. Similarly, van der Veen et al. [36]
achieved privilege escalation on Android-running mobile
platforms. Razavi [37] demonstrated a Rowhammer attack
in a cloud setting, in which a malicious virtual machine
induces memory disturbance errors to gain unauthorized
access to memory space of a co-hosted virtual machine.
Kurmus et al. [38] and Cai et al. [33] demonstrated
that software-controlled memory disturbance errors can be
triggered on Multi-cell (MLC) NAND Flash memories to
mount fault-enabled logical attacks.

Finally, Tang et al. [32] exploited security-oblivious
dynamic voltage and frequency scaling (DVFS) interface
to induce faults in a smartphone. They demonstrated
two software-controlled fault attacks. The first attack
allows a malicious user-space program to inject faults
into the operation of an encryption program running in
Trustzone environment and to reveal the value of secret key
stored in Trustzone environment. In the second attack, an
adversary bypasses an authentication mechanism running in
Trustzone to load an unauthorized program into Trustzone
environment. These two attacks show that fault injection
may enable an adversary to subvert hardware-enforced
isolation mechanisms such as ARM Trustzone.

6.5 Using Fault Injection to Assist Reverse
Engineering

Another potential use of fault injection is to assist reverse
engineering. San Pedro et al. [93], Le Bouder et al. [94],
and Clavier et al. [95] employed fault injection to reverse
engineer specifications of block ciphers similar to Data
Encryption Standard (DES) and Adavanced Encryption
Standard algorithms. For instance, San Pedro et al. [93]
propose the FIRE attack that employs fault injection to
reverse engineer SBox specification of DES-like and AES-
like block ciphers. In the AES version of the FIRE, single-
byte faults are injected into the penultimate round of AES
and faulty output data are collected. Then, the faulty data are
converted into a set of linear Boolean equations. Finally, the
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equation system is solved using the Gaussian elimination
and the SBox is reverse-engineered. Similarly, Jacob et
al. [96] induce faults into the execution of an obfuscated
cipher and retrieve the secret key. Courbon et al. [97]
also demonstrated a method to reverse-engineer gate-
level structure of a hardware implementation of Advanced
Encryption Standard (AES) algorithm, in which laser fault
injection and image processing are combined.

7 Fault Attack Evaluation and Certification

Given the abundance and diversity of attacks on hardware
products, the question arises for individual products: What
is the attack resistance, and how secure does the product
need to be? This question has been addressed by the global
security certification community, resulting in the Common
Criteria (CC) [98]. This standard defines levels of security
and a methodology for evaluation. A consortium of vendors,
certification bodies, and labs maintain a procedure for attack
rating.

Any product with secure hardware, for which a vendor
seeks certification, can be evaluated according to this
methodology. The aim is to provide sufficient assurance
that the product remains secure during several years of
operation. In this section, we first briefly explain the steps
and actors involved in the certification process. We then
demonstrate how the fault attack resistance of a product is
evaluated.

7.1 The Common Criteria Certification Process

Three main roles exist in the certification process:

– Vendor is the manufacturer that develops the product to
be certified.

– Evaluator is the security evaluation lab that reviews
and tests the product design and implementation.

– Certification body is the authority that certifies the
product after successful completion of the evaluation.

Additional roles may be involved for separate soft-
ware/hardware vendors, for product issuers, and evaluation
sponsors, but these roles do not significantly change the
basic model.

Figure 4 depicts a simplified view of how the three
main actors work together. The process takes the following
steps:

1. A vendor who wants to have a product CC certified
provides an evaluator with all relevant documents and
the product to be certified (i.e., Target of Evaluation
(TOE)). Vendors need to create and maintain a signifi-
cant set of documents describing the system design and

Fig. 4 The Common Criteria (CC) Certification Process

implementation in detail. These documents should also
include proof that the implementation meets its specifi-
cations. The first task for the evaluator is to review all
documents and decide whether they conform to the CC
methodology and its requirements.

2. The certification body provides instructions to the
evaluator as to how to evaluate the product. The
evaluator performs all relevant tests to prove resistance
of the product and informs the certification body.
Strictly, the evaluator verifies that the product conforms
to its security target, but the scope of that must be
approved by the certification body. If any blocking
issues are found, the product may need revision and
re-evaluation.

3. The evaluator sends the Evaluation Technical Report
(ETR) to the certification body (and to the vendor) who
then reviews the evidence reported by the evaluator.
Before issuing a certificate, the certification body may
mandate additional testing if new threats surfaced, or
when the test results gave reason to doubt.

4. If no objections remain, the certification body issues the
certificate.

A product typically consists of multiple layers (hardware,
operating system, applications) which can be independently
certified. This would start with the hardware certification,
after which composite evaluations can be done, where
a new layer is certified in conjunction with a certified
platform.

The CC certification process is known to be cumbersome;
it is lengthy and costly [99]. Although completion of the
process may take a couple of months in an ideal situation,
it often takes much longer. Apart from cost and time-to-
market, this also carries a security penalty: Vendors may
be hesitant to make security improvements to a certified
system since changes break the certification. In this way,
vulnerabilities may remain longer in products than needed.
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While Common Criteria certifications enjoy popularity
for high assurance products, it is not the only evaluation
methodology. Other schemes exists such as EMVCo [100]
and FIPS 140-2 [101], many of whom are lighter in
execution. However, the processes described here are
similar across many schemes and serve well to explain
the ecosystem. Next, we will take a closer look into the
evaluation process.

7.2 Evaluation of Fault Attack Resistance

Products are always evaluated in “white-box” style. This
means an evaluation lab gets access to all product design and
implementation information. This will reduce evaluation
cost (no need for lengthy reverse engineering) and reduce
the risk of missing big security weaknesses. Typically, an
evaluation consists of two phases:

1. Vulnerability Analysis (VA)
2. Penetration Testing (PT)

During the VA, the lab reviews the design and implemen-
tation code of a product and weighs this against applicable
threats. In the PT, a product is tested against a number
of attacks to measure its actual resistance. All successful
attacks are rated, and when their scores are sufficiently high,
the product qualifies for certification.

The evaluation methodology distinguishes between
Identification and Exploitation. The former defines the cost
of demonstrating that the attack works on the product, while
the latter looks at the cost of repeating the attack. Both
aspects are important. For instance, an attack with very high
initial cost will scare away low-budget attackers, while a
high repetitive cost will prohibit attack scaling.

Parameters used in the attack rating are (1) time, (2)
expertise, (3) product knowledge, (4) number of the target

samples, (5) equipment, and (6) ability to configure target.
The parameter time is extremely important during an
evaluation as this is most often the limiting aspect during the
penetration testing phase. An evaluator cannot afford to lose
time if several attacks are to be executed within the typical
time frame of a few months.

For efficiency, the PT starts with an investigation of
sensitivity to different fault injection methods. While
voltage glitching is typically the simplest method, this
is often prevented by sensors. Alternative methods like
EM and optical glitching are more complex, but also
harder to prevent. During this sensitivity analysis, the
evaluator uses test software on the target that runs loops
and typical instructions that may be affected. The test
software accelerates the detection of hardware weaknesses,
and supports finding optimal attack parameters, such as
glitch intensity and duration. Figure 5 shows how the right
combination of glitch voltage and glitch length can be
found. The green dots represent experiments that did not
affect the chip. Alternatively, the yellow dots represent
experiments where the glitch was too strong and resulted in
a reset of the chip. Finally, the red dots represent successful
glitch parameters that resulted in an observable effect in the
test code. Figure 6 shows how effective temporal offsets are
found (represented as wait cycles on the x-axis).

Once a weakness is established, a setup is built to
demonstrate that the weakness can be exploited on the
real product software. This setup includes equipment
for generating glitches at the right time, and solutions
to minimize the effect of countermeasures. A highly
automated setup runs for several days and uses dedicated
control procedures to manage smooth repetition and fault
logging. Ultimately, an evaluation results in a report, where
successful attacks are rated, and a discussion is given on the
attack risks and potential mitigation strategies.

Fig. 5 Relation between the
glitch length, glitch voltage, and
fault behavior
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Fig. 6 Relation between the
glitch length, temporal offset
(i.e., wait cycles), and fault
behavior

8 Conclusions

This paper provides a review on mechanisms, implementa-
tion, and evaluation of hardware-based fault attacks that aims
at breaking the security of embedded software. Our review
shows that multiple abstraction layers (software, instruction-
set, and hardware layers) take part in fault attacks and each
abstraction layer may be a target for an adversary. We also
observe that fault attacks break a fundamental assumption
made by secure embedded software: The hardware layer
of the embedded systems ensures the correct execution
of the embedded software. Therefore, fault attacks pose a
serious security threat to any kind of security-critical soft-
ware (firmware, operating system, user applications, and
cryptography) running on embedded devices:

– In a fault attack on embedded software, the target of
fault injection is the hardware layer while the target
of exploitation is the software layer. Thus, it is not
always possible to mitigate the fault attack threat with
software-only countermeasures.

– Fault attacks do not require presence of a software
bug in the embedded software because the fault
attacks dynamically alter the behavior of the underlying
hardware through fault injection. As our review
shows, this enables fault attacks to dynamically induce
software bugs, to thwart countermeasures, and to enable
other attacks.

– Although fault attacks traditionally require expertise
and expensive equipment, they tend to become more
accessible because of the advancement in the field. As
we demonstrate, today, it is possible to inject faults via
inexpensive hardware equipment (less than 500$) or via
only software programs.

Considering the increasing role of the embedded Internet
of Things (IoT) devices in our daily life and critical

infrastructure, we believe that embedded hardware and
software developers need to put additional effort on
mitigation and evaluation of the fault attack risk on the
embedded systems.
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