J Hardw Syst Secur (2017) 1:219-236
https://doi.org/10.1007/s41635-017-0018-x

P N
@ CrossMark

A Scalable and Systolic Architectures of Montgomery
Modular Multiplication for Public Key Cryptosystems

Based on DSPs

Amine Mrabet!23

. Nadia El-Mrabet? - Ronan Lashermes® -

Jean-Baptiste Rigaud* - Belgacem Bouallegue® - Sihem Mesnager!”’ -

Mohsen Machhout?

Received: 4 April 2017 / Accepted: 22 September 2017 / Published online: 10 November 2017

© Springer International Publishing AG 2017

Abstract The arithmetic in a finite field constitutes the
core of public key cryptography like RSA, ECC or pairing-
based cryptography. This paper discusses an efficient hard-
ware implementation of the Coarsely Integrated Operand
Scanning (CIOS) method of Montgomery modular multi-
plication combined with an effective systolic architecture
designed with a two-dimensional array of processing ele-
ments. The systolic architecture increases the speed of
calculation by combining the concepts of pipelining and the
parallel processing into a single concept. We propose the
CIOS method for the Montgomery multiplication using a
systolic architecture. As far as we know, this is the first
implementation of such design. The proposed architectures
are designed for field programmable gate array platforms.
They targeted to reduce the number of clock cycles of
the modular multiplication. The presented implementation
results of the CIOS algorithms focus on different security

P4 Amine Mrabet
mrabet.amine.tn@gmail.com

I CNRS, UMR 7539 LAGA, University of Paris XIII,
Paris, France

E pE Lab, University of Monastir, Monastir, Tunisia
National Engineering School of Tunis, Tunis, Tunisia

4 Ecole des Mines de St-Etienne, SAS-CMP,
Saint-Etienne, France

5 LHS-PEC TAMIS INRIA, Rennes, France
6 King Khalid University, Abha, Saudi Arabia

Télécom ParisTech, Paris, France

levels useful in cryptography. This architecture has been
designed in order to use the flexible DSP48 on Xilinx Field-
Programmable Gate Array’s. Our architecture is scalable
and depends only on the number and size of words. For
instance, we provide results of implementation for 8-, 16-,
32- and 64-bit-long words in 33, 66, 132 and 264 clock
cycles. We highlight the fact that for a given number of word,
the number of clock cycles is constant. We propose a general
version of our systolic architecture presented in SPACE2016.

Keywords Hardware implementation - Modular
multiplication - Montgomery algorithm - CIOS method -
Systolic architecture - DSP48

1 Introduction

Since 1976, many public key cryptosystems (PKCs) have
been proposed and all these cryptosystems based their secu-
rity on the difficulty of some mathematical problem. The
hardness of this underlying mathematical problem is essen-
tial for security. Elliptic curve cryptosystems which were
proposed by Koblitz [12] and Miller [15], RSA [19] and
the pairing-based cryptography[10] are examples of PKCs.
All these systems rely on an efficient finite field multi-
plication. As a consequence, the development of efficient
architecture for modular multiplication has been a very pop-
ular subject of research. In 1985, Montgomery has presented
a new method for modular multiplication [16]. It is one of
the most suitable algorithms for performing modular mul-
tiplications in hardware and software implementations. The
efficient implementation of the Montgomery modular mul-
tiplication in hardware was considered by many authors [3,
6,9, 17, 18, 20]. There are a variety of ways to perform the
Montgomery multiplication, considering if multiplication

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s41635-017-0018-x&domain=pdf
http://orcid.org/0000-0002-7748-7756
mailto:mrabet.amine.tn@gmail.com

220

J Hardw Syst Secur (2017) 1:219-236

and reduction are separated or integrated. The separated
approach consists in first performing the product and then
the Montgomery reduction. It was presented in 1996 by
Ko¢ and Tolga in [11]. This method is called the Sepa-
rated Operand Scanning (SOS) method. On the contrary,
the integrated approach is characterized by an alternation
between multiplication and reduction. Several integrated
approaches are presented in [11]: the Coarsely Integrated
Operand Scanning (CIOS) Method, the Finely Integrated
Operand Scanning (FIOS) Method, the Finely Integrated
Product Scanning (FIPS) Method and the Coarsely Inte-
grated Hybrid Scanning (CIHS) Method. According to Ko¢
and Tolga in [11], the CIOS method is a scalable word-
based method for Montgomery multiplication, and it is the
most efficient algorithm that integrates the multiplication
with reduction steps. A systolic array architecture [14, 21] is
one possibility for the implementation of the Montgomery
algorithm in hardware [3, 17, 18, 20]. These architectures
offer processing elements (PEs) array where each process-
ing element performs arithmetic computation additions and
multiplications. In accordance with the number of words
used, the architecture can employ a variable number of PEs.
The systolic architecture uses very simples processing ele-
ments. As a consequence, the systolic architecture decreases
the needs for logic elements in hardware implementations.
Our contribution in this work is to combine a systolic
architecture, which is assumed to be the best choice for
Field-Programmable Gate Array implementation, with the
CIOS method of Montgomery modular multiplication. We
optimize the number of clock cycles required to compute
a n-bit Montgomery multiplication, and we reduce the uti-
lization of Field-Programmable Gate Array resources. We
have implemented the modular multiplication in a fixed
number of clock cycles. To the best of our knowledge, this
is the first time that a hardware or a software multiplier
of modular Montgomery multiplication, suitable for vari-
ous security levels, is performed in just 33 clock cycles.
Furthermore, as far as we know, our work is the first one
dealing with systolic architecture and CIOS method over
large prime characteristic finite fields. In this paper, we
present a general architecture detailed in Section 4.4 and
denoted by NW-s. This architecture is presented with the
same manner like the architectures of 8-, 16-, 32- and 64-bit-
long words. The construction of this architecture is based
on the architecture presented at SPACE2016. This paper is
organized as follows: Section 2 discusses related state-of-
the-art works. Section 3 presents the Montgomery modular
multiplication algorithm. The proposed architectures and
results are presented in Sections 4 and 5. Finally, the conclu-
sion is presented in Section 6. In this version, we improve
our paper with an Appendix A, in this Appendix, we pro-
pose an execution of our architecture NW-8 presented in
SPACE2016.

@ Springer

2 Brief State of the Art

In hardware design, the systolic architecture [14] is a
pipelined network arrangement of processing elements (or
cells). It is a specialized form of parallel design. Each cell
computes the data which is coming as input and calcu-
lates data independently. In [21], the authors proposed a
systolic design for Field-Programmable Gate Array imple-
mentation. Several works are devoted to the implementation
of the Montgomery multiplication [2, 3, 6, 8, 9, 11, 16-18,
20]. The first ones to our knowledge who proposed a sys-
tolic array are Iwamura, Matsumoto and Imai [8, 9]. They
presented a systolic architecture that can execute a mod-
ular exponentiation using Montgomery multiplications. In
[20], Tenca and Kog introduced a pipelined Montgomery
modular multiplication, which has the ability to work in
any given operand precision and which is adjustable to any
chip area. Harris et al. in [4] improve the result of [20]
using a systolic architecture for the Montgomery multipli-
cation. Siddika Berna Ors, Lejla Batina, Bart Preneel and
Joos Vandewalle presented in [17] a modular exponentia-
tion based on the modular Montgomery. In [18], Guilherme
Perin, Daniel Gomes Mesquita and Joao Baptista Martins
proposed a comparison between two modular multiplica-
tion architectures: a systolic and a very high-radix multi-
plexed implementation. Their approach uses a radix-16 and
radix-32 decomposition. Both implementations targeted a
Virtex-4 and a Virtex-5 Field-Programmable Gate Array. (A
radix-n word is a word of size n.) Their work is the lat-
est and the most efficient describing the use of a systolic
approach for the Montgomery multiplication. We briefly
recall the definition of a systolic architecture before a sum-
mary of their work. A systolic architecture is a pipelined
network arrangement of PEs called cells. It is a special-
ized form of parallel computing, where cells compute the
data which is coming as input and store them independently.
A systolic architecture is an array composed of matrix-
like rows of cells. Each PE shares the information with its
neighbours immediately after processing. Cell at each step
takes input data from one or more neighbours. The systolic
architecture proposed in the work [18] is composed of s
processing elements distributed in a one-dimensional array.
The number s is the number of words. At each iteration
of the Montgomery algorithm, the words are read from an
external memory (BRAM) and passed to their architecture.
To evaluate the number of clock cycles for a Montgomery
multiplication in the systolic architecture, they have to con-
sider the first s cycles to read the input operands from RAM
memories. Furthermore, the first iteration of algorithm also
needs s clock cycles. Finally, the remaining iterations of
algorithm are performed in 4 x s clock cycles. As a conse-
quence, this architecture requires a6 x s(=s + s +4 x s)
clock cycles. For the multiplexed architecture, the first steps

J Hardw Syst Secur (2017) 1:219-236

221

are identical to that of the systolic architecture (2 x s). The
number of clock cycles required to remaining iterations of
Montgomery algorithm is 6 x s clock cycles. In order to
perform the multiplexed architecture, the algorithm requires
8 x s(=2 x s+ 6 x s) clock cycles.

3 Montgomery Multiplication

Algorithm 1 Montgomery modular multiplication

Input: p an odd prime, n = [log2(p)], R = 2",
p'=—p'mod R, M(a), M(b) € F,,

Output: M(ab) mod p

y < M(a) x M(b)

§ <~y xp modR

r i

If7T>pthenT < T —p

return 7

nm oA W N -

The Montgomery multiplication algorithm for large
prime characteristic finite fields [16] is a method for per-
forming modular multiplication without needing to divide
by the modulus. In cryptography, the Montgomery algo-
rithm is the most used modular multiplication to perform
the operation @ x b mod p. The Montgomery multiplica-
tion transforms the division by p into several divisions by
a power of 2, which consists only in shifts in hardware and
software implementation. Furthermore, the Montgomery
multiplication among large numbers can be constructed
using a radix representation of the numbers. Let p be an
odd prime number. Let n = [log>(p)] be the length of the
binary decomposition of p. We choose the base of numer-
ation to be R = 2", such that p < R. As p and R are
coprime, we can define p’ = —p~! mod R. The choice
of R is motivated by the facts that gcd(R, p) = 1 and
reductions and divisions by R must be efficient. As R is a
power of 2, divisions are right shifts and the modulo oper-
ation is a simple assignment of the first n-bit. Montgomery
multiplication is performed with numbers represented in the
Montgomery representation. The conversion from ordinary
domain to Montgomery domain is detailed in Table 1. The
map M :a € F, — aR € I is a bijection and a field iso-
morphism of I ,. For any element a of I, the productaR €
I, is called the Montgomery representation of a in basis
R and it is denoted M (a). We describe the Montgomery

Table 1 Conversion between Montgomery and ordinary domains

Ordinary domain — Montgomery domain
a <~ M(a) = a-R mod p

b <~ M(b) = b-R mod p
a-b <« M(a-b) = a-b-R mod p

multiplication in Algorithm 1. The Montgomery multiplica-
tion computes M (a) x M (b) and gives as result M (ab).

3.1 CIOS Method

The CIOS method presented in Algorithm 2 improves the
Montgomery algorithm by integrating the multiplication
and reduction. More specifically, instead of computing the
product a - b, then reducing the result, this method allows an
alternation between iterations of the outer loops for multi-
plication and reduction. The integers (p, a and b) are seen as
lists of s words of size w. In order to perform this algorithm,
we need an array T of size only s 4+ 2. The intermediate
results are stored in 7'. The final result of the CIOS algo-
rithm is composed by the s+ 1 least significant words of this
array. The alternation between multiplication and reduction
is possible since the value of m (in line 11 of the Algo-
rithm 2) in the ith iteration of the outer loop for reduction
depends only on the value T[], which is computed by the
ith iteration of the outer loop for the multiplication. In order
to perform the multiplication, we have modified the CIOS
algorithm of [11] and designed this method with a systolic
architecture. Indeed, instead of using an array to store the
intermediate result, we replace 7 by input and output signals
for each processing element. As a consequence, our design
uses fewer of multiplexers and then we have better results
considering the number of slices.

Algorithm 2 CIOS algorithm for Montgomery multipli-
cation [11]

1 1

Input: p <2X, p' = —p~lmod 2¥, w, s,
K =5 -w :bitlength, R =2K,a,b < p
Output: a - b - R~ mod p
T < Null;
fori < Otos —1do
C <0
for j < Otos —1do
(C,S) < T[jl+ali]l-b[j1+C
L Tlj] < S
(C,8) < T[s1+C
8 Tls] < S
9 Tls+ 1] <« C
10 C < 0;
11 m < T[0] - p’ mod 2¥
12 (C,8) < T[0]+m - p[0]

A U AR W N =

N

13 for j < 1tos —1do
14 (C,8) < Tljl+m-pljl+C
15 T[jl < S

16 (C,S) < T[s]+C
17 Tls—1] <« S
18 Ts]<«<T[s+1]1+C

—

9 return 7T';

@ Springer

222

J Hardw Syst Secur (2017) 1:219-236

4 Hardware Implementation

4.1 Block DSP in Xilinx Field-Programmable Gate
Array’s

Modern Field-Programmable Gate Array devices like
Xilinx Virtex-4, Virtex-5 and Artix-7 as well as Altera
Stratix Field-Programmable Gate Array’s have been
equipped with arithmetic hardcore extensions to acceler-
ate digital signal processing applications. These function
DSP blocks can be used to build a more efficient imple-
mentation interms of performance and reduced at the same
time the demand for areas. DSP blocks can be programmed
to perform basic arithmetic functions, multiplication, addi-
tion and subtraction of unsigned integers. Figure 1 shows
the generic DSP structure in advanced Field-Programmable
Gate Array’s. DSP can operate on external inputs A, B and
C as well as on feedback values from P or result PCIN.

4.2 Proposed Architecture

The idea of our design is to combine the CIOS method of
Montgomery modular multiplier presented in [11] with a
two-dimensional systolic architecture in the model of [7,
21]. As seen in Section 3.1, the CIOS method is an alter-
nation between iterations of the loops for multiplication
and reduction. The concept of the two-dimensional systolic
architecture presented in Section 2 combines an identi-
cal processing elements with local connections, which take
external inputs and handle them with a predetermined man-
ner in a pipelined fashion. This new architecture is directly
based on the arithmetic operations of the CIOS method of
Montgomery algorithm. The arithmetic is performed in a
radix-w base (2"). The input operands are processed in s
words of w bits. We present many versions of this method.
We illustrate our design for s = 8, s = 16, s = 32
and s = 64 architectures, respectively, denoted by NW-8
(for number of words), NW-16, NW-32 and NW-64. Before

Fig. 1 Structure of DSP block
in modern Field-Programmable
Gate Array device

the descriptions of the architectures NW-8 and NW-16, we
begin with a generic description of our systolic architecture.
Our proposed architectures for the implementation of the
Montgomery modular multiplication are detailed in this
section. We describe it in detail as well as the different pro-
cessing element behaviours. In order to have less of states in
our final state machine (FSM), we divided our Algorithm 2
of Montgomery on five kinds of PE noted:

Cells alpha denoted «;

Cells beta denoted 3;

— Cells gamma denoted y;

Cells alpha final denoted « f;
Cells gamma final denoted ys.

Figure 2 presents the dependency of the different cells.
Below, we describe precisely each cell. The letters MSB
stand for the most significant bits and LSB for the least sig-
nificant bits. In our notation, the letter C denotes the MSB
of the results and the letter S the LSB.

1. Alpha : presented by lines 4 and 5 in the Algorithm 2
and detailed in Algorithm 3. The PE alpha is scalable
according to the NW in the design. We use this cell
to perform the multiplication step. The input of the
cell alpha is S_In provided by the previous step, C_In
provided by the previous step, a[i]: the words of the
operand a, and b[j]: the words of the operand b. The
output of the cell alpha is S provided to the next step
and C provided to the next step.

2. Beta : presented by lines 9, 10 and 11 in Algorithm 2
and detailed in Algorithm 4. The input of the cell beta is
S_In provided by the previous step, p[0]: the first word
of the modulo p and p’: predefined. The output of the
cell beta is m provided to the next step and C provided
to the next step.

3. Gamma : presented by lines 13 and 14 in Algorithm 2
and detailed in Algorithm 5. The PE gamma is scalable
according to the NW in the design. We use this cell to
perform the reduction step. The input of the cell gamma

>
[>

@ Springer

J Hardw Syst Secur (2017) 1:219-236

223

Fig. 2 Data dependency in general systolic architecture

is S_In provided by the previous step, C_In provided
by the previous step, p[j]: the words of the modulo p
and m provided by the cell beta. The output of the cell
gamma is S provided to the next step and C provided to
the next step.

4. Alpha final : presented by lines 6, 7 and 8 in Algo-
rithm 2 and detailed in Algorithm 6. The input of the
cell alpha_final is S_In provided by the previous step
and C_In provided by the previous step. The output of
the cell alpha_final is S1 provided to the next step and
S2 provided to the next step.

5. Gamma final : presented by lines 15, 16 and 17 in Algo-
rithm 2 and detailed in Algorithm 7. The input of the
cell gamma-_final is S1_/n provided by the previous
step, S2_In provided by the previous step and C_In
provided by the previous step. The output of the cell
gamma._final is S1 provided to the next step and S2
provided to the next step (Fig.3).

Algorithm 3 Cell alpha

Input: ali], b[j], C_In, S_In
Output: C, S

tmpl < S_In+ C_In

tmp2 < ali] - b[j]

tmp2 < tmp2 + tmpl

C <MSB(tmp2)

S < LSB(tmp2)

return C, S;

A AW N =

Algorithm 4 Cell beta

Input: S_in, p[0], p’ = —p~'mod 2%
Output: C, m

tmpl < S_in - p’

m < LSB(tmpl)

tmpl < p[0]-m

tmpl < S_in+tmpl

C <MSB(tmpl)

return C, m;

(= Y B S R

Algorithm 5 Cell gamma

Input: pli],m, C_in, S_in
Output: C, S

tmpl < S_in+ C_in
tmp2 < pli]l-m

tmp2 < tmp2 + tmp1

C <MSB(tmp?2)

S < LSB(tmp2)

return C, S;

A U AR W N =

Algorithm 6 Cell alpha_final
Input: C_n, S_in
Output: S1, S2

1 tmpl < S_in+ C_in
2 S1 <LSB(tmpl)

3 §2 «MSB(tmpl)

4 return C, S;

Algorithm 7 Cell gamma_final
Input: C_in, Sl_n, S2_in
Output: S1, S2

tmpl < Sl.in+ C_.in

S1 «<LSB(tmp1)

S2 «<MSB(tmpl)

S2 « S2.in+ S2

return S1, S2;

N AR W N -

This organization allows us to optimize the number of
clock cycles. Each processing element in Fig. 11 is respon-
sible for performing arithmetic operations. The different
processing elements establish communication with the con-
trol block (FSM) as shown in Fig. 10 by receiving start
signals at each state of Montgomery algorithm iteration.
Each PE sends a done signal to the FSM at each end of the
calculation. The final result is a concatenation of the last
output of gamma and gamma_final PEs. The structure of all
PEs has a combinational behaviour.

@ Springer

224

J Hardw Syst Secur (2017) 1:219-236

Fig. 3 PEs of systolic architecture in two-dimensional array

4.3 Internal Architectures of Cells

In this section, we will describe the internal architectures
of PEs used in these designs. Our five cells are designed in
order to use DSP(s) blocks.

Description of the Cell @ As illustrated in Fig. 4, the mul-
tiplication between a[i] and b[j] words returns a 2w bit
result. This result is added thereafter to S_«_In. This latter is
the least significant bits of the result of processing element
gamma, which is provided through the output multiplexer.
The last add is also added to C_«_In. The C_a_In is the
most significant bits of the result of the previous processing
element alpha, which is provided also through an output of
a second multiplexer. The different inputs/outputs of the PE
alpha are presented in Fig. 10. The most significant bits of
the result of alpha is propagated to the multiplexer to fix the
next PE of alpha, whereas the least significant bits are prop-
agated to the other multiplexer to fix the next PE of gamma.
After each computation of the alpha PE, a shift in the input
b is triggered.

Description of the Cell 8 According to our Algorithm 4
and as illustrated in Fig. 5, the zero index word of p (p[0])
and p’ is provided to this beta processing element. The num-
ber p’ corresponds the modular inverse of p modulo 2%.
The multiplication between p’ and S_B8_In returns a 2w bit
result, where only the least significant bits of this multiplica-
tion is multiplied by the first word of p and returns a 2w bit

Fig. 4 Alpha processing
element internal architecture

S_a_In —

C_a_In —

@ Springer

result. Finally, this result is added to a w bit word S_8_In.
Only the most significant bit part of this result is used in the
next gamma PE. The different inputs/outputs of PE beta are
presented in Fig. 10.

Description of the Cell y As illustrated in Fig. 6, the
multiplication between m and p[j] words returns a 2w bit
result. This latter is added thereafter to S_y _In. The number
S_y _In corresponds to the least significant bits of the result
of processing element alpha, which is provided through an
output multiplexer. This add is also added to C_y _In, where
C_y _In is the most significant bits of the result of the previ-
ous processing element gamma. This PE gamma is provided
also through an output of a second multiplexer. The differ-
ent inputs/outputs of the gamma PE are shown in Fig. 10.
The most significant bits of result are propagated to the
multiplexer to fix the next PE of gamma, whereas the least
significant bits are propagated to the other multiplexer to fix
the next PE of alpha.

Description of the Cell ey The cell af corresponds to
the final o computed at the end of the line correspond to
the multiplication step. In the PE alpha _final, the S_a_f _In
added to C_oc_f returns a 2w bit result as presented in Fig. 7.

Description of the Cell ys The cell ys corresponds to
the final y computed at the end of the line correspond to
the reduction step. For processing element gamma final,
Sl_y_f_In is added to C_y_f, the result is a 2w bit. The
least significant bits of the last result is added to S2_y _f _In.
The internal architecture of the gamma._final-type PE is
presented in Fig. 8.

In the remainder of this section, we detail our design for
s = 8 and s = 16 architectures, respectively, denoted by
NW-8 and NW-16.

4.4 Our Architectures

Firstly, we will start with the NW-8 architecture which con-
tains three PEs of type alpha and three of type gamma. With
this design, we can compute a modular multiplication in 33
clock cycles. Secondly, we will present the NW-16 architec-
ture that is composed by six PEs of type alpha and six PEs

LSB w bits

REG — S_a_Out

MSB w bits

+ REG — C_a.Out

J Hardw Syst Secur (2017) 1:219-236

Fig. 5 Beta processing element
internal architecture

Fig. 6 Gamma processing
element internal architecture

Fig. 7 Alpha_f processing
element internal architecture

Fig. 8 Gamma_f processing
element internal architecture

Fig. 9 CIOS NW-8 architecture

225
o LSB w bits
REG —m
MSB w bits
S_B_In
+ | REG — C B Out
Plo] 4
S BIn
m LSB w bits
REG — Sy_-Out
pli] —
+ |
MSB w bits
Sy In ——
+ REG — Cy.Out
Cvy.In ——
LSB w bits
REG — Sl.a_f_out
S.a_fIn —
C.a_f — MSB w bits
REG [S2.a_f_out
LSB w bits
REG = Sly_f Out
Cr_f — n MSB w bits
S1~y_f In — + REG > S2v_f-Out
S2.y_f_In |
alpha alpha alpha
1) 2)) | AR
| | 1
v
beta
v
gamma gamma gamma gamma_ <
(1) (2) (3) r f -
[| |
i++

@ Springer

226

J Hardw Syst Secur (2017) 1:219-236

e 4
|
|
| PE
: beta
|
|
|
|
|
|
| Control _
| P2 FSM
]
|
| Shift_register
€
: | C_v2_0ut @) |
| | sig_state |
| : :
| J’P3 | C_y3In |
| ! b !
| Shift_register | gamma [€-- —1
< 3 :

| | C_73_Out (3) N
[. [
| I :
| : I
| | cy2 |
' i
: : PE _I
| | gamma_2
] T I

e T———-

Fig. 10 Proposed Montgomery modular multiplication architecture

of type gamma. And we can perform a modular multiplica-
tion with this architecture in 66 clock cycles. Similarly, in
order to implement the NW-32 architecture and the NW-64
architecture, we need every time to double the number of
cells. We provide a comparison of our architectures at the
end of this section.

NW-8 Architecture In this architecture, the operands and
the modulo are divided in eight words as illustrated in
Fig. 11. As illustrated in Fig. 9, the NW-8 architecture is
composed of nine processing elements distributed in a two-
dimensional array. Every processing element is responsible

|
|
sig_state |
b1 | 1
C_aiin l |
f
PE |
—> alpha Shift_register | a
(1) P I
C_o1_Out . |
' |
sig_state | |
. b2 |
I :
C_ o2 In | l |
PE i | .
—--> alpha - Shift_register : 2
o 2
(2) C_a2_Out I | e
— T = N
. | 5
sig_state I
: b3 |
C_u3_in | l |
PE | :
—-> alpha | Shift_register |
3 >
(3) C_03_Out | |
: |
! |
i |
! |
I ' A
PE : | |
alpha_2 | | :
|
|

for the calculus involving w bit words of the input operands.
For example, for a 256-bit modular multiplication with NW-
8, the operands are split in eight words of 32 bits which
results in a two-dimensional array of nine processing ele-
ments. The nine processing elements are divided in the
following manner: three cells alpha, one cell alpha_final,
one cell beta, three cells gamma and one cell gamma_final.
Those choices were made in order to optimize the number
of states in our FSM. As seen in Section 2, each PE in the
N-dimensional array is connected to 2N data In/Out paths
for communicating with 2N PEs in the N-dimensional array.
Since we are working with two-dimensional elements, each

e er @&
GON | CEED

T

i=0

(e

al al \@~ a2 a2

al al

X o

al .. a2 a2 w2

i=2

Fig. 11 The data dependency graph of the proposed new systolic architecture with a two-dimensional array of processing elements (NW-8)

@ Springer

J Hardw Syst Secur (2017) 1:219-236

227

Table 2 Implementations of cells and MMM (NW-8)

Artix-7 DSP Frequency (MHz) Clock cycle
MMM (s = 8/K = 256) 31 105.275 33

Alpha 4 291.023 1

Gamma 4 291.023 1

Beta 4 388.350 1
Alpha_final 1 459.918 1
Gamma_final 2 442811 1

PE in our design is connected to four data paths, two inputs
and two outputs as presented in Fig. 3. In this architec-
ture, the processing elements are designed with FSM. The
control block communicates with the PEs and shift regis-
ters through start signals. The Fig. 10 presents an overview
of our architecture. For more technical details, the Fig. 25
presents the different PEs with input/output. The shift regis-
ter is designed to provide the required words for a modular
multiplication to the PEs. The processing element alpha
requires words a[i] and b[j] of the operands a and b; on
the other side, the processing element gamma required a
words of the operand p. Thus, these operands are defined in
the package body. At the end of the Montgomery modular

multiplication, the control block provides the multiplication
result @ - b - R~! mod p through the outputs of the last
gamma and gamma_final processing elements. To evaluate
the number of clock cycles for a CIOS method of modular
multiplication in NW-8, the first parameter is max {number
of alpha, number of gamma} = 3; it means that our design
can handle three iterations of i at the same time as illustrated
in Fig. 11. Implying that our algorithm requires to loop s 43
times, we can perform our design in 33 clock cycles since
our design requires three states (33 = 3 x (s + 3)). The
different results of this architecture in bit-length 256 are
given in Table 2. And we illustrate a part of the execution
of this architecture in the Appendix B.1. To ensure the use
of the word adapted to each step of execution, we used the
rotations and shift. The operand B was divided into three
vectors: the first vector is of size three words, the second
vector is of size three words and the last vector is of size
two words. Then, we need three rotations for this three vec-
tors. Similarly, the modulo is divided into four vectors. And
we used four rotations. Figure 12 illustrates the different
rotations used in our architecture of NW-8.

NW-16 Architecture In this architecture, the operands
and the modulo are divided in 16 words as presented in

Fig. 12 Internal architectures—rotations

X (K bits) X B (3 w bits) X P{3 w bi
W s T
!
Shift ROTATION ROTATION
- d | y)
= | = |
X B [3 w bits) P [3 w bits)
AN Mtlx£ 7 \ Muxi/
ROTATION ROTA\\LTION
— l | I
I Ll I
X B [2 w bits)
N\ Mux£ /
|
ROTATION
= : |
L

@ Springer

228

J Hardw Syst Secur (2017) 1:219-236

Fig. 13 CIOS NW-16 architecture

P

Shift_register

P

Shift_register

Shift_register

P

Shift_register

!

Shift_register

alpha alpha alpha alpha alpha alpha e
(1) (2) (3) (4) |(5I |{6) r (A
I I)
beta
N
gamma gamma gamma gamma gamma gamma
amma_f
(1) (2) (3) (4) (5) |{6) r gamma_ ®
V- T T T T T T T e T T T T T T 1 !
P[O] | |
C_Out PE sig_state | |
beta Cn . :
C 71 In 0
PE PE I
P gamma [€ - — r--—> alpha 3 Shift_register I
(1) | : (1)
C_out I | C_Out : :
. : : I
v sig_state I | . |
s . Control = sig_state | |
Cin : FSM I i : b2 |
| . -4 | I '
PE | | PE I |
gamma [&— - | :—-> alpha : Shift_register |
6! C_Out IZII | | ! 2) C_Out |> :
I v sig_state | | ! + |
: : i sig_state | |
! i I ! : C_in | = |
I | | I q : »I l
: : . PE | |
| | l -—> alpha | Shift_register :
: 1 3 iq
| | | G) C_Out . |
i : | | |
! : sig_state : | 5
F | ! ba | b
| | : Cn : l | &
i : | I T 2
: gamma [<:— ! : RE | ; : | z
d) | I I» --—> alpha s Shift_register | 2
: C_Out | (4) oo P |
#I t
I v sig_state | | ’ I—_uﬁ . |
: |
I Cn | | I sig_state : :
| i i ! cn LT |
I PE : : i [I
n gamma [&-- I | : PE s |
ﬁ' & Oui () I | r -> alpha t Shift_register |
: #f : (5) S |
| v sig_state | I 1 [couw | T :
i : | I, I I
I Cln | | I sig_state : |
! PE | | I C.in I bsl I
4'_ gargma 1< - _I | | PE | |
f c_out (&) : : > alpha f{ Shift_register :
| . >
| I : (6) C_Out |
: | : | |
| | : : |
: C_ln i : | | |
| : I : I I
: PE] i | PE ! |
i et = :
: gamma I alpha_f | : ?
P S P P] | :
_____________________________].______________________________l |

Fig. 14 Proposed Montgomery modular multiplication architecture for the NW-16 version

@ Springer

J Hardw Syst Secur (2017) 1:219-236

229

aOb4 aObs

a0b3

a0b0 a0 bl aOb2

o\

i=2

i=3

aOb14 aOb15

i=’4 i='5

i=15

axb xR! modp

Fig. 15 The data dependency graph of the proposed new systolic architecture with a two-dimensional array of processing elements (NW-16).

Fig. 15. As illustrated in Fig. 13, the NW-16 architecture
is designed in the same way as the NW-8. This example
illustrates the scalability of our design. The NW-16 archi-
tecture is composed of 15 processing elements distributed
in a two-dimensional array, where every processing element
is responsible for the calculus involving w bit words of the
input operands (Fig. 14). The 15 processing elements are
divided like this: 6 cells alpha, 1 cell alpha_final, 1 cell
beta, 6 cells gamma and 1 cell gamma_final. We can remark
that the number of PEs of type alpha and gamma is the
double of the number for NW-8. As said previously, the
number of other PE type (alpha_final, beta, gamma_final)
remains unchanged whatever the number of words in the
design. We illustrate our architecture in Fig. 15. In order to

Table 3 Implementations of cells and MMM (NW-16)

Artix-7 DSP Frequency (MHz) Clock cycle
MMM (s = 16/K = 256) 29 145.892 66

Alpha 2 379.341 1

Gamma 2 379.341 1

Beta 2 453.104 1
Alpha_final 1 459.918 1
Gamma_final 2 442811 1

evaluate the number of clock cycles of the NW-16 architec-
ture, the first parameter is max {number of alpha, number
of gamma} = 6, implying that our algorithm requires to
loop s + 6 times. We can perform the multiplication with
our design in 66 clock cycles since our design requires three
states (66 = 3 x (s + 6)). The different results of this archi-
tecture in bit-length 256 are given in Table 3. In this version,
the operand B was divided into six vectors, the first six vec-
tors are of size three words, and the last vector is of size one
word. Then, we need six rotations for this six vectors. Simi-
larly, the modulo is divided into seven vectors. But we used
five rotations.

NW-32 Architecture In this architecture, the operands and
the modulo are divided in 32 words. The NW-32 architecture

Table 4 Comparison of our architectures

CIOS s=38 s=16 s=32 s=64
K =256 32 16 8 4

K =512 64 32 16 8

K =1024 128 64 32 16

K =2048 256 128 64 32
Clock cycles = 3 x (s+nb) 33 66 132 264
Number of cells 6+3 12+3 2443 4843

@ Springer

230

J Hardw Syst Secur (2017) 1:219-236

Table 5 Illustration of the scalabilty of our architecture

Artix 7- Nexys 4

NW-8 NW-16

128 256 512 256 512 1024
Freq MHz 198 106 65 146 106 65
cycles 33 33 33 66 66 66
Slice registers 487 870 1614 1123 2164 4208
Slice LUTs 355 809 2650 846 1789 5242
Slices 206 352 878 402 798 2072
DSP 19 31 87 29 57 161

is composed of 27 processing elements distributed in a
two-dimensional array, where every processing element is
responsible for the calculus involving w bit words of the
input operands. The 27 processing elements are divided like
this: 12 cells alpha, 1 cell alpha_final, 1 cell beta, 12 cells
gamma and 1 cell gamma final. In order to evaluate the
number of clock cycles of the NW-32 architecture, the first
parameter as we have seen previously is max {number of
alpha, number of gamma} = 12, implying that our algorithm
requires to loop s 4 12 times. We can perform the multipli-
cation with our design in 132 clock cycles since our design
requires three states (132 = 3 x (s + 12)).

NW-64 Architecture In this architecture, the operands and
the modulo are divided in 64 words. The NW-64 architec-
ture is composed of 51 processing elements distributed in
a two-dimensional array, where every processing element is
responsible for the calculus involving w bit words of the
input operands. The 51 processing elements are divided like
this: 24 cells alpha, 1 cell alpha_final, 1 cell beta, 24 cells
gamma and 1 cell gamma final. In order to evaluate the
number of clock cycles of the NW-64 architecture, the first
parameter is max{number of alpha, number of gamma} =
24, implying that our algorithm requires to loop s + 24

Table 6 Comparison of our work with state-of-the-art implementations

times. We can perform the multiplication with our design
in 264 clock cycles since our design requires three states
(264 =3 x (s +24)).

NW-s Architecture In this subsection, we will generalize
our design. With the same manner in the previous architec-
tures, we can propose a generic version. The operands and
the modulo are divided in s-words. The NW-s architecture
is composed of nbc (number of cells) processing elements
distributed in a two-dimensional array, where every process-
ing element is responsible for the calculus involving w bit
words of the input operands, where nbc = (s —s/4)+3 cells
(nbc is the number of cells). The number of clock cycles is

3 X (s 4+ nb) with nb = max{number of cells alpha, number

—s5/4
of cells gamma} = M

, implying that our algorithm
requires to loop s + nb times. We can perform the multipli-
cation with our design in 3 x (s +nb) clock cycles since our

design requires three states.

Architecture Comparison Table 4 explains a comparison
between the different architectures. The number of clock
cycles for every architecture is equal to 3 x (s+nb), such
that nb = max{number of cells alpha, number of cells
gamma}, implying that our algorithm requires to loop s +nb
times. It is interesting to notice that all our architectures are
scalable and targeting the different security levels useful in

cryptography.

5 Results

Table 5 summarizes the Field-Programmable Gate Array
result postimplementation of the proposed versions of
modular multiplication architectures. We present a results
for both architectures NW-8 and NW-16. The designs
were described in hardware description languages (VHDL)
and synthesized for Artix-7 and Virtex-5 Xilinx Field-
Programmable Gate Array’s. In order to check the correct-

Xilinx Field-Programmable Gate Array’s

Our A7 Our V5 [18] V5 [17] VE [5]VIl [4]VII [I13]V [1]1K7 and V5

512 1024 512 1024 512 1024 512 1024 1024 1024 512 1024 512K7 512V5
Freq MHz 106 65 97 65 95 130 95229 95620 1164 119 721 792 176 123
Cycles 66 66 66 66 96 384 1540 3076 1088 1167 - - 66 66
Speed us 0.622 1.013 0680 1.015 1.010 2953 16031 32021 934 980 - - 0374 0536
Slice registers 2164 4208 3046 6072 3876 6642 - - - - - - 5076 4960
Slice LUTs 1789 5242 1781 5824 — - 2972 5706 9319 9271 3125 6243 8757 10877
BRAM 0 0 0 0 128 256 - - - - - - 0 0

Best results represent bold emphasis

@ Springer

J Hardw Syst Secur (2017) 1:219-236

231

ness of the result, we compare the results given by the
Field-Programmable Gate Array with the sage code. We
present the different results after implementation of bit-
length k which are given in Table 5. These circuits have the
advantage of suitability to various applications with differ-
ent bit lengths like RSA, ECC and pairings. As it is shown in
Table 5, an interesting property of our design is the fact that
the clock cycles are independent from the bit length. This
property gives to our design the advantage of suitability to
different security level. In order to implement the modular
Montgomery multiplication for fixed security level, we must
choose the most suitable architecture. Our architectures use
the DSPs; the number of DSPs used depends on the number
of cells and the number of iterations needed. The results pre-
sented in this work are compared with the previous work [4,
5, 17, 18] in Table 6. We could notice that our results are bet-
ter than [18] considering every point of comparison, i.e. the
number of slice and the number of clock cycles. Consider-
ing the number of slices, we recall that [18] used an external
memory to optimize the number of slices used by their algo-
rithms. Considering the comparison with [17], our design
requires less number of slices and a better frequency and we
really improve the number of clock cycles. Our design per-
formed the Montgomery multiplication in 66 clock cycles
for the 512 and 1024 bit length corresponding to AES-256
and AES-512 security level, while [17] performed the mul-
tiplication in 1540 clock cycles for the AES-256 security
level and 3076 for the AES-512 security level.

About our general architecture, we have nbc = (s —
s/4) 4 3 cells to loop s + nb times. That allows to perform
the multiplication in 3 x (s 4+ nb) clock cycles.

6 Conclusion

In this paper, we have presented an efficient hardware
implementation of the CIOS method of Montgomery mul-
tiplication algorithm over large prime characteristic finite
fields IF,. We give the results of our design after routing
and placement using a Artix-7 and Virtex-5 Xilinx Field-
Programmable Gate Array’s. Our systolic implementations
are suitable for every implementation, implying a mod-
ular multiplication, for example RSA, ECC and pairing-
based cryptography. Our architectures and the designs were
matched with features of the Field-Programmable Gate
Array’s. The NW-8 design presented a good performance
considering latency x area efficiency. This architecture can
run for all the bit length corresponding to classical secu-
rity levels (128, 256, 512 or 1024 bits) in just 33 clock
cycles. On the other hand, the NW-16 performs the same bit
length in 66 clock cycles, but improves in area compared to
NW-8 work. Our systolic design using this method CIOS is
scalable for other number of words.

Appendix A

A.1 Code Sage NW-8

#NW-8 Algoritm
5=8
p’
p=[p0,pl,p2,p3,p4,p5,p6,p7]
b=[b0,bl,b2,b3,b4,b5,b6,b7]
a=[a0,al,a2,a3,a4,a5,a6,a7]
T=[0,0,0,0,0,0,0,0,0,0]
for i in range (s):
C_8=0
for j in range (0,s):
C S=T[jl+alil*b[j]l+(C_S>>32)
T[j]1=C S%(27°32)
C_S=T[s]+(C_S>>32)
T([s]=C S%(27°32)
T[s+1]=C S>>32
m=(T[0] xp’)% (2732)
C S=T[0] +m*p0
for j in range (1,s):
C S=T[jl+mxp[j]1+(C_S>>32)
T[j-1]1=C_S%(2732)
C S=T[s]+(C_S>>32)
T[s-1]=C_S%(2732)
T[s]=T[s+1]+(C_S>>32)

A.2 Code Sage NW-16

#NW-16 Algoritm
s=16
p’
p=I[p0,pl,p2,p3,p4,p5,pP6,p7,p8,p9,p1l0,pll,
pl2,pl3,pld,pls]
b=[b0,bl,b2,b3,b4,b5,b6,b7,b8,b9,bl0,bll,
bl2,b13,bl4,bl5]
a=[a0,al,a2,a3,a4,a5,a6,a7,a8,a9,al0,all,
al2,al3,al4,als]
T=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
for i in range (s):
C_S=0
for j in range (0,s):
C S=T[jl+alil*b[jl+(C_S>>16)
T[jl=C_S%(2"16)
C S=T[s]+(C_S>>16)
T[s]=C_S%(2716)
T[s+1]1=C_S>>16
m=(T[0]xp’)%(2716)
C_S=T[0] +mxpO0
for j in range (1,s):
C S=T[jl+m*p[j]1+(C_S>>16)
T[j-11=C_S%(2716)
C S=T[s]+(C_S>>16)
T[s-11=C_S%(2732)
T[s]=TI[s+1]1+(C_S>>16)

@ Springer

232

J Hardw Syst Secur (2017) 1:219-236

Appendix B: Architecture

B.1 Execution

GO

(G CD

S

Fig. 16 Step 1

COCD

AN
al al al 1 a2 a2 a2
B 7 2 7]
AN
N\
al ol al
B il

D - S CD

S S

&Y,

Fig. 17 Step2

@ Springer

J Hardw Syst Secur (2017) 1:219-236

233

Fig. 18 Step 3

CEEGREED

S

Fig. 19 Step 4

C C
P C D,

S S

Fig. 20 Step 5

@ Springer

234 J Hardw Syst Secur (2017) 1:219-236

C C
CPCP €D,

S S

oL L ortoro) orore i
Y LR N

H a2 a2 a2

B n e 72 72

Fig.21 Step 6

C C
(o JRCal Do)

S S

Fig.22 Step7

C C
CP D CD

S S

Fig. 23 Step 8

@ Springer

J Hardw Syst Secur (2017) 1:219-236 235

Fig. 24 Step 9 @ @

S S 5 s Xe
GCHG SR

al ol a u a2 %] o2 >

Fig. 25 All processing elements S 7y3_0ut S y2_Out C_al_Out S y2_Out S 71 Out zero

l A sig_state l
MUX
I S ol In C_ol_In
v v
PE PE
alpha : alpha
(2) : (1)
C_o2_Out ' | C_ol_Out
B-alpha2 s 4, ou ‘A-alphal s 41 out
S 71.In C_71.n
PE
gamma
PE

(1)
alpha
I | b
S_71 Out C_71_Out ' C_a3_Out

D-gammal ! C-alpha3 S-#3.0ut
S_o2_Out S_c3_Out C_72_Out S_ o1 Out S_o2_Out C_71_Out
l sig_state sig_state
“ﬁ—_——s;,filn C_y3.n 72
N2 ¥ 2
PE PE
gamma gamma
(3) ' (2)
C_73_Out : I C_72_Out
F-gamma3 s_y3 out (E-gamma2 s ;2 out
””” Siy2n Ss2y2im T w aam T T T a2 T
C_v.2 ‘|/_ -
PE : PE
gamma_f : alpha_f
H- gamma_f S1.7.2 Out $2_7_2_Out ‘G-alpha_f sio_2out S2_o_2_Out
S B_In
PE
beta
L C_B_Out

@ Springer

236

J Hardw Syst Secur (2017) 1:219-236

References

. Bigou K, Tisserand A (2015) Single base modular multiplica-

tion for efficient hardware RNS implementations of ECC. In:
Conference on cryptographic hardware and embedded systems,
pp 123-140

. Fan J, Sakiyama K, Verbauwhede I (2007) Montgomery mod-

ular multiplication algorithm on multi-core systems. In: IEEE
workshop on signal processing systems, 2007, pp 261-266

. Hariri A, Reyhani-Masoleh A (2009) Bit-serial and bit-parallel

Montgomery multiplication and squaring over GF. IEEE Trans
Comput 58(10):1332-1345

. Harris D, Krishnamurthy R, Anders M, Mathew S, Hsu S (2005)

An improved unified scalable radix-2 Montgomery multiplier. In:
17th IEEE symposium on computer arithmetic, 2005. ARITH-17
2005, pp 172-178

. Huang M, Gaj K, El-Ghazawi T (2011) New hardware architec-

tures for Montgomery modular multiplication algorithm. IEEE
Trans Comput 60(7):923-936

. Huang M, Gaj K, Kwon S, El-Ghazawi T (2008) An optimized

hardware architecture for the Montgomery multiplication algo-
rithm. In: Cramer R (ed) Public key cryptography — PKC 2008,
vol 4939 of lecture notes in computer science. Springer, Berlin,
pp 214-228

. Lee K-I (2007) Algorithm and VLSI architecture design for

h.264/AVC Inter Frame Coding. PhD thesis, National Cheng Kung
University, Tainan, Taiwan

. Iwamura K, Matsumoto T, Imai H (1993) High-speed implemen-

tation methods for RSA scheme. In: Rueppel RA (ed) Advances
in cryptology—EUROCRYPT’ 92, vol 658 of lecture notes in
computer science. Springer, Berlin, pp 221-238

. Iwamura K, Matsumoto T, Imai H (1993) Systolic-arrays for

modular exponentiation using Montgomery method. In: Rueppel
RA (ed) Advances in cryptology — EUROCRYPT’ 92, vol 658 of
lecture notes in computer science. Springer, Berlin, pp 477-481

@ Springer

10.

11.

12.

13.

14.

16.

17.

18.

19.

20.

21.

Joux A (2004) A one round protocol for tripartite Diffie-Hellman.
J Cryptol 17(4):263-276

Kog CK, Acar T, Kaliski BS Jr (1996) Analyzing and comparing
Montgomery multiplication algorithms. IEEE Micro 16(3):26-33
Koblitz N (1987) Elliptic curve cryptosystems. Math Comput
48(177):203-209

Manochehri K, Pourmozafari S, Sadeghiyan B (2010) Mont-
gomery and RNS for RSA hardware implementation. Cpmput
Inform 29:849-880

Kung HT (1982) Why systolic architectures? Computer 15(1):37—
46

. Miller V (1986) Use of elliptic curves in cryptography. In:

Williams HC (ed) Advances in cryptology—CRYPTO ’85 pro-
ceedings, vol 218 of lecture notes in computer science. Springer,
Berlin, pp 417426

Montgomery PL (1985) Modular multiplication without trial divi-
sion. Math Comput 44(170):519-521

Ors SB, Batina L, Preneel B, Vandewalle J (2003) Hardware
implementation of a Montgomery modular multiplier in a systolic
array

Perin G, Mesquita DG, Martins JB (2011) Montgomery mod-
ular multiplication on reconfigurable hardware: systolic versus
multiplexed implementation. Int J Reconfig Comput 2011:61-610
Rivest RL, Shamir A, Adleman L (1978) A method for obtaining
digital signatures and public-key cryptosystems. Commun ACM
21:120-126

Tenca AF, Ko¢ CK (1999) A scalable architecture for Mont-
gomery multiplication. In: Ko¢ ¢CK, Paar C (eds) Cryptographic
hardware and embedded systems, first international workshop,
CHES’99, Worcester, MA, USA, August 12-13, 1999, Proceed-
ings, vol 1717 of Lecture Notes in Computer Science. Springer,
pp 94-108

Vucha M, Rajawat A (2011) Design and FPGA implementation of
systolic array architecture for matrix multiplication. Int] Comput
Appl 26(3):0975-8887

	A Scalable and Systolic Architectures of Montgomery Modular Multiplication for Public Key Cryptosystems Based on DSPs
	Abstract
	Introduction
	Brief State of the Art
	Montgomery Multiplication
	CIOS Method

	Hardware Implementation
	Block DSP in Xilinx Field-Programmable Gate Array's
	Proposed Architecture
	Internal Architectures of Cells
	Description of the Cell
	Description of the Cell
	Description of the Cell
	Description of the Cell f
	Description of the Cell f

	Our Architectures
	NW-8 Architecture
	NW-16 Architecture
	NW-32 Architecture
	NW-64 Architecture
	NW-s Architecture
	Architecture Comparison

	Results
	Conclusion
	Appendix A A
	A.1 Code Sage NW-8
	A.2 Code Sage NW-16
	 B: Architecture
	Appendix B B: Architecture
	B.1 Execution
	References

