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Abstract
Turbulence commonly described in Fourier space due to its multi-scale nature can be 
formulated using wave-number space networks where each node represents a wave-
vector on a discretized wave-number space grid that are connected to one another 
through triadic interactions denoted as three-body connections. This description that 
we call wave-number space network formulation, while being very inefficient for 
numerical implementation as compared for example to a pseudo-spectral formula-
tion of the same equations on a regular grid, provides an alternative perspective and 
has conceptual advantages, such as the separation of the equations and the nonlinear 
interactions. The network represents, through its connections, the nonlinear interac-
tions, and can be truncated by dropping nodes, or connections corresponding to con-
sidering only certain kinds of wave-numbers or certain kinds of interactions, without 
modifying the equations themselves. This guarantees that the underlying Hamilto-
nian structure of the equations remains unchanged, and therefore, one has the same 
conservation laws as the original system. Wave-number space networks can also be 
reduced by lumping nodes that have some similar characteristics together, in which 
case a reduction of the equations through some sort of closure becomes necessary, 
for which some possibilities are discussed. The network formulation can also be 
used for analyzing direct numerical simulations, and may be used for discovering 
key nodes as well as training models for constructing reduced systems. The goal of 
this review is to stimulate interest in thinking in terms of networks, while dealing 
with problems in plasma turbulence through a survey of what has been done in this 
subfield and what is possible for future studies, especially in the context of plasma 
turbulence.
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1  Introduction

Transport of heat, particles, and momentum in tokamak plasmas can be caused 
by micro-turbulence, and regulated by meso-scale coherent structures, such as 
zonal flows (Diamond et al. 2005; Gürcan and Diamond 2015), geodesic acoustic 
modes (GAMs) (Winsor et al. 1968; Conway et al. 2021), or Alfvén eigenmodes 
(Mett and Mahajan 1992; Chen and Zonca 2016) that the turbulence in these 
devices naturally generates (or regulates), and their interactions. This makes the 
detailed understanding of plasma turbulence and its self-regulation through these 
flow patterns one of the key academic challenges that face the fusion community. 
Since the goal of the magnetized fusion program is to heat hydrogen ions to high 
enough temperatures to overcome the Coulomb barrier and instigate fusion reac-
tions, the core of a magnetized fusion device is to be extremely hot. On the other 
hand, the region where the plasma touches the wall of the device, or the edge, 
should be kept at lower temperatures to avoid melting the wall or other plasma 
facing components. Details of this engineering problem, confounded by the com-
plexities of heating, operation, and large scale magnetohydrodynamic (MHD) sta-
bility, result in a narrow range of available temperature gradients between the 
edge and the core regions, driving a multitude of small-scale instabilities, such as 
the ion and electron temperature gradient-driven modes [ITG (Coppi et al. 1967; 
Romanelli 1989) and ETG (Horton et  al. 1988; Jenko et  al. 2000)], where the 
source of the free energy is this background temperature gradient, trapped elec-
tron modes, or dissipative drift waves (Hasegawa and Wakatani 1983; Koniges 
et al. 1992) where the instability is a result of the nonadiabatic electron response 
or interchange (Sarazin and Ghendrih 1998; Scott 2005) or resistive ballooning 
modes (Zeiler et al. 1996; Beyer et al. 1999), where the instability source is the 
combination of magnetic curvature and pressure gradient forces.

There is actually a whole zoology of similar modes where the free energy 
sources may be the gradients of more exotic quantities (such as parallel velocity 
(D’Angelo 1965), current or resistivity (Garcia et  al. 1985)), or any number of 
combinations of those. Given their potential importance, both linear and nonlin-
ear physics of these different instability mechanisms and the resulting “micro-
turbulence” have been studied thoroughly in the past (Kadomtsev 1965; Horton 
1999), using various approaches, from linear to quasi-linear theory (Vedenov 
1963; Bourdelle et al. 2007), using analytical methods as well as direct numerical 
simulations from simpler fluid systems (Beer and Hammett 1996), to gyrokinetics 
(Lee 1983; Brizard and Hahm 2007).

Albeit this multiplicity of physical mechanisms for small-scale instabilities in 
tokamaks, the variety of parameters that control their behavior, and the number of 
fluctuating fields that are involved in each instability, the generally agreed upon 
view seems to be that the “plasma turbulence” is nevertheless a generic notion 
that is somehow common in all these particular examples (Yoshizawa et  al. 
2001). That is, while the instability mechanism that drives the system unstable, 
and the waves that it generates are very different, the nonlinear “mode coupling” 
mechanism that is triggered as a result of the interactions of these unstable waves 
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has a universal aspect (Sagdeev and Galeev 1969). However, it is also clear that 
plasma turbulence, especially the kind we find in tokamaks, is not exactly the 
“universal” in the same sense as the neutral fluid turbulence, which is usually 
described using the Kraichnan–Kolmogorov phenomenology of the turbulent cas-
cade (Frisch 1995). Plasma turbulence is both similar to and different from neu-
tral fluid turbulence and is peculiar in various respects such as the importance of 
waves and instabilities and therefore various resonant mechanisms (Dupree 1967; 
Krommes 2002) or the fact that the kinetic system provides a multitude of damp-
ing mechanisms (Kadomtsev 1968; Ter Haar 1965) and hence the coexistence of 
unstable and damped modes (Terry et al. 2006), which results in a turbulent “cas-
cade”, without the presence of a clear inertial range.

In its most general formulation, the turbulent “cascade” in a bounded system can 
be thought of as percolation of a triad interaction network with a conserved quan-
tity, like energy, where the network consists of discretized wave-numbers (Gürcan 
et  al. 2020). In such a network, where each wave-number is a distinct node, each 
node interacts with a set of pairs, with which it satisfies the triadic interaction con-
dition (i.e., k + p + q = 0 where k, p and q are the interacting wave-numbers). For 
wave turbulence (Newell and Rumpf 2011), additional constraints such as reso-
nance (or near resonance) among the frequencies of these wave-number nodes [e.g., 
�(k) + �(p) − �(q) ≈ 0 ] can be invoked (Harper et al. 2013). Due to their triadic 
nature, the interactions in such a network are three-body interactions, and the result-
ing network is a three-body interaction network. We call such networks, wave-num-
ber space networks.

Consider a standard spectral formulation in a bounded system where the nonlin-
ear term is computed through convolution sums. One can view the convolution, as a 
sum over the underlying three-body network consisting of all possible combinations 
of triadic interactions. The introduction of the concept of the “network” in this case 
is an equivalent but trivial reformulation of the convolution sum. The network in 
such an example can be a regular grid that does not change and is made up of a huge 
number of elements. Treating a convolution sum on a regular k-space grid as over an 
extended (but still somewhat regular) three-body network where each triadic inter-
action is handled as a separate connection increases the computational complexity 
of the problem considerably while introducing no apparent advantage. However, 
when we want to reduce the system, either dropping inactive nodes, or by lumping 
together nodes that play similar roles, the network approach, provides some advan-
tages as well as an interesting perspective.

Networks appear in many problems in nature, and the discipline that is devoted 
to their study is called the network science (Barabási and Pósfai 2016). As neural 
networks have become extremely popular tools (LeCun et al. 2015) for multivariate 
multiple regression in science, policy, and technology in recent years, and the study 
of topology, structure and dynamics (Newman and Watts 1999; Watts and Strogatz 
1998) of biological (Junker 2008), ecological (Landi et al. 2018), social (Wasserman 
and Faust 1994), and computer networks (Broder et al. 2000) has shown regular fea-
tures in their complex self-adaptation (Barabási et al. 2000; Boccaletti et al. 2006), 
network science has become a central player in our quest to understanding complex 
aspects of natural systems (Barabasi 2011). Network science gives us tools that may 
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provide insight into self organizing principles of these systems, such as the remarka-
ble self-similarity that turbulent systems commonly demonstrate. It has been argued 
recently that turbulence can be formulated as a percolation on an evolving complex 
network, and some aspects of its behavior including intermittency can be related to 
generalities shared by other complex networks, such as food webs, or the Internet.

Use of the network abstraction to study nonlinear dynamics of turbulence also 
provides interesting prospects (Taira et al. 2016; Taira and Nair 2022), especially in 
the context of plasma turbulence. It may sometimes be possible to reduce complex 
networks by lumping together certain similar elements. It is common, for example, 
to describe food webs with species that play similar roles lumped together instead 
of labeling each distinct species separately (e.g., “whales” as a single node instead 
of every single species of whale as separate nodes). In the context of networks of 
wave-numbers, some regions in the wave-number domain may play similar roles and 
can be lumped together. For example, a description in terms of scales is a conceptual 
example of lumping together the wave-numbers that play similar roles in the turbu-
lent cascade, relevant to homogeneous, isotropic turbulence. In the case of strong 
anisotropy, modes with wave-numbers, which has a vanishing component (e.g., 
zonal flows as kx = 0 modes in geophysical fluid dynamics or ky = 0 modes in fusion 
plasmas) can be considered as an important conceptual element of the anisotropic 
energy transfer in k-space (Smolyakov and Diamond 1999; Gürcan et al. 2009).

We know that, in the study of plasma turbulence, particular meso-scale struc-
tures play special roles in the turbulent self-organization. For example, the interac-
tions between zonal flows and drift-wave turbulence are commonly referred to in 
the fusion community as predator–prey interactions (Malkov et al. 2001), where the 
zonal flows play the role of the predator and the underlying drift-wave turbulence 
that drives them, play the role of the prey. One can even use the Lotka–Volterra 
equation to model this state, and it is actually not unique to fusion plasmas, or zonal 
flows, but it is a feature of turbulent systems that are not very far from marginal 
stability conditions, such as the conditions one finds in transition to turbulence 
where only a finite number of modes would be initially excited (Goldenfeld and 
Shih 2017). In fact, also in fusion plasmas, one observes these predator–prey oscil-
lations most clearly in near marginal stability conditions (Kobayashi et al. 2015), or 
in transitions, such as the Low-to-High confinement transition (Kim and Diamond 
2003; Miki et al. 2013). The existence of this well-established analogy between a 
particular state of plasma turbulence—dominated by zonal flows—and an ecological 
system, nicely paves the way toward the extended analogy of plasma turbulence as a 
network of predator–prey relations, or a food web as it is called in ecology, and the 
consecutive natural step of abstraction of plasma turbulence in terms of “complex 
dynamical networks” of which food web is just an example.

The remainder of the paper is organized as follows. The introduction continues with 
a simple, concrete example commonly used in plasma physics to provide the context 
for the discussion on more abstract concepts into network formulation. Section  2 is 
devoted to primitive wave-number space networks (i.e., on regular rectangular grids), 
where the basic formulation is given in Sect. 2.1, and the network concepts of energy 
transfer among nodes are discussed through conservation laws in Sect. 2.2. Section 2.3 
discusses the triadic instability assumption and phase dynamics, and Sect. 2.4 considers 
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wave turbulence, and Sect. 2.5 examines how this basic formulation can be extended 
to multiple fields or kinetic systems, with Sect. 2.6 focusing on the effects of magnetic 
geometry, and localization of modes around rational surfaces. Section  3 gives some 
examples of truncated network models, with nested polyhedra models for fluids and 
MHD discussed in Sect. 3.1 and spiral chain models for two-dimensional turbulence 
discussed in Sect. 3.2. In Sect. 3.3, self-consistent quasi-linear models are discussed 
from the point of view of truncated network models. In Sect. 4, reductions of triadic 
networks are considered, with Sect.  4.1 describing how to deal with energy transfer 
in reduced networks and Sect. 4.2 illustrating closure on reduced networks through an 
eddy-damped quasi-normal Markovian approximation. Section 5 provides some exam-
ples of ad-hoc models, which starts by reinterpreting shell models as network models in 
Sect. 5.1 and then discussing small-world network versions of those and their dynamics 
in Sect. 5.2. Section 6 is dedicated to the use of wave-number space networks in analy-
sis, with a short discussion of model extraction in Sect. 6.1. Section 7 is summary and 
discussions.

1.1 � Elementary example: modulational instability

One of the earlier examples of reduced network models in fusion plasmas was based on 
what is sometimes called the i-delta equations, as the weakly nonadiabatic version of the 
Charney–Hasegawa–Mima system, using “a low order k-space”, consisting of a basic 
wave-number space network of 10 or so modes (Terry and Horton 1983). An even sim-
pler example is the so-called modulational instability calculation, which requires at the 
minimum the most unstable mode, a zonal mode, and two sidebands, which means a min-
imum of 4 modes. The usual example of a modulational instability calculation involves 
considering the most unstable mode as the pump, and looking at the coupled evolution 
of the zonal flow and sidebands assuming the energy in these are initially much smaller 
compared to the pump mode, so that a linear stability analysis can be performed. Such 
a linear stability analysis of the coupled zonal-flow/sidebands system in the presence of 
the pump can be used to obtain the growth rate of the modulational instability as well as 
the most unstable kx. Of course, one can instead solve this low-order system numerically; 
however, in this case, if want the system to saturate, we need to add a second kx mode 
together with its sidebands (so a minimum of 7 modes), which will act as the sink. A 
similar system of interactions between zonal flows and drift waves were also considered 
in the past, using ballooning formalism and the gyrokinetic equation (Chen et al. 2000). 
More recently, a general network version similar to these systems was studied in detail for 
the Hasegawa–Wakatani model (Gürcan et al. 2022). Here, we use the Hasegawa–Waka-
tani case in the adiabatic (e.g., in the i-delta limit) as a simple elementary example to pro-
vide a “plasma physics” introduction to the topic. Consider the following:

where Φk is the normalized electrostatic potential, �k ≡ k2 − i�k, where �k is defined 
through the relationship between the electron density and the electrostatic poten-
tial nk =

(
1 − i�k

)
Φk, � is the normalized diamagnetic velocity, and Mkpq is the 

(1)
�

�t

(
1 + �k

)
Φk = −i�kyΦk +

1

2

∑
△

MkpqΦ
∗
p
Φ∗

q
,
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nonlinear interaction coefficient whose form is not important for this example (see 
Sect. 6 for more details on definitions and normalizations). To study modulational 
instability, it is common to consider a subset of modes, such as

where Φk0 is the most unstable mode (with ky = ky0 and kx = 0 ), Φ� are the zonal 
modes (with kx = kx� and ky = 0 ), and Φk�± are the sidebands (with ky = ky0 and 
kx = ±kx� ) labeled by � considering multiple radial wave-numbers. In general, we 
have 3n + 1 modes where n is the number of kx modes considered. We can, of course, 
also add other ky modes, but having only a single ky mode is sufficient for studying 
modulational instability. Note that for each mode k = k� , its Hermitian conjugate 
k = −k� should also be considered.

To have a stationary solution, we at least need to go to n = 2, and choose the kx0 
and ky0 to correspond to the most unstable modes of the modulational instability 
and the linear instability, respectively, and introduce artificial damping on the equa-
tions for Φk±2 and Φ2. Such a system in the absence of zonal-flow damping (that is 
damping of the Φ1, which is the primary modulationally unstable zonal component), 
evolves to a state of finite zonal flows and stays at that final state with stationary 
zonal flows. Figure 1 shows the results of the numerical integration of the low-order 
dynamical system that one gets from such a system (actually, we have used the full 
Hasegawa–Wakatani system with C = 10, � = 1; see Sect. 6 for details).

2 � Primitive wave‑number space networks

2.1 � Basic formulation

Consider a complex field �k, which represents the Fourier transform of a real one 
through �k ≡ 1

L
∫
L
�(x)eik⋅xdnx in a bounded domain L,  for which we can write

where �k is the complex frequency, whose imaginary part may represent the insta-
bility—or dissipation in small scales—and Mkpq is the symmetrized nonlinear inter-
action coefficient. This template form may represent a number of different single 
field systems, such as for instance the Charney–Hasegawa–Mima system with 
�k =

v∗ky

1+k2
 and Mkpq ≡ ẑ×p⋅q(q2−p2)

(1+k2)
 where v∗ is the normalized background density 

gradient, and Lx and Ly are the box dimensions.
The wave-number on a two-dimensional regular square grid can be defined using 

two integer indices �x and �y as kx = 2�
(
�x − Nx∕2

)
∕Lx and ky = 2�

(
�y − Ny∕2

)
∕Ly, 

where Lx,y is the size of the domain and Nx,y are the number of grid elements in each 

(2)Φk = Φk0 +
∑
�

(
Φ� + Φk�+ + Φk�−

)
,

(3)�t�k + i�k�k =
1

2

∑
△

Mkpq�
∗
p
�∗
q
,
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direction. We can flatten the two index variables into a single integer using for exam-
ple the column major order linear storage formula � = �x + �yNx and use this as the 
node index. Note that in the general case of n dimensions, we can define the flattened 
node index via the usual � = �1 +

∑n

i=2
�i

∏i−1

j=1
Nj. This allows us to define the node 

wave-number k� ≡ x̂kx
(
�x

)
+ ŷky

(
�y

)
 as a vector and node variable �� ≡ �k�

 as a 
complex number denoted by the node label �. This way, the whole regular grid of the 
n-dimensional wave-number domain can be thought of as a collection of N =

∏n

j=1
Nj 

wave-number nodes.
We can thus write (3) as a dynamical equation for �� on a three-body network

where i� denote the list of pairs that interact with the node �. The list of pairs i� needs 
to be computed by going over all the nodes that satisfy the triad interaction condi-
tion k� + k�� + k��� = 0. Written in this way, Eq. (4) is exactly the same as Eq. (3) 
on a regular k-space grid. However, the former can be extended to irregular grids, 
or to a decimated Fourier space and can be more easily modified to incorporate the 
dynamics of an equivalent variable on a reduced network. Note also that the formu-
lation of Eq. (4) can also be extended to windowed Fourier transforms, or wavelet 
coefficients, or any other similar decomposition such as the Galerkin decomposition, 

(4)
(
�

�t
+ i��

)
�� =

1

2

∑
��,���∈i�

M�������∗
���

∗
��� ,

Fig. 1   The dynamics and the network structure for the modulational instability example. The most unsta-
ble mode (i.e., Φk0 ) acts as a pump, exciting the zonal mode (i.e., Φ1 ) and the sidebands (i.e., Φk1± ). The 
nodes are shown in a reduced kx–ky grid on the top right plot, which also acts as a legend for the main 
plot. The outer modes that are shown in gray circles are artificially damped, hence play the role of sink. 
In the final steady state, without any large scale friction, the energy in Φ1 causes the interaction to effec-
tively turn off. Introduction of large-scale friction would result in predator–prey-like oscillations
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except that in that case, �� would be replaced by a nondiagonal matrix, representing 
an operator and constructing the interaction network (that is i� as connections and 
M��′�′′ as weights) may be nontrivial.

In practice, the formulation in (4) using a regular grid can be implemented in two 
steps. First, for each � , we find all possible �′,�′′ pairs that satisfy the triad inter-
action condition k� + k�� + k��� = 0 and compute and record the interaction coef-
ficients M��′�′′ . This constitutes our “network”, in that it is a list of all three-body 
connections between all the nodes of the network with particular weights for each 
connection in the form of interaction coefficients. Once the network is constructed, 
it can be stored and the complex dynamical variables �� corresponding to Fourier 
coefficients can be advanced on this network using (4).

Searching for all possible pairs that satisfy the triadic interaction condition 
is time-consuming, but it can be ameliorated by scanning � and �′ while using 
k� ± k�� ± k��� = 0 to solve for �′′, keeping only k�′ < k�′′ part of the k-space con-
sisting of only ky ≥ 0 modes (since the initial data are real). Notice that one can 
also impose additional resonance conditions in this step to implement weak wave-
turbulence as a sparse network on a discrete regular grid (Kartashova 2009, 2010).

On a properly constructed regular grid, (4) and (3) are mathematically equivalent. 
This means that a numerical implementation of (4) as described above, and say a 
pseudo-spectral implementation of (3) with the same forcing, dissipation, and initial 
and boundary conditions, should give exactly the same evolution up to numerical 
precision. This can be verified, for example on a regular grid of resolution 
Nx × Ny = 256 × 256, beyond which the network method starts to be impractical. 
This implies that N� =

(
Nx∕2

)
×
(
Ny∕2

)
+
(
Nx∕2 − 1

)
×
(
Ny∕2 − 1

)
 independent 

nodes, since in a real-to-complex transform, we have Ny∕2 + 1 independent wave-
numbers in the y direction, with the last one being the Nyquist wave-number and 
Φkx,0

= Φ∗
−kx,0

 on the ky = 0 axis due to Hermitian symmetry. In such a network, the 
node that has the most connections is the smallest wave-number node that has 
Nt = (Nx − 2) × (Ny − 2)∕2 connections (i.e., triads that are connected to that node). 
Note also that for standard 2D turbulence, � = 0 is unconnected, since |k�� | = |k��� | 
makes the interaction coefficient vanish. Since M������ = M������ , by choosing 
�′ > �′′, and dropping the 1/2 in (4), we can reduce the maximum number of triads 
to Nt =

(
Nx − 2

)
×
(
Ny − 2

)
∕4.

Network formulation on a regular rectangular grid is extremely impractical for 
any kind of meaningful resolution, since its computational cost for a causal formula-
tion scales with N3

�
, which would scale with N9 (i.e., Nx = Ny = Nz = N ) for three 

dimensions, and there exists many efficient techniques for dealing with turbulence 
on a regular grid. However, since the same approach can be used on a sparse net-
work obtained from reduction such as the nested polyhedra models that we will see 
in Sect. 3.1, which can describe a very large range of scales using a relatively small 
number of nodes even in three dimensions, they can be extremely powerful for com-
putations, as well. We argue that the effort of writing down the network formula-
tion on a regular rectangular grid is nonetheless useful for establishing the connec-
tion to standard techniques, and to provide a basis on which we can apply network 
reduction. For example, if we know how to go from a regular rectangular grid to 
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a particular reduced network form, we can apply the same reduction to the data 
from direct numerical simulations (DNS) that are usually on a rectangular grid (see 
Sect. 6 for some examples).

2.2 � Conservation laws

If the nonlinear interaction coefficients in Eq. (4) have the symmetry

where �� is a coefficient that is a function of the node label � (i.e., a function of the 
wave-number), and the quadratic quantity defined as

can be shown to be conserved by the nonlinear dynamics, since

where P�
�
 is the production and D�

�
 is the dissipation of the conserved quantity 

labeled by � at the site of node �. If we use Eq. (4), we get

since both energy injection at instability scales and the dissipation at small scales 
come from the form of the “linear growth rate” [i.e., �� = Im

(
��

)
 ] as a function of 

k� which actually becomes negative as we go to small scales due to dissipation. The 
transfer rate T��′�′′ in Eq. (6) represents the energy transfer from the nodes �′ and �′′ 
to the node �, which can be defined explicitly as

Since the interactions always appear as three-body interactions, we have 
T�
������ + T�

������
+ T�

������ = 0 as implied by Eq. (5). When we sum the Eq. (6) over 
all nodes, we find that the total amount of conserved quantity (e.g., energy) increases 
or decreases only as a result of the difference between its total injection and its total 
dissipation.

Dropping the label � for convenience (e.g., considering energy), we can also write

where t���

��� =
1

3

(
T������ − T������

)
 represents the energy transfer from �′ to � medi-

ated by �′′. Note that for a given triad, with the node labels 1, 2, and 3, we have 
T123 = t3

12
+ t2

13
= t3

12
− t2

31
, meaning that the energy transferred from the nodes 3 and 

2 to node 1 is the difference of the energy transferred from 2 to 1 mediated by 3 and the 

(5)��M������ + ���M������ + ����M������ = 0,

E�
total

≡ ∑
�

��|��|2

(6)�tE
�
�
=

∑
��,���∈i�

T�
������ + P

�
�
−D

�
�
,

P
�
�
−D

�
�
= 2��E

�
�
,

T�
������ ≡ Re

[
��M������Φ�Φ��Φ���

]
.

(7)�tE� =
∑
��,���

t�
��

��� + P� −D� ,
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energy transferred from 1 to 3 mediated by 2 (see Fig. 2). This allows us to transform 
the three-body interaction network to a simple network with edges that are weighted by 
the other components of the triad, with multiple channels between the nodes.

We may further reduce the many connections between two nodes mediated by 
different third nodes, by summing over the third node as

where t��′ ≡ ∑
�′′ t

�′′

��′ . In Fig.  2, this corresponds to writing 
t13 = t413 + t213 = t413 − t231 = t13413 − t12331 . The two connections in this example, t134

13
 and t123

31
, are 

part of two separate triad interactions, and therefore have two different phases (see 
below). Summing over all these different connections belonging to different triad 
interactions, having different phases, allows us to transform the system from a mul-
tigraph (a graph which has multiple edges between two nodes) to a simple graph 
(a graph with only one edge between two nodes) is an important reduction of the 
network topology. However, it results in loss of information, since once we sum 
multiple edges between two nodes into a single edge, there is no way to get back 
the different edges that make up that single combined edge. We also loose detailed 
information about the three-way relative phases that determine the direction of the 

(8)�tE� =
∑
��

t��� + P� −D� ,

Fig. 2   The energy transfers in a network of triadic interactions between nodes 1–4, connected by two tri-
ads 123 and 134. The triad interactions are show in the form of little triangles, the transfer terms such as 
t123
12

 denote the energy transfer from node 1 to node 2 through the triad 123, which can also be denoted by 
t3
12
. The total energy transfer between two nodes is the sum of the transfers through each triad, as shown 

for the case of two triads here with t13 ≡ t134
13

− t123
31
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flux through a given triad, since we sum over many triads to obtain the transfer 
between two nodes mediated by all possible third nodes.

2.3 � Triadic instability assumption and phase dynamics

While the necessary condition for the existence of a link between the nodes in a 
three-body spectral network, representing turbulent mode coupling, is the triad 
interaction condition between the wave vectors, this link accommodating an actual 
transfer of energy between the nodes requires additional circumstances. Given 
three nodes and a triad, one may usually estimate the direction of energy transfer, 
through an analysis called the “instability assumption” (Waleffe 1993; Alexakis and 
Biferale 2018). In the fusion context, it would probably make more sense to call 
this “triadic instability assumption”, since instability in that context rather refers 
to the linear instability of the underlying system. In any case, the triadic instabil-
ity condition suggests that, if we start with an initial state, such that �� ∼ O(1) but 
��� ∼ ���� ∼ O(�), a linear stability analysis for the perturbations ��′ and ��′′ gives 
an instability condition

which results in the growth of ��′ and ��′′ resulting in a transfer of energy. The 
growth can then be argued to continue until some kind of equipartition between the 
three nodes �, �′ and �′′. For example for incompressible two dimensional turbu-
lence, the interactions coefficients are Mkpq =

ẑ×p⋅q(q2−p2)
k2

 [i.e., with �,�′,�′′
→ k, p, q ], 

so that the instability condition MpqkMqkp > 0 implies 
(
k2 − q2

)(
p2 − k2

)
> 0, which 

is satisfied only if k is the middle wave-number. This is a consequence of the interme-
diate axis theorem for rigid body rotation and the equivalence of these two systems. 
More generally, the triadic instability assumption means that the transfer is from the 
node � which has the interaction coefficient M��′�′′ that has the opposite sign to the 
other two M�′�′′� and M�′′��′ , which has the same sign because of Eq. (9) resulting in 
T��′�′′ < 0 while T�′�′′� > 0 and T�′′��′ > 0. This works even in the presence of linear 
growth and damping as long as the pump mode keeps increasing in amplitude, at 
some point, the nonlinear transfer mechanism will kick in. Note that while the actual 
three-wave system without any linear instability can be solved exactly using Jacobi 
elliptic functions (Abramowitz and Stegun 1964), the implications of these solutions 
to the triadic instability assumption, where we only consider the initial trends, which 
gives us an idea about the direction of the transfers, until we reach a stationary state 
either through statistical equipartition, or through the nonequilibrium steady state 
between production and dissipation through the nonlinear cascade processes.

However, as it invokes statistical steady states such as the equipartition, the 
analysis is usually based on the assumption that the phases are random in a turbu-
lent field. This is reasonable as long as the phases of the legs of the triad that we 
are considering are not involved in some complicated conspiracy, like, for exam-
ple, all three nodes of the triad staying in a phase-locked state for an extended 
period of time. For a system with internal free energy sources as it is usually the 

(9)M�′�′′�M�′′��′ > 0,
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case for plasma turbulence, linear frequencies can provide the dominant term in 
the phase evolution of a given wave-number node. It may be that these frequen-
cies, possibly modified by nonlinear effects such as the Doppler shift from large 
scale flows, etc., reorganize themselves locally to induce these phase-coherent 
states, which is in stark contrast to the case of random phase.

Substituting �� = A�e
i�� in (4) and assuming M������ ∈ ℝ for simplicity, we get

Note that for the more general case of complex M��′�′′ the argument of the sine and 
cosine in Eqs.  (10)–(11) would be replaced by 

(
�M������

+ �� + ��� + ����

)
 , where 

�M������
= arg

(
M������

)
. The complete problem of plasma turbulence, that we call 

the “primitive network”, that we usually solve in direct numerical simulations 
involves Eq.  (4) or equivalently the Eqs.  (11) and (10) or (6) on a network con-
structed from a regular rectangular grid of wave-number nodes in Fourier space.

However, the point of the network formulation is reduction, and there are many 
different ways one can reduce such a system depending on what the dominant 
processes are and what one wants to describe. For example, a blunt way to do 
reduction is to directly truncate the Fourier space, so that we have a reduced sys-
tem, that is somehow supposed to represent the full system. If such a reduction 
is done using the original equations [i.e., Eq. (4)], it can typically give us a sense 
of what the coupled system does qualitatively, but unless the truncation is done 
respecting the statistical characteristics of the initial network, it would modify 
things like energy equipartition solutions, etc. In the same vein, we can keep the 
nodes but reduce the links, which corresponds to keeping the full regular rectan-
gular grid in Fourier space, but only considering a certain class of interactions 
(e.g., certain kinds of triads). Self-consistent quasi-linear theory, commonly used 
in fusion and geophysical fluid dynamics applications where one keeps interac-
tions with large scales (zonal flows and profiles) but drops the interactions among 
small-scale fluctuations can be considered as an example of this.

A different way to reduce the initial primitive network may be to use a clo-
sure scheme, which would allow us to lump different nodes and links together in 
groups instead of using truncation or dropping links. Such a lumping together of 
the nodes requires a closure that can represent multiple triadic interactions as a 
single triadic (or two-body) interaction, which in turn requires handling the sta-
tistics of phase relations. We can do this, for example, by invoking the random 
phase approximation, which would allow us to use direct interaction approxima-
tion (DIA) (Kraichnan 1959; Lesieur 1997) or the eddy-damped quasi-normal 
Markovian approximation (EDQNM) (Kraichnan 1976; Krommes 2002), thus 
resulting in a reduced system (say EDQNM equations) on a reduced network 
when we sum over groups of nodes.

(10)�tA� =��A� +
1

2

∑
��,���∈i�

M������A��A��� cos
(
�� + ��� + ����

)

(11)�t�� = − �r� −
1

2

∑
��,���∈i�

M������

A��A���

A�

sin
(
�� + ��� + ����

)
.
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Another interesting case arises, when the dynamics is dominated by interacting 
linear waves. In this limit, the resonant interactions between the linear frequen-
cies �� result in a phase-locked state, which provides a natural closure for the 
system of equations. It would also provide a natural reduction of the network, 
since only those modes that also satisfy the resonant interaction condition, i.e., 
�� ± ��� ± ���� = 0 are necessary and we can drop the others. It can also be 
argued, without actually invoking wave-turbulence closure, that the justification 
for using quasi-linear models in fusion plasmas is in fact the idea that the sys-
tem lacks obvious three-wave-resonances without large-scale flows, which can be 
zonal flows, Geodesic acoustic modes (GAMs), or other large-scale structures, so 
that the resonant interactions always have to involve one of these flow structures 
(Holland et al. 2003).

2.4 � Wave turbulence

Practicality of the network formulation relies on a suitable reduction of either 
the nodes or the interactions of its underlying wave-number space network. In 
this sense, wave-turbulence provides a compelling scenario, since it allows one to 
consider only a very small subset of all possible interactions due to the resonance 
condition. While, wave turbulence, which describes the evolution of an ensemble 
of weakly interacting waves (Newell and Rumpf 2011; Nazarenko 2011), obey-
ing a linear dispersion relation, is strictly applicable only in the asymptotic limit 
with linearly stable waves, at the limit of infinite box size, it still presents a very 
powerful tool for understanding the role the resonant or quasi-resonant interac-
tions play in the turbulent cascade. It can describe multiple statistical quantities 
using only a conserved quantity called the wave-quanta, commonly denoted by 
Nk ≡ Ek∕�k where Ek is the energy, which is equivalent to potential enstrophy in 
the Charney–Hasegawa–Mima case with proper zonal-flow response [apart from 
a factor of 1∕|ky|, which depends on the zonal-flow response]. Network formula-
tion in the case of wave-turbulence is of great interest, and has been studied in 
some detail in the past, as one can obviously decouple the geometric study of 
the resonant manifold and the evolution of the wave-quanta on the said manifold 
resulting in a major conceptual simplification.

Being an asymptotic theory, it is common to make the assumption of infinite size 
in the study of wave-turbulence, which also sidesteps the issue of whether or not 
the discrete modes that are available in a finite system actually satisfy the resonance 
condition, since in that limit, one has a continuous k-space, hence an infinite number 
of nearly resonant modes (Nazarenko 2011). The usual wave-kinetic equation for 
the Charney–Hasegawa–Mima system can be written as follows Connaughton et al. 
(2015):

where the collision integral has the form

(12)
�nk
�t

= S
[
nk
]
+ fk − �knk,
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and � denote the sign of its subscript, and the Wkpq denote the nonlinear interaction 
coefficient in the wave interaction representation

Some interesting observations for the Charney–Hasegawa–Mima system came out 
of the study of the wave-kinetic equation, such as the identification of an additional 
conservation law dubbed zonostrophy (Balk et al. 1991; Connaughton et al. 2015)

In the study of fusion plasmas, on the other hand, it is more common to use what 
is sometimes called weak turbulence theory (WTT), which is essentially the same 
thing as it involves the same underlying assumptions, except that one keeps the lin-
ear instability term, and the resulting kinetic equation is seen as a Markovian statisti-
cal closure in the same vein as the EDQNM. We can write the general form of the 
WTT equations somewhat symbolically as (Krommes 2002)

where Ck ≡ ⟨|Φk|2
⟩

and

with

Note that the first term in (13) corresponds to the incoherent term, given in WTT 
by (16), and the last two terms in (13) can be combined, by exchanging p and q in 
one of the terms into the coherent term given in (15) [i.e., when multiplied by nk 
as it appears in (14)]. Multiplying Ck by �k , we can write the equation for a con-
served quantity E�

k
≡ Ck�k. The advantage of this formulation is that we can use it 

(13)
S
[
nk
]
= 4� ∫ W2

kpq

(
npnq − ��k�q

npnk − ��k�p
nqnk

)

× �2(k − p − q)�
(
�k − �p − �q

)
d2pd2q,

Wkpq = −
ẑ × p ⋅ q

2

√
|pyqy
ky

|
(
p2 − q2

)
(
1 + p2

)(
1 + q2

) .

Zk ≡ arctan

⎛
⎜⎜⎜⎝

�
kx +

√
3ky

�

k2

⎞
⎟⎟⎟⎠
− arctan

⎛
⎜⎜⎜⎝

�
kx −

√
3ky

�

k2

⎞
⎟⎟⎟⎠
−

2
√
3�

1 + k2
�ky.

(14)�tCk − 2� lin
k
Ck + 2Re�nl

k
Ck = 2Fnl

k
,

(15)�nl
k
≈ −

∑
△

MkpqM
∗
pkq

�∗
kpq

(t)Cq,

(16)Fnl
k
≈

1

2

∑
△

|Mkpq|2Re
[
�kpq(t)

]
CpCq

�kpq(t) ≡ ��
(
�k − �p − �q

)
.
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on a reduced network, exactly the same way as we would use any other closure. An 
example for the EDQNM closure on a reduced network can be found in Sect. 4.2.

Wave turbulence on a discrete wave-number space network is also sometimes 
studied using the original equations (for example, the Charney–Hasegawa–Mima 
system) directly on a wave-number space network consisting of clusters of triads 
(Harper et al. 2013; Connaughton et al. 2015). In this case, using the wave interac-
tion representation appears to be a mere convenience, since the equations are the 
same. However, since the resonance conditions, even including resonance broaden-
ing (Dupree 1966), make the topology of the k-space network, very sparse, since 
the large majority of interactions are effaced as a result of the resonance condition. 
This leads to the creation of clusters of connected triads, that may be isolated or 
weakly connected to one another, resulting in the blocking of the k-space cascade. 
Unlike strong turbulence case, each wave-number node in a wave-number space net-
work of wave-turbulence is involved in only a few (if any) triads. This is a mani-
festation of the fact that the resonance condition, for example written for the Char-
ney–Hasegawa–Mima case as

defines a curve for a given q = k� , and only the points p = k�� that lie both on the 
discrete k-space grid and on the resonance manifold gets connected to this node. 
This makes it possible and somewhat practical to consider the wave-turbulence as 
a network of “triads” that are connected by nodes, in an inverted perspective to the 
point of view generally advocated in this review. A key observation in this case is 
that since unconnected clusters will independently conserve the quadratically con-
served quantities, one has as many conserved quantities as the number of clusters 
× the number of nonlinearly conserved quantities if the system was fully connected 
(Harper et  al. 2013). This makes the wave-turbulence cascade dependent on the 
topology of the network, getting blocked if the clusters remain unconnected, and 
with an explicit percolation phenomenon as the number of triads is increased (Bus-
tamante and Hayat 2013).

The case of inhomogeneous wave-kinetics (Dubrulle and Nazarenko 1997; Smol-
yakov and Diamond 1999) is also of particular interest, especially in the context of 
self-consistent drift-wave/zonal flow evolution, with radial propagation as well as 
scattering in wave-number due to the effects of zonal flows. The wave-kinetic sys-
tem that results is isomorphic to the Vlasov Equation, with wave quanta playing the 
role of the distribution function

where � = �k − uy(x)ky is the basic drift-wave-frequency Doppler shifted by 

the zonal flow uy(x), C(N,N) represents a collision integral describing mode cou-

pling similar to (13) and Fk is the forcing and dissipation which can be provided 
by a linear instability as well as external forcing and small-scale dissipation. The 

py + qy

1 + p2 + q2 + 2p ⋅ q
−

py(
1 + p2

) −
qy(

1 + q2
) = 0,

�

�t
Nk +

��

�k

�Nk

�x
−

��

�x

�Nk

�kx
= C(N,N) + Fk,
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inhomogeneous wave-kinetic equation has proved extremely useful in the study 
of transport and turbulence in fusion plasmas, being applied in various problems 
ranging from momentum transport (Diamond et  al. 2008) to turbulence spreading 
(Gürcan et al. 2005). Network formulation of the general class of kinetic systems of 
which the wave-kinetics is a member is discussed in the next section.

2.5 � Formulation of kinetic theory

Going back to regular plasma or fluid turbulence, the form of Eq.  (4) given in 
Sect. 2.1 is really strictly valid only for a single field system. Many plasma problems 
even when reduced fluid equations are used involve multiple fields. In this more gen-
eral case, the different fields at a given node are likely to be coupled linearly, allow-
ing also for the possibility of linear interactions between nodes (e.g., toroidal mode 
coupling in tokamak plasmas), we can write the more general network equation as

where L��

��′ is an arbitrary linear matrix, i� is the interaction network, and M���

��′�′′ 
are the nonlinear interaction coefficients. In the usual spectral formulation 
L
��

��� = L
��

�
���� , and one can in general define a set of alternative variables say ��

�
 

that diagonalizes the Greek indices to write the problem in terms its eigenmodes, in 
that particular case, we can write

of course with a different M that describes the interactions between the eigenmodes, 
which can be computed using standard rules of linear algebra.

A fluid system with a finite number of moments is in fact a closure of the full 
kinetic system, so, in general, a distribution function can be written as a combina-
tion of a number of suitable functional forms. For instance, it is common to describe 
the distribution function of the Vlasov equation using Hermite polynomials (Grad 
1949; Holloway 1996) as in

where Nv is a normalization factor, and H� is the Hermite polynomial of (integer) 
order �, with hopefully only a finite number of Hermite polynomials being sufficient 
to describe its evolution. When used in conjunction with Eq. (18), the network equa-
tion of (17) describes the interactions between wave-number nodes that satisfy the 
triadic interaction conditions, where each node has a number of complex variables 
(indicated by the Greek indices) representing the coefficients of Hermite polynomi-
als, which correspond to consecutive derivatives of Maxwellians.

In the same spirit, one can use a combination of Fourier–Bessel–Hermite (Plunk 
et  al. 2010; Parker 2016) (or Fourier–Laguerre–Hermite (Mandell et  al. 2018) ) 

(17)�t�
�
�
+
∑
��

L
��

����
�

�� +
∑

��,���∈i�

M
���

�������
�∗

�� �
�∗

��� = 0,

(
�t + i��

�

)
��
�
+

∑
��,���∈i�

M
���

�������
�∗

�� �
�∗

��� = 0

(18)f (x, v, t) =
1

Nv

∑
�,�

��
�
(t)H�(v)e

ik�x−v
2

,



1 3

Reviews of Modern Plasma Physics            (2023) 7:20 	 Page 17 of 53     20 

expansion which handles, spatial, perpendicular and parallel velocity directions, 
respectively

At this point, we can either flatten the indices � and m as before, so that we are left 
with a single index � which represents the generalized wave-number in x, v space, so 
that some version of Eq. (4) can be used, or keep the form of Eq. (19) to write the 
wave-number space network equation in its general form as

note that in gyrokinetics, v
⟂
 appears as a label in the linear term (so no coupling 

between m’s), and the coupling condition for the triadic interactions can be written 
as km + km� + km�� = 0 where �m ≡ |km| for v

⟂
 space as well. Even though the condi-

tion for interaction in m is actually the same for that in �, because of the details of 
the way the system may be discretized in these different variables makes the actual 
computation of the interaction network topology rather complicated. There are actu-
ally many different alternatives to the above approach and the usual velocity space 
formulation with finite difference discretization can also be formulated as a compli-
cated interaction matrix; however, since our focus is wave-number space networks, 
we pick a spectral formulation also in the velocity space variable as the natural 
choice.

Note, finally, that energy conservation for Eq.  (17) can still be written using 
Eq. (6), with

so that we can write

where ���

�
= �

��

�
 defines the conserved quantity.

2.6 � Magnetic shear and rational surfaces

Strictly speaking, the examples that are given up to this point were written in Car-
tesian coordinates, and are therefore valid only in slab geometry. While one can 

(19)f
(
x, v∥, v⟂, t

)
=

∑
𝓁,m,�
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e
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2
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∑
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L
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�

��m
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easily transform everything to arbitrary curvilinear geometry, for example where 
one of the directions is aligned with the magnetic field as the natural geometry 
in magnetic fusion devices (D’haeseleer 1991), the actual details of using such 
coordinates are in fact nontrivial. This is partly due to the way some linear effects 
work in fusion plasmas, naturally allows an important reduction of the number of 
degrees of freedom. Among these effects, that of the magnetic shear stands out.

To understand the effect of magnetic shear, first consider the case of a sheared 
magnetic field in slab geometry with B = B0

[
ẑ +

x

Ls
ŷ
]
. The parallel wave-number 

is then defined as k∥ = kyx∕Ls, and is therefore a function of the spatial variable x. 
We know that the Landau damping kills off any fluctuation with k∥vth > 𝜔, result-
ing in a reduction of the amplitude for any Fourier mode with k∥ > 𝜔∕vth. This 
results in the amplitude of the fluctuations being localized to the region between 
the two Landau turning points x± = ±| �Ls

kyvth
|. Of course, a proper eigenmode analy-

sis may incorporate various other effects, including the effect of an external, or 
self-generated flow shear, and thus give a more complete picture, but the basic 
concept of the localization of the drift-wave eigenmode due to Landau damping 
of higher k’s is rather generic.

A sheared slab can model the geometry of the magnetic field as a local approx-
imation. For example, choosing the poloidal flux � as a radial variable, � as a 
poloidal variable with a period 2�, and � as the toroidal variable, we can con-
struct a generic toroidal coordinate system. Perturbations in such a system can be 
written in the general form as

Since the magnetic field is a function of � and has the form of a helix wrapped 
around a torus, it is customary to define the toroidal winding number q(�) ≡ d�

d�
, 

which is the ratio of the number of times the magnetic field turns around the toroidal 
direction to the number of turns it makes in the poloidal direction, as “the safety fac-
tor” because of its importance in magnetic stability. For an axisymmetric tokamak 
with circular flux surfaces, this takes the familiar form q =

rB�

RB�

, where r and R are 
the minor and major radius variables. One can also define the effect of magnetic 
shear using the dimensionless parameter ŝ ≡ rq�∕q. More generally, the rate of 
change of the safety factor as a function of the poloidal flux � determines the 
strength of the shear in the magnetic field in the � direction. If we use a coordinates 
system that aligns itself to the magnetic field locally (like the so-called Clebsch 
coordinates described in some detail in D’haeseleer 1991), the effect enters through 
the nondiagonal terms in the metric tensor. However, at least in tokamaks, it is more 
customary to use toroidal coordinate � as the direction of axisymmetry.

Since the magnetic field is sheared, each flux surface � has a different pitch 
angle. The perturbations tend to be aligned to the field line (i.e., have k∥ ≈ 0 ) 
as we discussed above. However, since they are also periodic in � and � , this 
can happen exactly, only when the perturbation is centered at what is called a 

(20)Φ(� , �, �) =
∑
n,m

Φnm(�)ei(n�−m�).
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“rational surface”, where q(�) = m∕n. This allows a perturbation of the form (20) 
to align itself to the magnetic field

and because of Landau damping, the perturbation with n and m such that 
q(�) = m∕n will be localized to its rational surface � = �nm defined by this relation.

The fact that plasma “turbulence” in tokamaks consists of modes localized to 
their rational surfaces has important implications for their network formulation. In 
this picture, the usual mode coupling through triads is largely restricted by the addi-
tional constraint that the interacting modes must have spatial overlap. Therefore, 
while the standard two-dimensional turbulence presents a very densely coupled net-
work of interactions, the quasi-two-dimensional turbulence (since k∥ ≈ 0 ) of tokam-
aks has a sparser interaction topology. This is true even when one includes a large 
number of toroidal and poloidal modes, so that rational surfaces are densely packed 
(i.e., each rational surface has many nearby neighbors).

Note that the nonlinear term of the underlying fluid equations due to advection by 
the E × B velocity, represented by the Poisson bracket, can be written in the coordi-
nate system consisting of � and � [so that B = ∇� × ∇� say with � = � − q(�)� ] as

2.6.1 � Ballooning representation

When a perturbation of the form (20) is considered for a given n but for different 
values of m in toroidal geometry with a standard (e.g., increasing) profile of q,  the 
eim� factors from consecutive rational surfaces superpose in such a way that while 
at � = 0 , they add up, at � = � they cancel. This causes an envelope-like depend-
ence in � direction with a maximum at � = 0 direction, or the low field side of the 
tokamak (also called the bad curvature side). This envelope structure, which makes 
the modes expanded toward the low field side is called the “ballooning” structure. 
Details of the functional form of ballooning depend on the functional form of the 
localization of the Fourier modes around their rational surfaces. Since this balloon-
ing structure suggests a slow variation of the envelope of the amplitude in � variable 
[i.e., f (�)einq� where the dependence of f (�) on � is “slow”], we are tempted to use 
an eikonal approximation. However, the fact that the � variable is periodic compli-
cates the issue.

To see this, consider a Gaussian centered at � = 0 as the ballooning function f (�). 
For a periodic �, we can not write this simply as f (�) = e−�

2∕2�2 as it would have a 
discontinuity at � = 0. Instead, a basic first-order form

(21)Φ(� , �, �) =
∑
n

Φn(�)ein(�−q�),

[Φ,Ω] = b̂ × ∇Φ ⋅ ∇Ω = B

(
𝜕Φ

𝜕𝜓

𝜕Ω

𝜕𝛼
−

𝜕Φ

𝜕𝛼

𝜕Ω

𝜕𝜓

)
.

f (�) = e
−

�2

2�2 + e
−

(�−2�)2

2�2
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could be used (makes sense especially for 𝜎 ≪ 2𝜋 ), to remove the jump at � = 0. 
However, going back to (21), to avoid a jump in Φ, the phase should also be continu-
ous across the cut at � = 0 (or � = 2� ), and thus, the actual form can be obtained by 
replacing � → � − 2� in f (�)einq� and adding this to itself. In other words, the bal-
looning function that removes the discontinuity at � = 0 can be written as

Note that this particular example extends the range of � from [0, 2�) to [0, 4�) or 
equivalently (−2�, 2�]. If the ballooning function has a larger support, we need to 
extend the range of � until the support is fully contained in the extended range. This 
leads us to introduce, what is called the ballooning representation, or the ballooning 
transform (Connor and Taylor 1987; Connor et al. 2004) as

where the function Φ̂(𝜃 − 2𝜋j) → Φ̂(𝜂) is defined as a function of the extended bal-
looning angle �, such that the functional dependence on � is simpler (e.g., the basic 
Gaussian form of f (�) = e−�

2∕2�2 in the example above). Note that here we have used 
a discrete version of the more common, continuum version of the ballooning trans-
form for consistency with the network picture, as well as the conventions used in the 
rest of the paper.

The use of ballooning representation, as well as localization of the drift instabili-
ties to rational surfaces, seems better adapted to the global physics of low n modes as 
opposed to high n micro-turbulence. However, the basic mechanism is independent of 
scale, and the approach is in fact used for gyrokinetic simulations of small-scale insta-
bilities such as the ion temperature gradient driven (ITG) turbulence, or even those at 
electron gyroradius scales, such as the electron temperature gradient-driven (ETG) tur-
bulence through the use of flux tube geometry (Beer et al. 1995).

The introduction of the concept of the flux tube, indeed, allows the reformulation 
of the problem of plasma turbulence using only a small portion of the whole toroidal 
volume. First, using magnetic flux coordinates, one switches to a coordinate system 
in which the magnetic field is a straight line (at each flux surface � ), and then, the 
dependence of the magnetic field pitch angle to � through q(�) generates a “sheared 
slab” like coordinate system in these variables. This means that following Beer et al. 
(1995), we can define:

where q0 = q
(
�0

)
, B0 is the field at the magnetic axis and r0 is the distance from the 

magnetic axis to the center of the box, to map the flux tube coordinates x,  y and z,  
to the magnetic geometry of the tokamak. In this system, the equations go back to 
being quasi-two dimensional, with the possibility of a network formulation using kx, 
ky , etc., as discussed in earlier sections.

f (�) = e
−

�2

2�2 + e
−

(�−2�)2

2�2 e−i2�nq(r).

Φ = e−in(𝜙−q𝜃)
N∑

p=−N

Φ̂(𝜃 − 2𝜋p)e−i2𝜋nq(r)p,

x =
q0

B0r0

(
� − �0

)
, y = −

r0

q0

(
� − �0

)
, z = �,
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3 � Truncation

The wave-number space network formulation is particularly useful for coming 
up with a reduction of the full system, when only a small number of wave-num-
ber nodes and/or triads are involved in the interaction. While in the general case, 
a proper reduction requires some kind of closure for the effects of the modes that 
are dropped in the reduced system, be it in the form of wave-number space nodes 
that do not contain much energy, higher moments of a kinetic distribution function 
or damped eigenmodes of a fluid system, a direct truncation of the system without 
any closure (or some kind of ad-hoc closure) is sometimes the simplest solution. 
Truncation may focus on dropping (i) wave-number space nodes (i.e., Fourier space 
truncation), (ii) triads (i.e., considering only a subset of interactions), or (iii) field 
variables (i.e., dropping higher order moments, or damped eigenmodes), or a com-
bination of those. For example, quasi-linear theory is an example of dropping triadic 
interactions while keeping only those interactions with the large scales (profiles or 
zonal flows), without any attempt of closure for the effects of the rest of the modes. 
In contrast, if one uses eddy damping in such a system, this choice may represent 
an ad-hoc closure for the truncated modes. A straightforward truncation of the Fou-
rier space using a geometrically scaled subset of wave-vectors is called the reduced 
wave-vector approximation (sometimes abbreviated as REWA) (Eggers and Gross-
mann 1991; Grossmann et al. 1996) and is the archetypical example of the truncated 
models that we discuss in this section. Such models tend to give very small intermit-
tency corrections, as they have built-in self-similarity, but they can be very powerful 
for studying turbulence across a large range of scales.

3.1 � Nested polyhedra models in 3D

Nested polyhedra models (NPMs) are self-similar truncations of Fourier space 
based on nested polyhedra (Gürcan 2017a, 2018), resulting naturally in a finite 
set of complete triadic interactions at each scale. In these models, the wave-num-
ber space is discretized using nested, alternating icosahedron–dodecahedron pairs 
that are organized in such a way that the nodes of the resulting network form 
complete triads with nodes of the polyhedra from neighboring scales (see Fig. 3). 
Since the truncation is done at the level of the network, the underlying system 
of equations remains unchanged, and as there are only a finite number of nodes 
and links (i.e., three-body interactions), the resulting truncated system naturally 
respects the conservation properties of the original system. It is a nice example 
of the use of a truncated network to describe certain aspects (e.g., scale-by-scale 
energy transfer) of the complete system. It also illustrates neatly the separation 
of the issues of network topology (i.e., the regular grid is replaced by a Fourier 
space made up of vertices of the nested polyhedra) from those of model reduction 
(i.e., here, the equations are kept exactly the same, so there is no attempt at intro-
ducing even an ad-hoc closure). Nested polyhedra models can also be considered 
as an anisotropic generalization of shell models, used in studies of turbulence 
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(Biferale 2003). Below, we discuss the NPM for both the Navier–Stokes and the 
MHD cases. The latter being more relevant for plasmas and providing a some-
what more general example than the Navier–Stokes case. While, in both cases, 
the model has the ability to represent anisotropy, since there is no source of ani-
sotropy, the resulting turbulence remains isotropic.

The Navier–Stokes equation in Fourier space

can be discretized using a logarithmic alternating icosahedral/dodecahedral basis 
where k = knk̂m with kn = gn�k0 is the logarithmically spaced wave-number magni-

tude with g =
√
� =

��
1 +

√
5
�
∕2 and � =

�√
5∕3 for an icosahedron and 

� = 1 for a dodecahedron. The unit vector can be written as 
k̂m = e

j
m =

[
sin 𝜃m cos𝜙m, sin 𝜃m sin𝜙m, cos 𝜃m

]
 where �m and �m are to be picked 

from the angles corresponding to the icosahedral and the dodecahedral vertices. 
This choice comes from imposing the condition of forming triads with the vertices 
of three consecutive polyhedra. Defining

The nested polyhedra model can be written as

(22)�tu
i
k
+ ik�

[
�ij −

kikj

k2

] ∑
p+q=−k

u�∗
p
uj∗
q
= 0

Mi�j
nm

= k�
nm

[
�ij −

ki
nm
k
j
nm

k2
n

]
.

Fig. 3   The numbering nm of the vertices of the a icosahedron (for an even m) as in Table 1 on the left and 
b dodecahedron (for an odd m) as in Table 2 on the right
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where the nth polyhedron is either an icosahedron or a dodecahedron, with 

M
i�j

nm
= M

i�j
nm +M

ij�
nm and the sum is computed over pairs of interacting nodes m′,m′′ 

of the consecutive shells as given in the interaction tables (Tables 1 and 2). When 
written in this form, the model has a clear resemblance to shell models and can actu-
ally be transformed into one by choosing the phases in a particular way. It can also 
be written using flattened indices and keeping only half of the nodes in each scale 
due to Hermitian symmetry

where the Greek indices denote vector components, ij0 and ij1 are the two nodes �′ 
and �′′ that interact with the node � in the interaction triad tj (i.e., tj ≡

[
�, i�

j0
, i�
j1

]
 ) 

that are to be taken from Tables  1 and 2 that gives i�
j
=
{
i�
j0
, i�
j1

}
. Here, we also 

define

on the right-hand side. This is needed, because we one only keep half of the nodes 
of each polyhedra as in Fig. 3, which consist of 6 nodes for the icosahedron and 10 
nodes for the dodecahedron, and the rest of the nodes can be obtained by reflection 
with respect to the origin [since u(−k) = u∗(k) ]. The interaction tables are given in 
Tables 1 and 2, which replaces the adjacency matrix for this kind of network, and 
the flattened node index can be written as

with mn being the node number within the polyhedron (basically the label of the 
discretized angle denoted by k̂m ). Here, each node � is connected to N� = 9 triads 
if it is an icosahedron node (i.e., n is even) or N� = 15 triads if it is a dodecahedron 
node (i.e., n is odd). A python implementation of the nested polyhedra model can be 
found at (Gürcan 2017b).

(23)

�tu
i
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+ iM
�ij

nm

∑
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u�∗
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j∗
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n+1,m�u
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n+2,m��

]
,

(
�t + �k2

�

)
u�
�
=

∑
��,���=i�

j

M
���

�
u
�c��

�� u
�c���

���

=

N�∑
j=0

M
���

�
u
�cj0

ij0
u
�cj1

ij1
,

u
�c�
�

≡
{

u�∗
�

if c� = 1

u�
�

if c� = 0

� =

{
8n + mn n ∶ even

� = 8n + mn + 2 n ∶ odd
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3.1.1 � MHD

The three-dimensional MHD equations can be written in the same wave-number 
space network as

where M
���

�
= M

���

�
+M

���

�
, �M���

�
= M

���

�
−M

���

�
 and

Note that the ratio of the largest wave-number to the smallest in an interacting triad 
in a nested polyhedra model is a constant around 62% (i.e., 1∕� where 
� =

�
1 +

√
5
�
∕2 is the golden ratio). Applying random forcing only on the velocity 

field at all the nodes of the shells n = 4 and n = 5 using a fixed time step hf ∼ 10−3, 
larger than the maximum step size for the adaptive time stepping normally used, 
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gives a steady-state wave-number spectrum that is consistent with Kolmogorov’s 
k−5∕3 spectrum as can be seen in Fig. 4. It is probably worth noting that the model is 
self-similar by construction (i.e., mono-fractal), shows no sign of intermittency in 
the sense that it follows the Sp

(
kn
)
∼ k

−p∕3
n  scaling in the inertial range, where 

Sp
�
kn
�
=
�

1

N�

∑
�

�∑
i �uin��2

�p∕2� with ⟨⋅⟩ denoting time average. The nested poly-
hedra approach for the MHD shows that such a model can easily handle the spectral 
evolution over 6 decades with a large possible variation of magnetic Prandtl number 
and describe one of the mechanisms by which the system can reach equipartition 
between kinetic and magnetic energies, when only the velocity field is stirred (i.e., 
dynamo action) (Gürcan 2018). Interestingly the system reaches steady state only 
when the velocity field is stirred through random forcing, whereas if the forcing is 
coherent, the large-scale magnetic field keeps accumulating.

3.2 � Spiral chain models for 2D

In two dimensions, the basic equation of turbulence is that of Navier–Stokes, which can 
be written in wave-number space as a scalar equation for the Fourier transform of the 
stream function

𝜕tΦk =
∑
△

ẑ × p ⋅ q
(
q2 − p2

)
k2

Φ∗
p
Φ∗

q
− DkΦk,

Fig. 4   The wave-number spectrum with Prm = 1, � = 10−9, N = 60 , and hf = 10−3 where Prm ≡ �∕� is 
the magnetic Prandtl number, N is the number of polyhedra, and hf  is the random forcing time step. 
Kinetic (solid line) and magnetic (dotted line) energy spectra both follow the Kolmogorov’s k−5∕3 spec-
trum. The result is averaged over the polyhedra nodes and also from t = 460 to t = 500
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where the sum over △ represents a sum over p and q , such that k + p + q = 0 (with 
p < q, since the interaction coefficient is symmetrized).

If it happens that a particular triad with k < p < q satisfies the condition that 

� ≡ ln (q∕k)

ln (p∕k)
∈ ℚ (i.e., is rational), we can write p = kg� and q = kgm (i.e., � = m∕� 

and g > 1 with g ∈ ℝ ). Since not all triangles satisfy the condition � ∈ ℚ, espe-
cially if we consider low-order rationals, only a select class of triangles can be 
represented by p = kg� and q = kgm with � and m integers.

If we consider a “triad triplet”, that is a set of three triads that are obtained by scal-
ing and rotating a given triad, such that the wave-vector k appears first as the smaller, 
then as the middle and finally as the larger leg of the resulting triad and the contribu-
tions of each of those three triads to the equation for the wave-vector k, we can write

writing k = k0g
nk̂n , so that Φk → Φn. Equation (25) is what we call the spiral chain 

model (Gürcan et al. 2019) of two-dimensional turbulence and it appears as a direct 
generalization of the two-dimensional shell models, since m = 2, � = 1 gives the 
usual Gledzer–Ohkitani–Yamada (Ohkitani and Yamada 1989) model. Strictly 
speaking, the spiral chain models must have rotation by the same angle between its 
elements, which is true only for certain very particular values of g,  � , and m, even 
though the general form is also interesting but does not have a regular spiral struc-
ture in the wave-number space.

Considering, for example, � = 2, m = 3 in (25), with �n = n�, so that �pk = 2�, 
�qp = � and �qk = 3�. We can write the equations using the law of cosines for 
each angle, which gives two polynomial relations for g,  which can be solved for 
example for the case k + p − q = 0 with g =

√
� where � is the plastic number 

defined as

and an angle � = � − arccos
(
−g3∕2

)
. This particular spiral chain is shown in Fig. 5.

Generally speaking, spiral chain models are wave-number space networks 
where the nodes are organized in the form of spirals, and interact through exact 
triadic interactions. Since the structure is self-similar, if we take three nodes that 
interact, when we scale and rotate the system, the scaled versions of those three 
nodes also interact. If the spiral chain consists of a single set of �, m, and g val-
ues, it means that the whole spiral is constructed from a single triad that is rotated 
and scaled accordingly. However there are cases where multiple values of m and 

(25)

�tΦn = k2
n
sin �qp

[
gm+�

(
g2m − g2�

)
Φ∗

n+�
Φ∗

n+m

+ gm−3�
(
1 − g2m

)
Φ∗

n−�+m
Φ∗

n−�

+ g�−3m
(
g2� − 1

)
Φ∗

n−m
Φ∗

n−m+�

]
,

� =
�
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2
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�
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27
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+

�
1 +

�
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� can be possible for a given value of g. Note that spiral chains can also be used 
to construct domain partitions instead of truncation.

Unfortunately, as numerical models, the spiral chain models suffer the same 
shortcomings as the shell models for describing 2D or quasi-2D systems. Phase evo-
lution tending toward random makes these systems unable to reproduce a proper 
equipartition, since they lack the dependence of the number of degrees of freedom 
to scale that the linear grid has, and therefore, they fail, in particular, in reproducing 
the inverse cascade (Aurell et al. 1994). Note that this is a general problem related 
to the use of logarithmic spacing without paying attention to the statistical weight of 
each element, and not a problem related to the network formulation. However, this 
can be remedied using a closure that somehow gets rid of the phase dynamics, in 
which case the models become similar to differential approximation models (Lilly 
1989; L’vov and Nazarenko 2006), but local over a fractal structure in wave-number 
space instead of the usual 1D k-space grid.

Fig. 5   The spiral chain � = 2, m = 3 with g =
√
�. The counter clock-wise primary spiral chain is shown 

in black dashed lines, while the clock-wise secondary spirals are shown in gray dashed lines. Note that 
as the energy travels along the primary chain, it gets exchanged between the 5 secondary chains. Finally, 
an interacting triad with k = kn (black arrow, pointing right), p = kn−2 (red arrow, pointing up), and 
q = kn+1 (blue arrow, pointing left) is shown (i.e., k + q − p = 0)
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3.3 � Self‑consistent quasi‑linear models

The usual formulation of quasi-linear theory deals with the computation of fluxes of 
transported quantities like particle density, temperature, or angular momentum using 
linear evolution equations for the fluctuations. When the profiles of these transported 
quantities also evolve in time, and the linear relations are computed at each time 
step given the local gradients of these evolving profiles (which may also include 
zonal flows and or other meso-scale flow structures), the resulting system is what we 
call self-consistent quasi-linear theory. One can also improve such a formulation by 
introducing renormalization (Dupree 1967; Gültekin and Gürcan 2019) to allow for 
nonlinear saturation through mode coupling. Otherwise, the saturation mechanisms 
of the regular quasi-linear models are based on profile flattening and/or corruga-
tion coupled with turbulent generation and dissipation in different regions. In any 
case, self-consistent quasi-linear models without renormalization are also examples 
of truncation of the Fourier space, and one can also formulate them using a sin-
gle poloidal mode, where only a single (usually most unstable) mode is considered 
(Bian et al. 2003; Sarazin et al. 2021) whose evolution is then coupled to the ky = 0 
modes that represent the profiles and meso-scales.

To study general features of such a system, consider the generic system of 
equations

where ��
k
 are different fields which could be Φk and nk , etc. for example in the 

Hasegawa–Wakatani model, or may represent various moments of a kinetic sys-
tem and L��

k
 is a linear matrix operator. In general, the wave-number space network 

formulation focuses on computing, approximating, or modeling the nonlinear term 
NL�

k
, which usually comes from an advection term in real space.

A single-mode self-consistent quasi-linear model consists of a formulation 
where the wave-number space grid consists of a single ky (e.g., the most unsta-
ble) mode in addition to the ky = 0 (e.g., zonal) mode. The equations remain the 
same, even though depending on the formulation, one may have different equa-
tions for zonal and nonzonal modes to begin with. One interesting aspect of such 
a system is that one can take a 2D pseudo-spectral solver and reduce the resolution 
Nx × Ny → Nx × 1. Note that in practice, a padded resolution of Npy = 6 is needed to 
have a single nonzonal mode that is resolved (i.e., excluding the Nyquist frequency 
and the modes that are zeroed out as part of the 2/3 padding rule). This is a major 
truncation of the initial system, and the equations are not usually renormalized to 
take this truncation into account. The resulting self-consistent quasi-linear system 
describes the evolution of zonal modes, or “profiles” in the presence of a single most 
unstable mode that represents the fluctuations. The most unstable mode cannot cou-
ple to itself, because it is impossible to satisfy triadic interactions with three modes 
all having the same ky , but it can couple to the zonal modes, which in this context 
are indistinguishable from profiles, even though the radial spatial resolution can be 
very high and, therefore, their spatiotemporal evolution very detailed.

(26)�t�
�
k
+ L

��

k
�
�

k
= NL�

k
,
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Note that the matrix L��
k

 contains the linear physics, and computing its eigenval-
ues and eigenvectors, we can perform a simple local linear stability analysis. Once 
its Nf  eigenvalues ( Nf  is the number of independent fields), are computed, and sorted 
with respect to their growth rates at each wave-number, we can pick the most unsta-
ble mode ky0. We would then setup the system, so that it would have a single k ≡ ky0 
(by choosing the box size Ly = 2�∕ky0 ) and run it as a nonlinear system given by 
(26). Assuming the nonlinear term comes from E × B advection (or advection by a 
velocity field obtainable from a stream-function Φ ), we can write the equations by 
computing the inverse Fourier transforms in x as

where k ≡ ky0 is used for simplicity. We can usually obtain Φ from ��
k
 using some-

thing like F
(
��
k
,Φ

)
= 0, maybe through the relation between vorticity and potential 

if one of ��
k
 represent the plasma vorticity as in Hasegawa–Wakatani system, or 

through the Poisson’s equation when ��
k
 represent parts of the distribution function. 

Here, the linear operators for the “profiles” L
��(

�x
)
 are usually simple diagonal 

operators (unless we consider off diagonal transport terms due to geometry) repre-
senting diffusion or friction terms. In contrast, the linear operators L̃

��

k

(
�x, ik

)
 are 

usually not diagonal and contain the full linear physics for the mode most unstable 
mode k. Nonlinearly, the quasi-linear system contains (i) the local advection (hence 
including the effects of shear suppression) of the fluctuations by a background zonal 
flow profile, which is represented by the first term on the RHS of Eq. (28), (ii) drive 
due to gradients ∇�

�
 as well as the corrections by the corrugations in ∇�

�
 repre-

sented by the second term on the RHS of Eq. (28), and (iii) the radial self-consistent 
quasi-linear fluxes of the �

�
 ’s represented by the RHS of Eq. (27). The roles of these 

different terms can be made clear by considering �� to be the ion temperature for 
example: (i) advection and shear suppression of fluctuations, (ii) corrections due to 
∇T  to the linear dynamics normally imposed by the background temperature gradi-
ent, and (iii) the self-consistent quasi-linear fluxes Q = −

⟨
�̃�
k
�yΦ̃k

⟩
 that can be com-

puted using these fluctuations.
Considering multiple modes (already considering only two modes ky0 and ky1 ), 

the system starts to include mode coupling, even though it remains to be severely 
truncated. As a wave-number space model (i.e., going back to kx space), the trunca-
tion with respect to a full 2D system is rather clear. The same also applies to going 
from 3D to 2D by truncation, which works exactly the same way, or keeping only a 
few modes in the kz direction. All these examples can be seen as truncations of the 
wave-number space.

Another interesting example of the wave-number space truncation is the multi-
mode self-consistent quasi-linear model, which results when we keep the full k-space 
resolution (i.e., Nx × Ny modes) but consider only interactions between zonal flows and 
fluctuations dropping interactions among fluctuations themselves. This can be done 

(27)�t�
�
+ L

��(
�x
)
�
�
= −�x

⟨
�̃�
k
�yΦ̃k

⟩

(28)�t�̃
�
k
+ L̃

��

k

(
�x, ik

)
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�

k
= −�xΦ ⋅ �y�
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k
+ �yΦ̃k�x�

�
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by re-writing Eqs.  (27) and (28) by putting a sum over k in front of the RHS term 
of Eq. (27) and interpreting Eq. (28) as an equation valid for all k → ky instead of a 
single ky0. The linear operator becomes a function of k and the physical meanings of 
the RHS terms remain the same. The only difference is that the self-consistent quasi-
linear fluxes now include contributions from all the different k’s. The resulting multi-
mode self-consistent quasi-linear model is equivalent to what is called the generalized 
quasi-linear theory in geophysical fluid dynamics. These models are truncations of the 
primitive wave-number space networks not the in the sense that we drop nodes from 
the network as in all the previous examples of this section including the single-mode 
self-consistent quasi-linear models, but in the sense that we drop links (i.e., triad inter-
actions). In fact, we drop the overwhelming majority of the interactions, and keep only 
one kind of interaction, that is the interaction with the zonal modes hoping that this is 
the dominant kind of interaction in the full network.

4 � Reduction

Since the turbulent cascade involves the nonlinear transfer of a conserved quantity 
(Energy, Enstrophy, etc.) from one scale to another, a reduced description of it can 
be based on the evolution of the relevant conserved quantity. The budget for the 
conserved quantity in a primitive network is given in Eq. (6). We will use energy in 
Navier–Stokes turbulence as an example, but the reduction procedure, which applies 
to the nonlinear term, can be invoked for any conserved quantity.

4.1 � Energy transfer

Recalling Eq. (6) explicitly for energy E� of node �

where P� is the production and D� is the dissipation at node � and T��′�′′ is the 
energy transfer from the nodes �′,�′′ to the node �. As the energy is conserved non-
linearly, we have T������ + T������ + T������ = 0. Since Eq. (29) is written on a primi-
tive network, each node � represents a distinct discretized wave-number and we only 
have three-body interactions. To reduce it to a manageable size, one can consider a 
collection of subsets denoted by L that forms, what is called an exact cover of the set 
of nodes of the initial primitive network. This collection of subsets provides a par-
tition of the wave-number space and the energy in each subset L can be computed 
simply as the sum of the energies of its constituents

Similarly, the total production PL =
∑

�∈L P� and dissipation DL =
∑

�∈L D� in the 
partition can be defined as the sum of production and dissipation terms from each 
element contained within the partition. Note that for some systems with internal free 

(29)�tE� =
∑

��,���∈i�

T������ + P� −D� ,

EL ≡ ∑
�∈L

E� .
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energy source, it may be difficult to disentangle the two, and one may instead have to 
write the net production as PL −DL =

∑
�∈L

�
P� −D�

�
. To write a budget equation 

for EL similar to Eq. (29), we also need to consider all possible channels of energy 
transfer to and from the partition L. Considering �, �′ , and �′′, and noting that, by 
definition, we have � ∈ L, we have four distinct possibilities, (i) all the nodes are in 
different partitions, i.e., �� ∈ L� and ��� ∈ L��, (ii) one of the interacting nodes is in L 
[e.g., �� ∈ L� while ��� ∈ L ] (iii) both �′ and �′′ are in the same partition that is dif-
ferent from L [e.g., �� ∈ L� and ��� ∈ L� ] (iv) both �′ and �′′ is also in L. In the first 
case, if T��′�′′ is positive, the energy is transferred from L′ and L′′ to the partition L 
as a three-body interaction. The net contributions of all such nodes give us the net 
energy transfer between these three partitions, which we can write as TLL′L′′ . The 
second and third cases give the transfer between two partitions L and L′, and a sum 
over the transfers due to all such nodes gives us the net energy transfer from L′ to L,  
which can be denoted by TLL′ . Note that unlike TLL′L′′ , this is a two-body interaction 

(a)

(b)

(c)

Fig. 6   Example of a network reduction. Here, a shows the complete primitive network with only triadic 
interactions, b shows the collection of subsets, or lumps that are used to construct the reduced network, 
and c shows the resulting reduced network with both triadic and direct connections. Notice how the high-
lighted triad (blue if in color) gives rise to a direct interaction between the lumps L and L′ , since both of 
its legs denoted by � and �′ are in L,  while only one of its legs denoted by �′′ is in L′′
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term, and it appears only in reduced networks. In the last case where all the nodes 
are in the same subset, since the energy is transferred from one internal node to 
another, there is no transfer in or out of L (see Fig. 6 as an example).

The resulting equation for reduced energy EL can be written as

where

is the three-body energy transfer from L′ and L′′ to L,  while

is the “direct” energy transfer from L′ to L,  which we can also write as

so that it is obvious that TL�L = −TLL� .

Note that as the network is reduced, two-body interaction terms become more and 
more prevalent, and in the limit of only 2 partitions, we end up with a single direct 
energy transfer term between those two regions, which may represent a generalized 
predator–prey model as the ultimate reduced network dynamics. One interesting topo-
logical metric, which reveals the degree of reduction of a given k-space partition net-
work is thus the ratio of the number of two- to three-body interactions, which would 
range from 0,  no reduction to 1,  complete reduction.

4.2 � EDQNM closure on reduced networks

While reduction through lumping the nodes together, or partitioning allows us to lower 
the number of nodes and links in our wave-number space network, in general, it is not 
possible to write the transfer terms TLL′L′′ using the reduced variables EL. This means 
that Eq. (30) as written is not closed, and one has to make an assumption to close it. 
Actually, this is also true for (29), since we cannot write T��′�′′ in terms of E�; however, 
one can always write an equation for the phase, �� similar to Eq. (11) and couple it 
to the Energy equation completely describe the system. In contrast, since the reduced 
transfer terms TLL′L′′ involve many different nodes, each of which having a differ-
ent phase, and while it is possible to add energies, it is not meaningful to add phases 
to write single net phase for the whole partition, the closure in the reduced network 
becomes a necessity as opposed to a convenience that it was in the primitive network.

(30)�tEL − PL +DL =
∑
L,L��

TLL�L�� +
∑
L�

TLL� ,

TLL�L�� =
∑

�∈L,��∈L�,���∈L��

T������

TLL� =
∑
�∈L

∑
��∈L�

∑
���∈L�

T������ −
∑
�∈L�

∑
��∈L

∑
���∈L

T������

TLL� = TLL�L� − TL�LL,
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One of the simplest closures that is commonly used in the study of turbulence is the 
so-called eddy-damped quasi-normal Markovian (EDQNM) closure. In the context of 
the wave-number space network formulation, the EDQNM allows us to write

through a set of assumptions equivalent to random phases and Markovian statistics. 
This form allows us to write the transfer terms for the reduced network as

where

and

and using TLL� = TLL�L� − TL�LL we can write:

Here, the network version of the triad interaction time can be written using its evolu-
tion equation

with ΘLL�L�� (0) = 0 and with

T������ = −

[
Θ������ |M������ |2 k2

�

k2
��k

2
���

E��E���

+ 2Θ������

M������M������

k2
���

E�E���

]

(31)
TLL�L�� = ΘLL�L��

[
aLL�L��EL�EL��

+ bLL�L��ELEL�� + bLL��L�ELEL�

]
,

aLL�L�� ≡
∑

�∈L,��∈L�,���∈L�� Θ������ �M������ �2 k2
�

k2
��
k2
���

E��E���

ΘLL�L��EL�EL��

bLL�L�� ≡
∑

�∈L,��∈L�,���∈L�� Θ������

M������M������

k2
���

E�E���

ΘLL�L��ELEL��

ΘLL�L�� ≡
∑

�∈L,��∈L�,���∈L��

Θ������ ,

(32)
TLL� =

[
ΘLL�L�aLL�L�E

2
L�
+ 2ΘLL�L�bLL�L�ELEL�

− 2ΘL�LLbL�LLELEL� − ΘL�LLaL�LLE
2
L

]
.

(33)�tΘLL�L�� +
[
�L + �L� + �L��

]
ΘLL�L�� = 1



1 3

Reviews of Modern Plasma Physics            (2023) 7:20 	 Page 35 of 53     20 

Note that on an arbitrary network partitioning, we cannot use the heuristic estimate 
[i.e., �kpq =

1−e(�k+�p+�q)t

�k+�p+�q
 with �k ≈ �k2 + c

√
∫ k

0
E(k�)k�2dk� ] for the eddy damping 

commonly used in this kind of closure, since the integral from 0 to k is meaningless 
on an arbitrary network. Instead, if we really must, we can use the even simpler one 
based on dimensional analysis

together with the “solution” of (33) written as

The practical usefulness of the closure depend in practice on our ability to write its 
coefficients aLL′L′′ , bLL′L′′ , and ΘLL�L�� in terms of some average variables that we can 
associate with each subset L,  such as the average wave-number kL for example.

5 � Ad‑hoc models

Turbulent cascade can also be modeled through simpler models that do not nec-
essarily come from a systematic reduction or truncation but are proposed based 
on a general idea of the cascade process and some aspects of conservation prop-
erties of the considered system. Dimensional analysis may be the simplest such 
example, but applying it directly to networks is not likely to provide us with any 
new insight. Shell models are another example, and they can actually be refor-
mulated from a network perspective and allow us to talk about network topology 
vs. cascade in a simple framework (Gürcan 2021). We have also shown some 
examples of models that were obtained through truncation, such as the nested 
polyhedra models or the spiral chain models that basically had the same struc-
ture as the shell models, so the shell models can also be seen as generic versions 
of these models. It is also possible to use a formulation in terms of shells to 
describe the cascade processes of the full system as characterized by the data 
from direct numerical simulations. In this sense, the generic dynamical complex 
network model that uses shells as its nodes can be seen as a prototype of the cas-
cade processes of the full system.

(34)

�L = �L +
1
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∑
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(
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5.1 � Shell models as networks

A straightforward generalization of the shell model concept to arbitrary range (i.e., m) 
interactions can be achieved using a set of wave-numbers kn = k0g

n, where g is a loga-
rithmic scaling factor (e.g., g = 2 ) and writing

with

so that we have

as a consequence of the conservation law

Since the interaction coefficients are symmetrized, so that M�nm = M�mn by con-
struction, it is obvious that Eq. (38) is directly equivalent to Eq. (5). The choice of 
M�nm (and therefore the �n ) define the kind of turbulence that can be described by 
Eq. (37). For example, the choice

corresponds to the usual three-dimensional Navier–Stokes turbulence which con-
serves energy

and what can be called helicity in the context of a shell model

The overall factor �m in front of the nonlinearity in Eq.  (37) denotes the average 
contribution from the geometric factor, and can be taken to have the form �m = g−m 
(e.g., Plunian and Stepanov 2007), fn is the forcing usually localized to a few shells 

(37)
�tun = i�m

[
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n
u∗
n+m

u∗
n+m+1
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n
u∗
n+1

u∗
n−m
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n
u∗
n−1

u∗
n−1−m

]
+ fn − �nun,
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n
≡ Mn,n+m,n+m+1

bm
n
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n
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�na
m
n
+ �n+mb

m
n+m
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m
n+m+1
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(38)
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and −�n is the viscosity, which may have the form of hyper- or hypo-viscosity 
depending on the details of the problem.

Note that the three terms in Eq.  (37) come from a single triad form 
tn = (n, n + m, n + m + 1) similarity transformed to tn−m = (n − m, n, n + 1) and 
tn−m−1 = (n − m − 1, n − 1, n). Each of these triads introduce corresponding terms in 
the equations for each of its nodes. In other words, the triad tn = (n, n + m, n + m + 1) 
contributes a term (i.e., am

n
u∗
n+m

u∗
n+m+1

 ) to the equation for un, a second term (i.e., 
bm
n+m

u∗
n
u∗
n+m+1

 ) in the equation for un+m and a third term (i.e., cm
n+m+1

u∗
n
u∗
n+m

 ) in the 
equation for un+m+1. By keeping all the legs of all the triads, we can guarantee that 
we respect the conservation properties of the system with no additional effort.

Equation  (37) is actually a network model with the simple interaction table 
in = {(n + m, n + m + 1), (n − m, n + 1), (n − m − 1, n − 1)}, that is to be obtained 
from the triad list tm

n
= {(n, n + m, n + m + 1), (n − m, n, n + 1), (n − m − 1, n − 1, n)} 

for each n. The way it is written Eq.  (37) has a single, fixed value of m,   which 
defines the elongation of the triangles involved in the reduction. Note that as we 
commonly take g = 2, Eq. (37) cannot be a truncation (since it would be impossible 
to satisfy kn + kn+m + kn+m+1 = 0 with kn = k0g

nk̂n ). It can be reduction however, 
since the wave-numbers are consistent with k + p + q = 0 where kn < k < kn+1, 
kn+m < p < kn+m+1 and kn+m+1 < q < kn+m+2.

5.2 � Small‑world network shell models

Picking m = 1 in Eq. (37) gives us only local interactions, and the resulting model is 
exactly equivalent to the usual GOY model. The resulting regular lattice of the GOY 
model can be represented as a list of N − 2 local triads 

[
t012, t123, t234,… , tN−2,N−2,N

]
. 

Going over this list and either replacing some of the local interactions with nonlocal 
ones [Watts–Strogatz strategy (Watts and Strogatz 1998)], or simply adding non-
local interactions on top of existing local ones [Newman–Watts strategy (Newman 
and Watts 1999)], we get a small world network from a regular lattice (see Fig. 7). 
In practice, this is done by going over each of the elements of the list of triads and 
replacing or adding a nonlocal interaction with a probability p. Since the links are 
three-body interactions (and not two body as in simpler networks), we also need to 
choose in which sense the triad is elongated. A triad that is elongated “forward”, 
has the form tm

n
= (n, n + m, n + m + 1) and describes interactions with small scales 

where the scale n plays the role of large scale. On the other hand, a triad that is 
elongated backward has the form tm

n
= (n, n − m, n − 1) where the node n plays the 

role of one of the small-scale legs in an interaction involving a large-scale mode at 
n − m. In practice, each time, we are adding a nonlocal interaction or replacing a 
local interaction with a nonlocal one, and we pick its direction to be forward with 
a probability pf  or backward with a probability 1 − pf . In the end, we can choose 
pf = 0, 0.5 or 1 and it does not seem to matter, since n itself is just a random node 
among all the possible nodes, so apart from the slight difference it makes for the 
edge nodes, we can choose all the nonlocal nodes to be forward without loss of gen-
erality. Note that the range of interaction m is also chosen to be a random number 
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between 2 and N − n − 2 for the forward interaction (or between 3 and n − 2 for 
backward).

The act of reorganizing the nodes either by supplementing or replacing the local 
interactions with nonlocal ones is called rewiring. Note that in the process of rewir-
ing, one goes back to the initial regular lattice of local interactions, and then applies 
the small-world construction algorithm (either Watts–Strogatz or Newman–Watts 
as described above), so that interactions do not accumulate or turn all the inter-
actions into nonlocal ones. Rewiring acts on the list of triads. Once it is finished, 
we can compute the list of interactions i� =

{
��,���

}
 and the nonlinear interaction 

coefficients M��′�′′ for each node using the triads that contain that node. This can 
be done in practice by going over the list of triads and when considering the triad 
tm
n
= (n, n + m, n + m + 1) adding {n + m, n + m + 1} to in, {n, n + m + 1} to in+m 

and {n, n + m} to in+m+1 with the interaction coefficients (i.e., weights) Mn,n+m,n+m+1, 
Mn+m,n+m+1,n , and Mn+m+1,n,n+m. As a result, one would have a different number of 
interactions for each node, and some of those interactions would be nonlocal, yet 
the energy would be conserved trivially, since we always consider all the contribu-
tions from each triad. For the Watts–Strogatz case, the model can be said to go from 
a regular shell model for p = 0 to a shell model with random scale interactions for 
p = 1.

As the network is being manipulated by wiring and rewiring, the variables un 
evolve according to the usual form of the equations, that we can write for instance as

Fig. 7   The topology of a small-world network generated using the Newman–Watts strategy. The local 
triads are shown with shaded lines, whereas the nonlocal triads are shown in solid black. While the net-
work is shown in a circular form, familiar in small world network studies, here, the nodes represents 
wave-number space shells with kn = k0g

n and, as a result, n = 0 is not connected back to n = 23 by a 
local interaction
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It may be argued that while Eq.  (39) represents the cascade of energy (or some 
other conserved quantity) in a given network topology, the randomized evolution 
of the network topology itself can be a proxy for further phase evolution that would 
enhance or impede energy transfer depending on the momentary alignment and 
synchronization of the phases of the (primitive) triads involved in the interaction. 
Notice that the variables un already has some complex phases and their alignment 
already has consequences for the cascade, which already randomizes the evolution 
of shell models. However, since each shell model node does not represent a single 
wave-number node, those phases are ad-hoc replacements for some kind of average 
phase for a whole region. Energy transfer is actually enhanced or not, depending 
on the phase relations among many primitive triads that are involved in the interac-
tions between three regions that are represented as a single three-body interaction 
among three shells. The turning on and off of nonlocal interactions may thus model 
a momentary phase synchronization in a nonlocal triad resulting in a burst of nonlo-
cal transfer.

Further studies are needed to clarify both the meaning and the details of the 
evolution of wave-number space network topology in turbulent systems. Even if it 
is true that network topology can be used to represent phase synchronization, it is 
not clear how to describe the phase evolution of a turbulent system using rewiring 
rules. The question is similar to percolation, but is more complex as it involves 
three-body interactions. Here, we use random rewiring using one of the strategies 
described above to generate regularly rewired small-world network topologies, 
and solve Eq.  (39) in such an evolving network, choosing the network rewiring 
time step to be larger than the time step for the evolution of the field variables. 
The results can be seen in Fig. 8.

Another interesting option would be to use quadratic conserved quantities, En 
instead of the shell variables un. This requires the use of a closure—for example, 
the EDQNM closure is discussed in Sect.  4.2—which gets rid of the complex 
phases completely. In such a formulation, the argument that the network evolu-
tion describes the phase dynamics becomes more transparent. For example, for a 
two-body interaction, if the phases of dominant triads involving nodes from the 
two regions L and L′ are aligned, the edge between L and L′ would be activated. 
An activate two-body interaction would add TLL′ as defined in Eq.  (32) and the 
corresponding term (e.g., TL′L ) in the equation for EL′ . It can be seen that in the 
limit that most active interactions are two-body interactions, the problem of the 
turbulent cascade becomes that of percolation through a dynamical network, as 
the conserved quantity tries to go from the scale of injection to that of dissipa-
tion through a system represented by mostly neighboring interactions that can be 
turned on and off. The caveat is that the real system has an increasingly large 
number of triads as we go to smaller scales, allowing many possible paths for the 
cascade, and this is a key aspect of the statistical nature of the unreduced system.

(39)
(
�t + �k2

n

)
un =

∑
��,���=in

Mn,��,���u
∗
��u

∗
��� + fn.
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6 � Wave‑number space networks for analysis

We can also use wave-number space networks for analysis of the data from numeri-
cal simulations (and possibly experiment as long as enough high-quality data is 
available). This usually involves projecting the full DNS data onto some reduced 
wave-number space consisting of a partition denoted by L,   to study the injection, 
transfer, and dissipation of some conserved quantity within that partition. For exam-
ple, we can take Eq. (30) and compute each of its terms from their definitions using 
the data that we obtain from direct numerical simulations. Depending on the par-
titions, this may give us concrete information about the energy transfer between 
different parts of the k-space. For a given problem, say the dissipative drift waves 
described by the Hasegawa–Wakatani equations, different transfer terms may indi-
cate energy transfer from energy containing scales, corresponding to most unsta-
ble modes to zonal flows and small-scale isotropic perturbations. In a wave-number 
space network formulation with three variables representing injection scales, zonal 
flows, and isotropic small scales, we can answer questions such as how much energy 
is transferred among different modes, or if the tertiary instability is actually impor-
tant in zonal-flow saturation.

We can also do a primitive wave-number space network analysis, in which case 
we would compute each component of T��′�′′ in Eq. (29) for a reasonably low resolu-
tion numerical simulation. However, this is hard to represent graphically, and there-
fore can only be used to extract other useful information later on. For example, we 
can compute t��′ , the net energy transfer between two nodes from all possible triadic 

Fig. 8   The steady-state spectra from the dynamical complex network models based on WS and NW 
rewiring strategies, compared with the GOY model, showing that all three models capture the k−5∕3 spec-
trum, while NW is slightly lower in amplitude as opposed to the other two, probably as a result of its 
extra connections, and therefore higher transfer efficiency
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interactions, as defined in Sect. 2.2, which can actually be represented graphically, 
or used in further reductions. An example of the network representation of the trans-
fer tensor t��′ , for a Hasegawa–Wakatani simulation with the minimum resolution 
of 16 × 16, is shown in Fig. 9. We can see that this is a zonal flow dominated case, 
where the energy is either transferred to zonal flows or is refracted to higher kx , sug-
gesting that a generalized quasi-linear description where only the interactions with 
the zonal flows are considered can be sufficient for describing this system in this 
limit. However, note that the implication that kx scattering comes mainly from zonal 
flows need to be shown by looking explicitly at the t�′′

��′ where �′′ (i.e., the mediator) 
is zonal vs. nonzonal for each pair. �,�′ that is significant in the transfer network.

Recall that the two-dimensional Hasegawa–Wakatani system (Hasegawa and 
Wakatani 1983) consists of an equation of plasma vorticity

coupled to an equation of continuity

(40)
𝜕

𝜕t
∇2Φ + ẑ × ∇Φ ⋅ ∇∇2Φ = C

(
�Φ − �n

)
+ DΦ

(
∇2Φ

)

Fig. 9   The primitive wave-number space network of a 16 × 16 k-space grid, where each node represents 
a separate k vector. The colored boxes in the background show the linear growth rate. The node size indi-
cates the magnitude of kinetic energy and the node color indicates kinetic energy injection at that node. 
The arrows indicate the direction, with their width and color indicating the strength of energy transfer 
between the nodes. Energy transfer is shown as an arrow only if it is above a certain threshold, and zonal 
nodes with kx < 0 are removed because of Hermitian symmetry. We can see that most of the energy 
is localized at the zonal mode around kx ≈ 1, even though this mode is removing energy from the sys-
tem. We also see that the linearly most unstable mode is not the node that has the highest energy injec-
tion nonlinearly, and the injected energy either couples directly to the zonal flows or is refracted toward 
higher k probably by the action of the sheared flow
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where Φ is the electrostatic potential normalized to T/e,  and n is the fluctuating part 
of the plasma density normalized to a background density n0, x and y are the radial 
and the (locally) poloidal directions normalized to the sound Larmor radius �s, � is 
the background density gradient that is assumed to be constant, normalized to the 
speed of sound, and C is the so-called adiabaticity parameter, which is a measure of 
the electron mobility in the parallel direction. With these, the E × B velocity is 
defined as vE = ẑ × ∇Φ and the plasma vorticity becomes ∇2Φ. Here, ⟨Φ⟩ = Φ 
denotes averaging in y (i.e., poloidal) direction, so that Φ̃ ≡ Φ − ⟨Φ⟩. Finally, DΦ 
and Dn are functions representing viscosity and particle diffusion, respectively. For 

the standard form of kinematic viscosity, we can take DΦ

(
∇2Φ̃

)
= �∇4Φ̃ for fluc-

tuations. In contrast, it makes sense to argue that for zonal flows, the dominant 
mechanism is large-scale friction, so that we can write DΦ

(
∇2Φ

)
= −�ZF∇

2Φ. 
Normally, Dn should be zero, but it is usually taken to have the same form with dif-
fusion Dn

(
ñ
)
= D∇2ñ for numerical stability.

The Hasegawa–Wakani model can be considered as a minimum nontrivial model 
of plasma turbulence, as it has all the key ingredients such as the linear instabil-
ity and the ability to generate waves and zonal flows, but is otherwise one of the 
simplest possible models in plasma physics that describes the evolution of dissipa-
tive drift instabilities in the tokamak edge (Scott 1988; Koniges et al. 1992). It has 
the same nonlinear structure as that of the two-dimensional Navier–Stokes equa-
tions coupled with a passive scalar, or that of thermal convection in two dimensions. 
Therefore, the study of the Hasegawa–Wakatani system from a wave-number space 
network perspective is useful as a characteristic example for the kind of turbulence 
that one finds in fusion plasmas, as well as in other fields where similar equations 
are commonly used, such as solar or geophysical fluid dynamics. A simple pseudo-
spectral implementation of this model provides us with a primitive network in the 
wave-number space.

Increasing the wave-number space resolution without increasing the wave-num-
ber space domain corresponds to increasing the box size and the number of grid 
elements by the same factor, resulting in a larger box with an unchanged real space 
grid element size, as shown in top plot of Fig.  10. This allows us to increase the 
resolution in wave-number space, which can then be reduced as in the bottom plot 
of Fig. 10 to “go back” to the low resolution case shown in Fig. 9. Of course, the 
details of the partitioning matters, and the choice shown in Fig. 10 imply a reduction 
where each reduced node represents a grid of 4 × 4 primitive nodes apart from the 
kx = 0 or ky = 0 nodes, which represent 1 × 4 and 4 × 1 primitive nodes, respectively. 
The results from this reduced network are shown in Fig.  11 and are qualitatively 
consistent with the primitive network, with maybe more statistics and larger total 
energy because of the larger spatial extent.

To compute the transfer term from DNS, consider a simulation algorithm that 
advances the fields ��

k
 according to Eq. (26), with the nonlinear term written explic-

itly as

(41)
𝜕

𝜕t
n + ẑ × ∇Φ ⋅ ∇n + 𝜅𝜕yΦ = C

(
�Φ − �n

)
+ Dn(n),
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Fig. 10   The box size and the resulting wave-number space resolution. The top plot shows the final snap-
shots, at t = 200, of the vorticity on the left and the density on the right of the two runs with the 64 × 64 
grid as the full box and the 16 × 16 grid as the smaller box at the lower left corner. To construct the same 
network as in Fig. 9 through reduction, we partition the wave-number space grid as shown in the bottom 
plot (note that only a part of the k-space is shown for clarity). Both the ky = 0 and the kx = 0 modes have 
1 × 4 wave-number elements, whereas the rest of the nodes have 4 × 4 elements each. The resulting net-
work is shown in Fig. 11
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where L is the linear part of the problem and NL(�� ,Φ)k is the nonlinear part, which 
may, for example, represent the Poisson bracket as

We would also usually have a relation between Φk and ��
k
 for example as in the case 

where one of the fields, say �1
k
 represents vorticity, so that �1

k
= −k2Φk.

In this formulation, we can write

and

�t�
�
k
+ L

��

k
�
�

k
= NL(�� ,Φ)k,

NL(𝜉𝛼 ,Φ)k ≡ (ẑ × ∇𝜉𝛼 ⋅ ∇Φ)k.

[
�t�

�
k

]
lin

= −L
��

k
�
�

k

Fig. 11   The reduced wave-number space network of a 64 × 64 wave-number space grid. Here, each node 
represents a partition containing 4 × 4 wave-numbers (with the kx = 0 and ky = 0 nodes containing 1 × 4 
and 4 × 1 elements as shown in the bottom plot of Fig. 10. As in Fig. 9, the background color shows the 
linear growth rate, and the node size and color indicate the magnitude and production rate of kinetic 
energy at that node. Again as in Fig. 9, the arrows indicate the direction, and the width and color of the 
lines indicate the strength of energy transfer between the nodes. Note also that the arrow lines are always 
curved in the counter clock-wise direction, so that we can infer their direction even when the arrow tip 
is not visible because of crowding. We used suitable thresholds and normalizations for both the nodes 
and the edges. Again, most of the energy is localized at the zonal mode around kx ≈ 1. The relative dif-
ferences between the zonal modes (an the transfer to them) and the others between Fig. 9 and the cur-
rent figure suggest that when the resolution is increased by increasing the system size, so that the wave-
number space resolution increases without changing the wave-number domain, the zonal-flow generation 
increases
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Net injection of E�
k
≡ Re

[
��∗
k
����

k
��

�

k

]
 can then be written as

whereas the total transfer of E�
k
 from all the other wave-numbers to the wave-number 

k takes the form

consistent with Eq.  (8). Most of the numerical algorithms that deal with the Pois-
son bracket nonlinearity does so in real space because of the efficiency of doing so, 
either using finite differences directly using real space fields, or through the pseudo-
spectral formulation based on back-and-forth fast Fourier transforms. This means 
that we have a quantity that is already summed over p and q as a result of the com-
putation of 

[
�t�

�′

k

]
nl
. To separate this, we can define a “band pass” filter that contains 

a single Fourier mode as �𝓁� (��) = ��
𝓁�e

ik𝓁� ⋅x, which sets all the other Fourier coef-
ficients to zero. We can then compute

switching to the node notation Φ� ≡ Φk�
≡ Φ̂

(
kx� , ky�

)
, as the net transfer of E� 

from �′ to � (summed over all possible �′′ ). To do the same for a reduced network, 
we can either sum over t��′ by writing tLL� =

∑
�∈L,��∈L� t��� , or use the “band pass” 

filter for the region L,  defined as

so that we can write using the larger filter

In other words, if we have a nonlinear function NL(�,Φ) that computes the nonlinear 

terms of our system, we basically send it the band-pass-filtered �L� = �L� (�) as the input 

variable NL
(
�L� ,Φ

)
 to compute the effective nonlinear term involving the modes in 

that region L′. Then, we multiply by � and �∗�
�

 and sum over � ∈ L as in Eq. (43) to 
obtain the net transfer of the conserved quantity from the region L′ to region L. Repeat-
ing this for all possible L′ and L, we get the full network, as shown in Fig. 11.

6.1 � Model extraction

In some cases where a reduced wave-number space network can actually be 
described by a closed system of equations of its reduced variables, say EL, the 

[
�t�

�
k

]
nl
= NL(�� ,Φ)k.

P�
k
− D�

k
≡ Re

(
�∗�
k
����

k

[
�t�

��

k

]
lin

)
,

tk =
∑
k�

tk�k ≡ Re
(
��∗
k
����

k

[
�t�

��

k

]
nl

)

(42)t𝓁𝓁� ≡ Re
[
��∗
𝓁
����

𝓁
NL

(
��

�

𝓁�e
ik𝓁⋅x,Φ

)
𝓁

]

�L(�
�) =

∑
𝓁∈L

�𝓁e
ik𝓁⋅x,

(43)tLL� =
∑
�∈L

Re
[
��∗
�
����

�
NL

(
�L�

(
��

�)
,Φ

)
�

]
.
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numerical analysis can be used to “extract” that model directly from the data. Extrac-
tion of reduced models from data, especially “identification” when the data actually 
come from a nonlinear dynamical system with a reasonable number of degrees of 
freedom, has been a subject of great interest recently and is one of the more interest-
ing methods of the booming field of data science, especially from the perspective 
of the study of complex dynamical systems. In this sense, the idea of using the data 
to extract a reduced model is simply an application of one of these methods to the 
problem in question somehow formulated in terms of networks.

However, methods, such as SINDy (Brunton et al. 2016; Kaptanoglu et al. 2021), 
apply directly to the data, and not exploit the advantage of having a model that we 
can query in different ways. The data that come out of a numerical simulation as 
discussed in the previous section would be a combination of many terms, linear and 
nonlinear terms, interactions with different fields, interactions with different wave-
number space nodes, etc. All these are combined to form a single output data, or a 
list of outputs equal to the number of evolving field variables at each grid elements. 
For example, we may have a model for the linear physics, so that we can subtract that 
and concentrate on the nonlinear part, and try to decipher it using different nonlinear 
forms such as polynomials or a library of other nonlinear functions. The goal would 
be to minimize the difference between the 

[
�t�

]
data

 and the 
[
�t�

]
model

= Fmodel

(
�data

)
, 

where F  is a functional, while keeping the system as sparse as possible.
From a network perspective, where the primary objective may be to reduce a 

full system (i.e., the DNS) that we master completely, and can query as we want, 
by sending it filtered input to compute data that are separated into parts, the con-
straints on what can be done is quite different. We can, for instance, separate the 
linear and the nonlinear parts of 

[
�t�

]
=
[
�t�

]
lin

+
[
�t�

]
nl

 explicitly. We can also 
write 

�
�t�

�
nl
=
∑

L� tLL� and compute each of tLL′ using filtered inputs as discussed 
earlier in this section as a function of time. We can then do a linear regression, or 
nonlinear optimization to minimize the difference between the data 

[
tLL′

]
data

 and the 
model for 

[
tLL�

]
model

= Fmodel

(
�L, �L�

)
. Following SINDy, we can pose the optimi-

zation problem in such a way as to favor a sparse model. The advantage of being 
able to separate the data into its constituents that describe distinct interaction terms 
among its elements is weighed against the usual complexity of the underlying sys-
tem and the fact that the reduction is almost never exact. Obviously, a complex 
nonlinear system, displaying multi-scale chaotic behavior, is unlikely to be fitted 
nicely with a close-enough reduced model. The slight error between the reduced 
model and the full system would probably result in a large difference in terms of 
the actual time traces. Note that the optimization can be done either by computing 
the differences in 

[
dt�

]
model

−
[
dt�

]
data

, or the differences between �model − �data by 
integrating the model in time with the given initial conditions from the data using 
�model = �data(t = 0) + ∫ t

0

[
�t�

]
model

dt.

Of course in cases where the system reduces itself to a nonlinear dynamical sys-
tem of a very small degrees of freedom, the difference between the above meth-
ods where each interaction pair (or triple) is computed explicitly and compared to 
a model of that interaction explicitly vs. the sum of all the terms that contribute to 
a field variable is compared to a model of all the terms on the right-hand side for 
that variable is academic and both methods work equally well. The simplest such 
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example is probably the case of the reduction of the data form four-dimensional 
gyrokinetic simulations near the instability threshold to a Lotka–Volterra preda-
tor–prey model (Kobayashi et al. 2015). In this case, because the system excites only 
a finite number of modes, which then interact with the zonal flows and saturate rap-
idly, the many degrees of freedom involved in these high-resolution simulations of 
the gyrokinetic equation reduces itself to an effective system of only two degrees of 
freedom corresponding roughly to the most unstable mode, and the zonal flow. The 
reduction to a predator–prey-like system works also in the case of interchange, and 
can be performed within the SINDy framework (Dam et al. 2017).

A similar case can be made for the use of machine learning for the development 
of reduced network models. Consider, for example, the case of a pseudo-spectral 
formulation with only two nonzonal modes in ky space (say k and k� = 2k ), whose 
evolution can be written in real space as

where

If we are to reduce this to a single-mode system

where F0 and Fk represent the effect of the effaced mode k′ on the two remaining 
modes; the zonal mode and the mode with the poloidal wave-number k. The argu-
ment for machine learning would be that we can train two “models” F0 and Fk, 
which would allow for a closure of the system, using the data for N0k� (x) and Nkk� (x) , 
respectively. Furthermore, since such a simulation is reasonably cheap, the training 
data can be generated on demand in chunks.

7 � Summary and conclusion

The goal of this review was to provide a different perspective into a well-known 
problem in nonlinear dynamics of fluids and plasmas. To achieve that, the basic 
formulation of the plasma turbulence in the context of fusion plasmas is revisited 
using wave-number space networks without going into particulars of the models or 
the physical systems in question. In their primitive form, these networks consist of 
nodes that represent elements in a discretized wave-number space grid and three-
body interactions connecting those nodes. The fields generally representing the 

�t�0(x) = N0k(x) + N0k� (x)

�t�k(x) = Nk0(x) + Nkk� (x)

�t�k� (x) = Nk�0(x) + Nk�k(x),

N0k =
⟨[
Φk, �k

]⟩
, Nk0 =

[
Φ, �k

]
+
[
Φk, �

]

Nkk� =
[
Φk� , �

∗
k

]
+
[
Φ∗

k
, �k�

]
, Nk�k =

[
Φk, �k

]
+
[
Φk, �k

]
.

�t�0(x) = N0k(x) + F0

(
x, k, �0, �k,…

)

�t�k(x) = Nk0(x) + Fk

(
x, k, �0, �k,…

)
,
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Fourier coefficients of various moments of the distribution function are evolved on 
this three-body interaction network where each node interacts with all the pairs with 
whom it satisfies the triadic interaction condition of k + p + q = 0 imposed by the 
convolutions in Fourier space. Each link in such a three-body network is represented 
as a triangular node that is linked to three nodes that it links together, and each of 
its legs has an associated weight which is the nonlinear interaction coefficient. It is 
argued that the network formulation where we consider a list of nodes, and list of 
triads, provides a solid framework for model reduction. It is shown, for instance, that 
using a truncated wave-number space network that is obtained by dropping nodes, or 
triads from the original primitive network, one still respects all the same conserva-
tion laws as the original system without any effort.

Even though this review focuses on simple nonlinear models, such as two-
dimensional Navier–Stokes equations or the Hasegawa–Wakatani system for plasma 
turbulence, some issues about the application of the network formalism to fusion 
plasmas, such as the effect of magnetic shear on mode localization around rational 
surfaces, or the link between the wave-number space and the flux tube formula-
tion are briefly mentioned. Studies about the details of particular systems in realis-
tic tokamak geometry are probably essential for future studies, if the wave-number 
space network formulation is to be useful for fusion applications.

Considering truncated networks, various examples from rather exotic, nested 
polyhedra models, to the well-known example of quasi-linear theory are evoked. It 
is clear that such models can reach incredible resolutions in comparison to direct 
numerical simulations on a regular rectangular grid. However, due to the fact that 
the number of triads increase as a function of scale on a regular grid, whereas it 
remains constant on a logarithmically scaled truncated network, they tend to under-
estimate intermittency and tend toward an incorrect statistical equipartition solution, 
which can be remedied by invoking simple closures. A detailed discussion of net-
work reduction clarifies various mechanisms for the transfer of the quadratic con-
served quantities (energy, enstrophy, etc.) of the original system. It is shown in par-
ticular that while a primitive network only has three-body interactions, a reduced 
network which groups together primitive nodes may also have two-body interactions 
as a result of two of the nodes of an interacting triad ending up in the same partition. 
Ad-hoc models that separate the evolution of the network topology and the evolution 
of the field variable on that network are discussed, in particular in the form of small-
world network shell models, where the small-world aspect is achieved by randomly 
introducing some nonlocal interactions to the usual shell models of turbulence. It 
was argued that the evolution of the network topology could be used to model phase 
coherences that appear randomly in the evolution of a turbulent system. The (rather 
trivial) example of the EDQNM closure on a reduced network is also discussed, and 
it was shown that a simple reduced model based on random phase approximation 
that assumes Markovian statistics can be derived on a network. Finally, a discussion 
of how the transfer terms either in terms of transfer between three nodes �, �′ and 
�′′ in a primitive network or L and L′ and L′′ in a reduced network can be computed 
from a direct numerical simulation by properly filtering the input fields in the non-
linear term. An example of this is given for the Hasegawa–Wakatani system. Pos-
sible application of the network formulation to model extraction or model training 
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using machine learning algorithms is briefly discussed at the end, leaving the per-
spective open for future studies.

Data availability  The data that support the findings of this study are available from the corresponding 
author upon reasonable request.
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